Proceedings of the First Annual
NRO-OSL/GSFC-ATS Rideshare Conference

William Cutlip, Ed.

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

October 1999
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
Proceedings of the
1st Annual
NRO–OSL/GSFC–ATS
Rideshare Conference

April 15-16, 1999
FIRST ANNUAL

GODDARD SPACE FLIGHT CENTER – ACCESS TO SPACE GROUP
NATIONAL RECONNAISSANCE OFFICE – OFFICE OF SPACE LAUNCH

RIDESHARE CONFERENCE

Mr. William Cutlip and Mr. Jim Liller
Co-Chairmen

LITTON/TASC FACILITY
DULLES, VIRGINIA

April 15-16, 1999
FIRST ANNUAL GSFC-ATS/NRO-OSL
RIDESHARE CONFERENCE

15 Apr 99

8:00 Security Chip Harbaugh/TASC
8:10 Opening Remarks Lt Col Arey/NRO/OSL/APD
8:20 Administrative Jim Liller/NRO
8:30 Agenda Jim Liller/NRO
8:35 RideShare Catalog Jim Liller/NRO
8:50 Access To Space Program Bill Cutlip/GSFC/ATS
9:05 Rapid S/C Development Office (QuickRide) Jim Adams/GSFC
9:25 Spartan Project Office Dave Shrewsberry/GSFC
10:10 Break Chris Dunker/GSFC
10:20 Shuttle Small Payloads Project Pete Thomas/AFRL
10:40 MightSat Program Scott Yeakel/Spectrum Astro
11:00 Spectrum Astro Buses Phil Smith/ISS
11:20 Lunch Trip Carter/LMA
12:30 Integrated Space Systems Buses Regan Howard/Orbital
12:50 Athena Terry Schrepel/Ball Aerospace
1:00 Orbital Buses Ed McNamara/LMMS
1:20 Ball Aerospace Buses Jim Ritter/NRL
1:40 Lockheed Martin Buses Mike Cully/Swales
2:00 Break Donald Marshall/TRW
2:10 Orbiting Tech Testbed Initiative Jason O’Neil/Final Analysis
2:20 Swales Bus Paul Regeon/ONR
2:35 TRW Buses Bob Twiggs/Stanford University
2:55 FAISAT™ Dennis Smith/MSFC
3:15 GEO Bus Therese Thrift/USA
3:30 Stanford MicroSat
3:45 Space Transportation Program
4:05 United Space Alliance

16 Apr

8:00 Agenda Jim Liller/NRO
8:05 Universities Space Research Assoc Jack Sevier/USRA
8:20 SpaceHab Truss Bardos/SpaceHab
8:40 NanoSat Deployment Concepts Steve Huybrechts/AFRL
8:55 SERB/STP Maj Ward/AOSL
9:15 EELV Secondary P/L Adapter Capt. Scott Haskett/SMC-TELO
10:00 Break Joe Young/Swales
10:15 PuckSat Lt Col Verderame/AFRL
10:30 Space Maneuver Vehicle Frank Krens/Coleman Aerospace
11:15 Coleman Aerospace Vehicle Systems Maj Buckley/SMC-TEB
11:30 Lunch Lt. Col Hilland/AFRL
12:30 Orbital Sub-Orbital Program Albert Sierra/NASA HQ
1:00 Sat Threat Warning/Attack Rpt Prog Ed Morris/Orbital
1:15 NASA ELV Program/Policy Bill Files/Boeing
1:30 Pegasus/Taurus Mike Ragole/Lockheed Martin
1:50 Boeing Delta II & EELV All
2:10 Lockheed Martin EELV
2:30 Secondary Payload Broker Discussion
Goddard Space Flight Center

Access to Space

Providing a Ride to the Future
The ATS Group will support the Goddard Space Flight Center’s science and technology community by facilitating frequent, affordable opportunities for access to space and shall be advocates of change to reduce the cost of access. The ATS Group will utilize its experience and knowledge to provide comprehensive customer support throughout the entire mission cycle. This support will be thorough, innovative, and timely to ensure long-term customer satisfaction.
Goddard Space Flight Center

- Enable discovery through leadership in Earth and space science
- Serve the scientific community, inspire the Nation, foster education, and stimulate economic growth
- Partner with others to achieve NASA’s goals
- Be innovative in all that we do
Phases

- The ATS Agent is responsible for the successful provision of
 - Timely, comprehensive information regarding access opportunities
 - Technical details specific to each opportunity
 - Related cost information
 - Supplier specified points-of-contact
Phases

Formulation

Implementation
Phases

- Will be the project's single point of contact for access-related information and questions
- Will propose alternate methods, when appropriate, in order to satisfy the customer's needs and requirements
- Will continuously evaluate the access mode work performed and procedures used for improvement in efficiency and lowering costs. Will work to prevent requirements to change in scope to the extent that costs and schedules are effected
Partnerships

Access Mode Suppliers
The ATS Group will support the Goddard Space Flight Center's science and technology community by facilitating frequent, affordable opportunities for access to space and shall be advocates of change to reduce the cost of access. The ATS Group will utilize its experience and knowledge to provide comprehensive customer support throughout the entire mission cycle. This support will be thorough, innovative, and timely to ensure long term customer satisfaction.

Developing a Mission?
Looking for a Ride?

How far do you want to go today?
http://accessstospace.gsfc.nasa.gov

Looking for a Ride?

How far do you want to go today?
Distributed Knowledge Base

ATS Web Page

Access To Space Opportunities

Reduced Access Cost

Access Mode Information

NRO

MSFC

KSC

Boeing

LMA

Orbital
Add A Mission

Mission Name:
Mission Status: Manifested
Mission Budget: None
Mission URL Link:
Launch Date:
Launch Window Duration (min): 0
Launch Window Open/Close: TBD
Seasonal Window: TBD

Apogee (km):
Perigee (km):
Inclination (deg):
Arg Of Perigee (deg):
C3 (km²/s²):
Ascending Node (deg):
or MLT:
Primary Payload Mass (kg):
Spacecraft Length (m):
Spacecraft Diameter (m):

The ATS Web Page Provides “Tool Boxes” for:

- Access Opportunities
- Performance
- Interfaces
- Volume
- Environments
- “Wish List” Entry
- Educational Outreach
Customer Satisfaction
Advocates of Change
Partnerships

Customers

Suppliers

Government Labs

NASA Centers
For Further Information, Please Contact:

• ATS Group Leader
 - Bill Cutlip
 William.E.Cutlip.1@gsfc.nasa.gov
 Voice: (301) 286-0438
 FAX: (301) 286-1696-0232

• Project Formulation Office
 - Tom Taylor
 Thomas.S.Taylor.1@gsfc.nasa.gov
 Voice: (301) 286-8388
 FAX: (301) 286-0232
Access To Space Group

— ATS/NRO Rideshare Conference —

William E. Cutlip
Group Leader, Access To Space Group
Where's ATS?
Here's ATS

Thomas Taylor, Chief
Sandra Cauffman, Deputy Chief
Patrice Cogswell, Secretary

Project Formulation Managers (PFM)
- Caruso, Paul, Sr. PFM
- Durnig, John
- Galloway, John
- Gervin, Jan
- Grady, Jean
- Jenstrom, Del
- Pacini, Linda
- Park, Elizabeth
- Seery, Bernie

Access to Space Agents (ATSA)
- Cutlip, Bill, ATS Group Lead
- Buchanan, Robert
- Goeser, Francis M.
- Leon, John
- Vacant
- Vacant
- Woodall, Clyde

Carrier Managers (HST)
- Hubbard, Mark
- Krupacs, Eric

Business Management Office (FPD)
- Sasce, Dino
- Resource Analyst
- Vacant
- Resource Analyst
- Marechek, Laura
- Business Support Specialist

Technical Support
- Azzolini, John
- Advanced Project Technologist (SED)
- Badri Younce
- Spectrum Manager (FPD)
Mission Statement

"The ATS Group will support the Goddard Space Flight Center’s science and technology community by facilitating frequent, affordable opportunities for access to space and shall be advocates of change to reduce the cost of access. The ATS Group will utilize its experience and knowledge to provide comprehensive customer support throughout the entire mission cycle. This support will be thorough, innovative, and timely to ensure long term customer satisfaction."

(ATS Strategic Plan Signed By GSFC Center Director 10/22/98)
Charter

- Provide frequent, affordable opportunities for GSFC customers to make new measurements across a wide range of instrument platforms

- Maintain models/database of world-wide ATS performance/interface capabilities, access to space opportunities, and customers' needs

- Facilitate the reduction of ATS cost over the full mission life cycle

- Participate in entire mission life cycle
Old Versus The New

NEW PROCESS

<table>
<thead>
<tr>
<th>Pre-Formulation</th>
<th>Formulation</th>
<th>Approval</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabling Activities</td>
<td>Definitize Project</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRADITIONAL PHASES

- Pre-A Advanced Studies
- Conceptual Design Studies
- Concept Definition/Initial Baseline
- Design Development
- Fabrication I&T
- Pre-Operations
- Operations/Disposal

Launch
Project Formulation

Enabling Activities

- Requirements
- Mission Concepts
- Technology
- Partnerships
- Advocacy
- Programmatic
- Access To Space

Definitize Project

Project Approval Package

Implementation
Project Support

• Pre-Formulation/Formulation Process

 - "The Access To Space Agent (ATSA) supports all Access To Space-related technical and programmatic processes in support of GSFC's development of feasible mission concepts, Project Formulation and Implementation activities."

 - The ATSA is responsible for the following:

 • Provision of timely, comprehensive information regarding access opportunities, technical details specific to each opportunity, related cost information, and customer satisfaction with the products delivered.

 • Development of Web-based tools and databases to support assessment of all access modes and related technical and programmatic aspects.

 • Formulation and implementation of a standardized assessment package.

 • Formulation and implementation of MOAs with other Centers to facilitate.
Web-based Tools and Database: Mission Statement

"Develop and maintain a web site that provides both the information and the tools to assist mission planners in selecting and planning their ride to space. This includes the evaluation of single payloads vs. ride-sharing to reduce the cost of access to space."
Web Site Contents

- Database of information on foreign and domestic launch vehicles
 - The equivalent of an abbreviated on-line user's guides in a single location with the ability to view side-by-side comparisons of data in like formats
- Database of all missions planning to fly
 - Future concepts, Proposed missions, Manifested
- Interactive tools to quickly and easily scan through the data to search for candidate vehicles and ride-sharing/co-manifest opportunities
- Ability for registered users to add missions and share ideas to foster partnerships
Implementation Plan

- Design and develop the core system
- Populate the databases with current information
- Place Release 1 online and publicize the site
- Receive customer feedback and enhancement suggestions
- Continue to expand functionality of the site
- Work with other organizations, both commercial and government, to continually evolve to meet all user's needs
Where We Are

- **Design and develop the core system**
 - Initial release is in testing phase

- **Populate the databases with current information**
 - **LVs:** Have been working with industry suppliers since last Fall to supply data in a standard/consistent format
 - **Missions:** Already contains mission information from NASA’s database and other mission information from NRO

- **Place Release 1 online and publicize the site**

- **Release 1 will go online in May**

- **We are demonstrating the site at this conference**
 - Receive customer feedback and enhancement suggestions
ATS Home Page
http://accesstospace.gsfc.nasa.gov
• All users can browse the site by entering as a 'guest'
• Registered users gain additional benefits such as:
 - Stored user sessions
 - Printable “walk-away packets”
 - Access tools to enter/edit mission data into the mission database
Mission Data Input

- Registered users enter mission data through a series of data input panels
- Data topics include:
 - Orbit Parameters
 - Secondary/Co-manifest
 - Spacecraft Characteristics
 - Launch Vehicle
 - Other Mission Notes
 - Contact Information
Mission Design Home Page

- When using the mission design site, the user has three options from the main page:
 1. Query Mission Database
 2. Search for candidate rides
 3. Investigate Launch Vehicles in detail

Welcome to the Mission Design page

If you are thinking of putting something in orbit, the following pages contain a variety of helpful information and tools to help you select candidate rides to space. At this site, you will be able to browse and search through our database on currently supported access modes plus detailed information on other missions, resources from proposed to manifested flights.

- If you would like to research the various missions proposed or manifested, visit our Mission Database. This interactive site will allow you to search by mission class and identify potential cooperative efforts, such as co-manifest opportunities.
- If you have a general idea of your orbit and/or your spacecraft mass and volume, you can search for compatible access modes using our Search Tool. This interactive search will use your input to look through the available access mode data and display the compatible modes. Relevant candidate rides are also identified.
- If you already have an access mode in mind, click here to find specific data.

If you want more information and would like to speak with an ACS representative, please contact us.
Option 1: Query Mission Database

- Input search data
- Click "go"
- Results returned here
From the sort results, you can view the mission details

- Orbit Parameters
- Secondary/Co-manifest
- Spacecraft Characteristics
- Launch Vehicle
- Other Mission Notes
- Contact Information
• Enter target orbit and payload mass

• Query returns candidate launch vehicles and potential ride-share matches

Option 2: General Search Toolbox

Welcome to the General Search Toolbox. This tool returns candidate rides to your orbit for your payload. The top portion of the search results page returns all launch vehicles currently in our database that meet the orbit and payload requirements. The lower portion of the results page lists those missions launching to a similar orbit that are interested in ride-sharing. To use the search engine, enter the orbit altitude and inclination (optional), and the payload characteristics (optional) and click the Search button.
Candidate Launch Vehicles and Ride-Shares

• Launch Vehicles
 - Based on the payload mass and orbit requested, the vehicle performance curves are scanned and the vehicle returned if the orbit can be achieved
 - The user can then click on the selections to research the candidate vehicles in detail

• Ride-Shares
 - Additionally, the mission database is scanned to identify ride-share candidates based on the payload mass and orbit proximity
 - The results are separated by mission status
 - You may click on the mission name to view the mission details
General Search Toolbox Result

Search results for Altitude of 450(km), Inclination of sun-synchronous(deg).

<table>
<thead>
<tr>
<th>Access Mode</th>
<th>Max Payload (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta II(720-9.2)</td>
<td>3560</td>
</tr>
<tr>
<td>Delta II(720-10)</td>
<td>3526</td>
</tr>
<tr>
<td>Pegasus(PegasusXL)</td>
<td>277</td>
</tr>
</tbody>
</table>

Select Results for Shared Ride Opportunities
Select a mission name for detailed information

<table>
<thead>
<tr>
<th>Mission Name</th>
<th>Launch Date</th>
<th>Secondary Status</th>
<th>Payload Mass (kg)</th>
<th>Allocated Mass (kg)</th>
<th>Allocated Volume (Cylindrical) dia.(m) x length(m)</th>
<th>Secondary Application Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceanrunner-4</td>
<td>07/01/2000</td>
<td>Secondary/transport opportunity available</td>
<td>300</td>
<td>300</td>
<td>1.1 x 1.53</td>
<td>07/01/1999</td>
</tr>
<tr>
<td>LM-013</td>
<td>09/01/2000</td>
<td>Secondary/transport opportunity available</td>
<td>0</td>
<td>150</td>
<td>0.66 x 0</td>
<td>07/01/1999</td>
</tr>
</tbody>
</table>

Proposed Missions

<table>
<thead>
<tr>
<th>Mission Name</th>
<th>Launch Date</th>
<th>Secondary Status</th>
<th>Payload Mass (kg)</th>
<th>Allocated Mass (kg)</th>
<th>Allocated Volume (Cylindrical) dia.(m) x length(m)</th>
<th>Secondary Application Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFFIRE S</td>
<td></td>
<td>Looking for a ride</td>
<td>200</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Option 3: Launch Vehicle Toolboxes

- The launch vehicle toolboxes provide the user with a wealth of data on each vehicle in areas such as:
 - General Information/Overview
 - Performance
 - Available Volume
 - Environments
 - Payload Interface
 - Launch Sites
Option 3: Launch Vehicle Toolboxes (Continued)

- On the first page, you select the class and/or configuration you wish to research.
Vehicle Class Overview

- For vehicle class information, click on the menu selections on the left menu
 - Vehicle History and Description
 - Configurations Available
 - Naming Conventions
 - Educational Outreach
Vehicle Configuration Details

- To view configuration information, use both the top and side menus.
- The top menu allows you to select the toolbox (major category).
- The side menu presents the topics contained in each toolbox.
Walk-Away Packet

Once you have completed your session, you may go to the "Print Options" selection tool. This tool allows you to select items from the toolboxes and searches that you want to print, alleviating the need to print individual pages.

Access To Space Interactive Web Site

Vehicle Data Packet for user Dr. Robert H. Goddard, XII
Launch Vehicle Information for the Pegasus XL

January 20, 1999
What We Have Accomplished

- We have developed one single location for mission planners to seamlessly investigate the three means to reach space:
 - Ride share
 - Co-manifest
 - Single payload
What We Need

- Full involvement from the Access Mode Supplier community

- The basic tools are in place, but we need the vehicle data to make the site a true "portal" to the access to space world

- Full involvement from everyone who has a ride or is looking for a ride
Planned Enhancements

- Add a user-registration system
 - Stored user sessions
 - Printable ‘walk-away’ packets
 - User-tools to add missions to the database
- Comparison and payload visualization
- Special requests section
- Expand ride-sharing for spacecraft bus availability
- Expand to other access modes (Shuttle, balloons, sub-orbital)
Milestone Schedule

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Q2 '99</th>
<th>Q3 '99</th>
<th>Q4 '99</th>
<th>Q1 '00</th>
<th>Q2 '00</th>
<th>Q3 '00</th>
<th>Q4 '00</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATS Web Site Enhancements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release 1 On Line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Registration System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Requests Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparison and Payload Visualization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spacecraft Bus Ride-Sharing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Access Modes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Shuttle, balloons, Sub-orbital)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Formulation Assessments
(Web Assisted)

- Address All Access Modes
 - ELVs, RLVs, Balloons, Shuttle, Spacecraft, Shared Rides
 - U.S. and Foreign, Government and Commercial
- Phase I/II Process
 - Phase I identifies
 - Project Specifics
 - Potential Access Modes
 ✓ Technical & Programmatic specifics for each
 - First Cut Trade Space
 - Phase II fine tunes, based on Customer input on Phase I
Potential Access Modes
(Summary Sheet Example)

• Shuttle
 ➞ Inclination and "Shuttle-compatible" mods are show-stoppers
 • Time for plane change excessive

• High Altitude Balloons
 ➞ Altitude and time-on-orbit requirements are show-stoppers

• Instrument Only Ride
 ➞ Potential Access Mode

• Expendable/Reusable Launch Vehicles
 ➞ Potential Access Mode
Potential Launch Vehicles
(Summary Sheet Example — all prices are estimates from public sources)

- Expendable Launch Vehicles
 - Atlas IIA SLC-3 at VAFB Massive Performance Margin $85M
 - Titan II SLV SLC-4W at VAFB Elliptical Orbit $32M
 - Athena II Kodiak Island (?) Approx. 325kg of Margin $28M
 - Delta II SLC-2 at VAFB Massive Performance Margin $45M
 - Kosmos Baikonur & Plesetsk 1,400kg to 400km $14M
 - Launched FAISAT-2V s/c 9/23/97 out of Plesetsk, 825kg s/c
 - Proton Block DM Baikonur Massive Performance Margin $30M
 - Used for Iridium missions, also Asiasat 3, Inmarsat 3 F2, Telstar 5
 - Rokot Baikonur 1,850kg to 300km $3M
 - Soyuz Baikonur & Plesetsk Massive Performance Margin $36M
 - Zenit Sea Launch & Baikonur Massive Performance Margin $65M
 - Tsyklon 3 Plesetsk Massive Performance Margin $11M
 - Ariane 44L Kourou Massive Performance Margin $82M
 - Long March Xichang Massive Performance Margin $10-25M

Note: Acquisition of foreign launch services requires Presidential waiver of National Space Policy.
Potential Launch Vehicles
(Summary Sheet Example — all prices are estimates from public sources)

- Reusable/New Expendable Launch Vehicles
 - Kistler K-1 Woomera Rocket Range ~1,770kg to 600km, 94 deg $17M
 - First launch end of CY98/beginning of CY99
 - Contract with Space Systems/Loral for 10 launches - first launch 4Q CY99
 - ~$4,800/lb.

 - First launch scheduled for late CY99

- Pioneer RocketPlane Take-off VAFB Requires Upper Stage on s/c $45M

- Kelly Space Astroliner Take off EdwAFB Massive Perf. Margin (?) $9M (?)
 - Scheduled for start of commercial operations by mid-2001

 - Flight tests scheduled for CY99, commercial service mid CY00
 - $1,000/lb.
Project Support
(Implementation)

• Implementation Process

 - "The ATSA, to the extent requested by the GSFC Customer, will continue to support the Customer throughout the Implementation phase as the Customer's representative with the implementing access mode organization."

 - Project's single point of contact for access-related info and questions.

 • Allows Customer to concentrate on development and delivery of the payload (spacecraft and/or instrument).
Change Advocacy

Example: Small orbit-raising propulsion system
Current ATS Workload

- Currently supporting
 - Twenty two missions in Pre-Formulation/Formulation
 - Sixteen missions in Implementation
 - Advocacy with MSFC and KSC (so far!)
 - Group Evolution - Web Page efforts, Partnerships, Briefings
 - Partnerships in work with KSC, MSFC, NRO/OSL Directorate, SMC/TE, and JSC

ATS Group
B. Cutlip

Formulation
John Leon, Clyde Woodall

Implementation
Clyde Woodall, Paul Buchanan, Mike Goeser
For Further Information, Please Contact:

ATS Group Leader
- Bill Cutlip
 William.E.Cutlip.1@gsfc.nasa.gov
 Voice: (301) 286-0438
 FAX: (301) 286-1696 0232

Project Formulation Office
- Tom Taylor
 Thomas.S.Taylor.1@gsfc.nasa.gov
 Voice: (301) 286-8388
 FAX: (301) 286-0232
QUICK RIDE

ACQUISITION OVERVIEW

April 15, 1999

W. James Adams/401.5
301/286-1289
jim.adams@gsfc.nasa.gov
RSDO Program Themes

- Mission Project Manager/PI are THE CUSTOMER!
- Contract for What Industry has to Offer
- Fixed Price Orders With Necessary Insight
- Performance Based Milestone Completion Payments
- Allow Mission Unique Modifications to Basic Offerings
- Fair Opportunity to be Considered in Rapid Selection Process
- Volume of Orders Needed to Maintain Interest
- No Protests Allowed by FAR 16.505 (a)(7)
- Lessons Learned Folded into Service for Next Customer
History/Objectives

• Quick Ride is an Outgrowth of Rapid Spacecraft Acquisition
 – Multiple Task Order Contracts
 – Flight Service

• Provide a Variety of Low-Cost, Short Lead Time, Satellite Rides for Science Instruments:
 – Utilize Excess Space Available on Commercial Spacecraft

• Task Order Contracts with Commercial Firms That Will Permit Placing a Order Within 30 Days

• Secondary Objectives
 – Demonstrate a FAR Part 12 Commercial Acquisition
 – Explore the Use of On-Ramps
Market Research & Sources

- Rapid Spacecraft Market Research in March 1997 Indicated Some Interest in Selling Excess Payload Space
- Sources Sought Synopsis Issued June 1997 with Responses from 7 Companies
- 2nd Sources Sought Synopsis Issued March 18, 1998 with Responses from 10 Companies
- Market Research Confirms Commercial Service Approach
- RFO Reviewed by Code M&OSTP
Scope & Customer Base

- **Scope**
 - Define Rides Available Manifest and Minimum Order Time Before Launch
 - Carry Piggy-Back Secondary Instrument within Pre-Defined Parameters (Mass, Power, etc.)
 - Cost Range $2M-$4M for LEO Flight Service (GEO Goals $8M-$10M)
 - Fixed Price, Task Order Based Contracts
 - Interface Definition & Analyses
 - Integration & System Test
 - Launch
 - Initialization
 - 1 Year of On-Orbit Operations + Quarterly Options
 - Vendor Responsible for Obtaining all Export Licenses (Including the Secondary Payload)
 - Pre-Priced Accommodation Assessments (Studies)
Scope & Customer Base
(continued)

- LEO Technical Parameters
 - Mass 20Kg
 - Power 20 Watts
 - Data 2M Bits/Day

- Possible Customer Base
 - GISS/SPM, POEMS, UNEX, UESP, USAF Space Test Program, ESSP
 - NASA/GSFC, Other NASA Centers and Other Government Agencies (Consolidated Contract Initiative -- Intent to Procure Posted 3/31/98)
Based on Market Research

- User Instrument Must be Fully Compatible with Satellite
- User Caused Integration Problems May Result in Loss of Ride
- User Instrument Must Be On Time Or We May Be Left Behind
- Mission Could be Delayed Due to Primary Mission Problems
- Commercial Operations of Satellite Take Precedence Over Instrument Operation
- Government Has No Oversight and Minimal Insight into Processes, Procedures and Flight Readiness. Decision to Launch Rests with Commercial Satellite Contractor
Conditions, Constraints & Risks

- Short Lead Time to Identify Available Rides
- Flight Opportunities May Become Available Quickly -- Need to Identify and Complete Ride Selection Rapidly
- Instrument May Be Turned Off by Primary
- Payment Terms:
 - Technical Milestone Completion Based
 - Completion Criteria Defined in Task Order
- Financing Payments:
 - 60% of Task Order Value On-Orbit Performance Based
- NASA Conforms to the Market

Quick Ride Represents High Risk, Moderate Performance, Commercial Flight Opportunities at Very Low Prices
Industry Response

• Received Only One Offer (Expected 4 to 7 Offers)
 – Final Analysis Inc.
 – BAFO Evaluated and Selection Made July 15, 1998
 – Contract Awarded to Final Analysis Inc.
 • Options for 10 Rides Over 3 Years

• Statement of Intention to Use On-Ramp from 4 Others
Using the Quick Ride On-Ramp

- Will Evaluate Unsolicited & Solicited Proposals Based On
 - Technical Minimums
 - Price Reasonableness

- If a Vendor Offers a Ride Involving a Non-US Country Based Launch System RSDO will Notify Code M/OSTP
 - Proposal will be Evaluated and if Appropriate, Contract Awarded
GEO Quick Ride

- NASA Desires to Promote Quick Ride on GEO Commercial Communications Missions
- Technical Feasibility Studies Underway
 - Lockheed Martin, Space Systems/Loral, Hughes Space and Communications, Orbital Sciences Corporation
 - Studies Wrap Up mid-May
- Results will be used to Assist Interested Satellite Owners to make Offers using Quick Ride On-Ramp
- Generic Interface Requirements Document for Science Teams Considering GEO Quick Ride
Spartan Project Overview

RideShare Conference

Donald E. Carson
Spartan Project Manager

April 15, 1999

E-mail: Don.Carson@gsfc.nasa.gov Homepage: http://spartans.gsfc.nasa.gov/
Spartan's Supporting Organizations

Long standing team with roots in NASA's origins

- Sounding rockets
- Get-Away-Special (GAS) Program
- Spartan
- Hitchhiker
- SSBUV
- Pergat
- Small Explorer Program - SAMPEX, FAST, SWAS, TRACE, WIRE
- Including instrument management

3 lines of business closely associated with our current activities

- SMEX
- Hitchhiker
- Spartan

4/14/99

Spartan Project
Spartan Project

Result of Office of Space Science requirement for a transition capability between sounding rockets and orbital missions

- Started early in the Shuttle program
- Project drew from suborbital program designs, GAS program and existing MSFC bridge and attach mechanisms

Features reusable Shuttle-based carriers

Spartan is an in-house project drawing support from a mix of support service contractors and matrixed discipline support from GSFC organizations
What do we do - top level

Provide an enabling capability for Space & Earth Science and technology experiments
Provide a frequent, low cost flexible vehicle for technology validation and technology infusion

How do we do it

Design, build, integrate, fly and reuse Shuttle-launched free-flyers for the science and technology communities
What is the Spartan product line

The Project product line includes the Spartan 200 carrier and 4 Advanced Carriers in various states of development:

- Spartan 200 - Autonomous 2 day mission, 1000 lb. instrument, flown 8 times
- Spartan 250 - Sp200 mechanical configuration with state-of-the-art avionics
 - Includes command and telemetry, 10 day mission
 - First mission, Sp251, funded by DoD, under development for flight in TBD
- Spartan Lite - Small non-recoverable satellite, 100 lb., 40 w. instrument
 - Shuttle side-wall mount offers frequent launch opportunities
 - Study went through carrier-only PDR/CDR
- Spartan 400 - Enabling capability for large instruments (1.5+ meter dia., 250+ w., 2000 lbs. class)
 - 1-3 year missions, orbit adjust/maintenance, recoverable/reusable
 - Generic carrier design has been through PDR
 - Phase A study for AF STP (nadir pointed) underway
 - Phase A study for NASA MIDEX effort, (solar pointed) underway
- Spartan 400/ISS serviced free-flyer - “entry level” Station serviced platform
In addition, the Project provides

Customer Support

⇒ AO support - the project supports all interested, feasible proposers for NASA AOs including:
 ⇒ SMEX
 ⇒ UNEX
 ⇒ MIDEX
 ⇒ Discovery
 ⇒ ESSP

⇒ We are a national resource for the science and technology communities

⇒ Other user support as required - DoD, NRO, Code M
Summary Characteristics

<table>
<thead>
<tr>
<th>CAPABILITY</th>
<th>SP400</th>
<th>SP 250</th>
<th>SP-LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Lifetime</td>
<td>1 - 3 yr.</td>
<td>2 - 12 days</td>
<td>up to 1.5 yr.</td>
</tr>
<tr>
<td>Instrument Weight</td>
<td>2000 lbs.</td>
<td>1100 lbs.</td>
<td>100 lbs.</td>
</tr>
<tr>
<td>Instrument Volume</td>
<td>60 in. diam.</td>
<td>60x50x30 in.</td>
<td>14 in. diam.</td>
</tr>
<tr>
<td></td>
<td>160 in. length</td>
<td>120 in. x 22 in. tube</td>
<td>40 in. long</td>
</tr>
<tr>
<td>Instrument Power</td>
<td>250 - 750 W</td>
<td>90 W</td>
<td>40 W</td>
</tr>
<tr>
<td>Solar Arrays</td>
<td>Deployed,</td>
<td>Deployed,</td>
<td>Fixed</td>
</tr>
<tr>
<td></td>
<td>Articulated,</td>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uplink/ Downlink</td>
<td>2 kbps/2 Mbps</td>
<td>2 kbps/2 Mbps</td>
<td>2 kbps/2 Mbps</td>
</tr>
<tr>
<td>Instrument C&DH I/F</td>
<td>1553 or RS-422</td>
<td>1553 or RS-422</td>
<td>1553 or RS-422</td>
</tr>
<tr>
<td>Pointing Accuracy</td>
<td>Arc-second</td>
<td>Arc-second</td>
<td>Arc-second</td>
</tr>
<tr>
<td>Retrievable</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Launch Vehicle</td>
<td>Shuttle</td>
<td>Shuttle</td>
<td>Shuttle/ELV</td>
</tr>
</tbody>
</table>

4/14/99

Spartan Project
Spartan Mission List

<table>
<thead>
<tr>
<th>Spartan number</th>
<th>Type of Mission</th>
<th>PI/Institution</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>High Energy Astrophysics</td>
<td>Craddock/NRL</td>
<td>Flown 6/85 (STS-51G)</td>
</tr>
<tr>
<td>201-02</td>
<td>Coordinated observations - Ulysses</td>
<td>Kohl/SAO, Fisher/GSFC</td>
<td>Flown 9/94 (STS-64)</td>
</tr>
<tr>
<td>201-03</td>
<td>Coordinated observations - Ulysses</td>
<td>Kohl/SAO, Fisher/GSFC</td>
<td>Flown 9/95 (STS-69)</td>
</tr>
<tr>
<td>201-04</td>
<td>Calibration Flight - SOHO</td>
<td>Kohl/SAO, Fisher/GSFC</td>
<td>Launched 11/97 (STS-87)</td>
</tr>
<tr>
<td>201-05</td>
<td>Calibration Flight - SOHO</td>
<td>Kohl/SAO, Fisher/GSFC</td>
<td>Flown 10/98 (STS-95)</td>
</tr>
<tr>
<td>203</td>
<td>UV Observation of Comet Halley (Lost with Challenger)</td>
<td>Barth/LASP</td>
<td>Lost 1/86 (STS 51-L)</td>
</tr>
<tr>
<td>204</td>
<td>UV Astronomy (Stellar)</td>
<td>Carruthers/NRL</td>
<td>Flown 2/95 (STS-63)</td>
</tr>
<tr>
<td>206 (OAST-Flyer)</td>
<td>Technology Experiments</td>
<td>Lorentson, Bauer/GSFC</td>
<td>Flown 1/96 (STS-72)</td>
</tr>
<tr>
<td>207 (IAE)</td>
<td>Inflatable Antenna Experiment</td>
<td>Brown/JSC, McLaughrey/UMd</td>
<td></td>
</tr>
<tr>
<td>251 (XS-10)</td>
<td>Micro-sat technology demo</td>
<td>Veal/L’Garde</td>
<td>Flown 5/96 (STS-77)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Suborbital Projects & Operations Directorate

Code 800
Suborbital Projects and Operations Directorate

Code 801
Resources Management Office

Code 802
Policy and Business Relations Office

Code 803
Safety Office

Code 810
Sounding Rockets Program Office

Code 820
Balloon Program Office

Code 830
Aircraft Office

Code 840
Range & Mission Mgmt. Office

Code 850
University Class Projects Office

Code 860
Spartan Projects Office

Code 870
Shuttle Small P/L Projects Office
Outline

- Shuttle Small Payloads Project Office (SSPPO) Introduction
 - Program Sponsors
 - Current Manifest
- Hitchhiker (HH) Program
 - Hitchhiker-Junior (HH-Jr) Program
- Get Away Special (GAS) Program
- Space Experiment Module (SEM) Program
- Program Costs
- Future Enhancements
Shuttle Small Payloads Project Office

- NASA's Goddard Space Flight Center (GSFC) Shuttle Small Payloads Project Office (SSPPO) operates the Hitchhiker, Hitchhiker-Jr., Get-Away-Special (GAS) and Space Experiment Module (SEM) Projects for NASA's Office of Space Flight.

- Contacts:

 - Payload Carriers Program, Code VA-A, KSC
 Charles Sawyer, Jr., (407) 867-4840

 - Hitchhiker/GAS Program Coordination, Code MO, HQ
 John Castellano, (202) 358-4423

 - Shuttle Small Payloads Project Office, Code 870.G, GSFC
 Chris Dunker, (301) 286-4271
Shuttle Small Payloads Project (continued)

• **Hitchhiker Payloads:**
 - Carrier provides for Orbiter side-mounting or cross-bay mounting options
 - Experiments may be mounted in canisters, side plates, or top-mounted pallets
 - Standard, easy-to-use mechanical and electrical interfaces
 - Orbiter-provided power, command and data services available

• **Hitchhiker-Jr Payloads:**
 - Reduced version of Hitchhiker available for canister customers not requiring ground communications services

• **GAS Payloads:**
 - Self-contained payloads mounted in canisters only
 - Customer-provided power (battery) and data system required
 - Tertiary payload queue
 - Cannot require shuttle attitudes

• **SEM Payloads:**
 - Up to ten SEM Experiment Modules integrated into a single canister
 - SEM-provided structural support, power, command and data services
 - Tertiary payload queue
 - Cannot require shuttle attitudes
Active GSFC Shuttle Small Payloads (as of March 1999)

- STS-96: STARSHINE
 SVF-02
- STS-101: SEM-06
 MARS
- STS-105: HEAT
 CAPL3
 AMTEC-AWCS
 SIMPLESAT
 CONCAP-IV
 ACE-Jr.
 GAS (TBD x 2)
- STS-107: TAS-04/ISIS
 ISIS
 GAS (TBD x 1)
 SEM (TBD x 1)
Hitchhiker Program Description

- The Hitchhiker Program
 - Initiated by NASA's Office of Space Flight in 1984
 - Quick reaction and low cost shuttle carrier service for small payloads
 - Simple, standard carrier to orbiter interfaces
 - Standard, user-friendly, carrier to customer interfaces
 - Reduce payload unique integration effort
 - Reduce lead time and recurring cost

- The Hitchhiker carriers consist of modular equipment designed for either side-mounting or cross-bay mounting in the shuttle payload bay

- Hitchhiker is sponsored by the NASA/HQ Office of Space Flight
 - No cost to a NASA user provided only standard services are required
 - Excess (optional) services are funded by the customer

- Hitchhikers are generally shuttle secondary payloads. Highly complex Hitchhiker carriers have also been manifested as primary payloads

- 24 Hitchhiker missions have been flown
Hitchhiker Mechanical Accommodations

- The Hitchhiker carriers consist of modular equipment designed for either side-mounting or cross-bay mounting in the shuttle payload bay.

- Hitchhiker mechanical mounting provisions:
 - 5 Cubic Ft. Canisters – Max 200 lb. Payload Weight
 - 19" diameter x 28" height
 - Motorized Door Option
 - Side Mount Plate – Max 305 lb. Payload Weight
 - Top Plate – Max 600 lb. Payload Weight
Hitchhiker Ejection Systems

- Two Hitchhiker Ejection Systems may be used to launch small, non-hazardous customer payloads into shuttle orbit
 - Hitchhiker Ejection System (HES)
 - Pallet Ejection System (PES)
- Payloads up to 150 lb (68 kg), 19 inches (48 cm) in diameter and 20 inches (50 cm) high may be accommodated on a nine-inch clamp band launcher housed in a canister with or without a Hitchhiker Motorized Door Assembly
- Payloads up to 150 lb (68 kg) but with larger diameters can be launched on a Hitchhiker PES off the top of a cross-bay carrier
- No electrical connections to payloads are provided
- Neither HES nor PES provides for satellite spin-up
- HES has been used to launch GLOMR, NUSAT, BREMSAT, PAMS and MightySat 1
- PES has been used to launch SAC-A and PANSAT
Hitchhiker Ejection System Payload Envelope
Pallet Ejection System (PES)

Satellite Envelope

Pallet Ejection System

5.0 ft³

Can Configuration

Pallet Configuration
Hitchhiker Electrical Accommodations

- The current Hitchhiker Avionics System
 - Eight standard electrical interface "ports" for customer payloads
 - Each port provides the following:
 - 28V Power, Two 10A Circuits, up to 500W
 - Ground Command Interfaces
 - Time Signal
 - Low-rate Data Channel, up to 1200 Baud Downlink
 - Medium Rate Data Channel up to 1.4 MB Downlink

- Additional electrical services are optional including CCTV interface for on-board recording and downlink, or for crew display and control interface

- Payloads are operated from a Payload Operations Control Center (POCC) located at GSFC
Hitchhiker Thermal Experiment Requirements

- Each experimenter is responsible for the thermal design of their experiment.

- Each experimenter will provide to HH thermal analysis data that includes
 the following information:
 - A description of all surface coatings and multi-layer insulation (MLI) blankets
 - A reduced geometric and thermal math model of the experiment
 (approximately 50 surfaces and 20 nodes)
 - Temperature limits for all nodes in the thermal model for operating,
 non-operating and survival/safety cases
 - The size and location of heaters and the setpoints for the thermostats

- Each experimenter is responsible for providing their own thermal control
 coatings, MLI blankets, heaters and thermostats. HH provides the
 coatings and blankets on our plates, pallets, cans, and avionics.
Hitchhiker Thermal Deliverables

- Thermal Models
 - Experiment Reduced Thermal Models to be delivered to HH at L-15 months
 - Payload Reduced Thermal Models to be delivered to JSC at L-12 months
 - Payload Temperature Predictions and Capabilities to be delivered to JSC at L-12 months

- Using the data supplied in the thermal models and reports, HH will provide inputs to the:
 - Orbiter ICD Thermal Zone Chart and Surface Properties
 - PIP Capabilities Tables
 - Annex 2 Thermostatic Equipment Tables
 - Integrated Safety Analysis
 - Flight Rules
 - Mission Timeline Analysis
Hitchhiker Integration and Operations

• Ground operations flow at GSFC:
 • Hitchhiker customer equipment is typically integrated to the carrier at GSFC
 • System-level functional tests, EMI tests and telemetry tape tests are performed prior to shipping the integrated payload to KSC
 • POCC mission simulations conducted from the GSFC POCC
 • Customers provide personnel and Ground Support Equipment to operate their payloads during integration, mission simulations and flight
 • Ready for Shipment

• Ground operations flow at KSC:
 • Post-ship functional tests, thermal coating close-outs and sharp-edge inspections are performed at a KSC “off-line” Payload Processing Facility (PPF)
 • Orbiter installation occurs at the Orbiter Processing Facility (OPF) for horizontally processed payloads: at the Launch Pad for vertically-processed payloads
 • Orbiter Interface Verification Testing (IVT), final close-out of Remove-Before-Flight items, and a final sharp-edge inspection are performed at the Launch Pad
 • Ready for Launch
Hitchhiker Shuttle Process Scenario (Months)

L-24 Customer Organization Submits Form 1628
L-24 Customer Submits CPR to GSFC/SSPP
L-23 Customer Accommodation Meeting at GSFC
L-20 Customer Submits Preliminary Safety Data
L-7 Customer Submits Final Safety Data
L-6 Customer Hardware Delivered to GSFC
L-5 Customer/carrier Integration Completed
L-4.5 Hitchhiker Payload Shipped to Launch Site
L-3 Sidewall Hitchhiker Payload Installed in Orbiter
L=0 Launch
L+1 Customer Equipment Returned
HITCHHIKER-JUNIOR (HH-JR) PROGRAM
HH-Jr Program Description

- A reduced version of Hitchhiker (HH-Jr) is available for canister customers who do require ground communications services

- Mechanical and electrical Interfaces are similar to GAS

- Payloads are controlled by the crew during the mission. HH-Jr carrier provides display of carrier and customer engineering data (temperature, pressure, etc.) and has extensive crew command capability

- Approximately 100 W orbiter power available.
HH-Jr Shuttle Process Scenario (Months)

L-18 Customer Organization Submits Form 1628
L-18 Customer Submits CPR to GSFC/SSPP
L-17 Customer Accommodation Meeting at GSFC
L-16 Customer Submits Preliminary Safety Data
L-6 Customer Submits Final Safety Data
L-5 Customer Hardware Delivered to GSFC
L-4 Customer/Carrier Integration Completed
L-4 Payload Shipped to Launch Site
L-3 Payload Installed in Orbiter
L=0 Launch
L+1 Customer Equipment Returned
Typical Hitchhiker Payload Document Deliverables

Prepared by GSFC/JSC with Experiment Inputs:

Payload Integration Plan (JSC)

PIP Annexes (JSC - inputs to all annexes required prior to CIR)

Annex 1 Payload Data Package Annex
Annex 2 Parts 1,2 Flight Planning Annex
Annex 3 Flight Operations Support Annex (has been replaced by
the Payload Operations Workbook)

Annex 4 Orbiter Command and Data Annex
Annex 5 Payload Operations Control Annex
Annex 6 GSFC/Swales (replaced by Interface Control Annex)
Annex 7 Training Annex (not typically required)
Annex 8 Launch Site Support Plan
Annex 9 Payload Verification Requirements Annex
Annex 11 EVA Annex (not typically required)

Orbiter Interface Control Document (ICD), prepared by Boeing North America
Orbiter Installation Requirements Document (IRD), prepared by Boeing North America
Experiment to Carrier ICD’s
Mission Operations Documentation
Typical Hitchhiker Payload Document Deliverables (continued)

Prepared by Experiment Organization and submitted to GSFC:

Customer Payload Requirements (CPR) Document
Flight and Ground Safety Data Packages
Reduced Thermal Model
Thermal Report
Fracture Control Implementation Plans
Fracture Control Summary
Drawing Package
Command Plan (draft - L-4 to L-6 mos, Final L-1 week)
Nominal and Contingency Experiment Flight Operations Procedures
Technical Operating Procedures
PAO Experiment Summary and Line Art
GET AWAY SPECIAL (GAS) PROGRAM
GAS Program Description

- The GAS Program
 - Initiated by NASA’s Office of Space Flight in the mid-1970’s
 - Simple, Standard Carrier to Orbiter Interfaces
 - Standard, User-friendly, Carrier to Customer Interfaces
 - Minimum crew activity
 - No orbiter pointing requirements allowed
 - Opportunity manifesting only

- GAS carrier consists of 5 and 2.5 cubic foot canisters designed for either side-mounting (Adapter Beam Assembly) or cross-bay mounting (GAS Bridge Assembly) in the Shuttle Payload Bay

- GAS is sponsored by the HQ Office of Space Flight
 - First-in First-out Queue System
 - $27,000 cost to Non-NASA users
 - No Cost to a NASA User Provided Only Standard Services Are Required

- GAS payloads are always Shuttle tertiary payloads.

- 448 reservations; 28 customers have payloads in work
GAS Mechanical Accommodations

- The GAS carrier consists of 5 and 2.5 cubic foot canisters designed for either side-mounting (Adapter Beam Assembly) or cross-bay mounting (GAS Bridge Assembly) in the Shuttle Payload Bay.

- GAS Mechanical Mounting Provisions:
 - 5 Cubic Ft. Canisters – Max 200 lb. Payload Weight
 - 19" dia X 28" high
 - Motorized Door Option
 - 2.5 Cubic Ft. Canisters - Max 150 lb payload weight
 - 19" dia X 14" high
GAS Electrical Accommodations

- Electrical System
 - No orbiter power, data or command interfaces
 - Power must be provided via a user-supplied battery
 - Three crew-controlled (laptop) relays activate and deactivate GAS payloads
 - Simple pre-programmed control functions
 - Baroswitch to activate limited payload functions
GAS Thermal Experiment Requirements

- Each experimenter is responsible for the thermal design of their experiment.

- Sealed GAS canister typically provide a fairly benign thermal environment, thereby significantly reducing the complexity of the thermal analysis.

- Required data still includes the following information:
 - A description of all surface coatings and multi-layer insulation (MLI) blankets.
 - A reduced geometric and thermal math model of the experiment (approximately 50 surfaces and 20 nodes).
 - Temperature limits for all nodes in the thermal model for operating, non-operating and survival/safety cases.
 - The size and location of heaters and the setpoints for the thermostats.

- Each experimenter is responsible for providing their own internal thermal control techniques. HH provides the coatings and blankets on the canister exterior.
SPACE EXPERIMENT MODULE (SEM) PROGRAM
SEM Program Description

• The SEM Program
 • NASA educational initiative sponsored by the GSFC SSPPO
 • Provides nationwide educational access to space for Kindergarten through University level students
 • Experiments are created, designed, built and implemented by the students
 • Two standard mounting interface options: Simple, Standard Carrier to Orbiter Interfaces
 • Carrier-provided power, command and data storage options

• SEM carrier consists of a 5 cubic foot canister housing up to ten separate SEM Experiment Modules

• SEM is sponsored by the GSFC SSPPO
 • First-in First-out Queue System
 • No cost to qualified educational institutions

• SEM payloads may be Shuttle secondary or tertiary payloads

• Six SEM payloads (fully loaded canisters) have flown
SEM Mechanical Accommodations

- The SEM carrier consists of a standard 5 cubic foot canister containing ten separate SEM Experiment Modules

- SEM Experiment Module Mechanical Mounting Provision:
 - Use of NASA-provided Space Capsules to contain passive test articles
 - Clear, 1’ x 3” sealed plastic vials (0.5” capsule neck size)
 - Up to 22 vials may be packed in an individual Experiment Module using silicon foam cushion
 - Use of the SEM Experiment Module cover as an Experiment Mounting Plate (EMP)
 - The experiment envelope is precisely defined by the area delineated on the inboard surface of the EMP and a depth of 3.25” perpendicular from the surface of the EMP
 - Experiments are designed to be mounted to the surface of the EMP using NASA-provided integration hardware
SEM Electrical Accommodations

- SEM Active Experiments:
 - Power, command and data recording capabilities provided by the SEM Module Electronics Unit (MEU)
 - One crew-controlled (laptop) relay activates and deactivates a SEM canister
 - Temperature profile monitoring capability available via NASA-provided thermistors
 - Simple pre-programmed control functions
 - On-board data recording only; no telemetry feedback

- SEM Passive Experiments:
 - Do not require power, command and data recording capabilities
SEM Thermal Experiment Requirements

- Each experimenter is responsible for the thermal design of their experiment

- Each experimenter is responsible for providing their own internal thermal control techniques. HH provides the coatings and blankets on the canister exterior

- Temperature profile monitoring is available post-flight, via NASA-provided thermistors
PROGRAM COSTS
Program Costs

• **Hitchhiker**
 - Sponsored by the Office of Space Flight, KSC Payload Carriers Program Office
 - No cost to NASA users provided only standard services are required
 - Standard services are described in the Hitchhiker “Customer Accommodations and Requirements Specifications (CARS)” document
 - Optional services assessed on a case-by-case basis
 - DoD payloads: approximately $400K per experiment. Funded by USAF Space Systems Division JSC/ZR for standard integration services
 - Foreign reimbursable: shuttle mission cost X .0078 per mounting slot; previously about $1.2M (as of 1992)

• **GAS**
 - Sponsored by the Office of Space Flight, KSC Payload Carriers Program Office
 - No cost to NASA users provided only standard services are required
 - $27,000 cost to non-NASA users ($10,000 cost for U.S. educational institutions)
 - First-in First-out queue system

• **SEM**
 - Sponsored by the Office of Space Flight, KSC Payload Carriers Program Office
 - No cost to qualified educational institutions
 - First-in First-out queue system
FUTURE ENHANCEMENTS
Future Enhancements

- **Advanced Carrier Electronics (ACE)**
 - Supports up to 61 experiments
 - Supports PDI data rate: 8, 16, 32 Kbit/sec (configurable during mission)
 - Supports medium rate data archiving and playback during mission (up to 1 Mbit/sec)
 - Supports medium rate data up to 1.8 Mbit/sec
 - Provides system redundancy
 - Provides time tagged command / pre-stored command capabilities
 - Provides enhanced experiment interface
Future Enhancements

Shuttle Hitchhiker Ejection System (SHELS)

- Co-sponsored development by NASA/GSFC and DoD (USAF SMSC/OL-AW)
- Side-mounting shelf designed to eject up to a 400 lb (maximum) satellite from the Shuttle Payload Bay
- Center of gravity 24 inches above the separation plane; +/- 0.25 inches off ejection axis centerline
- Payload envelope:
 - 42.0" (orbiter +/-x)
 - 26.0" (orbiter +/-y)
 - 45.0" (orbiter +/-z)
- Power and data umbilical available
- 280 Watts radiated heater power if no umbilical
Future Enhancements

- Shuttle Hitchhiker Ejection System (SHELS) Payload Envelope
Future Enhancements

- *International Space Station (ISS) Hitchhiker External Attached Payload Concepts*

 - ISS will be able to accommodate carriers such as Hitchhiker and GAS
 - SSPP concept provides carrier systems with standard Hitchhiker-type interfaces to allow flight of existing instruments
 - Carrier system to be accommodated on Express Pallet, Japanese Experiment Module, and other mounting options to be determined
Summary Comparison of SSPP Projects
Comparison of Hitchhiker, Hitchhiker-Jr., GAS, CAP and SEM Carrier Requirements

<table>
<thead>
<tr>
<th>CAPABILITY</th>
<th>HITCHHIKER</th>
<th>HITCHHIKER-JR</th>
<th>SEPARATION SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload Category</td>
<td>Primary/Secondary</td>
<td>Secondary</td>
<td>Secondary</td>
</tr>
<tr>
<td>Max Customer Weight (lb)</td>
<td>3000</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>Payload Mounting</td>
<td>Canister; Side Plate; Single Bay Pallet (SBP); Double Bay Pallet (DBP)</td>
<td>Canister</td>
<td>HES: Canister (Door/No Door)</td>
</tr>
<tr>
<td>Subsystems</td>
<td>PWR, CMD/TLM</td>
<td>PWR, Limited CMD/TLM</td>
<td>PES: Canister (Door/No Door): Single Bay Pallet (SBP); Double Bay Pallet (DBP)</td>
</tr>
<tr>
<td>Supplied Power (watts)</td>
<td>HTR PWR</td>
<td>HTR PWR</td>
<td>No PWR, No CMD/TLM</td>
</tr>
<tr>
<td>Uplink Commands</td>
<td>1500W</td>
<td>100W</td>
<td>HTR PWR (Canister Walls)</td>
</tr>
<tr>
<td>Downlink Data (max)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Crew Control</td>
<td>1.4 Mb/s</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Crew Display</td>
<td>Option</td>
<td>PGSC/BIA</td>
<td>SSP</td>
</tr>
<tr>
<td>Payload Unique Attitudes</td>
<td>Option</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Comparison of Hitchhiker, Hitchhiker-Jr., GAS, CAP, and SEM Carrier Requirements

<table>
<thead>
<tr>
<th>CAPABILITY</th>
<th>GAS</th>
<th>CAP</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload Category</td>
<td>Tertiary</td>
<td>Secondary</td>
<td>Tertiary</td>
</tr>
<tr>
<td>Max Customer Weight (lb)</td>
<td>200</td>
<td>200</td>
<td>6 per module</td>
</tr>
<tr>
<td>Payload Mounting</td>
<td>Canister</td>
<td>Canister</td>
<td>60 per payload</td>
</tr>
<tr>
<td>Subsystems</td>
<td>No</td>
<td>No</td>
<td>Module</td>
</tr>
<tr>
<td>Supplied Power (watts)</td>
<td>No</td>
<td>No</td>
<td>Battery, Fuse Box,</td>
</tr>
<tr>
<td>Uplink Commands</td>
<td>No</td>
<td>No</td>
<td>Support Structure</td>
</tr>
<tr>
<td>Downlink Data (max)</td>
<td>No</td>
<td>No</td>
<td>600W</td>
</tr>
<tr>
<td>Crew Control</td>
<td>3 Relays (APC)</td>
<td>PGSC/BIA</td>
<td>No</td>
</tr>
<tr>
<td>Crew Display</td>
<td>PGSC/BIA</td>
<td>PGSC/BIA</td>
<td>1 Relay (APC)</td>
</tr>
<tr>
<td>Payload Unique Attitudes</td>
<td>No</td>
<td>Yes</td>
<td>PGSC/BIA</td>
</tr>
</tbody>
</table>

44
MightySat Program

Information Briefing for NRO Rideshare Conference

16 April 1999
Mr. Pete Thomas
Purpose/Outline

- Briefly Describe MightySat Program
- Review MightySat II.2 Payload Capability
- Discuss MightySat II.2 Manifest Process
- Identify Current II.2 Manifest Status
- Discuss II.1 and II.2 Launch Vehicle Interests
MightySat Description

GOALS:
- Demonstrate AFRL Technologies
 - Where space flight required
- Provide Affordable Adaptable Platform to Customer Base
 - AFRL Technologies
 - Orbiting “Lab-bench” to Test High Payoff Mission Hardware
- Risk Reduction
 - Accept High-Risk Payloads
 - Spaceborne Platform to Illustrate Proof-of-Concept
 - Flight Heritage
 - Component-Level Test and Demonstration
- Develop AFRL’s Internal Integration Capabilities
- Provide Experience to Junior Air Force Personnel
- Further and Transition Space Science & Technology

APPROACH:
Series of Mission-Neutral Smallsat Flight Experiments
- 18-24 month Launch Centers
- AFRL provides experiments
- I&T at AFRL AEF
- Launch from Shuttle or OSP
- SMC/TE RSC Conducts Ops

STATUS:
MSat I:
- Satellite Refurbished
- 5 Experiments integrated at AEF
- Shipped to GSFC Oct ’97
- NASA Phase 2/3 Review Mar ’98
- HES and Can Installation May’98
- Shipped to KSC Aug ’98
- Launched: STS-88 4 Dec ’98
- Successfully Deployed 14 Dec ’98
- Satellite and Experiments Working Perfectly!

MSat II.1:
- 8 Experiments
- Completed CDR Feb ‘98
- AEF I&T Started Jun ‘98
- 4 Payloads Integrated by Oct ’98
- 3 Other Payloads I/F Tested Dec ’98
- Bus Delivered to AEF 28 Feb ‘99
- Launch on OSP 2 Apr ‘00

MSat II.2:
- Began Manifest Process Nov ’98
- 56 Candidate Experiments To Date
- Focus is Key Distributed Aperture Technologies
What is MightySat II.2?

Program Office
- 1 Civilian, 3 Military, 3 Tech Support
- Within AFRL/VSDD
- Focussed on Mission Execution
- Not scientists or technologists

AFRL Tech Demo Mission
- List of Proposed Experiment Concepts
- STW/AR hardware built for MS II mission

Funding Line (FY00 to FY03)
- $29M POM; $16M after AFRL taxes/overhead
 - $9.5M for Spacecraft Bus
 - $1.5M for Integration & Test
 - $2.7M for Launch and Mission Ops
 - $2.3M for program office / technical support

Spacecraft Contract
- Spectrum Astro, Gilbert AZ
- Small Spacecraft Development Effort
- MS II.1 Bus Design (starting point)
- Some Spacecraft Parts (Lot Buys)
II.2 Capabilities

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MS II.1 Capability</th>
<th>Upgrade Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>215-400 nmi</td>
<td>200-1000 nmi</td>
</tr>
<tr>
<td>Satellite Weight</td>
<td>285 lbs</td>
<td>400 lbs</td>
</tr>
<tr>
<td>Payload Weight</td>
<td>125 lbs</td>
<td>185 lbs</td>
</tr>
<tr>
<td>Satellite Power Gen</td>
<td>330 W</td>
<td>535 W</td>
</tr>
<tr>
<td>Payload Power Usage</td>
<td>70 W (avg)</td>
<td>200 W (avg)</td>
</tr>
<tr>
<td>External Payload Vol</td>
<td>20 x 24 x 18 "</td>
<td>40 x 24 x 24 "</td>
</tr>
<tr>
<td>Pointing Knowledge</td>
<td>0.1 deg</td>
<td>0.1 deg</td>
</tr>
<tr>
<td>Pointing Control</td>
<td>0.2 deg</td>
<td>0.2 deg</td>
</tr>
<tr>
<td>Propulsion</td>
<td>None</td>
<td>TBD</td>
</tr>
<tr>
<td>Processor</td>
<td>RAD6000</td>
<td>RAD6000</td>
</tr>
<tr>
<td>Data Storage</td>
<td>380 Mbytes</td>
<td>1 GByte</td>
</tr>
<tr>
<td>Downlink Rate</td>
<td>1 Mbps</td>
<td>5 Mbps</td>
</tr>
</tbody>
</table>

Upgraded spacecraft capability will require additional program funding
Primary Constraints

Current Funding

$10M Bus limits spacecraft complexity / performance
$1M Launch budget limits mission orbit / mission life
 - Other launch options cost ~ $8M
$2M Operations budget limits mission complexity
Funding Profile limits schedule flexibility

Spacecraft Contract

- Scope of contracted effort (small satellite)
- Number of missions: 2 firm + 3 options

Technical Constraints

- STS launch system
 Ejection system limits volume / weight (400 lbs)
 Orbit limited to 200-300 nmi at 51.6 deg inclination
 Experimenter funding could relieve this constraint
- Current Bus design is not compatible with high-radiation orbits

AFRL Mission

- Primary Mission is for demonstration of AFRL technologies
- Experiments require AFRL sponsorship
II.2 Mission Development

- FY99 contains no funds for contracted spacecraft development
- MightySat does not fund payload development
- Space vehicle integration & test performed at KAFB
II.2 Launch & Operations

Launch

- Launch via ejection from Space Shuttle (baseline)
- But interested in higher altitude launch opportunities
- New ejection system under development by NASA
 - Accommodates moderate satellite growth from II.1
- Nominal ejection orbit: 210 nmi, 51.6 deg
- One year mission life mandates orbit-raising

Mission Operations

- Use of worldwide AFSCN ground sites
- SGLS-compatible system with 1 Mbps downlink
- Operations led by SMC/TEO
- Operations center at KAFB
II.2 Payload Manifest Process

Payload Concepts & Ideas

AFRL Tech Directorates

Other Agencies

DOE

Industry

Academia

Initial Review of Proposed Payloads

Directed Efforts for Payload Identification

MightySat II.2 Mission Design

AFRL, AF, DoD SERB

31 Oct 98 Nov - Jan 99 8 Feb 99 ← Feb-Aug 99 → Sep 99
Payload Selection Considerations

Programmatic

AFRL Priority / AFRL Support
Diversity of AFRL sponsorship
Importance to User Community
Funding availability/potential
Compatibility with MightySat Schedule
Connections to External Agencies

Technical

Need for 1-year Space Demonstration
Compatibility with Mission Constraints
Synergy with other manifested payloads
Technology Maturity
Risk to satellite or overall mission
MightySat II.2 Manifest Status

- Received Approx 60 Candidate Experiments
- SAB - Provided Guidance
 - MightySat II.2 Very Favorably Endorsed
 - Focus of Key Distributed Aperture Technologies
- Have Held Several Discussions With NRO/AS&T
 - Coordinating Enhanced GPS Receiver Payload
- Manifest Effort Continues till Aug '98
 - TechSat 21 MSat II.2 Manifest Workshop 29-30 Apr
 - Other Possibilities Being Explored
MightySat II.1 & II.2 Launch Vehicle Interest

- II.1 Sole Payload on Schedule for OSP2 - Mar '00
 - Program Unsuccessful in Attempting to Rideshare on OSP2 or on Other Potential Launch Vehicles
 - Current STP Funding "Challenges" Exist with OSP2
 - Highly Dependent on OSP1 Success

- II.2 Baselined for Shuttle - Apr '02
 - Not Yet Manifested on STS (too early)
 - Other Launch Vehicle with Higher Altitude Preferred
 - Available Funding Extremely Limited
Summary

- Briefly Described MightySat Program
- Described MightySat II.2
- Provided MightySat II.2 Payload Capability
- Discussed MightySat II.2 Manifest Process
- Identified Current II.2 Manifest Status
- Discussed II.1 and II.2 Launch Vehicle Interests
CONTENTS

• Introduction to Spectrum Astro

• Spectrum Astro Spacecraft Busses
 – SA-200S
 – SA-200B
 – SA-200HP
 – SA-200L

• Discussion Topics for “Proprietary Session”

• Spectrum Astro Points-of-Contacts
SPECTRUM ASTRO OVERVIEW
Multiple Strategies Utilized to Control and Reduce Cost

<table>
<thead>
<tr>
<th>SATELLITE SYSTEMS</th>
<th>SPACE ELECTRONICS</th>
<th>FLIGHT DATA STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Full Service, Streamlined Space Systems Company
- Products include sophisticated small to mid-size satellites, space hardware, ground support, and R&D products
- Employee owned business with broad-based ownership
- High productivity, low overhead: “Get-the-Job-Done” culture
- 10 yrs, 118 successful contracts, $140M government investment
- Consistent successful cost and schedule performance
- Award-winning performance: Inc. 500, SBA Prime Contractor-of-the-Year, Finalist Entrepreneurial Company-of-the-Year, Arizona Manufacturer of the Year
DEMONSTRATION SATELLITE HERITAGE
Technology Demonstration Satellites Are Our Core Business

1 1992
MSTI
2 1994
3 1996

2000
2002
2003
2004

CORIOLIS
2001

MightySat II

1
2
3
4
5

1998
DS1

2000
HESSI

- Axis/Sun-Vector Spinner
- LEO/Interplanetary
- IR Payloads
 - Multispectral
 - Hyperspectral
- Passive Microwave
RECENT SPECTRUM ASTRO SUCCESSES

DEEP SPACE 1
Launched 24 Oct 98

STARDUST
Launched 7 Feb 99

LUNAR PROSPECTOR
Launched 6 Jan 98

MARS 98
Orbiter Launched 11 Dec 98
Lander Launched 3 Jan 99

MIGHTYSAT
Integration Oct 98 - Mar 99

PDU/CCU
UL/DL
P/L ACE I/F

C&DH Subsystem
SA-200S SPACE VEHICLE

Spacecraft Capability

<table>
<thead>
<tr>
<th>Mission & Program</th>
<th>SA-200S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch Mass</td>
<td>200 - 300 kg</td>
</tr>
<tr>
<td>Sunlit Array Power (BOL)</td>
<td>150-300 Watts (body-mounted)</td>
</tr>
<tr>
<td>Launch Vehicle</td>
<td>Pegasus, Taurus, Athena</td>
</tr>
<tr>
<td>Mission/Orbit</td>
<td>Any: LEO, MEO, HEO, GEO, Planetary (stellar ACS)</td>
</tr>
<tr>
<td>Lifetime</td>
<td>1 - 3 Years</td>
</tr>
<tr>
<td>Mission Effectiveness</td>
<td>> 0.80</td>
</tr>
<tr>
<td>Redundancy Architecture</td>
<td>Single String w/ Selected & Functional Redundancy</td>
</tr>
<tr>
<td>Parts Program</td>
<td>883B / JAN TXV Upscreened B Space Materials</td>
</tr>
<tr>
<td>Product Assurance</td>
<td>Tailored 9858/NHB 5300.4 (1D-2)</td>
</tr>
</tbody>
</table>

Payload Accommodations

Payload Mass	Up to 200 kg
Payload Power, Avg/Peak	60/180 W
Payload Field of View	2π Steradian
Payload Data Handling	Up to 25 Mbps
Payload Data Storage	64 Gbit
Data Downlink Rate	1-10 Mbps

Guidance & Control

Attitude Control	3-Axis, Zero Momentum
Pointing Control	± 20 Arcsec (1σ)
Pointing Knowledge (RMS)	± 1 Arcsec (1σ)
Pointing Modes	sun, nadir, off-set, point track, inertial
Pointing Stability	< 0.1°/sec
Orbit Knowledge	±100 m GPS
Orbit/Trajectory Control	<± 0.5 km, 25 kg-N2H4
Momentum Management	RCS

Command and Data Handling

Ground Control IF	S-Band (X-Band Available)
Data Interface	STDN/DSN
S/C & Payload Telemetry	≤ 2 Mbps
Commands	Up to 2 Kbps

0000-EB-U00741

3/21/98
SA-200B SPACE VEHICLE AND MIGHTYSAT II DESCRIPTION

Payload Accommodations

<table>
<thead>
<tr>
<th>Nominal</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission & Program</td>
<td></td>
</tr>
<tr>
<td>Launch Mass</td>
<td>125 kg</td>
</tr>
<tr>
<td>Sunlit Array Power</td>
<td>310 Watts</td>
</tr>
<tr>
<td>Launch Vehicle</td>
<td>STS Hitchhiker, ALV Secondary, MSLS, Mod Lite</td>
</tr>
<tr>
<td>Mission/Orbit</td>
<td>All: LEO, MEO, HEO, GEO (Stellar ACS)</td>
</tr>
<tr>
<td>Lifetime</td>
<td>1 Year</td>
</tr>
<tr>
<td>Mission Effectiveness</td>
<td>±0.8</td>
</tr>
<tr>
<td>Redundancy Architecture</td>
<td>Single String w/ Selected & Functional Redundancy</td>
</tr>
<tr>
<td>Parts Program</td>
<td>893B / JAN TXV Space Mats</td>
</tr>
<tr>
<td>Product Assurance</td>
<td>Tailored 8958/NHB 5300.4 (1D-2)</td>
</tr>
</tbody>
</table>

Payload Accommodations

- Payload Mass: 80 kg / 100 kg
- Payload Power - Avg / Peak: 75 / 150 W / 125 / 250 W
- Payload Vol (base, base, h): 0.5 x 0.5 x 0.8 m
- Payload Field of View: 2π Steradian / >2π Steradian
- Payload Data Handling: 20 Mbps / 20 x n Mbps
- Payload Data Storage: 160 MByte / 1.2 GByte
- Data Downlink Rate: 256 Kbps / 5 Mbps
- Onboard Data Processing: 5 MP / 16 MP

Guidance & Control

- Attitude Control: 9-Axis, Zero Momentum / Pitch Bias, Spin
- Pointing Control: <0.23° / <0.1°
- Pointing Knowledge (RMS): <0.15° / <0.05°
- Pointing Stability: <0.1°/sec / <0.01°/sec
- Orbit Knowledge: ±1 Kp Gnd Eph. / ±100 m (GPS)
- Orbit Control: PPT / N₁, N₂, H₃
- Momentum Management: Magnetic / RCS

Command and Data Handling

- Ground Control I/F: UHF / Secure SGLS/STDN
- SAC & Payload Telemetry: 32 Kbps / 256 Kbps
- Commands: 2 Kbps / 32 Kbps
SA-200HP SPACE VEHICLE

Spacecraft Capability

<table>
<thead>
<tr>
<th></th>
<th>SA-200HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission & Program</td>
<td></td>
</tr>
<tr>
<td>Launch Mass</td>
<td>300 - 500 kg</td>
</tr>
<tr>
<td>Sunlit Array Power (BOL)</td>
<td>900 - 3,000 Watts</td>
</tr>
<tr>
<td>Launch Vehicle</td>
<td>Delta II, Taurus, Athena</td>
</tr>
<tr>
<td>Mission/Orbit</td>
<td>Any LEO, MEO, HEO, GEO, Planetary (stellar ACS)</td>
</tr>
<tr>
<td>Lifetime</td>
<td>3-5 years</td>
</tr>
<tr>
<td>Mission Effectiveness</td>
<td>>.85 - >.95</td>
</tr>
<tr>
<td>Redundancy Architecture</td>
<td>Single String w/ Selected & Functional Redundancy</td>
</tr>
<tr>
<td>Parts Program</td>
<td>883B / JAN TXV Upscreened B Space Materials</td>
</tr>
<tr>
<td>Product Assurance</td>
<td>Tailored 9558/NHB 5300.4 (1D-2)</td>
</tr>
<tr>
<td>Payload Accommodations</td>
<td></td>
</tr>
<tr>
<td>Payload Mass</td>
<td>Up to 300 kg</td>
</tr>
<tr>
<td>Payload Power, Avg/Peak</td>
<td>800 / 1,800 W</td>
</tr>
<tr>
<td>Payload Field of View</td>
<td>2π steradian</td>
</tr>
<tr>
<td>Payload Data Handling</td>
<td>> 24 Mbps</td>
</tr>
<tr>
<td>Payload Data Storage</td>
<td>160 Mbyte to 60 Gbit</td>
</tr>
<tr>
<td>Data Downlink Rate</td>
<td>1-10 Mbps</td>
</tr>
<tr>
<td>Guidance & Control</td>
<td></td>
</tr>
<tr>
<td>Attitude Control</td>
<td>3-Axis, Zero Momentum</td>
</tr>
<tr>
<td>Pointing Control</td>
<td>± 20 Arcsec (1ø)</td>
</tr>
<tr>
<td>Pointing Knowledge (RMS)</td>
<td>± 1 Arcsec (1ø)</td>
</tr>
<tr>
<td>Pointing Modes</td>
<td>sun, nadir, off-set, point track, inertial</td>
</tr>
<tr>
<td>Pointing Stability</td>
<td>< .01°/sec</td>
</tr>
<tr>
<td>Orbit Knowledge</td>
<td>± 5 cm Radial (Differential GPS)</td>
</tr>
<tr>
<td>Orbit/Trajectory Control</td>
<td><0.5 km, 22-50 kg-N2H4</td>
</tr>
<tr>
<td>Momentum Management</td>
<td>Magneto & RCS</td>
</tr>
<tr>
<td>Command and Data Handling</td>
<td></td>
</tr>
<tr>
<td>Ground Control IF</td>
<td>S-Band, X-Band Down</td>
</tr>
<tr>
<td>Data Interface</td>
<td>STDN/DSN</td>
</tr>
<tr>
<td>S/C & Payload Telemetry</td>
<td>≤ 8 Mbps</td>
</tr>
<tr>
<td>Commands</td>
<td>Up to 2 Kbps</td>
</tr>
</tbody>
</table>

Stowed Configuration

Deployed Configuration

Payload Volume = 1.0 x 1.2 (base) x 1.3 m (Pegasus) 1.2 x 1.4 (base) x 2.4 m (Athena/Other)
SA-200LL SPACE VEHICLE

Spacecraft Capability

<table>
<thead>
<tr>
<th>Mission & Program</th>
<th>SA-200LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch Mass</td>
<td>450 - 840 kg</td>
</tr>
<tr>
<td>Sunlit Array Power (BOL)</td>
<td>1,200-1,500 Watts</td>
</tr>
<tr>
<td>Launch Vehicle</td>
<td>Delta II, Taurus, Athena</td>
</tr>
<tr>
<td>Mission/Orbit</td>
<td>Any: LEO, MEO, HEO, GEO, Planetary</td>
</tr>
<tr>
<td></td>
<td>(stellar ACS)</td>
</tr>
<tr>
<td>Lifetime</td>
<td>>5 years</td>
</tr>
<tr>
<td>Mission Effectiveness</td>
<td>>0.85 - >0.95</td>
</tr>
<tr>
<td>Redundancy Architecture</td>
<td>Full Redundancy</td>
</tr>
<tr>
<td>Parts Program</td>
<td>8836 / JAN TXV Upscreened B</td>
</tr>
<tr>
<td></td>
<td>Space Materials</td>
</tr>
<tr>
<td>Product Assurance</td>
<td>Tailored 9858/NHB 5300.4 (1D-2)</td>
</tr>
</tbody>
</table>

Payload Accommodations

Payload Mass	Up to 500 kg
Payload Power, Avg/Peak	300 / 1000 W
Payload Field of View	> 2π Steradian
Payload Data Handling	500 Mbits
Payload Data Storage	160 Mbyte to 60 Gbit
Data Downlink Rate	1-20 Mbps

Guidance & Control

Attitude Control	3-Axis, Zero Momentum
Pointing Control	± 20 Arcsec (1σ)
Pointing Knowledge (RMS)	± 1 Arcsec (1σ)
Pointing Modes	sun, nadir, off-set, point track, inertial
Pointing Stability	< .01°/sec
Orbit Knowledge	± 5 cm Radial (Differential GPS)
Orbit/Trajectory Control	<±0.5 km, 16 kg-N2H4
Momentum Management	Magnetic & ROS

Command and Data Handling

Ground Control IF	S-Band, X-Band Down
Data Interface	STDN/DSN
S/C & Payload Telemetry	≤8 Mbps
Commands	Up to 2 Kbps
Low-Cost Space Platform
(technology demonstration, earth science, earth observation)

Presentation by
Integrated Space Systems Inc.

April 15 1999

Integrated Space Systems Inc.
7940 Silverton Ave. Suite 202
San Diego, California 92126
(619) 684-3570 Fax: (619) 693-6932
Mission

Combine low-cost, versatile small satellites together with a low cost launch system to provide the customer with consistent, rapid access to space.

- Provide a standardized experiment platform
 - Maximum experiment flexibility
 - 1, 2, 3 or 4 stacked spacecraft
 - For a Total of 400 to 800 lbs of payload
 - matching to the customer's mission
- Launched on a low cost domestic launch vehicle
 - target access to space
 - target high radiation dose
 - target sun-synchronous
 - target special pointing requirements
- For the lowest possible cost per mission
 - For a single, all inclusive price,
 - Empowering the technology (payload) owner
 - With the least risk
Custom Solutions - Athena Example (multiple configurations)

Launch from WTR @ 90°

- 92'' Fairing
- 2L 200 watts
- Standard Adapter
- 800 - 1000 lbs to 600 nmi

Launch from ETR @ 28.5°

- MiniSIL™ Core Technology Platform
- Notes:
 - orbital lifetime ~ 8 months at 200 nmi
 - orbital lifetime ≥ 10 years at 300+ nmi

Athena-1
- 55 watts
- L 80 watts
- L 80 watts
- 400 lbs to 200 nmi

Athena-2
- 55 watts
- L 80 watts
- L 80 watts
- 1000 lbs to 500 nmi

Athena-1B
- 55 watts
- L 80 watts
- L 80 watts
- 800 lbs to 200 nmi

Athena-2B
- 55 watts
- L 80 watts
- L 80 watts
- 1100 lbs to 600 nmi

10/23/98
Custom Solutions - Commercial Price List

6 Payloads per MiniSIL™ Shared Ride Options

Each MiniSIL provides 6 payload slots (total of 12 tickets)
5% discount for each additional slot used by the same payload

Includes:
- Project management, mission integration, spacecraft, payload integration and test, launch vehicle, launch campaign and range costs

Unpriced Options:
- Mission operations, ground systems, launch vehicle insurance, payload insurance

<table>
<thead>
<tr>
<th>Mission</th>
<th>Orbit</th>
<th>Payload Parameters</th>
<th>Cost Each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inclin. deg</td>
<td>Altitude km</td>
<td>Weight kg</td>
</tr>
<tr>
<td>Access to Space - short life</td>
<td>28.5</td>
<td>185</td>
<td>25</td>
</tr>
<tr>
<td>Access to Space - 5 year</td>
<td>28.5</td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>High inclined</td>
<td>50.0</td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>Sun Synchronous</td>
<td>SSO</td>
<td>600</td>
<td>25</td>
</tr>
</tbody>
</table>

25 kg = 55 lbs, 0.07 M³ = 4,300 in³
Custom Solutions - Commercial Price List

4 Payloads per MiniSIL™ Shared Ride Options

Each MiniSIL provides 4 payload slots (total of 8 tickets)
5% discount for each additional slot used by the same payload

Includes: Project management, mission integration, spacecraft, payload integration and test, launch vehicle, launch campaign and range costs

Unpriced Options: Mission operations, ground systems, launch vehicle insurance, payload insurance

<table>
<thead>
<tr>
<th>Mission</th>
<th>Orbit</th>
<th>Payload Parameters</th>
<th>Cost Each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incl. deg</td>
<td>Altitude km</td>
<td>Weight kg</td>
</tr>
<tr>
<td>Access to Space - short life</td>
<td>28.5</td>
<td>185</td>
<td>35</td>
</tr>
<tr>
<td>Access to Space - 5 year</td>
<td>28.5</td>
<td>600</td>
<td>35</td>
</tr>
<tr>
<td>High inclined</td>
<td>50.0</td>
<td>600</td>
<td>35</td>
</tr>
<tr>
<td>Sun Synchronous</td>
<td>SSO</td>
<td>600</td>
<td>35</td>
</tr>
</tbody>
</table>

35 kg = 77 lbs, 0.1 M³ = 6,100 in³
Custom Solutions - Commercial Price List

1 Payload per MiniSIL™ Individual Spacecraft Option

Each MiniSIL sold individually (total of 4 gold tickets)

Includes: Project management, mission integration, spacecraft, payload integration and test, launch vehicle, launch campaign and range costs

Unpriced Options: Mission operations, ground systems, launch vehicle insurance, payload insurance

<table>
<thead>
<tr>
<th>Mission</th>
<th>Orbit</th>
<th>Payload Parameters</th>
<th>Cost Each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incl. deg</td>
<td>Altitude km</td>
<td>Weight kg</td>
</tr>
<tr>
<td>Access to Space - short life</td>
<td>28.5</td>
<td>185</td>
<td>55</td>
</tr>
<tr>
<td>Access to Space - 5 year</td>
<td>28.5</td>
<td>600</td>
<td>55</td>
</tr>
<tr>
<td>High inclined</td>
<td>50.0</td>
<td>600</td>
<td>55</td>
</tr>
<tr>
<td>Sun Synchronous</td>
<td>SSO</td>
<td>600</td>
<td>55</td>
</tr>
</tbody>
</table>

55 kg = 120 lbs, 0.20 M³ = 12,200 in³
Custom Solutions - Commercial Price List

6 Payloads per MinisIL™ Shared Ride Options

Each MinisIL provides 6 payload slots (total of 12 tickets)
5% discount for each additional slot used by the same payload

Includes: Project management, mission integration, spacecraft, payload integration and test, launch vehicle, launch campaign and range costs

Unpriced Options: Mission operations, ground systems, launch vehicle insurance, payload insurance

<table>
<thead>
<tr>
<th>Mission</th>
<th>Orbit</th>
<th>Payload Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inclin. deg</td>
<td>Altitude km</td>
</tr>
<tr>
<td>Access to Space</td>
<td>28.5</td>
<td>185</td>
</tr>
</tbody>
</table>

25 kg = 55 lbs, 0.07 M³ = 4,300 in³
Custom Solutions - Commercial Price List

4 Payloads per MiniSIL™ Shared Ride Options

Each MiniSIL provides 4 payload slots (total of 8 tickets)
5% discount for each additional slot used by the same payload

Includes: Project management, mission integration, spacecraft, payload integration and test, launch vehicle, launch campaign and range costs

Unpriced Options: Mission operations, ground systems, launch vehicle insurance, payload insurance

<table>
<thead>
<tr>
<th>Mission</th>
<th>Orbit</th>
<th>Payload Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incl. deg</td>
<td>Altitude km</td>
</tr>
<tr>
<td>Access to Space</td>
<td>28.5</td>
<td>185</td>
</tr>
</tbody>
</table>

35 kg = 77 lbs, 0.1 M3 = 6,100 in3
Program Status - Fulfilling the Mission

Our U.S. team has been formed and a low cost path to space has been found.

- Integration Contractor - Integrated Space Systems Inc. (SpaceDev)
- Spacecraft Contractor - Space Innovations Ltd. (SpaceDev)
- Launch Services Contractor - Lockheed Martin Astronautics

- Providing service directly to the payload owner
 - Slots (tickets) on multi-user spacecraft
 - Whole spacecraft on multi-spacecraft launch

- Utilize MiniSIL™ stacked spacecraft capability
 - Fully manifest a small launch vehicle launch
 - Sell payload rides and/or whole spacecraft in stack
 - Maintain consistent payload and launch vehicle interfaces
 - Develop and maintain a regular launch schedule for each mission type

- We are ready to take reservations
Custom Solutions - One Potential Path to Launch

1) FASTMAX Study
 Determine feasibility of multi-mission launch.
 Customer evaluation of ISS/SIL capabilities.

2) Contract to deliver spacecraft for launch.
 Program Management ISS
 Integration Contractor ISS
 LSIC ISS
 Mission Design ISS
 Spacecraft Subsystems SIL
 Spacecraft Bus SIL
 Spacecraft Final IA&T ISS
 Launch Vehicle LMA
 Launch Support LMA/ISS
 Ground Systems Provider optional
 Mission Operations optional

3) Initial Launch Capability - ATP + 24 months
MiniSIL™ Spacecraft Model Specific Features

MiniSIL-P shown. MiniSIL-L and MiniSIL-2L mount subsystem equipment outside of thrust cylinder which allows all of thrust cylinder inner diameter to be used by payload(s).

<table>
<thead>
<tr>
<th>Model</th>
<th>Octagon Outside Diameter (in)</th>
<th>Spacecraft Height (in)</th>
<th>Spacecraft Total Weight (lb)</th>
<th>Payload Weight (lb)</th>
<th>Payload Volume (Dia. (in), Height (in))</th>
<th>Payload Power (sunlit)</th>
<th>Data Rates* for Circular Orbit (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 nmi</td>
</tr>
<tr>
<td>MiniSIL-P</td>
<td>43</td>
<td>25</td>
<td>220-330 lb</td>
<td>90-130 lb</td>
<td>36, 12</td>
<td>up to 55W</td>
<td>3.8</td>
</tr>
<tr>
<td>MiniSIL-2P</td>
<td>43</td>
<td>50</td>
<td>330-440 lb</td>
<td>130-180 lb</td>
<td>36, 35</td>
<td>up to 135W</td>
<td>3.8</td>
</tr>
<tr>
<td>MiniSIL-L</td>
<td>63</td>
<td>25</td>
<td>330-550 lb</td>
<td>140-270 lb</td>
<td>36, 24</td>
<td>up to 80W</td>
<td>3.8</td>
</tr>
<tr>
<td>MiniSIL-2L</td>
<td>63</td>
<td>50</td>
<td>440-770 lb</td>
<td>200-400 lb</td>
<td>36, 47</td>
<td>up to 200W</td>
<td>3.8</td>
</tr>
</tbody>
</table>

* Assumes
1) SIL low-cost S-Band ground station (2.4 meter dish) with Convolutional and Reed-Solomon encoding
2) SIL 5 watt S-band transmitter (2.25 GHz)
3) 5 deg minimum elevation angle and 6 dB link margin
MicroSIL™ Spacecraft Model Specific Features

Payload are mounted on payload shelf separated from spacecraft subsystems.
S = Standard
3 = 3 axis stabilized
G = Gravity gradient torque

<table>
<thead>
<tr>
<th>Model</th>
<th>Cube Outside Dimensions (in)</th>
<th>Spacecraft Height (in)</th>
<th>Spacecraft Total Weight (lb)</th>
<th>Payload Weight (lb)</th>
<th>Payload Volume (sunlit)</th>
<th>Payload Power (W)</th>
<th>Data Rate* for Circular Orbit (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shelf (in)</td>
<td>Height (in)</td>
<td>200 nmi</td>
</tr>
<tr>
<td>MicroSIL-S</td>
<td>19.3x19.3</td>
<td>20.1</td>
<td>100-145 lb</td>
<td>40-65 lb</td>
<td>18.5x18.5</td>
<td>6.7</td>
<td>30W</td>
</tr>
<tr>
<td>MicroSIL-3</td>
<td>19.3x19.3</td>
<td>20.1</td>
<td>100-145 lb</td>
<td>30-55 lb</td>
<td>18.5x18.5</td>
<td>6.7</td>
<td>25W</td>
</tr>
<tr>
<td>MicroSIL-G</td>
<td>19.3x19.3</td>
<td>20.1</td>
<td>100-145 lb</td>
<td>25-50 lb</td>
<td>18.5x18.5</td>
<td>6.7</td>
<td>30W</td>
</tr>
</tbody>
</table>

* Assumes
1) SIL low-cost S-Band ground station (2.4 meter dish) with Convolutional and Reed-Solomon block encoding
2) SIL 2 watt S-band transmitter (2.25 GHz)
3) 5 deg minimum elevation angle and 6 dB link margin
Extended MicroSIL™ Spacecraft Model Specific Features

Payload are mounted on payload shelf separated from spacecraft subsystems.

- **LS** = Large, spin stabilized
- **L3** = Large, 3 axis stabilized
- **XS** = Extended, spin stabilized
- **X3** = Extended, 3-axis stabilized

Table: Model Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Cube Outside Dimensions (in)</th>
<th>Spacecraft Height (in)</th>
<th>Spacecraft Total Weight (lb)</th>
<th>Payload Weight (lb)</th>
<th>Payload Volume (shelf, height in)</th>
<th>Payload Power (W)</th>
<th>Data Rate* for Circular Orbit (S-Band / X-Band Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroSIL-LS</td>
<td>23.5x23.5</td>
<td>24</td>
<td>120-180 lb</td>
<td>60-90 lb</td>
<td>22.5x22.5 10.5</td>
<td>50W</td>
<td>2.4 / 22.0 1.0 / 5.8 0.6 / 2.7</td>
</tr>
<tr>
<td>MicroSIL-L3</td>
<td>23.5x23.5</td>
<td>24</td>
<td>120-180 lb</td>
<td>50-90 lb</td>
<td>22.5x22.5 10.5</td>
<td>45W</td>
<td>2.4 / 22.0 1.0 / 5.8 0.6 / 2.7</td>
</tr>
<tr>
<td>MicroSIL-XS</td>
<td>23.5x23.5</td>
<td>31.5</td>
<td>155-220 lb</td>
<td>80-110 lb</td>
<td>22.5x22.5 18.5</td>
<td>75W</td>
<td>2.4 / 22.0 1.0 / 5.8 0.6 / 2.7</td>
</tr>
<tr>
<td>MicroSIL-X3</td>
<td>23.5x23.5</td>
<td>31.5</td>
<td>155-220 lb</td>
<td>70-100 lb</td>
<td>22.5x22.5 18.5</td>
<td>70W</td>
<td>2.4 / 22.0 1.0 / 5.8 0.6 / 2.7</td>
</tr>
</tbody>
</table>

* Assumes:
1) SIL low-cost S/X ground station (2.4 meter dish) with Convolutional and Reed-Solomon encoding
2) SIL 2-watt S-band transmitter (2.2 GHz) and SIL 3-watt X-band transmitter (8.4 GHz)
3) Ground station antenna 5° and 40° minimum elevation angle at S-Band and X-Band respectively, with 6 dB link margin
NanoSAT Spacecraft Model Specific Features

Simple, small spacecraft designed for one year on-orbit lifetime and quick launch as a secondary ride opportunity.

- Spacecraft design weight < 25 lbs
- Passive thermal control
- Functional life 1 year
- Small arrays and rechargeable batteries

<table>
<thead>
<tr>
<th>Model</th>
<th>Cube Outside Dimensions (in)</th>
<th>Spacecraft Height (in)</th>
<th>Spacecraft Total Weight (lb)</th>
<th>Payload Weight (lb)</th>
<th>Payload Volume (in)</th>
<th>Payload Power (watts)</th>
<th>Data Rate* for Circular Orbit (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NanoSAT</td>
<td>10"</td>
<td>12"</td>
<td>25 lb</td>
<td>5 lbs</td>
<td>10.0x10.0</td>
<td>1.5</td>
<td>10 watts 2.4 1.0 0.6</td>
</tr>
</tbody>
</table>

* Assumes
1) SIL low-cost S/X ground station (2.4 meter dish) with Convolutional and Reed-Solomon encoding
2) SIL 2-watt S-band transmitter (2.2 GHz) and SIL 3-watt X-band transmitter (8.4 GHz)
3) Ground station antenna 5° and 40° minimum elevation angle at S-Band and X-Band respectively, with 6 dB link margin
SIL Subsystems and Component Heritage

- **Australia's FedSat**: MicroSIL Satellite
- **Danish ØRSTED satellite (for CRI)**: S-band transceivers
- **Pakistan BADR-B satellite (for SUPARCO)**: S-band transmitters, receivers, diplexer; on-board computer and software; power conditioning system, NiCd batteries; digital sun sensors, magnetometer; magnetorquer rods, attitude control system; ground station equipment
- **Argentinian SAC-C small satellite (for CONAE)**: 1W S-band transceivers, 5W S-band transmitter, 3W X-band transmitter
- **ESA PROBA small satellite (for Verhaert, Belgium)**: S-band equipment; SPARC-based on-board SIL computer; power system, batteries; S-band ground station
- **UK STRV-1a/b small satellites (for DRA)**: S-band equipment; sun and Earth sensors; attitude control system. Designed and manufactured the attitude sensors, Fan-beam Attitude Sensor Electronics (FASE) Spacecraft Attitude Control Electronics (SACE), S-Band Receiver and Diplexer, and Charge Detector Experiment (CDE).
- **French and German small satellites (for CNES and DASA)**: S-band patch antennas
- **Solar and Heliospheric Observatory (SOHO)**: Design and Development of the Command and Data Handling System (CDHS) for the Coronal Diagnostic Spectrometer (CDS) instrument. Development of the optimum detector interfaces, triple redundant transputer-based processing architecture and memory elements.
- **ERS-2 PCSUs, Envisat DEU and PCSUs**: Manufactured the Power Conditioning and Supply Unit (PCSU) for ERS-2, completed manufacture of the PCSU and Digital Electronics Units (DEU) for the next generation Environment remote sensing satellite (ENVISAT).
- **Spectrum-X JET-X Attitude Sensor PSU**: Designed and manufactured the Jet-X Attitude Sensor Power Supply Unit for the Russian Spectrum-X satellite. The power supply unit provides the regulated power to the Jet-X attitude sensor electronics including CCDs.
- **DRS (for ESTEC)**: Designed and manufactured the Data Relay System (DRS) spread spectrum modem for ESTEC.
- **Meteosat-3 Experiment**: Developed an experiment for the Meteosat-3 satellite launched in 1988 to monitor radiation at the experiment site and perform radiation effects monitoring of a TMS320 processor and various memory chips.
Point Design Example
Point Design Example

Spacecraft Instrumentation and Capabilities

Multi Spectral Imager

15 meter resolution at 800 km
75 km swath
1000 sq.km. stored on board at full resolution

Store and Forward Data

VHF/UHF
Payload modem 38.4 K bits per second

Available Payload

22 lb (10.0 kg) of payload used
72 lb (32.8 kg) of payload mass available
16 watts used by primary experiments
15 watts margin depending on orbit selected
Point Design Example

Attitude Control - Mode: 3 axis stabilized

<table>
<thead>
<tr>
<th>Pointing accuracy</th>
<th>Pointing</th>
<th>Roll</th>
<th>Pitch</th>
<th>Yaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>15 arc-sec</td>
<td>15 arc-sec</td>
<td>20 arc-sec</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.10°</td>
<td>0.10°</td>
<td>0.15°</td>
<td></td>
</tr>
<tr>
<td>Rates</td>
<td>16.5 (arc-sec)/sec</td>
<td>16.5 (arc-sec)/sec</td>
<td>33.0 (arc-sec)/sec</td>
<td></td>
</tr>
</tbody>
</table>

Sensors / Actuators

- 2 Star-tracker sensors diametrically mounted
- Global positioning system
- Reaction (momentum) wheels
- 2 digital sun sensors (SIL cots)
- Magnetometer (SIL cots)
- Magnetorquers (SIL cots)
Point Design Example

Power System

Solar Cells Gallium Arsenide
Batteries Nickel cadmium rechargeable
Power conditioner Fully redundant 28 volts (SIL cots)

Communication

Spacecraft S-Band (NASA / ESA standard)
 1 M bit per second (SIL cots) @ 400 nmi
Imager X-Band (encrypted) (S-band used as backup)
 16 M bit per second @ 400 nmi
Point Design Example

Other Systems

<table>
<thead>
<tr>
<th>Structure</th>
<th>Aluminum structure and skin - honeycomb design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal</td>
<td>Passive thermal blankets</td>
</tr>
<tr>
<td>Data Handling System</td>
<td>Rad Hard - SPARC 32 bit processor (SIL cots)</td>
</tr>
<tr>
<td>Standardized Sep System</td>
<td>Compatible to other MiniSILs, LVs and SVs</td>
</tr>
</tbody>
</table>

Payload Volume

Cylindrical space
920 mm diameter x 300 mm depth
SpaceDev Capabilities
ISS and SIL Capabilities & Assets

Integrated Space Systems Inc.
San Diego, California

Program Management
Launch Services Integration Contractor
Mission Design
Spacecraft Final Assembly
Launch Support

Space Innovations Ltd.
Newbury, England

Spacecraft Bus
Spacecraft Subsystems
Ground Systems
Spacecraft Design, Assembly and Test Building - San Diego, California

- 1800 sq.ft. Class 100,000 spacecraft assembly clean room
- 2500 sq.ft. mechanical sub-assembly test and checkout area
- 1000 sq.ft. avionics sub-assembly test and checkout area
- 680 sq.ft. systems integration lab
- 860 sq.ft. concurrent engineering lab
- 1750 sq.ft. shipping and receiving area
- 840 sq.ft. corporate conference room
- 320 sq.ft. engineering conference room
- 300 sq.ft. mission control center
- 7700 sq.ft. engineering space
- 1350 sq.ft. offices

Total = 25,600 sq.ft. including services
Spacecraft Key Personnel

Jan King – V.P. Space Engineering (30 plus years)
- Schriever Chair Professor (endowed chair),
 Dept. of Astronautics, United States Air Force Academy
- Vice President, Technology, Qualcomm, Inc., Boulder, Colorado
- Vice President, Boulder Operations, Orbital Sciences Corporation
- Vice President for Space Technology, Member BOD and Founder, Skylink Corporation
- Aerospace Technologist, NASA/GSFC
- Vice President for Engineering, Member of the BOD, Co-founder of the Radio Amateur Satellite Corp., Washington, D.C.

Rex Ridenoure – Chief Mission Architect (20 plus years)
- Manager, Microcosm’s Space Systems Division
- Program Architect, NASA’s New Millennium Program
- Project and Mission Engineer on five projects, JPL
- Mission Planner for the Voyager-2 Neptune Encounter
- Mission Engineer on GEO comsats at Hughes and Hubble at Lockheed
Spacecraft Key Personnel

Len Culhane - Chairman of the Board, Space Innovations Ltd.
Professor Len Culhane was awarded the BSc (1st Hons.) in Physics and the MSc in Physics from University College Dublin. His PhD was awarded in Space Physics by University College London. His research expertise is in X-ray astronomy, solar physics, X-ray spectroscopy, X-ray detectors and space cryogenic systems. He has won Principal Investigator roles on NASA, ESA and Japanese scientific space missions for which he has developed novel instruments for spectroscopy in the X-ray, Extreme UV and Infra-red wavelength ranges. Some of his many accomplishments include:

- Head, Department of Space and Climate Physics of UCL
- COSPAR Commission E
- Advisory Panel ESA Space Science Department
- UK Particle Physics and Astronomy Research Council
- Fellow of the Royal Society, Royal Astronomical Society, Institute of Physics & Foreign Norwegian Academy
- Full Member International Academy of Astronautics
- Member International Astronomical Union, American Astronomical Society, American Geophysical Union, IEEE Professional Group on Nuclear Science
- Research Scientist/Member of the Research Laboratory, Lockheed Palo Alto Laboratory,
Spacecraft Key Personnel

Kim Ward - Director SIL (30 plus years)
Kim was one of the founders of SIL in 1984 and has been with the Company ever since. As Technical Director, he was responsible for initiating and overseeing all the sub-system, spacecraft and ground system developments undertaken by the Company. He is now Director of Marketing. Kim has authored or co-authored many papers on his activities including papers on the various sub-systems produced by SIL and numerous papers on small satellites. He is an active member of: the IAA (International Academy of Astronautics) Space Sciences Committee, Sub-Committee for Small Satellites; the UK Space Science Advisory Committee, the UK Space Science Technology Panel; the GERB Project Steering Group; and the SIL representative on ASTOS, the UK Trade Association for space SMEs. Some of his accomplishment include:

- Station Director of the NASA Ground Station in Kenya for the San-Marco-C Italian/American satellite.
- Experiment Operations Co-ordinator, NASA, Goddard Space Flight Center.
- Development for the UK cameras on the International Ultraviolet Explorer satellite.
- Leader of the Ariel VI Troubleshooting Team formed to investigate the Ariel VI spacecraft
- Study Manager for feasibility studies of ROSAT, AMPTE and HIPPARCOS.
- Project Manager for the UK AMPTE spacecraft launched in 1984.
RideShare Approaches and Benefits

- **Assumed types of rideshares**
 - **Co-Manifest:** 2 spacecraft of relatively equal size
 - **Secondary:** Small payload(s) or spacecraft relative to primary
 - **Multi-Manifest:** 2 or more spacecraft of like size and function
 - Different standardized technical and contractual solutions for each

- **Provides Users with increased launch flexibility / opportunities**
 - Utilize excess payload capacity
 - Standardized payload interfaces / processes
 - Greater manifesting flexibility and efficiency

- **Provide more affordable per-payload launch costs**
 - Shared launch costs based on mass and volumetrics
 - Minimize non-recurring integration effort and expense
 - Minimize spacecraft shelf life and maintenance costs

- **Can serve as price discriminator in competitive bidding**
Athena Capacity For Rideshares

- Athena I to II performance gap allows margin for rideshares
 - Capability Comparison (lb):
Orbit	Athena IB	Athena IIB
100 nm, 28.5	1800	4400
300 nm, 90	920	2700
 - Gaps create unused capacity for missions
 - Average performance margin: 15% to 40%

- Large payload fairing volume
 - 92"-Diameter in production; Athena I and II
 - 120"-Diameter build-on-need; Athena II only

- Payload-to-LV Electrical Interfaces
 - Telemetry: 10 Analogs and 10 Discretes
 - 5 continuity (checkout) loops and 5 separation indicators
 - 8 channels for customer-specified SV commands

- FASSN Shockless Separation System
 - Screw-driven decoupling system
 - Greater payload mounting flexibility with fewer dynamic constraints
RideSharing Concepts

Circular Load-Bearing Dispenser
- Vertical mast structure supports 1 or levels of adjacent S/Cs
- Used for identical S/C deployed into constellation

Shelf-Dweller Side Mounting
- Mission-unique shelf for secondaries on adapter outer wall
- Relatively inexpensive
- Pre-work C.G. and coupled loads
RideSharing Concepts (cont)

“Inter-Adapter”
Secondary Spacecraft Mount

“Top-Shelf”
Secondary Spacecraft Mount
RideSharing Challenges

● Cost of integrating multiples, co-mans or secondaries
 - NRE and recurring cost of integration structures and electrical systems
 - Secondary payload launch budget typically < $1M
 - Cost prohibitive without LMC or USG investment

● Increased contracting risk
 - "Contingent" contracting for first signing party
 - Primary vs. Secondary User rights

● Matching orbits for 2 or more spacecraft
 - Inclination
 - Altitude (mitigated by on-board propulsion)

● Lack of industry standards: electrical, mechanical interfaces

● Launch date/window conflicts

● Spacecraft environment concerns
 - Mutual impacts due to coupled loads
 - Possible electro-magnetic, thermal or shock incompatibilities

Success Requires Industry Standards and User Commitment
Athena/SpaceDev Teaming Pursuit

- Pursuing partnership to fly experiments
 - SpaceDev's SIL stackable bus
 - Athena I, IB and II standard launch service
 - Goal: **Lowest-possible per mission cost to the User**

- Cost-efficiency through standardization
 - Standardized electrical/mechanical LV/bus interfaces
 - 3 or 4 standardized orbits
 - Static launch dates
 - Quantity-buy Athena launch services

- **Multiple experiments per launch (ETR assumed)**

<table>
<thead>
<tr>
<th>LV Configuration</th>
<th># S/C Buses</th>
<th>Experiment Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athena I</td>
<td>4–P’s or 2–2L’s</td>
<td>8–12 Payloads</td>
</tr>
<tr>
<td>Athena IB</td>
<td>4–L’s</td>
<td>4 dedicated buses</td>
</tr>
</tbody>
</table>

(Athena II required for some high-inclination missions)

- **Streamlined facilitation of rideshares**
 - Elimination of "primary" spacecraft program constraints
 - Takes LV and SV programs out of the brokering business
 - Affordability stimulates demand
Concluding Remarks

- **Athena Program Viable and Competitive**
 - Holding cost/price despite sales slump
 - 3 for 3 in operational launches
 - Lewis / Athena I mission - 20 Aug 97
 - Lunar Prospector / Athena II mission - 6 Jan 98
 - ROCSat / Athena I mission - 26 Jan 99
 - Sub-system and system performance nominal to date
 - Orbital accuracy to within ~0.5 km, 0.013°
 - Two sites activated on schedule
 - 1st launch from Kodiak Launch Complex August 2000
 - 3 launches currently on manifest, 2 more recently awarded

- **Ridesharing makes sense provided:**
 - Matched spacecraft programs are compatible
 - Customers willing to assume business risk for LV savings
 - Spacecraft integration solutions are standardized

- **International competition drives price-to-win:**
 - Domestic: < $2M
 - International: < $1M

- **Athena fits well with SpaceDev for rideshares**
 - Eliminates “middleman” constraints for Users
 - Provides lowest-cost solution
Orbital Spacecraft Buses

Regan E. Howard
Advanced Systems Department
301-428-6091
howard.regan@orbital.com
Orbview-1

- Designed for stacking in Pegasus or Taurus
- Primary or secondary
- Single string - 3 to 5 year mission life
- 30 Microstars on orbit
- Communications and remote sensing
- In production
MicroStar Technical Specifications

- **Core Bus Features**
 - Bus Dry Mass: 40.0 kg
 - Payload Mass Capability: 68.0 kg
 - Redundancy: Single string
 - Orbit: 700-1,000 km
- **All Inclinations**
 - Launch Vehicle Compatibility: Pegasus, Taurus, SELVS I and II
 - Typical Mission Lifetime: 3-5 Years
 - Delivery: 24 Months ARO
- **Power Subsystem**
 - Payload Power: 70 W orbit avg.
 - Bus Voltage: 14 VDC
 - 28V optional
 - Solar Arrays: 2 GaAs
 - Batteries: 10 A*hr NiH
- **Attitude Control Subsystem**
 - Stability Mode: 3-axis
 - Control: ± 1°
 - 0.02 ° per axis pointing optional
 - Knowledge: < 2°
 - Rate/ Stability: <0.01°/sec
• Customer: ORBCOMM Global
• Mission
 – Narrow Band, 2-Way Data for:
 • Monitoring
 • Paging
 • Tracking
 • Messaging
• Performance Summary
 – 5 Year Mission Goal
 – Uplink: VHF (148-150 MHz) at 2400 bps
 – Downlink: VHF (137-138 MHz) at 4800/9600 bps
• Status
 – Fully Licensed by FCC and ITU
 – Financed With ~$400M in Equity, Debt and International Partner Capital
 – Operational Now With Constellation of 28 Satellites
OrbView-4

OrbView-4 Spacecraft Hyperspectral

Panchromatic Multispectral

- Customer
 - ORBIMAGE
- Mission
 - Provide High-spatial Imagery
 - Panchromatic
 - Multispectral (4 Bands)
 - Hyperspectral
- Applications
 - National Security
 - Mineral and Oil Exploration
- Performance Summary
 - 5-year Mission
 - Orbit, Circular: 705 km, 98°
 - 3-axis Control:
 - Knowledge: ±3 Arcsec (3σ)
 - Bus Mass: 290 kg
 - Payload Mass: 72 kg
- Status
 - In Development
 - Taurus Launch 2Q00
GALEX (Galaxy Evolution Explorer)

- Customer
 - NASA Small Explorer Mission
 - PI: Chris Martin/CalTech
 - Mission Management: JPL

- Mission:
 - UV telescope will perform all-sky survey
 - Investigate origin and evolution of galaxies, stars and heavy elements

- Performance Summary
 - 29 Month Mission
 - 1.2 Arc-min Pointing Accuracy
 - 0.1 deg/sec slew rate
 - Launched 9/01 Aboard PEGASUS XL
 - Mass 254 kg (S/C Plus Instruments)
 - Power 293 WOA array power EOL
 - Orbit 690 km Circular, 28.5° Inclination

- Status
 - Phase C/D
• Customer
 - University of Colorado @ Boulder, Laboratory for Atmospheric & Space Physics

• Mission:
 - Continue the Solar Ultraviolet Spectral Irradiance Data Set
 - Measure Solar and Stellar Irradiance Variations
 - Investigate Their Effects on the Earth's Climate
 - SAVE is Part of NASA's Ongoing Earth Observation System (EOS) Program

• Performance Summary
 - 6 Year Design Life (Redundant components)
 - 0.24 Arc-min Pointing Accuracy
 - 1 deg/sec slew rate
 - Launched 7/02 Aboard PEGASUS XL
 - Mass 237 kg (S/C Plus Instruments)
 - Power 707 WOA array power EOL
 - Orbit 660 km Circular, 40° Inclination

• Status
 - In Phase B
GEO Quick Ride

- Orbital Was Awarded GEO Quick Ride Study Contract
 - Targeted at 2001 and Beyond Satellite Capabilities
 - Mid-Term Held in March 1999
 - Study Will Be Completed in May 1999

- Basis of Study:
 - NASA Science is Interested in Piggy Backing on Commercial Missions to GEO

- Orbital's Star-2 Bus Is Being Used For The Study
 - Star-2 Bus Is Capable of Accommodating Instruments Over the Entire Range Defined By NASA
 - Power Margins Can Be Exploited In The Accommodation of Instruments
 - Typical Configuration With Side Mounted Communication Payload Antenna Provide Excellent Field-of-View For Instruments

- Orbital Is Providing NASA With a Defined Set of Instrument Accommodation Parameters
Secondary Payload Fields of View

- With Earth Panel Mounted Antennas, a Variety of Earth Panel Mounting Locations Are Available With Clear Nadir Pointing 20° (Full Angle) Fields of View:
Small Platforms for Secondary Payloads

Terry Schrepel
Launch Integration Manager
(303) 939-5887
tschrepel@ball.com
Sensor Platforms

- SSA
- GTD
- DARPSAT
- GFO
- RS2000
- Multi-spectral Thermal Imager
- QuickScat
SubSystem “A” (SSA)

- Shuttle launched - GAS Can
- Mission: Classified
- Customer: Classified
- Single-string
- Spin-stabilized
- 19” dia x 35” H
- 119 kg spacecraft
 - 23 kg payload
- 29 W array BOL
 - 55 W peak for payload
- SGLS (encrypted)
 - 32 kbps downlink
- Status: Launched 1989
 - 1 yr life/3.5 actual
“G” Test Demonstration (GTD)

- Shuttle launched - GAS Can
- Mission: Classified
- Customer: Classified
- Single-string
- Spin-stabilized
- 19” dia x 40” H
- 125 kg spacecraft
 - 20 kg payload
- 29 W array BOL
 - 57 W peak for payload
- SGLS (encrypted)
 - 32 kbps downlink
- Status: Launched in 1991
 - 1 yr life
Multi-Purpose Experimental Canister (MPEC)

- Ball-built dispenser for SSA and GTD
- Mission: Classified
- Lifetime: 1 yr. w/3 yr. Goal
- Bus Weight: 437 lbs.
 195 kg spacecraft
 - 39 kg payload
- Launch Vehicle: Taurus
dual launch with STEP
- 31” X 31” X 30”
- 70 W array
 - 107 W peak for payload
- Status: Launched March 1994, still operational
• Taurus launch
• Fully redundant
• 3-axis stabilized
• 40” x 40” x 40”
• 350 kg spacecraft
 – 60 kg payload
• 319 W array BOL
 – 126 W for payload
• SGLS
 – 4 Mbps downlink
• Status: Launched Feb. 1998
 – goal 1 year in XX year goal
Aerospace Systems Division

LOSAT-X

- **Customer:** Strategic Defense Initiative Organization
- **Ball Role**
 - Turn-key Mission: satellite, launch vehicle integration, one on-site mission ops center, mission ops
- **Mission**
 - Obtain data from and perform calibration on sensors used on Brilliant Pebbles
- **Unique, low-cost design**
 - No redundancy - 3 month life on orbit
 - Bus: 148.3 lb, 4.3 x 3.3 x 1.5 ft
 - Delta II
 - Price $M
- Design Orbit: 600 Km at 52.5° Inclination
 Sun Synchronous Orbits examined
- Launch Vehicle: Multiple (Taurus Compat.)
- Payload Mass: 604 pounds
- Payload Power: 430 Watts Average
 Mission Scenario Dependent
- ADCS: 3 Axis Stabilized/Reaction Wheels,
 Gyros, Star Trackers, GPS
- Pointing Accuracy: .03°/axis
- Design Life: 5 years, Redundant
- Data Storage: 137 Gbits
- Propulsion: Hydrazine
- Downlink: 4, 16, 256 Kbps X-Band
 320 Mbps X-Band

Designed as an Earth Observation Satellite
The RS2000 can accommodate multiple payloads using an instrument module and can be co-manifested on a Delta-II.
Multi-spectral Thermal Imager (MTI)

- Design Orbit: 525 Km; Sun Synchronous
- Launch Vehicle: Taurus
- Payload Mass: 550 pounds
- Payload Power: 271 Watts Average
- ADCS: 3 Axis Stabilized/Reaction Wheels, Gyros, Fine Sun Sensor, Horizon Scanner
- Pointing Accuracy: <.35°
- Life Time: 1 yr. w/3 yr. goal
- Data Storage: 2.8 Gbits
- Propulsion: None
- Downlink: 1, 2, 4, 8 Mbps Mission data (S-Band) 2 and 16 Kbps S/C data only (UHF)

Customer: Sandia National Laboratory
Status:
QuickScat - RS2000 in Action

- NASA Quick Scatterometer
- Mission: Record sea surface wind speed and direction
- Lifetime: 2 yrs. W/ 3 yrs expendables
- Bus Weight: 650 kg (including propellant)
 - 220 kg payload mass
- Launch Vehicle: Titan II
- 803 km sun-synchronous orbit
- 2 - 3.2 square meter solar arrays
 - 255 Watts orbit average
- Status: Waiting for launch
 - Currently scheduled for May 29th
Modification of RS2000 Bus

- **Attitude Control System**
 - Pointing Accuracy: <0.3 deg; (3s) per axis
 - Pointing Knowledge: <0.027 deg; (3s) per axis

- **Transmit/receive rates CMD/TLM**
 - 4 and 256 kbps downlink
 - 2 kbps uplink

- **Payload Data**
 - 2 Mbps transmit rate
 - S-band frequency
• System type:
 – Hyrdazine
 – 4 thrusters 4.4 Newtons each
 – 76 kg of propellant
• Delta-V capability: 62 m/s
Spacecraft/Fairing Configurations

Ø63
TAURUS

MTI

Ø92
TAURUS

BCP 2000
Ball Aerospace & Technologies Corporation

Secondary Payload Platforms

- Ball has concept designs for low cost secondary platforms for both 3 axis pointer and stabilized spinner
- Inquires for these platforms are welcomed
Lockheed Martin Missiles & Space (LMMS) Smallsat Capabilities

RideShare Conference
April 15, 1999

Ed McNamara
ed.mcnamara@lmco.com
408-742-2996

5/11/99
LMMS Smallsat Capability

- **LM100™ Class Busses**
 - Lunar Prospector baseline
 - IMAGE ‘stretched’ version
 - Gravity-Probe B ‘smaller’ version

- **LM700™ Class Busses**
 - Iridium baseline

- **LM900™ Class Busses**
 - CRSS (Ikonos) baseline
LM100™
Spacecraft Bus

The Lunar Prospector being prepared for acoustic test.

5/1/99
Introduction

- LM100™ is derived from the Lunar Prospector spacecraft developed for NASA

LM100™ with payload masts deployed.

- LM100™ mission suitability:
 - Small, spin stabilized spacecraft
 - Boom mounted payloads
 - Payloads isolated from spacecraft

Launched: 6 Jan '98 on Athena 2 booster
Lunar Prospector Mission Overview

• Discovery Mission: Deliver science data to user community and demonstrate viability of the “faster, cheaper, better”

• Purpose: Lunar science and exploration to include crustal composition mapping, magnetic and gravity field maps, quantify polar ice deposits, search for evidence of lunar outgassing

• Baseline Mission: 1 year, 100 km lunar polar orbit

• Extended Mission: 7 month, 30 x 30 km circular orbit

• Payload Description: 5 omni directional science instruments, packaged as three independent payload elements

• Payload Accommodation:
 - 3 x 250 cm deployable longeron masts
 - 24 kg for science instrument (SI) packages (8 kg per mast tip plate)
 - 17 watts continuous power
 - Precision thermal control for Gamma Ray Spectrometer SI

Lunar Prospector Currently in Lunar Orbit

5/11/99
LM100™ Mission Capability

- Small scientific payloads to GEO, LEO* and lunar orbits
- 3 year mission life
- 141 kg dry mass, 300 kg launch mass
- DSN or TDRSS compatible S-Band CCSDS compatible communications
- Spacecraft and payload equipment mounting to primary bus structure. Ample area for installing electronics units
- Orbit maintenance provided by propulsion system.
- Upper stage compatibility (Star37 series solid rocket motor)
- 24 month schedule from ATP to delivery

*LEO orbit capability limited by ground station availability or on-board data storage capability.

Flexible spacecraft platform for small scientific payloads
LM100™ System Capabilities

- **Structures & Mechanisms**
 - Graphite/Epoxy primary and secondary structures: >12 Hz lateral and >30 Hz axial

- **Electrical Power**
 - Unregulated 28±6 Vdc system, 230 watt BOL solar array, single 5 Ahr NiCad battery

- **Thermal control**
 - 3 year design life, blankets and coatings, redundant heater circuits

- **Propulsion**
 - Hydrazine monopropellant, system $\Delta V = 1430$ m/s

- **Attitude Control**
 - Spin Stabilized: 1.0° attitude knowledge, 2.0° spin axis pointing, 1.0° spin axis offset

- **Communication**
 - S-Band: 300 and 3600 bps down-link, 250 bps up-link; CCSDS format

- **Ground System and Software**
 - Vehicle commanding, telemetry processing for attitude determination and spacecraft healt and status. 24 hr monitoring, DSN and GSFC navigation support.

Simple, reliable spacecraft with minimal operational requirements
LM100™ Configuration

- Lunar Prospector / LM100™ configuration with Trans-Lunar Injection (TLI) Stage.
- Launch configuration with payload booms stowed.
- Basic envelope: 241 cm long, 205 cm dia.
- 3 pt Spacecraft separation system, easily adapted to marmon clamp.
- Launch vehicle compatibility:
 Athena 1, Athena 2, Taurus, Delta, Atlas

A small, reconfigurable spacecraft.

5/11/99
System modifications provide robust enhanced capabilities

SPACECRAFT OVERVIEW
- Autonomous operation
- Flight vehicle control
- Data storage and playback

ATTITUDE CONTROL
- Star tracker provides autonomous attitude determination
- Torque rod controls both spin axis orientation and spin rate
- Magnetometer provides magnetic field orientation reference

COMMAND & DATA HANDLING
- R600-based System Control Unit hosts non-cooperative command uplink
- COP-2 compatible command uplink
- CCSDS compatible telemetry downlink
- FSW functions include attitude control, general telemetry monitoring, power management, and thermal control

COMMUNICATIONS
- 2 omnidirectional antennas
- 2 RF switches

STRUCTURES
- Aluminum honeycomb panels and gusset stiffening for EMI/EMC
- Flat panel solar arrays
- Modular payload deckplate

THERMAL CONTROL
- Sheet pipe through PLT deck to perimeter radiators
- Software-controlled heaters

ELECTRICAL POWER SUBSYSTEM
- 21 Ah battery dominated bus
- >220 watt SA capability at zero beta angle
- >250 watt SA capability at 67° beta angle
- >120 KHz SA current (short regulation)
Small Spacecraft Configurations

Image

Gravity Probe B

Provides Enhanced Instrument Accommodation
The Iridium bus being prepared for test
LM700™—Standard Bus

- Derived from IRIDIUM® production line
 - IRIDIUM® contract with Motorola for 125 buses
 - First launch July 1996
- LM700™ features
 - Gr Ep structure—bus/electronics sections
 - Propulsion
 - Hydrazine reaction engine assembly thrusters for attitude control and back-up for orbit adjust
 - High lsp electro-hydrazine thruster (EHT) for orbit adjust
 - Attitude control system
 - Momentum bias
 - Three-axis gyro (TGA)—ring laser
 - Horizon sensors
 - Magnetic torque rods
 - Magnetometers
 - Reaction wheel
 - Electrical Power System
 - 1200 W solar array (EOL)
 - Single 50AH NiH$_2$ battery
LM700™ Options

- **LM700™ options**
 - Shortened structure (2 bus modules)
 - Lengthwise orientation along velocity vector
 - Shortened solar arrays—60% and 80% power for Athena-1 234 cm (92") shroud packaging (approx. 200 or 350 watts for payload - 500 W for full arrays)
 - Flight software modifications
 - Comm subsystems - SGLS or STDN
LM700™ On-Orbit Configurations

330 cm (130”) full size solar panel

Bus module ~49” long

Electronics module ~ 193cm (76”) long

LM 700-100

LM 700-200

LM 700-300

LM 700-400

5/11/99
LM700™ Bus Capability

Structures
- Graphite epoxy composite frame
- Aluminum honeycomb core with graphite epoxy face sheets and shelving
- Modified mounting brackets and unique payload adapter

Attitude/orbit control
- 3-axis momentum bias control
- 7-0.2 lbf REA thrusters
- 1-0.08 lbf EHT thruster
- Hydrazine propellant/tank
- $\Delta V_{tot} = 675 \text{ m/s}$

Electrical power
- 50 Ah (rechargeable) NiH$_2$ battery
- 2 deployable GaAs solar panels 960W (EOL) (80% arrays)
- 28V unregulated electrical bus

Communications options
- SGLS or STDN uplink/downlink
- 2 omni antennas

Command and data handling
- 12 MIPS R3000 flight computer
- Realtime and stored commands and telemetry
- Discrete, analog and 1553 payload IFs
- SEAKR 64 Mbyte solid state recorder

Thermal control
- Computer-controlled heaters (resistive)
- Passive thermal coatings, finishes, and MLI
- Battery radiator with feedback controlled variable conduction heat pipes
Sample LM700™ Configuration
LM700™ - 300/400 on Athena-1

- 230 kg. (500 lb) nominal payload to 650 km @ 28.5° inclination

- Payload Volume: 6000 cu. cm. (57 cu. Ft.) external
 1200 cu. cm. (11 cu. Ft.) internal

- Basis:
 640 kg (1400 lb.) Total spacecraft weight (wet)
 410 kg (900 lb.) LM700™ bus includes 250 lb. of propellant

- Nadir Payload Sensor Volume: 100cm D x 89cm L
- Pallet Payload Sensor Volume: 165cm L x 66cm W x 46cm H
- Internal Payload Volume: 160cm L x 48cm W x 28cm H
LM700™ Launch Vehicle Limits on Payload

- Athena-1
 - Most efficient operation - Boost to 100nmi and use LM700™ EHT to reach final orbit
 - Approximate limits for 500 km orbit
 - 57 deg. ~ 230 kg (500 lbs)
 - 70 deg. ~ 180 kg (400 lbs)
 - Sun synch. ~ 70kg (150 lbs.)

- Athena-2
 - Limit is LM700™ structure capability ~230 kg (500 lbs.)
The CRSS (Ikonos) bus being prepared for test.

5/11/99
CRSS® Heritage of LM900™

- Customer:
 - Space Imaging Inc.

- Operation:
 - Agile spacecraft to image arbitrary earth locations
 - Images collected by precision scan of linear array

- Lockheed Martin Role:
 - Prime contractor and system integrator
 - Space, ground and launch segment
LM900™ Basic Spacecraft Bus Description

Notes:
(1) The following have been removed for the BASIC Bus:
 - Imaging Sensor
 - Imaging Sensor Outer Barrel
 - Wideband Downlink and Gimbal

(2) Bay Covers removed to show interior equipment

5/11/99
LM900™ Design Features

• Commercial Remote Sensing Satellite (CRSS)
• Mission Life: 6 yrs, MMD 5 yr
• Aluminum Hexagon Structure
• Mass: 500 kg (1100 lbs)
• Reliability: > 0.9 reliability at 5 years

• Propulsion:
 Six Thrusters, 0.2 lbs each
 Monopropellant: 83 lbm(N₂H₄)
 Total Impulse: 16,700 lbf-sec
• Power
 Battery Ni H₂: 50 Amp-hrs
 Unregulated Bus Voltage: 28±6 Vdc
• Thermal Control
 Battery radiators
 Conduction cooled
• Zero Momentum, 3-Axis Stabilized
• Agility
 4 deg/sec max rate
 0.2 deg/sec acceleration
• Precision Attitude Determination & Pointing
 Pointing Control ± 12 arcsec (1sig)
 Pointing Knowledge ± 10 arcsec (1 sig)
• Pointing Stability
 2.5 arcsec (< 1 Hz)
 0.8 arcsec (> 10 Hz)
LM-900™ Baseline Payload Capabilities

- **Payload Mass**
 - up to 500 kg

- **Payload Volume**
 - Internal Cylinder Vol: 78 cm dia x 101 cm
 - External Volume: 220 cm dia x 127 cm
 - Electronics Bay: 94 cm x 84 cm x 38 cm

- **Power**
 - Solar Arrays: 3 Fixed
 1200W BOL / 1022W EOL peak power to payload orbit dependent

- **Wideband Communications**
 - S-Band @ 2 Kbps uplink
 - X-Band @ 32 Kbps downlink
 - CRSS Gimballed Antenna, X- Band @ 320 Mbits/sec downlink

- **Solid State Recorder**
 - up to 80 Gbit (BOL) EDAC
 - protected high-speed memory
LM900™ Increased Payload Mass Capabilities

An increased payload load capability is available on a mission-unique basis with minor booster adapter and bus modifications. For all payloads, a complete dynamics analysis of the integrated spacecraft must be completed to ensure compatibility of all components.

(The above is based on a quasi-static analysis of LM900™ on Athena-2 booster)

5/11/99
LM900™ Payload External Envelopes

92 in LMLV-2

92 in Taurus
Orion 38 Configuration

5/11/99
Conclusion

- LMMS offers range of smallsat busses
THE NASA SPACE CHALLENGE:

- An Order of Magnitude Increase in Performance
- Significantly Lower Power Devices and Systems
- Lower Weight Spacecraft and Launch Vehicles
- Lower Cost Devices and Spacecraft
- Faster and Cheaper Assembly Times
- Reliable Systems Capable of Operation Anywhere in the Natural Space Environment

Faster, Cheaper and Better Space Systems!
THE COMMERCIAL SPACE CHALLENGE:

(The Goal of World-wide Voice, Data, Fax, Surveillance and Video Teleconferencing Requires:
 • Large Numbers of Spacecraft for Coverage
 • Higher Orbits Permit Use of Fewer Spacecraft, but Require Hardening
 • Large Investments in Both Space and Ground Systems
(International Competition Requires:
 • State-of-the-art Technology
 • Fast Time to Orbit, Mass-produced Spacecraft
 • Reliable Systems Capable of Operation in the Natural Space Environment

Faster, Cheaper and Better Space Systems!
HIGH PERFORMANCE COMMERCIAL DEVICES ARE OFTEN VERY SENSITIVE TO NATURAL SPACE RADIATION

- Device Vulnerability to SEE and Total Dose Increases as:
 - Feature Size Decreases (Capability Increases)
 - Speed Increases
 - Voltage and Power Decrease

- New Technologies Must Be Space Qualified Before Use in Operating Systems
HOW CAN NASA MEET THESE GOALS?

1. Use Novel, Break Through Technologies
 - X 5-10 Increase in Performance
 - Potential New Capabilities

2. Use COTS or Rad Tolerant COTS Parts Rather than Rad Hard Parts
 - X 10 More Capable (2-3 Generations Ahead of Rad Hard)
 - Less Expensive, More Available

3. Partner With and Leverage Commercial Space and Industry
 - Fly Technologies of Interest to COMSATS
 - Industry Pays for Its Payloads
 - Make Use of Commercial Spacecraft and Launch Vehicles to Further Reduce NASA's Costs
THE OTTI PROGRAM WILL:

- Demonstrate and Space Qualify Break Through Technologies and COTS Systems
- Partner With the Commercial Satellite Industry, Fly Their Payloads and Use Their Spacecraft and Launch Vehicles, If Possible
- Operate in a GTO or MEO High Radiation Orbit
- Compare Ground Tests to Space Tests
- Develop New Models With Reduced Uncertainty (Lower Safety Factors Required – Reduced System Costs)
PURPOSE - SUMMARY

PURPOSE: OTTI Is a Program to: (1) Explore Novel, Emerging Breakthrough Technologies and Advanced SOA Devices and Adaptive Subsystems With Substantial Potential Impact on Space System Performance and to: (2) Decrease the Time and Cost Required for Insertion Into Future NASA Systems by Space Demonstrations and by Leveraging Commercial Space Systems

SUMMARY:
- Explore, Assess and Test Potential Breakthru Technologies
- Select Most Promising Technologies and Plan Space Expt.
- Construct Payloads and/or Spacecraft
- Predict Space Performance Using Best Models, Ground Tests
- Launch Experiment and Analyze Space Data
- Compare Space Data to Predictions and Develop New Models
- Leverage Commercial Space Systems to Reduce Costs
THE OTTI TEAM:

ä NASA HQ
ä NASA GSFC
ä JPL
ä NASA MSFC
ä NASA GRC
ä NASA LaRC
ä NASA JSC
ä SAIC
ä NRL
ä AFRL
ä DSWA
ä UNM
ä SANDIA
ORBITS CONSIDERED FOR OTTI

1. Circular MEO, Equatorial 3,000 km
2. GTO, 360 x 36,000 km, 18 Degrees
3. Circular MEO, Polar, 3,000 km
4. Elliptical MEO, Polar, 1,000 x 6,000 km

GTO Recommended for Maximum Coverage of Radiation Issues
INITIAL EXPERIMENT LIST

<table>
<thead>
<tr>
<th>Devices</th>
<th>Subsystems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Low Power CMOS (0.3 V)</td>
<td>14. IR, UV and Visible Sensors</td>
</tr>
<tr>
<td>2. Magnetic Thin Film Non-volatile Memories</td>
<td>15. P-channel CCDs and CMOS Active Pixel Image Sensors</td>
</tr>
<tr>
<td>3. Advanced Cots Devices</td>
<td></td>
</tr>
<tr>
<td>4. LT GaAs Devices</td>
<td>16. 32 Gbps VCSEL Based Optical Bus</td>
</tr>
<tr>
<td>5. InP Devices</td>
<td>17. Fiber Optic Data Bus</td>
</tr>
<tr>
<td>7. InAs Devices</td>
<td>19. Artificial Neural Nets</td>
</tr>
<tr>
<td>10. COTS In Multichip Module Packaging</td>
<td>22. GPS Receiver</td>
</tr>
<tr>
<td>12. MEMs</td>
<td>Environmental Instruments</td>
</tr>
<tr>
<td></td>
<td>25. Dosimeters</td>
</tr>
<tr>
<td></td>
<td>26. Credo III Or IV</td>
</tr>
<tr>
<td></td>
<td>27. Cease</td>
</tr>
</tbody>
</table>
POTENTIAL LAUNCH PARTNERSHIPS* (Commercial Communications Satellite Industry)

Launch, Spacecraft Acquisition Possibilities

- Orbital Science - CEO
 - Up to 50kg, 200 W (Max.) Payload on Each Satellite (12)
 - 1965 km, 0 Degrees

- DRG - LEO 1
 - Up to 120 Lb., 100 W Payload
 - 950 km, 50 Degrees or 950-4000 km, 50 Degrees, Elliptical
 - 165 kg, 200 W Satellite

- Motorola - Iridium (INX)

- Teledesic - 1400 km

- Lockheed Martin

- Spectrum Astro
 - SA 200B Bus, 3 Axis Stabilized, Available on IDIQ

* In Exploratory Stage
PAYOFFS: - OTTI WILL PROVIDE PATTERN FOR NASA AND COMMERCIAL COMMUNICATION SATELLITE INDUSTRY PARTNERSHIP

(NASA Could Take Advantage of Industry’s Mass Produced Spacecraft and Frequent Launches by Using the OTTI Example, Modifying Commercial Space Hardware and Launching Jointly

(Industry Could Launch NASA Payloads on Its Satellites With Cost Sharing

(NASA Could Launch Industry Payloads on Its Testbed With Cost Sharing
OTTI PAYLOAD*

(High radiation orbit required - elliptical GTO or MEO
 • Elliptical GTO preferred for radiation variety
 II trapped electrons and protons as well as cosmic ray ions and solar event particles are important to experiment
 • MEO in proton belts acceptable <1400 km

(Weight - 75 kg

(Size - 100x80x30.5 cm (expect multi-package, auxiliary experiments)

(Power - 150 watts (can easily power share but must maintain biases)

* In Exploratory Stage
Quick Ride: An Innovative Approach For Low Cost, Quick Access Small Payload Missions

RideShare Conference

April 15, 1999
Contents

- Background
- Flight Opportunities
- Range of Accommodations
- Optional Services
- Program Plan
- Cost Summary
- Summary
Background

A Privately-Owned Commercial Space Company Since 1992

Aerospace Engineering Services
SatSystems Development
Secondary Payload Program
Mobile Satellite Systems
Background

- 4-5 year history of promoting secondary payloads
- Incorporated payload accommodation in satellite design
- Responded to NASA’s QUICK RIDE announcement
- QUICK RIDE provides:
 - Launch
 - Satellite control center (Lanham, Maryland)
 - Operations
 - Payload data available via dedicated line/web
Constellation & Satellite

Constellation

Satellite
All missions will have an orbit altitude of 1000km, an orbit inclination of either 51° or 66°, and an eccentricity of 0.0±0.01.
Accommodations Summary

<table>
<thead>
<tr>
<th>Performance Characteristic</th>
<th>Quick Ride Minimum</th>
<th>Standard Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument Mass</td>
<td>10 Kg</td>
<td>≤ 20 Kg</td>
</tr>
<tr>
<td>Instrument Power</td>
<td>10 watts</td>
<td>< 20 watts Cont.</td>
</tr>
<tr>
<td>Instrument Volume</td>
<td>50,000 cc</td>
<td>≤ 100,000 cc</td>
</tr>
<tr>
<td>Thermal Control</td>
<td>Isolated</td>
<td>Isolated</td>
</tr>
<tr>
<td>Data Storage</td>
<td>100 Mbits</td>
<td>≤ 128 Mbits</td>
</tr>
<tr>
<td>Downlink Data</td>
<td>2 Mbits/day</td>
<td>4 Mbits/day</td>
</tr>
<tr>
<td>Data Rate (onboard)</td>
<td>1 Kb/sec</td>
<td>≥19.2 Kb/sec</td>
</tr>
<tr>
<td>Command Uplink</td>
<td>200 bits/sec</td>
<td>≥9.6 Kb/sec</td>
</tr>
<tr>
<td>Ordering Period</td>
<td>Prior to L-18 months</td>
<td>Prior to L-18 months</td>
</tr>
<tr>
<td>Instrument Delivery</td>
<td>L-9 months</td>
<td>L-9 to L-6 months</td>
</tr>
<tr>
<td>In-orbit Operations</td>
<td>12 months</td>
<td>12 months</td>
</tr>
</tbody>
</table>
Optional Ground Software

- Additional telemetry points in database
- Additional commands in database
- Additional operations tools, rules, or other products, such as displays, procedures, or state models
- Adding ancillary data onboard
- Adding more complicated commanding or data collection pass scheduling requirements
- Additional ground processing of data collected
<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 Month Requirements Analysis to perform trade-offs to determine standard or optional services</td>
</tr>
<tr>
<td>2</td>
<td>3 Month Payload Interface Design, Operations Planning and I&T Planning leading to a Mission Design Review</td>
</tr>
<tr>
<td>3</td>
<td>6 Month Operations and Interface Development unique space and ground interfaces are built.</td>
</tr>
<tr>
<td>4</td>
<td>6 Month integration of payload into the satellite including environmental testing</td>
</tr>
<tr>
<td>5</td>
<td>2-3 Month launch schedule</td>
</tr>
</tbody>
</table>
Integration & Test

Payload integration at Lanham, Maryland
Controlled Access
Clean Rooms (Class 10,000)
Integration performed by Final Analysis technicians according to the Integration Plan
All handling devices are calibrated
Strict static discharge control procedures are followed
Observation by experiment team member(s)

Note: USG will furnish instruments, Flight software and instrument I&T software
Cost Summary

Quick Ride Flights with 12 Months of Operations.

<table>
<thead>
<tr>
<th>Flight Number</th>
<th>Price per Flt (FY 99 $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2.6 Million</td>
</tr>
<tr>
<td>2 through 10</td>
<td>$2.5 Million</td>
</tr>
</tbody>
</table>

Accommodation Studies

<table>
<thead>
<tr>
<th>Flight Number</th>
<th>Price per Flt (FY 99 $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 10</td>
<td>$115K</td>
</tr>
</tbody>
</table>

Mission Unique Modification

<table>
<thead>
<tr>
<th>Flight Number</th>
<th>Price per Flt (FY 99 $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 10</td>
<td>Priced per Task Order</td>
</tr>
<tr>
<td>Additional Optional Capabilities of Quick Ride:</td>
<td></td>
</tr>
<tr>
<td>• High Rate Downlink</td>
<td></td>
</tr>
<tr>
<td>• 256 MB Onboard Storage</td>
<td></td>
</tr>
<tr>
<td>• Improved Attitude Knowledge</td>
<td></td>
</tr>
</tbody>
</table>
Summary

Customer provides documentation, procedures, test results, drawings etc… to enable Final Analysis to perform analyses, develop the interface, integrate and test the satellite with the Quick Ride payload.

Quick Ride offers low cost access to space

Program depends upon NASA and industry cooperation.

FAI is ready to cooperate to the fullest extent possible! → Mission Success
Prepared by:
Jason O'Neil
Business Development
Final Analysis Inc.
9701-E Philadelphia Court
Lanham, Maryland 20706-4400
301-459-4100
jason@finalanalysis.com
• Naval Space S&T Program Office Overview

• Navy Payloads

• GEO Mission

• Enabling Technologies

• Summary
RADM Gaffney (CNR) Chartered the Naval Space Science and Technology (S&T) Program Office.

Focus:
- Central Point of Contact for DON S&T Activities
- Horizontal Linkage and S&T Transition With External Commands, PEO’s, and Agencies
- Investment Strategy to Leverage DOD, Government and Commercial Initiatives
- ONR Program Officers Manage ONR Space Programs and Other DON Space Organizations Programs

Mission
Keep the Navy “SMART”
Support The Warfighter
Maximize Leverage of Navy Dollars
Acquire Partners
Rapid Technology Transition
Technological Superiority

REQUIREMENTS
S&T Round Table Process
S&T Requirements Guidance (STRG)
Invest Uniquely in Cutting Edge

Naval Space S&T Investment Plan

NASA
DoD
NRO
Industry
Academia
<table>
<thead>
<tr>
<th>Field</th>
<th>FY98</th>
<th>FY99</th>
<th>FY00</th>
<th>FY01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>Modulating Retro Reflector</td>
<td>GPS Anti-Jamming</td>
<td>GPS Anti-Jamming</td>
<td>Geo Ionospheric Imager</td>
</tr>
<tr>
<td></td>
<td>Geo Ionospheric Imager</td>
<td>Geo Ionospheric Imager</td>
<td>Geo Ionospheric Imager</td>
<td>Geo Ionospheric Imager</td>
</tr>
<tr>
<td>Navigation</td>
<td>Geo Ionospheric Imager</td>
<td>GPS Anti-Jamming</td>
<td>GPS Anti-Jamming</td>
<td>Geo Ionospheric Imager</td>
</tr>
<tr>
<td></td>
<td>Satellite Laser Ranging</td>
<td>Geo Ionospheric Imager</td>
<td>Geo Ionospheric Imager</td>
<td>Geo Ionospheric Imager</td>
</tr>
<tr>
<td>Environmental Sensing</td>
<td>WindSat</td>
<td>WindSat</td>
<td>WindSat</td>
<td>WindSat</td>
</tr>
<tr>
<td></td>
<td>NEMO</td>
<td>NEMO</td>
<td>NEMO</td>
<td>GEO Program Definition</td>
</tr>
<tr>
<td></td>
<td>HRST Aerosol Parameters</td>
<td>HRST Aerosol Parameters</td>
<td>ASIS Buoy Experiment</td>
<td>(SMI)</td>
</tr>
<tr>
<td></td>
<td>Aerosols & Atmos. Parameters</td>
<td>Aerosols & Atmos. Parameters</td>
<td>GEO Bus Concept Study</td>
<td>(SMI)</td>
</tr>
<tr>
<td></td>
<td>Wind Vector Modeling</td>
<td>Wind Vector Modeling</td>
<td>Wind Vector Modeling</td>
<td>Wind Vector Modeling</td>
</tr>
<tr>
<td></td>
<td>Active/Passive MicrowaveFreq.</td>
<td>Polarimetric RS of Ocean Surface</td>
<td>Passive Microwave Radiometry</td>
<td>Passive Microwave Radiometry</td>
</tr>
<tr>
<td></td>
<td>Polarimetric RS of Ocean Surface</td>
<td>Passive Microwave Radiometry</td>
<td>GEO Sensor Concept Study(SMI)</td>
<td>Passive Microwave Radiometry</td>
</tr>
<tr>
<td>Surveillance</td>
<td>Sparse Aperture</td>
<td>Sparse Aperture</td>
<td>Sparse Aperture</td>
<td>Sparse Aperture</td>
</tr>
<tr>
<td>Space Technology</td>
<td>IOBP</td>
<td>IOBP</td>
<td>IOBP</td>
<td>IOBP</td>
</tr>
<tr>
<td>Technology Transition Path or Demos</td>
<td>Modulating Retro Reflector</td>
<td>NRL 6.2 New Start</td>
<td>Base Program</td>
<td>Flight Demo</td>
</tr>
<tr>
<td></td>
<td>WindSat</td>
<td>Flight Demo</td>
<td>Flight Demo</td>
<td>Flight Demo</td>
</tr>
<tr>
<td></td>
<td>NEMO</td>
<td>Flight Demo</td>
<td>Flight Demo</td>
<td>Flight Demo</td>
</tr>
<tr>
<td></td>
<td>Sparse Aperture</td>
<td>Flight Demo</td>
<td>Flight Demo</td>
<td>Flight Demo</td>
</tr>
<tr>
<td></td>
<td>Geo Ionospheric Imager</td>
<td>Flight Demo</td>
<td>Flight Demo</td>
<td>Flight Demo</td>
</tr>
<tr>
<td></td>
<td>METOC GEO Program</td>
<td>Flight Demo</td>
<td>LEO Fizeau Demo Program (FY00-04) NRL/NRO</td>
<td>Flight Demo</td>
</tr>
<tr>
<td></td>
<td>GPS A/J</td>
<td>Flight Opp. FY02</td>
<td>Flight Opp. FY02</td>
<td>Flight Demo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>METOC Start FY02</td>
<td>METOC Start FY02</td>
<td>Flight Demo</td>
</tr>
</tbody>
</table>
- Naval Space S&T Program Office Overview

- Navy Payloads

- GEO Mission

- Enabling Technologies

- Summary
Remote Atmospheric & Ionospheric Detection System (RAIDS)

8 Instruments (Spectrometers & Photometers)
Wavelength Coverage: 550 - 8700 Å @ 7-20 Å
Scans the Limb: 50 - 750 km @ 5 km Resolution
Expected Launch: 2001
Tactical Ionospheric Remote Sensing from Geostationary Orbit

Ionospheric Mapping & Geocoronal Experiment (IMAGE)

- High Time & Space Resolution Ionospheric Imaging
 - Precision Geolocation of Emitters
 - Satellite Altimetry (GFO)
 - Improved GPS Accuracy
 - Theater Ballistic Missile Defense
- Real-Time Tracking of Ionospheric Irregularities & Scintillation Regions
 - Reduced Communication & Navigation Outages (UHF, HF, GPS)
- Possible Piggyback for Indian Ocean Geostationary Satellite
 - Space Flight Support from Space Test Program
 - Synergistic with USAF C/NOFS ACTD

Apollo 17 Ultraviolet Image of the Earth
NAvy Metoc Sensors - Space

Mission Objective: Support Navy unique, space-based Metoc requirements
Development, calibration and validation of new sensors
Support delivery of satellite products to the fleet, and risk-reduction efforts for inter-agency (DoC/DOD) converged satellite programs (NPOESS)
Support Navy participation in cooperative efforts (DMSP)

Approach:
Space-based Sensor Development
 Calibration and Validation Cooperative Efforts
Advanced Sensors for Ground Based Validation
Post-Launch Operational Product Support

Supplemental Metoc Imager
METOC Imager: Indian Ocean

High Priority CINC Requirement: *High Resolution Visual & IR Imagery of the Indian Ocean*

METOC Imagery Requirements
- Clouds and fog
- Cloud drift winds
- Cloud Top Height
- Secondary Requirements
 - Cloud heights
 - Water Vapor Winds

Sensor Requirements for Primary Parameters
- Vis 0.55 - 0.75 μ
- IR 7.1 - 13.6 μ
- 10 or 12 bit precision
- 100 kg, 0.75 m³, 100W

Space/Time Requirements
- Hi-resolution (1 km day/4 km night)
- 2 hour refresh, full disk
- ≤30 minute refresh, sector
- 3 km geolocation

Current Activities:
- Raytheon Study Completed
- Lincoln Lab System Study In Process
- Non-Acquisition Program Definition Document (NAPDD) being Developed for Summer FY99 Submission
- Satellite/Launch Vehicle Options Being Explored

Sponsors: CNO(N6) and CNO(N096)

Program Management: ONR 32SO (Space Office)

Conceptual Approach:
National/DoD/Industry Partner for Satellite and Launch Industry Partner for Sensor
SMI Sensor Concept

- 30 cm aperture off axis telescope or 2-axis gimbal
 - Compact package minimizes impact on spacecraft
 - Off axis three mirror design provides superior imaging and minimizes solar intrusion effects
- Two area arrays, one each for the visible and IR
 - 1280 x 1280 CCD array
 - 320 x 240 uncooled IR array
 - Filter wheel enables IR band selection
- Projected mass: 82 kg
- Projected volume: 0.5 m³
- Projected power: 80 W (avg), 120 W (peak)
Projected SMI Capabilities

- Provide visible and infrared images showing clouds, storms, water vapor, winds and surface temperature
 - 1 km resolution in one visible band
 - 0.55 to 0.75 μm
 - 4 km resolution in three infrared bands
 - 7.1 to 7.5 μm
 - 10.2 to 11.2 μm
 - 13.1 to 13.6 μm
- 42 min full disk revisit
- 1.3 min revisit for 1500 km x 1500 km region
- Data rate ~450 kbps to meet Navy's reporting requirements and is compatible with AN/SMQ-11 system
- Environmental data performance similar to GOES for mission parameters
• Naval Space S&T Program Office Overview

• Navy Payloads

→ • GEO Mission

• Enabling Technologies

• Summary
Supplemental Metoc Imager (SMI) Proposed Partnership

NAVY:
Maximize Leverage of Dollars
Acquire Partners
Technology Transition

Total S/C & Launch: $90M

1/3 Cost

SMI
Enabling Technologies

NASA
Experiments
Sensor(s)
Technologies

1/3 Cost

INDUSTRY Partner
or Other GOV'T
Experiments
Sensor(s)
Technologies

1/3 Cost
- Naval Space S&T Program Office Overview
- Navy Payloads
- GEO Mission
- Enabling Technologies
- Summary
Summary

• Navy Has Defined GEO Requirements
 – Looking for Partner(s)
 • Government and/or Industry

• Emerging Technologies Can Enable More Capable GEO Bus
 – Cost Effective Frequent GEO Missions

• Call me... 703-588-0702
Student Micro/Nano Space Applications

RideShare Conference
Litton/TASC
Chantilly, VA
April 15-16, 1999

Prof. Robert J. Twiggs
Department of Aeronautics & Astronautics
Stanford University
Stanford, CA
University Space Projects

- Weber State University
 ➢ Started 1982 NUSAT - 1985 AMSAT/Microsats - 1990

- University of Alabama- Huntsville
 ➢ Started ~ 1988 Sedsat - 1999

- Arizona State University
 ➢ Started ~ 1993 ASUSat1 - OSP Launch 1999

- Naval Postgraduate School
 ➢ Started ~ 1986 Shuttle Launched 1999

- Stanford University
 ➢ Started 1994 Sapphire - Ready to launch (no Launch)
 OPAL - OSP Launch 1999

- Nanosat Program
 ➢ Started 1999 Ten Nanosats Launch 2001

-

RideShare Conference - April 15-16, 1999

Stanford University
Space Programs for Education

- Educational Goals & Challenges
 - Provides Project Life-Cycle Experience
 - Student Managed
 - Student Run

VERY UNSTRUCTURED
Projects

- **Microsatellite Design Program - MS Level**
 - SQUIRT Class - 20 kg

- **Advanced Spacecraft Development - Ph.D.**
 - 40 - 100 Kg
 - SHARP - Atmospheric Reentry Vehicle for Thermal Systems Protection Tests

- **Spacecraft Operations Research - Ph.D.**
 - ASSET - Autonomous Space Systems Experimental Testbed

- **Other - Undergraduate**
 - Ares
 - CanSat
 - Barnacle
Project Cost Range

<table>
<thead>
<tr>
<th>Graduate</th>
<th>Material Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQUIRT - <20 kg nano/micro satellite ------ MS Degree Project</td>
<td><$50,000</td>
</tr>
<tr>
<td>Advanced Programs - < 50 kg</td>
<td></td>
</tr>
<tr>
<td>Orion - formation flying - Engr/Ph.D. Project</td>
<td>~$150,000 - $250,000</td>
</tr>
<tr>
<td>SHARP - hypersonic reentry vehicle test bed - Engr/Ph.D. Project</td>
<td>~$250,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Undergraduate/Pre College</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Picosats - payloads for microsatellites - Santa Clara University</td>
<td>~$1,000</td>
</tr>
<tr>
<td>Ares - remote data collection - Antarctic -> Mars</td>
<td>~$5,000</td>
</tr>
<tr>
<td>CanSat - new challenge - University of Tokyo, Tokyo Institute of Technology,</td>
<td>~$1,000</td>
</tr>
<tr>
<td>Stanford University, University of Texas - Austin</td>
<td></td>
</tr>
</tbody>
</table>
SAPPHIRE - Microsatellite

Payloads

- MEMS Infrared Sensor
- Voice Synthesizer
- B/W Digital Camera
- Passive Magnet Stabilized

18" Diameter
12" Height
22 kg Weight

Stanford's First Student Built Microsatellite
Ready to Launch July 1998
OPAL - Microsatellite

Picosat Launcher

Mother - Daughter Spacecraft

50 m Diameter Astronomy Antenna
For Picosat Communications

Stanford's Second Student Built Microsatellite
Scheduled Launch September 15, 1999

Low-cost Testing of New Technologies
JAWSAT/OSP Launch

OSP Vehicle With JAWSAT

JAWSAT with OPAL
Artemis 4-inch Picosatellite

- Transmitter beacon
- Transmits Artemis web site address
Artemis 8-inch Picosatellites

- Study VLF emissions from thunder clouds
- Record 15 seconds of simultaneous data at 11 kHz
- Compare two data sets to approximate ionospheric aberrations
Stensat Picosatellite

- single channel mode "J" FM voice repeater
- uplink at 145.84 MHz downlink at 436.625 MHz
- periodically transmits telemetry
- amateur radio operators able to "PING" the satellite causing it to broadcast a telemetry packet
Picosatellite Stack

Ejection from OPAL
- Two tethered picosatellites
- Testing DARPA MEMS RF switches
- Testing of inter-satellite communications link and protocol
Emerald - Nanosatellite

Advancing Formation Flying with Student Built Nanosatellites

Stanford's Third Student Built Microsatellites
Scheduled Launch Early 2002
Orion - Formation Flying

Vision - Distributed, highly coordinated satellites perform a unified mission

Advantages - Large baselines, graceful degradation, flexible deployment

The Stanford Orion Project
- Sub-meter relative position control
- 3-6 spacecraft formation
- 40 kg, 3-axis control, cold gas thrusters

Stanford's First Advanced Microsatellites
Scheduled Launch Early 2002
Ares Mars Project

Mars Imaging with Weather Probe

- Undergraduate project
- Camera in nose of probe
- Collect imaging data on descent
- Store images
- Transmit through Mars orbiter to Earth
- Need space test before Mars
Barnacle Project

Parasat class

- Undergraduate project
- Permanently attached to last stage of ELV
- Battery operated
- Comm system with uplink and downlink
- Short life testing
- Any orbit
ESPA

Nanosat Program Secondary Launches
Conclusions

Need for Secondary Launches

- Many university programs
- Many projects
- Excellent drivers for student education
- Trained engineers for industry and government labs

Projects for Really GOOD GOOD Education
United Space Alliance

Products and Services for Space Operations

- Space Hardware Processing
- On-Orbit Operations
- Launch & Return Operations
- Space Systems Training

NASA's single prime contractor for Shuttle operations
"Reimbursable Missions"

- Two Flight opportunities on OV-102, Columbia
 - “marketing of payloads ... positive step toward our goal of privatizing /commercializing”
 - flight opportunities shown on manifest are 6/02 and 7/03
 - these are place-holder dates; actual dates will be defined by primary payload launch requirements
- USA to lease Shuttle payload bay
 - payload customers charged pro-rated amount based on use of Shuttle resources
"Reimbursable Missions"

- Services provided by USA
 - manifest payload
 - single point of contact for payload
 - interface with NASA on behalf of payload
 - arrange/provide upper stage and/or carriers/cradles, if necessary
 - payload integration
 - on-orbit support
United Space Alliance offers turnkey solutions to getting your payload into space.

To learn more about flight opportunities:

Therese Thrift
Director, Strategic Business Planning
281.280.6958
Commercial Space Hardware Capabilities

Chris Martin

April 1999
Provide an overview of SPACEHAB and its ability to “fly” payloads for the NRO.

➢ Company Overview
➢ Overall Capabilities
➢ Integration Process
➢ Contractual Arrangements
➢ Summary
➢ SPACEHAB, Inc.
 • The leading commercial space services company supporting both manned and unmanned missions to space
 • First company to develop, own and operate habitable modules that provide space-based laboratory research facilities and cargo re-supply services aboard the U.S. Space Shuttle fleet

➢ ASTROTECH
 • Offers customers a commercial alternative to the Government payload processing facilities at the Kennedy Space Center, with the full cooperation of NASA
 • Provides Payload Processing for Civil and Commercial Satellites
 • Leading commercial provider of launch processing services in the United States

➢ Johnson Engineering
 • A highly diversified enterprise primarily engaged in design, development, fabrication and integration of technology products and services
 • The company’s core businesses include design engineering for electrical, mechanical, and software systems, aquatic/ocean engineering, fabrication, space systems, and systems integration
Business Model
- Identify undefined requirements
- Create products & services to satisfy requirements
- Invest private capital to build assets
- Price according to value assessment
- Determine project viability at this price

Missions
- Twelve successful missions on two NASA contracts - Space Shuttle research and cargo resupply to Mir space station
- Over 100 experiments flown in Module, Middeck, and on roof top
- Additional Shuttle research and ISS cargo resupply missions under REALMS contract
SPACEHAB has relationships with an international alliance of space-related organizations.
SPACEHAB can arrange for flights on these carriers.

Duration of Weightlessness

International Space Station
90+ days

NOVESPACE - A300

Space Shuttle
<16 days

Free Flyer

SPACEHAB - Wake Shield

DASA - TExUS, MAXUS

Sounding Rockets
less of minutes

Smart Can
(GAS)

SPACEHAB - Module, Pallets

SPACEHAB - Space-DRUMS
Integrated Cargo Service
Modules for Various Missions

- Double Module Exterior

- Modules for Shuttle research, Station resupply and reboost
- Module used varies by need
- All can carry active research

Research Double Module

Research Station Cargo

Docking Double Module

Chris Martin • 202-488-3500

Commercial Space Hardware Capabilities • 4/99
Current Capabilities

- Module missions include:
 - Middeck lockers
 - SPACEHAB lockers & racks
 - Station ISPRs
 - Exposed rooftop payloads
 - Fabric transfer cargo bags
 - Oversized cargo items

- Payload resources include:
 - AC and DC power
 - Air and water cooling
 - Crew time support
 - Downlink data and video
 - Uplink commanding
 - Vacuum venting

- 9-15 month integration
- Off-site integration facility
- Many payloads refloored from Middeck, Spacelab
➢ Flown several times in logistics and science support roles
➢ Provides 4800 pounds of payloads with full resources
➢ Maximizes Shuttle co-payload volume

➢ Lockers flown on both bulkheads
➢ Can house 2 ISPR or SPACEHAB racks
➢ 2 external rooftop locations at 500 pounds
Research Double Module

- Design started in August 1996; first flight on STS-107
- Provides 9000 pounds net payload with full resources
- Shuttle-independent data services

- Lockers flown on both bulkheads
- Can house 6 racks or 4 ISPR’s
- 4 external rooftop locations at 500 pounds

Double Module Exterior

Forward

Expanded View

Aft

Chris Martin • 202-488-3500

Commercial Space Hardware Capabilities • 4/99
Payload Resources

Single Module vs. Research Double Module

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Single Module</th>
<th>Research Double Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (lbm) [kg]</td>
<td>4800 [2177]</td>
<td>9000 [4081]</td>
</tr>
<tr>
<td>Power - on orbit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC (W)</td>
<td>3150</td>
<td>5500</td>
</tr>
<tr>
<td>AC (VA)</td>
<td>690</td>
<td>690</td>
</tr>
<tr>
<td>Heat Ejection - on orbit (W)</td>
<td>4000</td>
<td>5500</td>
</tr>
<tr>
<td>Vacuum Venting</td>
<td>1 Experiment Vent Valve (EVV)</td>
<td>1 EVV forward, 1 EVV aft</td>
</tr>
<tr>
<td>Data Transfer (NASA)</td>
<td>low rate PDI (discrete, analog, serial - 25 kbps total)</td>
<td>low rate PDI (discrete, analog, serial - 25 kbps total)</td>
</tr>
<tr>
<td></td>
<td>RS-232 via Serial Converter Units</td>
<td>KuSP channel1, 2 (2 Mbps total)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KuSP channel3 (48 Mbps total)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS-339/432, Ethernet standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other interfaces by plug-in hardware & software (RAU, 1553)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on orbit record/download of LOS data</td>
</tr>
<tr>
<td></td>
<td>64-256 kbps up/downlink via SHUCS system</td>
<td>64-256 kbps up/downlink via SHUCS system</td>
</tr>
<tr>
<td>Video Downlink</td>
<td>Video Switch Unit</td>
<td>Video Switch Unit</td>
</tr>
<tr>
<td></td>
<td>8 module inputs</td>
<td>8 module inputs</td>
</tr>
<tr>
<td></td>
<td>camcorder power</td>
<td>camcorder power</td>
</tr>
<tr>
<td></td>
<td>onboard monitors</td>
<td>onboard monitors</td>
</tr>
<tr>
<td></td>
<td>output to Orbiter CCTV PL input</td>
<td>output to Orbiter CCTV PL input</td>
</tr>
<tr>
<td>Commanding Uplink</td>
<td>low rate PSP (2 kbps max.)</td>
<td>low rate PSP (2 kbps max.)</td>
</tr>
<tr>
<td>Locker Capability (lbs)</td>
<td>42 - 62</td>
<td>27 - 61</td>
</tr>
<tr>
<td>Rack Capability (racks)</td>
<td>2 SH double or single racks</td>
<td>6 SH double or single racks</td>
</tr>
<tr>
<td></td>
<td>1 ISPR may sub for a SPACEHAB rack with adapter</td>
<td>4 ISPRs may sub for SPACEHAB rack with adapter</td>
</tr>
<tr>
<td>Refrigerator/Freezer (OSRF)</td>
<td>-20 to 40°C, payload of up to 1.85 ft³, 40 lb</td>
<td>-20 to 40°C, payload of up to 1.85 ft³, 40 lb</td>
</tr>
<tr>
<td>Viewport (units)</td>
<td>0 - 2</td>
<td>0 - 2</td>
</tr>
</tbody>
</table>
Payload Accommodations

Lockers

Single & Double Racks

ISPRs

Viewports

External payloads possible.
Floor mounting in-work (500 lb.)

<table>
<thead>
<tr>
<th></th>
<th>Locker 1, 3</th>
<th>Single Rack</th>
<th>Double Rack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (lbm) [kg]</td>
<td>60 [27]</td>
<td>655 [297]</td>
<td>1250 [567]</td>
</tr>
<tr>
<td>Volume (cu. ft.) [liter]</td>
<td>2 [56]</td>
<td>26 [740]</td>
<td>53 [1500]</td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC (VA)</td>
<td>allocable</td>
<td>allocable</td>
<td>allocable</td>
</tr>
<tr>
<td>Ascent, Descent (W)</td>
<td>115</td>
<td></td>
<td>1800 5</td>
</tr>
<tr>
<td>DC (W)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Rejection (W)</td>
<td>air cooling</td>
<td>suction air, water cooling interfaces</td>
<td></td>
</tr>
<tr>
<td>Vacuum Venting</td>
<td>available throughout module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crew Time (hr)</td>
<td>1 4</td>
<td>14 4</td>
<td>28 4</td>
</tr>
<tr>
<td>Data, Commanding</td>
<td>downlink: analog, discrete, serial low-rate data</td>
<td>high-rate digital downlink & recording CCTV, NTSC video</td>
<td>uplink: serial, pulse discrete commanding</td>
</tr>
</tbody>
</table>

1. Accommodation in Shuttle Middeck locker(s) possible with similar capabilities.
2. Not payload mass; mass of lockers and racks not included.
3. Resources for Soft Stowage®, plates, and panels same as locker plus mass delta.
4. General allocation; exact value dependent on mission and number of crew shifts.
5. Exact value is mission-dependent; RDM high power location provides 3kW.
Mounts to either forward or aft SPACEHAB module bulkhead

Provides dimensionally-identical interior interface for Middeck payloads

Provides three removable front door panels for use as is, modification, or deletion

Payload support capabilities:
- 2 ft³ (56 liters)
- 60 pounds (27 kg)
- 115 W DC power on-orbit
- Ascent and descent power
- Air cooling (normally)
- Various data services
- Late and early access of contents
Full payload support capabilities:
- 500 pounds at several rooftop locations
- 12,000 pounds on pallet
- Crew operation
- DC power
- Downlink data, uplink commanding
- Active cooling can be developed

Total capability levels can be driven by customer requirements
Unpressurized Cargo Pallet

- First pallets nearly complete by DASA and RSC-Energia
- First use - STS-96 (May '99)
- Consists of Keel Yoke and Pallet
- Design features:
 - 12,000 lb. payload capability
 - Cargo mounts to top and bottom of pallet
 - Standard EVA site support
- Can be manifested
 - with SH module alone
 - over tunnel with MPLM
- Future upgrades provide for
 - standard transport container service
 - active payload support
 - long-term ISS deployment
Use of QUEST allows:
- Standardized external (attached) payload structural interface
- Power, data, and thermal interfaces (Space Shuttle only)
- Payloads to attach in a variety of Shuttle and Station carriers and facilities
Universal Communications System

➢ Payload data needs sometimes exceed Shuttle capabilities

➢ SHUCS provides payload-dedicated
 • audio over "phone"
 • low-rate video
 • data & commands via Internet or direct phone line
 • use of standard commercial hardware and software

➢ Using SHUCS
 • frees up Shuttle data systems for other co-payloads
 • allows research to continue when crew and Shuttle are unavailable

➢ Signals sent from module via Inmarsat to ground station and on to customer via phone line or Internet

➢ New Internet extension of .orb
Wake Shield Facility

➤ Provides free flyer and Space Shuttle bay payload flight opportunities
 • High atomic oxygen on free flyer ram side
 • High quality vacuum in free flyer wake
 • Molecular beam epitaxy thin film growth
 • Smart (GAS) cans on base carrier

➤ Resources provided:
 • Independent attitude control (free-flyer)
 • Downlink data, video; uplink commands
 • DC power
 • Environmental monitoring
 • High quality vacuum (free flyer wake)

➤ Commercial integration processes:
 • minimize personnel assignment time
 • minimize documentation required
 • maximize pre-flight time with hardware

➤ Three flights have proven hardware
Experienced SPACEHAB team provides a customer-friendly integration process that will be tailored to every customer’s individual needs.

<table>
<thead>
<tr>
<th>Experiment Complement Determination</th>
<th>Typically 15 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Definition</td>
<td></td>
</tr>
<tr>
<td>Safety Certification</td>
<td></td>
</tr>
<tr>
<td>Verification Analyses & Tests</td>
<td></td>
</tr>
<tr>
<td>Flight Crew Training</td>
<td></td>
</tr>
<tr>
<td>Flight Operations</td>
<td></td>
</tr>
<tr>
<td>Hardware Installation & Integration</td>
<td></td>
</tr>
</tbody>
</table>

- **Characteristics:**
 - **Single Interface:** SPACEHAB provides one point-of-contact for the complete integration process and shields customers from need for detailed knowledge of carrier integration processes.
 - **Streamlined Documentation:** Information is reused from previous use or other carrier if available.
 - **Late/Early Access:** Significant experiment late access and early retrieval capability.
 - **Launch Pad Installation:** Late module turnover to NASA allows more time with experiment hardware.
 - **Flexible Approach:** Flight-ready payloads have been added as late as 45 days before launch.
 - **Rapid Reflight:** SPACEHAB reflight payloads (same hardware and customer) start at L-8 months.
 - **Quick Turnaround:** Short mission cycle supports commercial experiments.
 - **Detailed Schedule:** Complete mission integration schedules are available at any time for customer use.
SPACEHAB Payload Processing Facility (SPPF):

- Located on a commercial site just south of KSC
- 44,500 square feet of payload integration, test, training, & support facilities with more square feet planned
- 11 industrially-secure Customer Work Areas (CWA’s) with three more rooms planned
- Clean room conditions - 100K class conditions in CWA’s, integration hall, shipping & receiving
- Integration hall accommodates flight modules and training units
- General - conference room, copiers, and fax machine available with new office areas planned

Off-site facility allows streamlined ground safety documentation, payload quality assurance, and international access processes.
➢ Space is available today on STS-107, for flight in late 2000
➢ Process for spaceflight of COTS hardware is understood
➢ SPACEHAB ground and flight services
 – priced for STS-107 at $29,500 per kilogram for internal payloads
 – available through fixed price contracts (no US government involvement)
 – price includes all aspects of capabilities and integration services described in this presentation
➢ Optional services
 – Assistance with payload hardware adaptation for spaceflight
 – Assistance with payload safety and verification documentation
➢ Pricing for optional services can be made available on request
➢ Flight schedule:

<table>
<thead>
<tr>
<th>Missions Schedule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9 missions prior to 1998)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mir-08</td>
<td>Mir-09</td>
<td>STS-95</td>
<td>STS-96 (ISS 2A.1)</td>
<td>STS-101 (ISS 2A.2)</td>
<td>STS-102 (ISS 6A.1)</td>
</tr>
<tr>
<td>STS-116 (ISS LON)</td>
<td>STS-124 (ISS LON Remanufactured Flight)</td>
<td>STS-122 (ISS LON)</td>
<td>STS-122 (ISS LON)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: 3/16/99 FAWG
SPACEHAB, Inc. has a proven record in commercial human space.

We look forward to working with the NRO team towards the spaceflight of payloads on SPACEHAB.

The Space Station era has begun, and

SPACEHAB is there...
The nanosat payload Ejection System
Overview
Space Vehicle Technologies Branch

Vision

Revolutionize
Space Vehicle Technology
to Meet
Future Warfighter Requirements

Dynamics

Power & Thermal

High Total Power Solar Generation

On-Orbit Vibration Isolation

SMV

Structures

Maneuvering Space Vehicles

Multifunctional Structures

Mission

Conduct
Innovative Space Vehicle Research, Development, and Transition
of
Advanced Power, Thermal Management, Structures, and Controls Technology
to
Support Global Engagement
Facilities
Space Vehicle Technologies Branch

- Composite Lab
 - Filament Winding
 - Pultrusion
 - Carbon-Carbon
 - CT-Scanning
 - Mechanical Testing
- Acoustics Lab
- Energy Generation Lab
- Energy Storage Lab
- Thermal Research Lab
- Large Deployable Structures Area
- Precision Structures Lab
- Active Controls Lab
- Isolated Controls Facility
The University nanoSat Program

Leverage
Innovating Thinking at U.S. Universities

Demonstrate
Nanosat Technologies & Advanced Mission Concepts

Technologies of Interest
Formation Flying
Miniaturized Sensors
Micro-Propulsion
Guidance & Navigation
Multifunctionality
Collaborative Processing
Program Participants

<table>
<thead>
<tr>
<th>Program</th>
<th>Institution</th>
<th>Principal Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three Corner Sat</td>
<td>Arizona State U</td>
<td>Reed</td>
</tr>
<tr>
<td>Three Corner Sat</td>
<td>U of Colorado at Boulder</td>
<td>Hansen</td>
</tr>
<tr>
<td>Three Corner Sat</td>
<td>New Mexico State U</td>
<td>Horan</td>
</tr>
<tr>
<td>Emerald</td>
<td>Stanford U</td>
<td>Twiggs</td>
</tr>
<tr>
<td>Emerald</td>
<td>Santa Clara U</td>
<td>Kitts</td>
</tr>
<tr>
<td>ION-F</td>
<td>Utah State U</td>
<td>Redd</td>
</tr>
<tr>
<td>ION-F</td>
<td>U Washington</td>
<td>Campbell</td>
</tr>
<tr>
<td>ION-F</td>
<td>Virginia Tech U</td>
<td>Hall</td>
</tr>
<tr>
<td>Solar Blade NanoSat</td>
<td>Carnegie Mellon U</td>
<td>Whittaker</td>
</tr>
<tr>
<td>Constellation Pathfinder</td>
<td>Boston U</td>
<td>Spence</td>
</tr>
</tbody>
</table>

![Diagram of satellite programs](image.png)
Three Corner Sat Constellation
Arizona State, New Mexico State, University of Colorado

Constellation of Three Identical nanoSats

Stereo Imaging
Formation Flying
Cellular Phone Communications
Innovative Command and Data Handling

Launch

On-Orbit
Validation of Spacecraft Formation Flying Technologies

GPS Based Relative Position Sensing
Direct Intersatellite Communications
Position Control Using Tether, Drag Panels, & Colloid Microthrusters
Formation Flying Through a Distributed Ionospheric Science Exp

Stacked Tethered Separated
Ionospheric Observation
nanoSat Formation

Distributed System Science & Cutting Edge Technologies

Formation Flying & Management
Inter-Satellite Cross-Links
Distributed Ionospheric Data
Small Satellite Subsystems
Internet Control of a Distributed Space System
Constellation Pathfinder
Boston University & Draper

1kg, 1W Nanosats Capable of Returning
High-quality, 3-pt Vector Magnetic Field Measurements

Pathfinder for a 100-200 nanoSat Mission to Map
the Dynamic Magneto-Sphere
for Robust Prediction
of Space Weather

Autonomous Spin-Stabilization

Measurement of
Low Level DC Magnetic Fields

Launched From “Mother Ship”
Providing a Central Point for
InterSatellite Communication
Solar Blade nanoSat Solar Sail
Carnegie Mellon University

Demonstrate HelioGyro Solar Sail Technology

Attitude Control

Position Changes

Spiral Out Past the Moon

Collective & Cyclic Pitching of 20m Blades Creates Propulsion from Photon Pressure
The nanoSat Payload Ejection System

Provide Low-Cost Launch Opportunity for University nanoSats

Goal: Flexible, Reusable Design

Preferred Option: OSP/Pegasus
- Higher Cost
- All nanoSats Launch Together
- Minimal Ejection System
- Desirable Orbit

Backup Option: Shuttle ‘SHELS’ System
- Lower Cost
- Requires 2 Separate Launches
- Increased Ejection System Complexity
- Solar Blade Dropped
Pegasus or OSP Layout

Total Mass
(With Support Structure)
225 kg

3 Corner Sat. 3@18”D x 10”H
ION-F 3@18”D x 10”H
EMERALD 2@18”D x 16”H
Pathfinder 3@ 7” D x 2.5”H
Solar Blade 12”x12”x36”

36” height

OSP Payload Envelope
Shuttle Hitchhiker Experiment
Launch System (SHELS)
Shuttle Hitchhiker Experiment
Launch System Layout

- ASU
- UCB
- NMSU
- USU
- UW
- VT

42.5"

- Stanford
- Santa Clara
- ORION

42.5"

- 3^Sat
- USU
- BU

281 kg

- EMERALD
- ORION

288 kg
Conclusions

Multiple & Varied
Technology Demonstrations
Scientific Measurements

Significant Payoff for Minimal Funding

Follow-on Launches Likely

Industry/Government Partners
Encouraged to Participate
Space Test Program (STP)

RideShare Conference
16 Apr 99

Maj Michael Ward
SAF/AQSL
703-588-7376

Maj Ward SAF/AQSL DSN 425-7376 o/.../wardmj/briefs/rideshare.ppt
Space Test Program

Outline

Program Description

SERB Process

Recent Missions Flown
Space Test Program Description

- Provide spaceflight and on-orbit operations for highest priority DoD space experiments, based on rankings of annual DoD Space Experiments Review Board (SERB)
 - SECDEF letter (6 Nov 95) reaffirmed this STP mission
 - STP does not fund or provide the space experiments

- STP investment pays dividends in demonstrating new space technologies for military and commercial applications
 - STP demonstrated key technologies and flew prototype for the GPS constellation
 - STP demonstrated operational capabilities of advanced comm technologies (EHF spread spectrum, K band) used in Milstar, DSCS III, TDRSS

- To date, STP has flown 426 experiments on 135 missions since 1967. Of these, 113 missions have been successful (84% success rate.)
Space Test Program
SERB Process

1. Services rank and submit experiments to DoD SERB

NAVY

ARMY

BMDO

NRO

AF

DoD SERB

DoE

SAF/AQS

SMC/TEL

3. STP gets SERB list and funding from SAF/AQS

4. STP provides spaceflight

2. DoD SERB evaluates and ranks candidates
Held 13-15 Apr 99 @ ANSER facilities, Arlington, VA

43 candidates addressed the following technology areas:

- Communications
- Threat Warning
- Surveillance
- Microsatellites
- Subsystem Improvements
- Space Weather/Environmental Monitoring

See website at http://www.safaq.hq.af.mil/aqsl/spacetest

- Get a DoD sponsor, usually a lab or systems center
- Fill out 1721 paperwork (request for spaceflight)
- Meet Service-level SERB prior to DoD SERB
- Meet DoD SERB in Nov 00
Space Test Program
Recent Missions Flown

〈 STS-95 29 Oct 98 from KSC
 - NPS-901 (Mission S94-D) Petite Amateur Navy Satellite (PANSAT)
 - NRL-704 Be-7 Measurement in Low Earth Orbit (WAKEBE/TASBE)
 - PL-504 (Mission S96-4) 60 Kelvin Thermal Storage Unit (CRYOTSU)
 - ASPWS-701 Cell Culture Module (CCM)

〈 STS-88 4 Dec 98 from KSC
 - NRL-402 Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX)
 - PL-606 MightySat-1 (Mission P97-1)

〈 ARGOS freeflyer on Delta II (P91-1) 23 Feb 99 from VAFB
 - AL-601 Electric Propulsion Space Experiment (ESEX)
 - ECOM-501 Extreme Ultraviolet Imaging Photometer (EUVIP)
 - GL-806 Critical Ionization Velocity (CIV)
 - NRL-206 High Temperature Superconductivity Space Experiment (HTSSE II)
 - NRL-304 High Resolution Airglow/Aurora Spectrometer (HIRAAS)
 - NRL-505 Coherent Electromagnetic Radio Tomography (CERTO)
 - NRL-701 Global Imaging Monitor of the Ionosphere (GIMI)
 - NRL-801 Unconventional Stellar Aspect (USA)
 - ONR-502 Space Dust Experiment (SPADUS)
EELV Secondary Payload Adapter (ESPA)

Capt Scott A. Haskett
USAF Space Test Program
SMC/TELO
(505) 846-8570

Overview

- ESPA Motivation
 - Small Satellite (SmallSat) Uses
 - US SmallSat Launch Capabilities
- ESPA Program
 - Characteristics and Capabilities
 - Current Activities/Far-Term Plan
 - ESPA Customers
- Conclusion
Small Satellites (<200 kg)

- Space Experiments
 - Inexpensive Way to Demonstrate New Space Technology
 - Perform Space Experiments
 - Test Operational Prototype Hardware
- AFSPC Researching Operational Missions for Smallsats
 - Space-Based Radar, Space Support

US SmallSat Launch Capabilities

- US Medium/Heavy ELVs Have No Built-in Secondary Payload Capabilities
 - Secondary launches are "custom" missions
- Cheapest US Booster: OSP
 - Orbital/Suborbital Program (OSP) uses Minuteman II, Pegasus XL stages
 - Dual-Satellite launch on OSP costs ~$14M
- Least Expensive SmallSat Launch Today Costs $7M
EELV

- EELV Launchers Are Very Capable
 - At least 58% of manifested DoD EELV Medium Missions have >2000lbs margin
- EELV Has No Requirement for Secondary Payloads
- ESPA Uses EELV Margin to Launch up to Six SmallSats in Addition to the Primary Payload

ESPA Characteristics

- Cylindrical Structure, 24” tall
- Est. Empty Mass: 114 kg (250 lbs)
- Holds Six SmallSats + Primary Payload
 - SmallSats: 30-inch cube, up to 220 lbs
 - ESPA projected maximum: 910 kg (2000 lbs) “fully loaded”
- Design Allows Secondary Separation Before Primary Separation (if needed)
Primary spacecraft

Large secondary spacecraft

Small secondary spacecraft

Standard 62.01" interface

Secondary spacecraft support structure

Secondary spacecraft interface plate

Large secondary spacecraft adapter

Primary spacecraft
ESPA Impacts to Primary

- **Negative:**
 - Raises Primary Payload 24"
 - Reduces Usable Volume in Fairing
 - Raises CG
 - Effects can be Minimized by Optimizing Primary Payload Adapter

- **Neutral:**
 - Design Replicates EELV Standard Interface Plane to Primary
ESPA Impacts (continued)

- Neutral (continued):
 - Minimum Interaction between Primary and Secondaries
 - Shockless/Non-Pyro Separation Systems for Secondaries
- Positive:
 - Greater Payload Mass Reduces Vibration of Payload Stack
 - *Vibration Isolation (Soft Ride)*

Vibration Isolation

- Reduces Dynamic Response of Secondary Equipment by at Least a Factor of 2
 - Secondaries have separate isolation systems also
- Proven Technology
 - Taurus: GFO (~60% isolation)
 - Taurus: STEX (~85% isolation)
 - OSP Flight 1 (Scheduled September 99)
Isolation on GFO

ESPA Program Details

- Joint STP-AFRL/VSD Program
 - Estimated Non-Recurring Cost: $4.4M
- ESPA Special Study Initiated by EELV SPO April 99
- AFRL Will Build One Qualification Model, One Flight Model
 - PDR June 99, CDR June 00
- IOC FY02; Hoping for Launch in FY 03
 - DMSP, GPS, SBR
ESPA Flight I

- STP Budgeting for First Flight Integration Costs
 - Cost-sharing anticipated for any non-STP payloads
- Mission Guidelines
 - Secondary Manifest Managed by STP
 - Secondaries delivered on time or don't fly
 - Primary Drives Umbilical Connections
 - Secondaries "Dead" Until Release

Far-Term ESPA Plan

- STP Researching Cooperative Agreement with EELV Prime Contractors
 - Primes procure ESPA, making it optional on any DoD EELV Medium mission
 - ESPA available to commercial market
- Secondary Manifest Managed by Primary ESPA Customer (e.g. NASA, STP) or Third Party (e.g. USRA)
Estimated Recurring Costs

- ESPA Cost: $700,000 to $900,000
 - $600,000 for ESPA cylinder & primary isolation system
 - $50,000 per secondary isolation system
- Estimated Integration Costs: $1.0M
- ESPA Goal: Keep Cost per Satellite (fully-loaded ESPA) Less Than $500K
- Potential Customers Excited by Low-Cost Launch Prospects

ESPA Customers

- "Road Show" Briefing Given to Potential ESPA Customers
- AFSPC/NASA/NRO Partnership Council
 - General Myers, Mr. Goldin, Mr. Hall
- SMC
 - EELV SPO/Boeing/Lockheed-Martin
 - Action-Officers at GPS, DMSP, DSCS
 - Presentations Planned for PMs
- HQ AFSPC DR/DOY/XPX
ESPA Customers (cont.)

- Naval Research Lab
- NASA
 - Goddard SFC
 - Jet Propulsion Laboratory
 - Assistant Administrators, KSC (scheduled)
- Industry/Academia
 - University Space Research Association
 - Ball Aerospace
 - AIAA Conferences (scheduled)

Conclusion

- Small Satellites are Useful, But US Lacks SmallSat Launch Infrastructure
 - Hard to fulfill STP mission
 - Potential impact to future AFSPC missions
- ESPA Carries Up to Six SmallSats and Offers “Soft Ride” to Primary and Secondary Payloads
- Launch Cost Per Satellite Drops from $7M-$10M to $320k to $850k
NASA's Pucksat Payload Adapter

Presented At

EELV Secondary Payload Symposium

Aerospace Corporation

El Segundo, CA

March 31, 1999
Presentation Outline

- Pucksat Concept
- Pucksat Design and Payload Configurations
- Major Structural Interfaces
- User Accommodations
- Milestones
- Cost & Schedule
- Lessons Learned
- Points of Contact
- Conclusions

“Fabrication Drawings Exist for a Structure to Carry Small Payloads to Utilize L/V Excess Performance”
Pucksat Concept
Background

- Historically Delta II launches have had payload margins suitable for small satellites. For example, Landsat-7 has 1152 kg margin.

- Pucksat concept created to provide increased access to space by making efficient use of payload margins.

- Goal is to provide Delta II 2nd stage compatible standard structure capable of enabling variety of science missions with wide range of satellite configurations.

- Example missions and configurations are as follows:
 - Pucksat Dedicated Mission Configuration
 Entire spacecraft dedicated to a single experimenter.
 - Pucksat Instrument Carrier Configuration
 Spacecraft utilized by two or more experimenters.
 - Pucksat Multiple Payloads Carrier Configuration
 Spacecraft utilized to dispense multiple small payloads.
 - Multiple Pucksats Stacked Configuration
 Suitable for constellation mission.
Golden Directive

“Launch 12 Small Payloads per Year With an Increase Within 3 Years to 24 per Year”

Initially:

- 5 Code S Payloads
- 5 Code Y Payloads
- 2 Code U Payloads
Pucksat Design and P/L Configurations
Pucksat – Side View

1. DIMENSIONS SHOWN: INCHES (mm)

Notes: 1. Pucksat height is scaleable downward from 38.5in. (978mm) to customer established lower limit.
 2. Size of shown vertical panels is 30in. X 30in. (762mm x 762mm)
Pucksat – Plan View

1. DIMENSIONS SHOWN : INCHES (mm)

VERTICAL PANEL

EXAMPLE HORIZONTAL BULKHEAD
56.00 (1423) OD MAX
(USER SPECIFIED & DESIGNED)

3.80 (965)

EXAMPLE SOLAR ARRAY ASSEMBLY
(USER SPECIFIED & DESIGNED)

51.00 (1295)

Ø85 (Ø2185) 9.5ft PAYLOAD FAIRING ENVELOPE

68.00 (1727)

Ø108 (Ø2743) 10ft PAYLOAD FAIRING ENVELOPE

62.00 (1575)
Pucksat Assembly Drawing
Example Pucksat Payload Configurations

Pucksat as Stacked Constellation Mission

Pucksat as Hybrid Configuration

Pucksat as Multiple Payload Carrier

Pucksat as Dedicated Mission or Instrument Carrier
Major Structural Interfaces
Pucksat Upper and Lower Interfaces

- Upper I/F Ring bolt attachment same as Delta II 2nd stage Forward Ring 56.83" dia. circle (64 bolts).
- Simple stub adapter(s) can be provided to allow variety of different primary payload I/F attachments.
- Lower I/F Ring-Deployable mates to Delta 6306 PAF.
- Lower I/F Ring-Fixed bolt pattern also matches Delta II 2nd stage Forward Ring.
- Optional Lower I/F Ring-Fixed design readily derived from existing design to match EELV standard 62.01" dia. bolt circle (121 bolts).
- See next six charts.
Pucksat Upper I/F Ring Drawing
Pucksat Lower I/F Ring Drawing – Fixed
Pucksat Lower I/F Ring Drawing – Fixed (EELV)
User Accommodations
Pucksat Payload Capacity

- Empty Mass = 125 kg (275 lbm)
- Maximum Primary Payload = 5000 lbm with cg 60" above I/F
- Vertical Panels
 - 113 kg (250 lbm) maximum payload per panel
 - Payload not to exceed 351 kg (775 lbm) for all six panels combined
 - Exterior payload maximum size - 20" x 28" x 30" prism per panel
- Horizontal Bulkhead
 - 227 kg (500 lbm) maximum payload
 - Payload maximum size - 56 in. dia. x 30 in. height cylindrical prism
- Grand Total Maximum Payload Capacity = 578 kg (1275 lbm)
Usable Pucksat Envelope (per panel) - 38.5" Pucksat
Pucksat - Effect On Primary Payload Delta Launch Loads

![Graph showing the effect of primary payload on launch loads with varying frequencies](image-url)
Pucksat – Example Harness Requirements

Standard Parts (Green):
1. Pyros and harness for 6306 PAF
2. Brackets to primary P/L
3. One fairing bracket
4. One harness to fairing bracket

Additional Parts (Red):
5. Pyros to primary P/L
6. Upper pyro extension harness
7. Delta II pyro harness
8. Upper pyro extension brackets
9. Primary P/L to Delta harness
10. One fairing bracket
11. Three harnesses to fairing brackets

Pucksat Parts (Blue):
12. Upper harness pull-off brackets
13. Lower harness pull-off brackets
14. Pucksat wire harness
Milestones
Major Milestones

- Concept Study Presentation 02/06/97
- Customer Surveys Completed 08/06/97
- PDR 07/16/98
- CDR 10/01/98
- Fabrication Drawings Delivered 11/20/98
Cost & Schedule
Pucksat Cost

<table>
<thead>
<tr>
<th>Pucksat Budget (99$)*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pucksat Fabrication & Qualification Test Cost</td>
<td>Estimated Pucksat Spacecraft Flight Cost</td>
</tr>
<tr>
<td>Category</td>
<td>First Unit</td>
</tr>
<tr>
<td>Fabrication & Assembly</td>
<td>$470K</td>
</tr>
<tr>
<td>Qualification Test</td>
<td>$130K</td>
</tr>
<tr>
<td>24 in. PAF Procurement</td>
<td>$78K</td>
</tr>
<tr>
<td>17 in. PAF Procurement</td>
<td>$90K</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$768K</td>
</tr>
<tr>
<td>GSFC Manpower</td>
<td>$62K</td>
</tr>
<tr>
<td>Total</td>
<td>$830K</td>
</tr>
<tr>
<td>Grand Total (No Travel)</td>
<td>$6,040K (7 P/L's)</td>
</tr>
</tbody>
</table>

* 01/22/99 GSFC Full Cost Format
** 30% Discount For Purchase of 4 or More
Pucksat ATP to Flight Schedule

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Planning (Mgt. Eng.)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>E/O of Engineers</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Long Lead Items</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Planning</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Forging</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Adhesive</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Tooling</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Fabric & Interf.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Fabrication</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Single Machined</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Panel Bonding</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Panel Insertion</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Component Fixing</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Mechanical System</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Assembly</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Power Structure</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Testing</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Tape Properties</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Welded joints</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Subs</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Chassis Assembly</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Chassis Processing</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Dedicated Fix, Integration</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Fuselage Repair, Hinge, etc.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Mount Components</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Panel Mental Test</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Panel Thermal Test</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Panel Weather Test</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Panel Access Test</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Panel Electrical Test</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Panel in Fuselage integration</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Multiple Fix, Integration</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Panel Fix During, Hinge, etc.</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Mount Fix</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Pit & Channel Installation</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Panel in Fuselage integration</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Harness Integration</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Testing</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Delivery</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Final Inspection</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Packaging</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Launch Site Transportation</td>
<td></td>
</tr>
</tbody>
</table>

Note: The diagram shows the schedule for various tasks in the Pucksat ATP to Flight process.
Pucksat ATP to Flight Schedule
Lessons Learned
Lessons Learned

- Possibly no significant change in primary P/L structure loads.
- Avoid transmitting overly concentrated loads to L/V interface.
- Make early accommodation for wiring & ordnance from L/V.
- Make six side panels fully interchangeble.
- Make primary structure height scaleable.
- Design for maximum possible size primary P/L.
- Make maximum use of inside & outside usable volumes.
- Provide both deployable and non-deployable configurations.
Lessons Learned

(cont’d)

• Create IPT to thoroughly understand users needs ASAP.
• Start early to mitigate customer concerns & develop users.
• Give users options that can be readily incorporated.
• Give users large degree of P/L configuration flexibility.
• Build flight mass simulators for all P/L’s to mitigate launch schedule risk.
Points of Contact
Pucksat Points of Contact

Programmatic

NASA/Goddard Space Flight Center
Bruce Milam
Code 470
Greenbelt, MD 20771
Phone: 301-286-0429
e-mail: bruce.milam@gsfc.nasa.gov

Technical

Swales Aerospace
Joseph Young
5050 Powder Mill Road
Beltsville, MD 20705
Phone: 301-902-4162
e-mail: pyoung@swales.com

Swales Aerospace
Matt Krebs
5050 Powder Mill Road
Beltsville, MD 20705
Phone: 301-902-4539
e-mail: mkrebs@swales.com
Conclusions
In Conclusion

- Pucksat is a low cost, mass efficient way to avoid performance waste on the Delta II.
- Pucksat fabrication drawings are completed and ready for production.
- Upper I/F stub adapter(s) can be provided to accommodate variety of primary payload attachments.
- Pucksat Lower I/F Ring readily modified to match EELV standard interface.
- Pucksat can be flown for a total recurring cost of approximately $5.7 M and be ready for payload installation 50 weeks ATP and ready for Delta II integration approximately 79 weeks ATP.

"Currently looking for a flight opportunity"
Military Spaceplane Overview for NRO Shareride Conference

Lt Col Ken Verderame
Air Force Research Laboratory
16 April 1999
What Is a Military Spaceplane?

- **Reusable System**
 - Timely and Routine Delivery of Mission Assets To, Through and From Space
 - Multi-Mission Capable With Interchangeable Payloads
 - Rapid Turn Time

Ops Demonstrator Availability (5-10 yrs)

- Space Control
 - Recce, protection
- Force Enhancement
 - Recce
- Space Support
 - Spacelift <4Klbs

Orbit Capable MSP Availability (10-20 yrs)

- Much Greater Payload
- More Capability
- Extended On-Orbit Maneuvering

Technology
Military Spaceplane (MSP) System Architecture

Reusable First Stage

NASA - Lead
- NASA Cooperative Technologies based on Performance needs
- AF Concentrate on Ops Technologies

Military Spaceplane (MSP)

Payloads Second Stage

AF - Lead
Integrated Technology Needed

Space Maneuver Vehicle (SMV)
Reusable Satellite Bus/Upper Stage

Modular Insertion Stage (MIS)
Low Cost Expendable Upper Stage

All S&T Technology Supports TSTO MSP
TSTO Military Spaceplane

Characteristics

- Length: ~60ft
- Glow: ~300-600Klbs
- Dry Weight: ~40-80Klbs
 (configuration dependent)
- Payload: 12Klbs
- Max Speed: Mach 15-18
- Orbit Access: Suborbital
Space Maneuver Vehicle
(Fully Reusable Satellite Bus/Upper Stage)

Characteristics

- Length: 20-25ft
- Loaded Weight: 11-12,000lbs
- Dry Weight: 25-3000lbs
- Payload: 1200lbs
- Payload Bay: 4ft x 7ft
- ΔV Ideal: 10,500-12,000fps

Boeing Concept Lockheed-Martin Concept Orbital Sciences Concept
Space Maneuver Vehicle
(Fully Reusable Satellite Bus/Upper Stage)

Characteristics

- Length: 20-25ft
- Loaded Weight: 10-12,000lbs
- Dry Weight: 25-3000lbs
- Payload: 1200lbs
- Payload Bay: 4ft x 7ft
- ΔV Ideal: 10-12000fps

Missions

- Sensor/Payload Test
- Reconnaissance
- Surveillance/Inspection
- Space Object ID
- Electronic Warfare

Employment

- Pop-Up
- LEO Co-orbit Capability
- Fly-By of Higher Altitude Satellites
- Constellation Building
- Gap Filler

Features

- On Demand Launch
- Recallable/Recoverable
- Short Notice Tasking
- Landing Gear for Runway Recovery
- Up to 12 Months on Orbit
Standardized Payload Container Offers Many Configuration Options to Users

- Standard Flat Panels
- Remote Manipulator Arm
- Standard Payload Container
- Shipping container
- Standardized payload container incorporating vehicle interfaces
 - Electrical
 - Mechanical
 - Fluid

- Contamination control during transit and storage
- Reduced integration and checkout time
- Reduced turn time for payload swapout
AF/NASA "X-40B" Program

- NASA Research Announcement 8-22
 - ~$100M for Pathfinder and experiments
 - $20M congressional add for AF related activities
- AF Participated in Source Selection
- Boeing Advanced Technology Vehicle (ATV) Chosen
 - Very similar to AF Space Maneuver Vehicle (SMV)
 - Cooperative program between NASA and Boeing
- AF is Providing $16.1M S&T Funds to Make ATV More Like SMV
 - Solar array and power system for longer on-orbit time
 - Sensors and algorithms for rendezvous / proximity ops
 - Improved attitude / pointing system
 - Improved reentry maneuvering potential

<table>
<thead>
<tr>
<th>ATV</th>
<th>SMV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Weight</td>
<td>4200 lbs</td>
</tr>
<tr>
<td>Payload</td>
<td>600 lbs</td>
</tr>
<tr>
<td>Velocity Change</td>
<td>7,200 ft/sec</td>
</tr>
<tr>
<td>On-Orbit Duration</td>
<td><12 hr</td>
</tr>
<tr>
<td>Design</td>
<td>modular</td>
</tr>
<tr>
<td>Engine</td>
<td>low performance</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>98/99 Congressional Add Spend Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5.0M Future-X ATV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2.5M Propulsion for SMV/Upper Stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2.5M B-52 Releases of X-40A SMV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| AF S&T Investment in Future-X /ATV |
| 99 | 00 | 01 | 02 |
| $5.0M | $5.0M | $5.1M | $1M |

* Will Improve With AF Investment
X-40B NBL Project

• Project Go-Ahead from Mr. Abbey Jun ‘98
• Funding Secured, project Kick-off Oct ‘99
• Objectives
 – Understand issues affecting vehicle design for planned shuttle mission
 – X-40B CDR: Jul ‘99
 – Need to incorporate into vehicle design prior to CDR
• Notional Shuttle Mission Outline
 – Conduct AF and NASA missions with X-40B during shuttle mission
 – Perform payload swap-out of X-40A via EVA
 – Perform re-fuel demonstration in between AF and NASA missions
X-40B NBL Project (cont.)

- NBL Project to Look at Shuttle Integration / Crew Ops Issues Associated With This Type of Mission
- Specific NBL Objectives
 - Conduct payload swap-out of 1000-1200 lb 4’x4’x’7 containerized payloads
 - Conduct refueling demonstration
 - No contingency EVA objectives
- Schedule to be in the Water 10-12 May ‘99
 - Day 1: Install mockup in pool
 Scuba runs to check scenarios
 - Day 2: Run 1 MOD EVA/CB suited run to verify scenarios
 Run 2 CB Ops run/eval
 - Day 3: Run 2 CB Ops run/eval
 Run 2 CB Ops run/eval
MSP Technology/System
Notional Development Schedule

Phase I
Technology

Phase II
Demo Payloads
Go no Go

Phase III
Ops Demonstrator
Option

Phase IV
Ops Demos

Enhancing Technology

TSTO Production

Orbital MSP Option

S&T
R&D
NASA
<table>
<thead>
<tr>
<th></th>
<th>X-33</th>
<th>X-34</th>
<th>X-38 (X-CRV)</th>
<th>X-37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission:</td>
<td>SSTO Technology</td>
<td>Suborbital Air Launch Technology</td>
<td>Space Station Crew Return (ESA Lift Variant)</td>
<td>Next Generation Space Transportation Technology</td>
</tr>
<tr>
<td>Funding</td>
<td>$980M</td>
<td>$60M</td>
<td>$80M + $600M</td>
<td>Cooperative Agreement NASA $70M, AF $16M, Boeing $75M</td>
</tr>
<tr>
<td>Flight Regime</td>
<td>~Mach 13</td>
<td>~Mach 8</td>
<td>On-Orbit & Reentry</td>
<td>On-Orbit & Reentry</td>
</tr>
<tr>
<td>1st Flight:</td>
<td>March 2000</td>
<td>1999</td>
<td>2001</td>
<td>2002</td>
</tr>
<tr>
<td>Technologies:</td>
<td>Airframe, LOX/LH₂ Propulsion, etc.</td>
<td>Operations, LOX/RP Propulsion, etc.</td>
<td>Crew interface, Human factors, etc.</td>
<td>Operations, Payload, H₂O₂ / RP Propulsion etc.</td>
</tr>
<tr>
<td>Potential AF Benefits</td>
<td>Technology for Military Spaceplane</td>
<td>Operations for Military Spaceplane</td>
<td>Help Identify Crew Roles & Responsibilities, Recoverable Upper Stage Technology</td>
<td>Potential to Address Space Maneuver Vehicle Technologies & Ops</td>
</tr>
</tbody>
</table>
Low Cost / Low Risk Demonstrator Is Affordable Alternative To Large Orbital System

Boeing & Lockheed-Martin Concepts
Space Surveillance

- Space Object Identification
 - Multiple sensor capability
 - Co-orbit
 - Optimized fly-by (lighting, angles, position, etc.)
Where Are We?

- Requirements Documentation Proceeding
- Developing Acquisition Strategy
 - Leveraging NASA Technology
 - Phased Approach
 - Building AF Demonstrator Technology Roadmap
- Focus 1st on Demonstrator
 - Low risk TSTO “Pop-Up” Approach
 - Potential for Cooperation with NASA
- Pace, Cost & Direction of MSP Program Depends on
 - Degree of NASA & AF cooperation
 - AF decisions (via FY00 POM) on funding & priorities
 - Validation of AFSPC requirements
Coleman Aerospace conducts research and development and provides products and launch services associated with missile and space vehicle systems.
LEOLINK FAMILY OF VEHICLES
LEO LINK VEHICLES ACCOMMODATE PAYLOADS UP TO 1500 KG
PAYLOAD ENVELOPES

LK-2

LK-1

5400

2500

3350

1350
LEOLINK TEAM

- Coleman Aerospace Company
- Israeli Aircraft Industries
- Matra Marconi Space
STATUS

- LK-0 is approved by NASA for use under the SELVS II contract

- LK-1 booster has been ground tested, and is scheduled for flight test in 2001

- LK-2 is conceptual
ORBITAL/SUB-ORBITAL PROGRAM

SMC/TEB

Major Steve Buckley
Overview

» OSP
» Objectives
» The Concept
» The Program
» OSP SLV Description
» Hybrid Description
» Complex Sub-orbital Description
» Simple Sub-orbital Description
» Launch Support Concept
Launch Test Program Objectives

- Use Excess ICBM Assets and Proven Launch Vehicles to:

 » Provide Cost-Effective, Highly Reliable Launch Services for Orbital and Ballistic Launch Missions
 - Total Cost < $12 Million (Goal)
 - Launch Reliability > 95%

 » Support Wide Range of Payloads and Orbits

 » Provide Quick Turn “One-Stop” Launch Service Support
 - Booster Selection, Payload Integration, Launch, and Data Reduction Services
Concept

Low Risk
Adapt Proven Designs To Achieve Launch Requirements

Low Cost
Use Pegasus, Taurus & Minuteman Experience to Minimize Development

OSP Designs

Ballistic Designs
Orbital / Sub-Orbital Program

- Program Elements
 - Orbital
 - Large Payload
 - Hybrid
 - Sub Orbital
 - Complex Payload
 - Single RV
The Orbital Program Element

- The OSP SLV for orbiting small satellites
The OSP Small Launch Vehicle
Typical Orbital Flight Profile

- Large Payload Mission Scenario

<table>
<thead>
<tr>
<th>EVENT</th>
<th>TIME</th>
<th>ALTITUDE</th>
<th>RANGE</th>
<th>VELOCITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Stage 1 Ignition</td>
<td>0.00</td>
<td>0.00 nm</td>
<td>0.00 nm</td>
<td>0 ft/sec</td>
</tr>
<tr>
<td>2 Begin Pitch Down</td>
<td>2.50</td>
<td>0.01 nm</td>
<td>0.00 nm</td>
<td>102 ft/sec</td>
</tr>
<tr>
<td>3 Begin Load Relief</td>
<td>20.00</td>
<td>1.53 nm</td>
<td>0.60 nm</td>
<td>1,123 ft/sec</td>
</tr>
<tr>
<td>4 Stage 1 Separation/Stage 2 Ignition</td>
<td>90.82</td>
<td>18.20 nm</td>
<td>14.12 nm</td>
<td>4,862 ft/sec</td>
</tr>
<tr>
<td>5 Stage 2 Skirt Separation</td>
<td>82.90</td>
<td>28.55 nm</td>
<td>29.44 nm</td>
<td>6,155 ft/sec</td>
</tr>
<tr>
<td>6 Payload Fairing Separation</td>
<td>121.10</td>
<td>56.86 nm</td>
<td>70.65 nm</td>
<td>9,448 ft/sec</td>
</tr>
<tr>
<td>7 Stage 2 Separation/Stage 3 Ignition</td>
<td>123.67</td>
<td>57.19 nm</td>
<td>76.96 nm</td>
<td>9,732 ft/sec</td>
</tr>
<tr>
<td>8 Stage 3 Burnout</td>
<td>197.40</td>
<td>121.72 nm</td>
<td>225.88 nm</td>
<td>19,574 ft/sec</td>
</tr>
<tr>
<td>9 Stage 3 Separation</td>
<td>662.86</td>
<td>399.42 nm</td>
<td>1,453.00 nm</td>
<td>17,016 ft/sec</td>
</tr>
<tr>
<td>10 Stage 4 Ignition</td>
<td>672.90</td>
<td>399.91 nm</td>
<td>1,476.12 nm</td>
<td>17,011 ft/sec</td>
</tr>
<tr>
<td>11 Stage 4 Burnout</td>
<td>741.20</td>
<td>400.34 nm</td>
<td>1,695.05 nm</td>
<td>24,851 ft/sec</td>
</tr>
<tr>
<td>12 Payload Separation (Mission Dependent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OSP Large Payload Capabilities

- Orbits
 - Minimum Performance Sun Synchronous 400 nm
 - 750 Pounds Mass

- Insertion
 - Pointing Accuracy 4.0 Degrees
 - Altitude +/- 50 nm
 - Inclination +/- 0.2 Degrees

- Maneuvering and Command Capabilities to Deploy Multiple Payloads
Orbital Enhanced
Capability Options (1 of 3)

- Increased Payload Volume (50" Dia, 60" Length)
 » Fairing Outside Diameter 54" - 50" Interface Ring

- Payload Separation System
 » Pegasus System - 38" Separation System Baseline - Others Optional

- Enhanced Insertion Accuracy +/- 10nm +/- 0.1°
 » Use Pegasus Hydrazine Auxiliary Propulsion System to Circularize Orbit

- Conditioned Air
 » Taurus-Proven System with Fly-Away Ducts

- Nitrogen Purge
 » Pegasus Shroud Standard Feature
Orbital Enhanced Capability Options (2 of 3)

- **Payload Access Panel**
 - Accommodated by Pegasus Fairing with Drawing/ICD Change

- **Navigation Data**
 - Orbital-Developed GPS Position Beacon (GPB) Flown on MTD-2

- **Enhanced Telemetry (2Mbps)**
 - Baseline Encoder Accommodates UP to 10 Mbps - 10^{-6} BER at 2100 nm Slant Range

- **Enhanced Contamination Control**
 - HEPA Filter Added to Payload Air Condition System
Orbital Enhanced
Capability Options (3 of 3)

- Softride for Small Satellites (SRSS)
 » Passive isolation system designed by AFRL through SBIR contract with CSA Engineering
 - Entire system weighs no more than 25 pounds
 - Replaces bolts that attach space vehicle to launch vehicle
 - Can be used above or below separation system
 » Approximate cost - $200K if baselined for OSP
Soft Ride for Satellites

POC: Dr. Dino Sciulli (505) 846-8256, Mr. Eugene Fosness (505) 846-7883

Taurus - $150K, OSP - $200K
Athena II - $160K
Phase III Task Order Contract in Place for RapidStudy, Design, and Manufacture

![Graphs of Shock Response and Acceleration for Taurus/STEX and Taurus/GFO](image)
Typical Program Costs

- Typical Costs
 - Vehicle $9,500,000 - Includes Msn Success Payment
 - SE/TA $750,000 - $600K to $1,000K
 - Range $750,000 - $600K to $1,000K
 - Payload Int $250,000 - $250K to $500K Based On Options
 - Booster Refurb $500,000
 - Shipping $250,000 - $50K to $250K
 - Program Mgmt $500,000
 - TOTAL $12,500,000
The Hybrid Program Element

- Flight test opportunity for developmental upper stages
Hybrid Launch Mission H-1
NASA’s Upper Stage Flight Experiment

- Minuteman / NASA Liquid Upper Stage Hybrid 1
 - Purpose - Flight Test of Advanced Liquid Upper Stages
 - Uses M55 Minuteman Stage 1/2 and LUS

- Conduct Flight Test
Hybrid Launch Mission H-2 & H-3

- Minuteman / NASA Liquid Upper Stage Hybrid 2 & 3
 » Purpose - Demonstrate Capability to Perform Flight Testing of Advanced Liquid Upper Stages
 » Uses M55 Minuteman Stage One and SR19 Stage 2 with LUS
 » The Liquid Upper Stages will be Different Configurations

- Details of Liquid Upper Stages will be Included in MRD

NO MISSION PLANNED YET
The Complex Sub-orbital Program Element

- Support sub-orbital missions that require an aerodynamic fairing
Sub-Orbital Complex Payload

- Minuteman II 3 Stage Booster
 » Deliver Multiple Payloads on ICBM Trajectories

<table>
<thead>
<tr>
<th>Event</th>
<th>Altitude (m)</th>
<th>Range (nm)</th>
<th>Velocity (ft/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Stage 1 Ignition</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 Begin Pitch Down</td>
<td>0.02</td>
<td>0</td>
<td>113.4</td>
</tr>
<tr>
<td>3 Max-Q</td>
<td>5.72</td>
<td>3.83</td>
<td>2,763.4</td>
</tr>
<tr>
<td>4 Stage 1 Separation/Stage 2 Ignition</td>
<td>50.37</td>
<td>17.76</td>
<td>6,220.3</td>
</tr>
<tr>
<td>5 Stage 2 Skirt Separation</td>
<td>37.19</td>
<td>36.55</td>
<td>8,091.4</td>
</tr>
<tr>
<td>6 Shroud Separation</td>
<td>54.47</td>
<td>59.17</td>
<td>10,466.5</td>
</tr>
<tr>
<td>7 Stage 2 Separation/Stage 3 Ignition</td>
<td>82.92</td>
<td>96.93</td>
<td>14,395.7</td>
</tr>
<tr>
<td>8 Stage 3 Skirt Separation</td>
<td>64.29</td>
<td>100.92</td>
<td>14,149.1</td>
</tr>
<tr>
<td>9 Stage 3 Thrust Termination</td>
<td>165.52</td>
<td>224.98</td>
<td>21,222.0</td>
</tr>
<tr>
<td>10 Stage 3 Separation</td>
<td>218.60</td>
<td>326.49</td>
<td>20,630.0</td>
</tr>
<tr>
<td>11 Post Boost Maneuvers/Payload Deploy</td>
<td>254.02</td>
<td>413.87</td>
<td>20,292.5</td>
</tr>
<tr>
<td>12 Target Aimpoint</td>
<td>107.99</td>
<td>3934.43</td>
<td>21,757.7</td>
</tr>
<tr>
<td>13 Ground Impact</td>
<td>0</td>
<td>4566.13</td>
<td>22,877.8</td>
</tr>
</tbody>
</table>
Complex Payload Capabilities

- Vandenberg LF 06 Launch to Kawajalein Atoll.
 - Re-entry Angle 20 to 40 Degrees
 - Multiple Payloads Possible
Complex Payload Capabilities

- **Payload Envelope**
 - Up To 8 Canisterized Payloads 5.7” x 25”
 - GFP to OSP Contractor

- **Mass Properties**
 - RV 500 Pounds Mass
 - Rigid Targets 40 Pounds Mass
 - Canisterized Targets 60 Pounds Mass
 - Non-Deployed Hardware
 - Total Payload Weight Range
 - 300 lbm to 1100 lbm

Initial Measurements

- 6 Inches
- 66 Inches
- 30 Inches
- 28.5 Inches
The Simple Sub-orbital Program Element

- Support sub-orbital missions that do not require an aerodynamic fairing
Sub-Orbital Single RV Payload

- Minuteman II Stage 1&2, Minuteman III Stage 3
 » Deliver Single Payload in Mark 11 Aeroshell

<table>
<thead>
<tr>
<th>Event</th>
<th>Altitude (mi)</th>
<th>Range (mi)</th>
<th>Velocity (ft/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Begin Pitch Down</td>
<td>0.03</td>
<td>0</td>
<td>127.0</td>
</tr>
<tr>
<td>Max-Q</td>
<td>6.35</td>
<td>6.93</td>
<td>3,398.0</td>
</tr>
<tr>
<td>Stage 1 Separation</td>
<td>14.85</td>
<td>21.96</td>
<td>5,851.4</td>
</tr>
<tr>
<td>Stage 2 Ignition</td>
<td>22.79</td>
<td>39.41</td>
<td>7,164.3</td>
</tr>
<tr>
<td>Stage 3 Separation</td>
<td>49.54</td>
<td>110.75</td>
<td>12,190.7</td>
</tr>
<tr>
<td>Stage 3 Ignition</td>
<td>49.22</td>
<td>112.83</td>
<td>12,349.6</td>
</tr>
<tr>
<td>Stage 3 Thrust Termination</td>
<td>92.66</td>
<td>284.19</td>
<td>23,547.4</td>
</tr>
<tr>
<td>Payload Separation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV Separation</td>
<td>92.66</td>
<td>284.19</td>
<td>23,547.4</td>
</tr>
<tr>
<td>Ground Impact</td>
<td>4,761.81</td>
<td>48,084.5</td>
<td></td>
</tr>
</tbody>
</table>
Launch Support Concept

Launch Support Van
Launch Equipment Van
Range Control
Launch Stool
Launch Support Concept

- Launches will be performed from Combination Launch Stool and Umbilical Tower
- Portable Launch Support Van (LSV) and Launch Equipment Van (LEV) Will Contain Launch Support Equipment and Range Interface Electronics
Existing OSD Direction

- OSD Memo dated 28 May 1996
 » Granted conversion of 5 MM IIs into SLVs
 » Requested report on booster conversion and JAWSAT launch to
 “ensure cost-effective use of government assets without inhibiting
 the growth and development of the U.S. commercial launch
 industry.”

- OSP contract was put in place
 » Fixed price contract
 – Removed uncertainty about cost effectiveness issue
 » Demonstration launch (FalconSat) then pure launch service
 » 18 month period of performance
 » 5-year contract life
Spaceport Contracted Agencies

- Alaska Aerospace Development Corporation (AADC)
- Spaceport Florida Authority (SFA)
- Spaceport System International (SSI)
- Virginia Commercial Space Flight Authority / Center for Commercial Space Infrastructure (VCSSA/CCSI)
Space Launch Program

- Space Launch Program Has Five Components

 » Launch Vehicle - Initial Launch Capability 3rd Quarter 1999
 » Spaceport - Contract In Place
 » Soft Ride for Small Satellite - Design Completed
 » Booster Refurbishment - Schedule Varies by Project
 » Transporter/Erector
Cost / Funding Procedures

- Customer Prepares MRD in Conjunction with SMC/TE Functional Lead
 » Services Provided as Required from “Menu”

- Typical Events
 » Customer Develops Requirement
 » SMC/TE OSP Conducts Feasibility Studies
 » Defines Funding Requirements and Schedule
 » Funds Transferred to SMC/TEB
 » Mission Manifested
 » Delivery Order Let
 » Develop Master Mission Schedule & Spend Plan
 » Execute Launch Services
Questions?

- Maj Tony Rivera—Ballistic Launch
 (505) 846-5346

- Maj George Stoller—Orbital Launch Support
 (505) 846-5952
Rideshare Conference
April 15-16, 1999
NASA Headquarters
Kennedy Space Center
Organization
and
Small Spacecraft Launch Services
Albert Sierra
Darren Beddel
Agenda

NASA ELV Program

NASA Headquarters ELV Requirements Products and Services

KSC Organization Overview

Mission Integration Team (MIT) Philosophy/Roles

Existing Dual Ride and Secondary Payload Options

Previously Flown Secondary Payloads

Potential Missions for Dual or Secondary Payloads

Key Contacts

Secondary Payload Contact List
KSC ELV Program Objectives

- NASA's Lead Center for the Acquisition and Management of Expendable Launch Vehicle Services
 - NASA's ELV Program was previously distributed across multiple NASA Centers by vehicle class and program function.
 - October, 1997 - NASA authorized the establishment of the Lead Center for the Acquisition and Management of the Expendable Launch Vehicle Launch Services at KSC
 - KSC has established an organization to fulfill this responsibility
- Provide safe, reliable, cost-effective ELV Launches
- Maximize Customer Satisfaction
- Perform Advanced Payload Processing Capability Development
• CSLA AGREEMENT WITH INDUSTRY
• DEVELOP/UPDATE NASA POLICY DIRECTIVES (NPD) ON ELV MANAGEMENT
• DEVELOP/COORDINATE INTERNATIONAL MOA'S RE: SECONDARY PAYLOADS (I)
• REVIEW AND SEEK INDEMNIFICATION AUTHORITY (G)
• COORDINATE/REVISE ELV ACQUISITION GUIDELINES (H)
• SUPPORT REVIEW/COMMENT ON PROPOSED LEGISLATION (G)
• REVIEW AND REVISE ELV MANPOWER LEVELS / SKILLS MIX
• LEVEL OF TECHNICAL INSIGHT AND OVERSIGHT EMPLOYED
• ALTERNATIVE WAYS OF DOING BUSINESS
• ADMINISTRATOR
• DEPUTY ADMINISTRATOR (TECHNICAL)
• COMPTROLLER
• ASSOCIATE ADMINISTRATORS AND DEPUTIES (codes S / Y / R / M / H / I)
• GENERAL COUNCIL
• OSS FLIGHT PROJECTS DIRECTOR
• OMTPE FLIGHT PROJECTS DIRECTOR
• OMTPE NOAA PROGRAM MANAGER
• OSF SPACE STATIONMANAGER
• PAYLOAD PROGRAM MANAGERS
• CENTER DIRECTOR
ELV REQUIREMENTS
EXTERNAL CONTACTS

- ASSISTANT SECRETARY OF AIR FORCE (ACQUISITIONS)
- ASSISTANT SECRETARY OF AIR FORCE (SPACE POLICY & PLANS)
- DOD SS&T DIRECTOR
- DIRECTOR OCST
- BASE COMMANDERS (45TH & 30TH)
- OSTP SCIENCE & TECHNOLOGY
- OMB NASA BUDGET EXAMINERS
- CONGRESSIONAL STAFF (HOUSE / SENATE)
- ELV INDUSTRY (VICE PRESIDENT AND SENIOR MANAGER LEVEL)
- SPACECRAFT INDUSTRY (VICE PRESIDENT AND SENIOR MANAGER LEVEL)
- INTERNATIONAL ELV D.C. REPS (NASDA / ARIANE)
- AIAA DIRECTOR
- IAA SMALL SPACECRAFT TECHNOLOGY COMMITTEE
- SENIOR INTERNATIONAL AGENCY PERSONNEL
ELV REQUIREMENTS
INTERNAL PRODUCTS AND SERVICES

• PROVIDE POLICY FOR OBTAINING OFFICE OF SPACE FLIGHT
 PROVIDED/ARRANGED SPACETRANSPORTATION SERVICES FOR NASA AND NASA-
 RELATED PAYLOADS

• PROVIDE POLICY AND DIRECTION TO THE ELV PROGRAM OFFICE AT KSC
 – LAUNCH SERVICES RISK MITIGATION POLICY FOR NASA-OWNED /SPONSORED PAYLOADS
 – TECHNICAL INSIGHT/OVERSIGHT OF ELV LAUNCH SERVICES TO ASSURE MISSION
 SUCCESS
 – EXPENDABLE LAUNCH VEHICLE (ELV) LAUNCH SERVICES PRELAUNCH REVIEWS

• IDENTIFY, AGGREGATE LAUNCH REQUIREMENTS
 – DEVELOP ACQUISITION STRATEGIES TO MEET REQUIREMENTS
 – IDENTIFY / INITIATE NEW SERVICES
 – ANTICIPATE / RESOLVE LAUNCH CONFLICTS
 – NEGOTIATE / ARRANGE REQUISITE FACILITIES

• CHAIR ELV FLIGHT PLANNING BOARD
 – BASELINE, MISSION LAUNCH PLANNING (VEHICLE / DATE)
 – IDENTIFY / RESOLVE LAUNCH CONFLICTS
DOD - PENTAGON

- MOA's for launch services support
- Annual ELV requirements letter
- Request / negotiate use of DOD facilities / resources
- Identify and resolve launch conflicts
- Negotiate costs for USAF services
- Review DOD contracts and RFP's
- Coordinate procurements / negotiate MOA
- Serve as NASA rep on STP payload review board
- Serve as NASA rep on DODO launch infrastructure board
- Identify and coordinate consistent NASA/DOD policy for commercial access to excess facilities / services
- Participate in GAO reviews of services provided by NASA
ELV REQUIREMENTS
FOREIGN LAUNCH VEHICLE POLICY

- NATIONAL SPACE TRANSPORTATION POLICY REQUIRES ALL US GOVERNMENT PAYLOADS BE LAUNCHED ON VEHICLES MANUFACTURED IN US
 - UNLESS EXCEPTION BY PRESIDENT
 - OR INTERNATIONAL COOPERATIVES WHERE LAUNCH ON NO-FUNDS EXCHANGED BASIS WITH FOREIGN PARTNER

- OSTP IS RESPONSIBLE FOR FACILITATING INTERAGENCY REVIEW OF ANY EXCEPTIONS

- INTERAGENCY AGREEMENT THAT POLICY NEEDS REVIEW

- NASA IS CONDUCTING AN INTERNAL REVIEW OF THE POLICY

- NASA SEEKS TO REFINE DEFINITION OF PAYLOAD TO EXCLUDE INSTRUMENTS OF TBD $$$
ELV REQUIREMENTS
EXTERNAL PRODUCTS AND SERVICES

CONGRESS
• PREPARE / SUPPORT ADMINISTRATOR MEETINGS WITH MEMBERS
• BRIEF STAFFERS ON ELV PROGRAM / RESPOND TO INQUIRES
• RESPOND TO CONSTITUENT CONCERNS
• COMMENT / REVIEW DRAFT LEGISLATION
• DEVELOP CONGRESSIONAL REPORTS

ELV INDUSTRY
• MANIFEST CONFLICT RESOLUTION
• NEGOTIATE / COORDINATE CSLA AGREEMENTS FOR HQ SIGNATURE
• RESPOND TO CUSTOMER SURVEYS
• STATUS ON EXTERNAL ENVIRONMENTS AFFECTING ELVS
• NEW SERVICES TO MEET NEW DEMANDS

INTERNATIONAL
• FACILITATE UNDERSTANDING OF US ELV CAPABILITY
• FACILITATE UNDERSTANDING OF COOPERATIVE PROCESS WHERE ELV LAUNCH SERVICE IS PROVIDED
OMB
• PRESENT NASA INTEGRATED ELV BUDGET
• RESPOND TO INQUIRIES ON ELV COSTS

DOT
• DEVELOP / NEGOTIATE MOA (UELV LICENSE)
• AGENCY FOCAL POINT FOR DOT LIASON ON ELVS
• COORDINATE AGENCY REVIEW OF DOT COMMERCIAL LICENSES / REPORTS / INSURANCE ASSESSMENTS / REGULATIONS
• PARTICIPATE ON COMSTAC WORKING GROUPS

DOE
• SUPPORT INTERAGENCY NUCLEAR SAFETY REVIEW PANEL

OSTP
• SERVE AS NASA ELV REP ON WORKING GROUPS FOR NATIONAL SPACE POLICY
• PROVIDE STATUS ON ELV PROGRAMS AND PROCUREMENTS
ELV REQUIREMENTS
HOW TO GET A NASA LAUNCH SERVICE

• SCIENCE ENTERPRISE AO
 - PROPOSALS TO MEET SCIENTIFIC OBJECTIVES OF THE AGENCY
 - AO PROVIDES GUIDELINES FOR SPACECRAFT AND LAUNCH VEHICLE

• THE PROPOSAL(S) SELECTION ON SCIENTIFIC MERIT

• SCIENCE ENTERPRISE BRINGS THE NEW REQUIREMENT TO THE FLIGHT PLANNING BOARD

• THE NEW REQUIREMENT IS APPROVED BY THE BOARD
 - LAUNCH DATE
 - LAUNCH VEHICLE(S)
 - CO-MANIFEST?
 - LAUNCH SERVICE CONTRACT IN PLACE?

• DIRECTION TO KSC TO PROCURE THE LAUNCH SERVICE

• KSC ACQUIRES AND MANAGES THE LAUNCH SERVICE
ELV REQUIREMENTS
HOW TO GET A NASA LAUNCH SERVICE FOR A SECONDARY SPACECRAFT
EXPENDABLE LAUNCH VEHICLES

- MISSION FROM SCIENTIFIC OR EDUCATIONAL ORG (US OR INTERNATIONAL COOPERATIVE)
- CONTACT THE KSC ELV PROGRAM OFFICE
- FILL OUT SECONDARY PAYLOAD QUESTIONNAIRE (USERS GUIDE)
- KSC TO DETERMINE WHAT NASA MISSIONS HAVE EXCESS MARGIN
 - (OR USAF GPS MISSIONS)
- SPACECRAFT AND ORBIT COMPATIBLE
- FIND AN ENTERPRISE SPONSOR:
 - SPACE FLIGHT
 - AERO-SPACE TECHNOLOGY
 - EARTH SCIENCE
 - SPACE SCIENCE
- APPROVED AT THE FLIGHT PLANNING BOARD
NASA ELV LONG RANGE PLANNING
POTENTIAL MISSION (CY 2006 - 2015)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW-COST BOOSTER</td>
<td></td>
</tr>
<tr>
<td>UNESS</td>
<td></td>
<td>(one every year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNEX</td>
<td>(start '03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMALL CLASS</td>
<td></td>
</tr>
<tr>
<td>SMEX</td>
<td>(one every year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMP/EQ</td>
<td>(one every odd year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESSP</td>
<td></td>
<td>ESSP</td>
<td>ESSP</td>
<td>ESSP</td>
<td>ESSP</td>
<td>ESSP</td>
<td>ESSP</td>
<td>ESSP</td>
<td>ESSP</td>
<td>ESSP</td>
</tr>
<tr>
<td>MEDIUM LITE CLASS</td>
<td></td>
</tr>
<tr>
<td>ESSP</td>
<td></td>
<td>ESSP</td>
<td>ESSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT-L2</td>
<td></td>
<td></td>
<td>ALT-R3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDEX</td>
<td>(one every year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EOS</td>
<td>(one every year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISCOVERY</td>
<td>(one every year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIUM CLASS</td>
<td></td>
</tr>
<tr>
<td>STP</td>
<td></td>
</tr>
<tr>
<td>INTERMEDIATE CLASS</td>
<td></td>
</tr>
<tr>
<td>GOES</td>
<td></td>
</tr>
<tr>
<td>NGST MSR LANDER SOLAR PROBE</td>
<td></td>
</tr>
<tr>
<td>GOES</td>
<td></td>
</tr>
<tr>
<td>MSR ORBITER MSR LANDER</td>
<td></td>
</tr>
</tbody>
</table>

WEST COAST LAUNCHES
Mission Integration Philosophy

KSC Mission Integration Team

Spacecraft Customer

Launch Vehicle Service Provider

NASA

EXPENDABLE LAUNCH VEHICLES
Mission Integration Teams

Features:
- Total management of mission integration process
- One team per mission (30 active)
- Core team membership drawn from ELV Program
- Expanded core team includes all other support functions
- Customer point of contact
- Launch services mission point of contact
Extended MIT Members

MIM - Team Lead
- GSFC and JPL
- Resident Offices
- Launch Service Provider
- Spacecraft Launch Vehicle Integrator

Integration Engineer:
- Mission Analysts
- Discipline Engineers
- Huntington Beach and Denver Resident Offices

LSIM:
- Range Safety
- VAFB Resident Office
- KSC Communications
- KSC, Range, Contractor Support Orgs

LSM:
- Business Management
- Finance
- Procurement
Primary Customer Interface for Mission Specific Integration

- Chair and Manage (KSC) Mission Integration Team (MIT)
- Overall Mission Management (technical, contract deliverables, budget, schedule, etc.)
- Co-Chair Overall Integration Working Group Meetings with Launch Service Provider
- Responsible for Mission Unique Approval & Budget
- Contracting Officer Technical Representative (COTR) for Mission Unique
- Approval of the contractual deliverables after coordination and review by MIT
Integration Engineer Responsibilities

Coordinates and Leads KSC Engineering Effort

- Responsible for Technical Content of Mission Specific & Other Docs
- Leads Resolution of Technical Issues on the Program
- Establishes Engineering Priorities, coordinated with MIM
- Identifies Issues to Engineering Management that Require Engineering Review Board (ERB)
- Maintains Awareness of Vehicle History for Vehicle assigned to Mission
- Works with Resident Office to organize and accomplish hardware/software reviews
Launch Service Manager (LSM) Responsibilities

Provides Program & Business Management for Launch Services Contracts

- Assesses and works Programmatic impacts and changes across the fleet
- COTR and Primary Interface to Contractor for core vehicle
- Authorizes, reviews and provides business assessment of early mission studies, task orders, change orders, and mission unique
- Financial Management
 - Budget Development and Execution
Launch Site Integration Manager Responsibilities

- Provides planning and coordinates support for all aspects of payload customer stand alone activities at the launch site (e.g., facilities, schedules, safety, budget, networks, communication, etc.)
 - Chairs Ground Operation Working Group Meetings
 - Develops the Launch Site Support Plan

- Assures payload customer requirements and schedules for integrated launch site activities are coordinated with the launch vehicle (e.g., PRD inputs, countdown schedules, procedure inputs)

- Serves as the NASA point-of-contact for launch vehicle activities at the launch site (e.g., integrated procedure review, range support, schedules, reviews, etc.)

- Coordinates Launch Management activities
 - Management Reviews, seating charts, dress rehearsals
 - Supports NASA Launch Manager
Working Relationships (cont.)

- **LSIM Functions**
 - Combines the old LSSM and LOM functions that NASA used to have
 - Provides one interface at the Launch Site to do payload and launch vehicle integration, scheduling and ops planning

- **Boeing - PGOC Support Services Contract**
 - Support to MIT
 - Technology support to Engineering

- **Engineering Interfaces**
 - Integration Engineer functions as technical lead
 - Individual engineering disciplines interface with their counterparts at the Launch Service Provider and Spacecraft Project
Dual Ride Options

- Existing UELV, SELVS-KSC, and Med Lite Contracts have provisions for Dual Rides (Co-manifested)

- Dual Payload Attach Fittings also available to fly secondary payloads

- Ordering period is 18 to 30 months depending on contract

- Mass capability from approximately 150 kg to 1300 kg

- Volume capability from approximately 26” Dia x 22” to 95” Dia x 70”

- Pegasus-XL, Standard Taurus and Delta 732x/742x vehicles available
 - MELVS contract for Delta 792X is “sold out”
 - Larger vehicles TBD under NLS procurement which is currently active
Payload mass typically limited by orbit requirements, not by structural capability.

Figure D-6. Dual Payload Attach Fitting (DPAF) Configuration.
Payload mass typically limited by orbit requirements, not by structural capability

Figure D-7. Load Bearing Secondary Configuration
Figure 4.3.1-1: Taurus 38" DPAF

Figure 4.3.2-1: Taurus 50" DPAF

Figure 4.3.3-1: Taurus 63" DPAF
DUAL PAYLOAD ATTACH FITTING (DPAF)

Both payload interfaces would be Boeing 37C payload interfaces.

Upper Payload:
Weight up to 2000 lb, 30 in. CG from separation plane.

DPAF 103-in. dia Vent Paths for A/C (Two 8-in. dia Holes in Each Cone)

Lower Payload:
Weight up to 3000 lb, 50 in. CG from separation plane
Min Envelope = 98-in. Length With 81-in. dia

Sta 500.21
Second-Stage Interface Plane

Sta 553.39

10-ft-dia Composite Fairing Usable Envelope

284.22 in.

Sta 215.99

Two 24-in. dia Holes in the Cylinder Section

140 in. Max
Secondary Payload Options

- Secondary Payload (SP) Requirements
 - SP shall present no hazard (ordnance, radiation, contamination etc) to the primary payload
 - Acceptance of the SP is subject to approval of the primary payload program manager
 - Primary payload orbit requirements and launch date shall not be affected by SPs
 - Approval of SPs will be considered only if sufficient performance margin exists for the primary mission. Approval could be withdrawn if the margin is unexpectedly reduced

- Existing UELV, SELVS-KSC, and Med Lite Contracts have SP provisions

- Ordering period is 18 to 24 months depending on mission

- Mass capability up to approximately 100 kg

- Volume capability from approximately 11.25” x 19” x 14” to 26” Dia x 22”
Delta Separating Secondary Payload Interface
(Spacecraft Supplied Adapter)

Payload Size Excluding Adapter
11.25" x 19" x 14"
or 10.25" x 19" x 24"

Payload Mass: Including Adapter
45 kg @ 5.0 inch C.G.

Figure 5.5a Example of Payload Adapter Assembly for Separating SPs
Delta Separating Secondary Payload with Adapter, Launch Vehicle PAF and Clampband
Delta Non Separating Interface

Payload Size: 11" x 25" x 24"
Payload Mass: 70 kg

Note: Envelope width is 24.00 inches.
<table>
<thead>
<tr>
<th>Mission</th>
<th>Mass</th>
<th>Date</th>
<th>Vehicle</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUVE</td>
<td>102 kg</td>
<td>7/92</td>
<td>Delta</td>
<td>2 Non Separating</td>
</tr>
<tr>
<td>SEDS-1</td>
<td>45 kg</td>
<td>3/93</td>
<td>Delta</td>
<td>Tether</td>
</tr>
<tr>
<td>PMG</td>
<td>55 kg</td>
<td>6/93</td>
<td>Delta</td>
<td>Tether + Diagnostics</td>
</tr>
<tr>
<td>SEDS-2</td>
<td>50 kg</td>
<td>3/94</td>
<td>Delta</td>
<td>Tether</td>
</tr>
<tr>
<td>SURFSAT</td>
<td>35 kg</td>
<td>11/95</td>
<td>Delta</td>
<td>2 Non Separating</td>
</tr>
<tr>
<td>SEDSAT</td>
<td>40 kg</td>
<td>10/98</td>
<td>Delta</td>
<td>Separating</td>
</tr>
<tr>
<td>Orsted</td>
<td>65 kg</td>
<td>1/99</td>
<td>Delta</td>
<td>Separating</td>
</tr>
<tr>
<td>Sunsat</td>
<td>65 kg</td>
<td>1/99</td>
<td>Delta</td>
<td>Separating</td>
</tr>
<tr>
<td>ACRIM</td>
<td>120 kg</td>
<td>10/99</td>
<td>Taurus</td>
<td>DPAF</td>
</tr>
<tr>
<td>Citizen Explorer</td>
<td>45 kg</td>
<td>12/99</td>
<td>Delta</td>
<td>Separating</td>
</tr>
<tr>
<td>Munin</td>
<td>6 kg</td>
<td>12/99</td>
<td>Delta</td>
<td>Self Separating</td>
</tr>
<tr>
<td>ProSEDS</td>
<td>105 kg</td>
<td>8/00</td>
<td>Delta</td>
<td>Tether</td>
</tr>
<tr>
<td>CATSAT</td>
<td>135 kg</td>
<td>7/02</td>
<td>Delta</td>
<td>DPAF</td>
</tr>
</tbody>
</table>
Example of Dual Mission and 2 Secondary Payloads

Launch Date 12/99

- Vehicle configuration: 7320-10C
- Launch site: SLC-2 at VAFB
- Target launch date: 15 Dec 1999
- Unique mission requirements
 - Dual Payload Attach Fitting (DPAF)
 - GN2 purge requirement (EO-1)
 - T-0 air conditioning (SAC-C)
 - First flight instrumentation
 - Standard DPAF instrumentation
 - Additional shock test support (EO-1 and SAC-C)
 - Thermal analysis for SAC-C
 - 100 lb separation springs (EO-1)
- Secondary payloads
 - Citizen Explorer
 - Munin
<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Integration and Customer Division Chief</td>
<td>Bill Fletcher</td>
<td>(407) 853-5761</td>
</tr>
<tr>
<td>Mission Integration Branch Chief</td>
<td>Darren Bedell</td>
<td>(407) 853-2166</td>
</tr>
<tr>
<td>Advance Mission Integration Managers</td>
<td>Frank Stone</td>
<td>(407) 476-3625</td>
</tr>
<tr>
<td></td>
<td>Tom Shaw</td>
<td>(407) 476-3640</td>
</tr>
<tr>
<td>Resident Liaison Offices</td>
<td>Laura Weber</td>
<td>(301) 286-6922</td>
</tr>
<tr>
<td></td>
<td>Rita Willcoxon</td>
<td>(818) 354-4788</td>
</tr>
<tr>
<td></td>
<td>Johnathan Stabb</td>
<td>(818) 354-2489</td>
</tr>
<tr>
<td>Mission</td>
<td>Date</td>
<td>Orbit</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>--------------------</td>
</tr>
<tr>
<td>EOS-PM Delta</td>
<td>12/00</td>
<td>700 km @ 98 deg</td>
</tr>
<tr>
<td>SCISAT Pegasus-XL</td>
<td>12/01</td>
<td>650 km @ 65 deg</td>
</tr>
<tr>
<td>GPS Delta</td>
<td>Various</td>
<td>187 km x 1189 km @ 37.2 deg</td>
</tr>
</tbody>
</table>
Orbital's Family of Launch Vehicles
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VAFB/WR</td>
<td>F10 USAF</td>
<td>REX-II</td>
<td>3/8</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>F11 BMDO</td>
<td>MSTI-3</td>
<td>5/16</td>
<td>Std</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>F12 NASA</td>
<td>TOMS-EP</td>
<td>7/2</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>F13 NASA</td>
<td>FAST</td>
<td>8/21</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WFF</td>
<td>F14 NASA</td>
<td>SACB HETE</td>
<td>11/4</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain/Spain</td>
<td>F15 INTA</td>
<td>MINISAT 01 Celestis</td>
<td>4/21</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>F16 ORBIMAGE</td>
<td>OrbView-2</td>
<td>3/1</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>F17 USAF DoE</td>
<td>FORTE</td>
<td>8/29</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WFF/WFF</td>
<td>F18 USAF</td>
<td>STEP-M4</td>
<td>10/22</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WFF</td>
<td>F19 ORBCOMM</td>
<td>ORBCOMM-1 FM-12</td>
<td>12/23</td>
<td>XL</td>
<td>HAPS</td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>T2 BATC ORBCOMM</td>
<td>GFO FM3 & FM4</td>
<td>2/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>F20 NASA</td>
<td>SNOE RATSAT (T-1)</td>
<td>2/25</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>F21 NASA</td>
<td>TRACE</td>
<td>4/1</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WFF</td>
<td>F22 ORBCOMM</td>
<td>ORBCOMM-2 FM 13-20</td>
<td>8/2</td>
<td>XL HAPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WFF</td>
<td>F23 ORBCOMM</td>
<td>ORBCOMM-3 FM21-28</td>
<td>9/23</td>
<td>XL HAPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>T3 DoD</td>
<td>STEX</td>
<td>10/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/ER</td>
<td>F24 Brazil NASA</td>
<td>SCD-2 Wing Glove</td>
<td>10/22</td>
<td>Std</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>F25 NASA</td>
<td>SWAS</td>
<td>12/6</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>F26 NASA</td>
<td>WIRE</td>
<td>3/4</td>
<td>XL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>DFRF/WR</td>
<td>F1 DoD</td>
<td>Pegsat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NASA</td>
<td>Navysat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFRF/WR</td>
<td>F2 DoD</td>
<td>7 Microsats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFRF/ER</td>
<td>F3 Brazil</td>
<td>SCD-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orbital</td>
<td>OXP-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFRF/WR</td>
<td>F4 USAF</td>
<td>ALEXIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DoE</td>
<td>OXP-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>T1 DoD</td>
<td>STEP-M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DARPA SAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFRF/WR</td>
<td>F5 USAF</td>
<td>STEP-M2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>F6 USAF</td>
<td>STEP-M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FX-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFRF/WR</td>
<td>F7 USAF</td>
<td>APEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>F8 ORBCOMM</td>
<td>FM1 & FM2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ORBIMAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAFB/WR</td>
<td>F9 USAF</td>
<td>STEP-M3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DFRF – Dryden Flight Research Facility ER – Eastern Range
WR – Western Range VAFB – Vandenberg AFB
Pegasus Air Launch Vehicle

- Pegasus XL is a Winged, 3-Stage Solid Rocket Booster
- Air Launched from L-1011 Carrier Aircraft
- System Mobility Optimizes Cost and Performance
- Commercially-Developed, Government-Certified
- Base of Operations at Vandenberg AFB, CA
L-1011 Carrier Aircraft

L-1011 Carrier Aircraft Payload Services and Launch Operation from Vandenberg.

<table>
<thead>
<tr>
<th>Orbital Carrier Aircraft</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Taxi Weight</td>
<td>468,000 lbs</td>
</tr>
<tr>
<td>Max Gross Take-Off Weight</td>
<td>466,000 lbs</td>
</tr>
<tr>
<td>Max Landing Weight</td>
<td>368,000 lbs</td>
</tr>
<tr>
<td>Max Zero Fuel Weight</td>
<td>338,000 lbs</td>
</tr>
<tr>
<td>Operating Empty Weight</td>
<td>223,000 lbs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Captive Carry Mission Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Radius</td>
</tr>
<tr>
<td>Forry Range</td>
</tr>
<tr>
<td>External Store Capacity</td>
</tr>
<tr>
<td>Operating Altitude</td>
</tr>
<tr>
<td>Payload Deployment Speed</td>
</tr>
</tbody>
</table>

L-1011 Carrier Aircraft Performance.
Pegasus Capable Launch Sites to Date

Western Range
70° to 130° Inclination

Wallops Flight Facility
30° to 65° Inclination

Eastern Range
28° to 50° Inclination

Kwajalein Atoll
0° to 10° Inclination

Canary Islands
Launch Point
Mobile Ramps
25° Inclination
(Retrograde)

Equator
Taurus Launch Vehicle

- Designed for Easy Transportability, Rapid Set-Up, and Launch from an Austere Site
- Capable of Quick Reaction Launch on Demand Scenarios Anywhere in the World
Taurus Rapid Response Capability

- Launch on Demand Scenarios Easily Accommodated with Minimum Site Infrastructure

- Response Time Capability of
 - 8 Days
 - 5 Days
 - 2 Days

 Road Transportable

Launch Stand Preparations Launch Equipment Van Payload and Upper Stack Mate
Orbital's Shared Launch Experience
(56 Payloads on 15 Launches)

Completed Missions

<table>
<thead>
<tr>
<th>Launch</th>
<th>Date</th>
<th>Number of Payloads</th>
<th>Payloads</th>
<th>Payload Description</th>
</tr>
</thead>
</table>
| Pegasus F-1| April 1990 | 2 | • Pegasus 15
 | | | • Nondeployable Instrumentation Package
 | | | • Deployable Experiment for Atmospheric Research |
| Pegasus F-2| July 1991 | 7 | • 7 Microsats | Multiple Deployable Satellites for Technology Demonstration |
| Pegasus F-3| February 1993| 2 | • SCD-1
 | | | • Deployable Brazilian Communications Satellite |
| | | | • OXP-1
 | | | • Deployable Satellite for Communications Demonstration |
| Pegasus F-4| April 1993 | 2 | • ALEXIS
 | | | • Deployable U.S. Air Force Technology Demonstration Satellite |
| | | | • OXP-2
 | | | • Nondeployable Commercial Communications Payload |
| Taurus T-1 | March 1994 | 2 | • DARPA SAT
 | | | • Deployable Classified Spacecraft |
| | | | • STEP-M0
 | | | • Deployable Satellite for Technology Demonstration |
| | | | • All Load Bearing to Optimize Mass and Volume |
| Pegasus F-6| June 1994 | 2 | • STEP-M1
 | | | • Deployable U.S. Air Force Technology Demonstration Satellite |
| | | | • EX-A
 | | | • Nondeployable NASA Hypersonic Research Experiment |
| Pegasus F-8| April 1995 | 3 | • FM-1
 | | | • Deployable Communications Satellite |
| | | | • FM-2
 | | | • Deployable Communications Satellite |
| | | | • OrbView-1
 | | | • Deployable Remote Sensing Satellite |
| | | | • All Load Bearing to Optimize Mass and Volume |
| Pegasus F-14| November 1996| 2 | • SAC-B
 | | | • Dual Deployable NASA Scientific Satellites |
| | | | • HETE
 | | | • Non Load Bearing Using the DPA |
| Pegasus F-15| April 1997 | 2 | • MINISAT 01
 | | | • Deployable Spanish Scientific Satellite |
| | | | • Celestis
 | | | • Nondeployable Tertiary Commercial Payload |
| Pegasus F-19| December 1997| 8 | • ORBCOMM-1 (FM 5-12)
 | | | • Initial Constellation Launch to Deploy 8 Microstar Satellites |
| | | | • All Load Bearing to Optimize Mass and Volume |
| Taurus T-2 | February 1998| 4 | • GFO
 | | | • Deployable Ocean Altimetry Spacecraft for the U.S. Navy |
| | | | • FM-3
 | | | • Deployable Microstar Spacecraft for ORBCOMM |
| | | | • FM-4
 | | | • Deployable Microstar Spacecraft for ORBCOMM |
| | | | • Celestis
 | | | • Nondeployable Commercial Tertiary Payload |
| Pegasus F-20| February 1998| 2 | • SNF
 | | | • NASA Deployable Student Payload Under STEDI Program |
| | | | • BATSSAT (T-1)
 | | | • Commercial Deployable Microstar Satellite |
| | | | • All Load Bearing to Optimize Mass and Volume |
| Pegasus F-22| August 1998| 8 | • ORRCOMM-2 (FM 13-20)
 | | | • Second Constellation Launch to Deploy 8 Microstar Spacecraft |
| | | | • All Load Bearing to Optimize Mass and Volume |
| Pegasus F-23| September 1998| 8 | • ORRCOMM-3 (FM 21-28)
 | | | • Third Constellation Launch to Deploy 8 Microstar Spacecraft |
| | | | • All Load Bearing to Optimize Mass and Volume |
| Pegasus F-24| October 1998| 2 | • SGD-2
 | | | • Deployable Commercial Communications Satellite for Brazil |
| | | | • Winn (JRV) | Nondeployable NASA Hypersonic Research Experiment |

Planned Missions

<table>
<thead>
<tr>
<th>Launch</th>
<th>Date</th>
<th>Number of Payloads</th>
<th>Payloads</th>
<th>Payload Description</th>
</tr>
</thead>
</table>
| Pegasus | 1999 | 2 | • ITTHillRS
 | | | • MURLCOM
 | | | • NASA Deployable Student Payload Under STEDI Program | |
| | | | • Commercial Deployable Microstar Satellite |
| | | | • Secondary Load Bearing to Optimize Mass and Volume |
| Taurus | 1999 | 2 | • KOMPASAT
 | | | • Commercial Deployable Primary Remote Sensing |
| | | | • ACRIM
 | | | • NASA Deployable Secondary Payload Using the APC |
| Pegasus | 1999 | 8 | • ORRCOMM-4 (FM 29-36)
 | | | • Fourth Constellation Launch to Deploy 8 Microstar Spacecraft |
| | | | • Equatorial Launch |
| Taurus | 2000 | Multiple | • OrbView-4
 | | | • Commercial Remote Sensing Satellite |
| | | | • Open
 | | | • Available for Booking |
Shared Payload Launch Opportunities

To date, Orbital has successfully placed 52 payloads into orbit on 13 Pegasus and Taurus shared launches. Presently, Orbital has launch opportunities available on our launch systems. These launches have capacity available for co-passenger payloads matching the orbit, schedule, mass, and volume parameters, shown in Table A below. Payloads that can accept these mission parameters should contact Orbital to verify technical compatibility and obtain a launch agreement. In addition, Orbital maintains a listing of known missions that are searching for complementary payloads to share a launch. These missions are listed in Table B.

If any of these payload parameters match your specific needs, you are invited to contact Orbital's Launch Systems Group business development to further assess mission compatibility and a possible launch assignment on Pegasus or Taurus.

- Check our Orbital launch opportunities on our web site (www.Orbital.com)
- Look for compatible ride share partners
- Register your mission to be considered

<table>
<thead>
<tr>
<th>Mission</th>
<th>Orbit</th>
<th>Launch Date</th>
<th>Mass Available</th>
<th>Volume Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pegasus LV-P010</td>
<td>0-5° 550-700 km</td>
<td>Early 2000</td>
<td>20-76 kg</td>
<td></td>
</tr>
<tr>
<td>Taurus LV-T011</td>
<td>Sun-Synchronous 470 km</td>
<td>Mid 2000</td>
<td>90 kg</td>
<td>110 cm Dia x 153 cm Height</td>
</tr>
<tr>
<td>Pegasus LV-P012</td>
<td>5-10° 550-650 km Circular</td>
<td>2001</td>
<td>100 kg Estimate</td>
<td></td>
</tr>
<tr>
<td>OSP LV-013</td>
<td>Sun-Synchronous 12:00 p.m. ±2 hrs or 50-95°, 500-600 km</td>
<td>Early 2000</td>
<td>150 kg +</td>
<td>66 cm dia x T/RD Length</td>
</tr>
<tr>
<td>Pegasus LV-P014</td>
<td>45° Inclination 825 km</td>
<td>Mid 2000</td>
<td>140 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cone, 100 cm at Base, 75 cm at Top</td>
<td></td>
<td>95 cm Height (23° Interface Assumed)</td>
<td></td>
</tr>
<tr>
<td>Pegasus LV-015</td>
<td>45° Inclination 825 km</td>
<td>Late 2000</td>
<td>140 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cone, 100 cm at Base, 75 cm at Top</td>
<td></td>
<td>95 cm Height (23° Interface Assumed)</td>
<td></td>
</tr>
</tbody>
</table>

For further information contact the New Business office at (703) 404-7400
©1999 Orbital Sciences Corporation
www.orbital.com
Pegasus® Equatorial Launch
from Kwajalein Atoll
Pegasus® TERRIERS/MUBLCOM Mission Profile

Dual Launch Configuration

L-1011 Drop Launch
h = 39,000 ft

First Stage Ignition
t = 5 sec
h = 141,096 ft

First Stage Burnout
t = 76 sec
h = 244,170 ft

Second Stage Ignition
t = 97 sec
h = 244,170 ft

Second Stage Burnout
t = 162 sec
h = 449,070 ft

Third Stage Ignition

Third Stage Burnout

Stage 3/HAPS Separation

Payload Fairing Separation
t = 129 sec
h = 340,975 ft

Vandenberg AFB Range Telemetry Coverage

HAPS Burn #1
t = 557-571 sec

Orbit Injection
550 km Circular Sun-Synchronous

990408.02
NASA/NRO
Rideshare Conference
Delta Launch Services

Bill Files
Expendable Launch Systems
Huntington Beach, California

April 15-16, 1999
Expendable Launch Systems
Delta Launch Vehicle Family Meets New and Emerging Customer Requirements
Delta Family Spans Entire Payload Range

Performance to GTO (185 km x 35,786 km x 27°)
Delta II Program Summary

- The western world's most reliable launch vehicle
 - 96.9% success since Oct 1977
 (127 out of 131 launches)
- One standard of quality for government and commercial customers
 - 12 launches in 1998
 (2 government, 10 commercial)
 - 15 launches planned for 1999
 (8 government, 7 commercial)
- Secondary payloads successfully flown on 21 missions for Air Force, NASA, and SDIO
 - First flight on Pioneer-C December 1967
 - Last flight on P91-1 Argos February 1999
NASA Med-Lite Program

- Medium Light Expendable Launch Service initiated in February 1996

- Status to date

 - Flown (4): Deep Space 1, Mars Orbiter ’98, Mars Lander ’98, Stardust

 - On contract (6): FUSE, IMAGE, EO-1/SAC-C, MAP, Genesis, and Mars Lander ’01

 - Secondary payload SEDSAT flown on Deep Space 1 October 1998
Delta III Program

- Delta III program approach
 - Commercially developed by Boeing
 - Address launch vehicle market needs for spacecraft up to 3.8 metric tons
- Delta III evolution
 - Based on existing Delta II
 - New cryogenic upper stage and fairing
 - Launch base modifications
- Major Delta III team members
 - Alliant Techsystems
 - Boeing Rocketdyne
 - Pratt & Whitney
 - Mitsubishi Heavy Industries
Evolved Expendable Launch System/Delta IV

- Next evolution of the highly reliable Delta vehicle
- Satisfies government and commercial requirements
- Modular family of launch vehicles from Medium to Heavy capability
- Dual coast capability
 - CCAS ILC 2nd qtr CY2001
 - VAFB ILC 4th qtr CY2002
- Initiating secondary payload study for U.S. Air Force
Delta IV Uses Boeing-Manufactured Stretched Delta III and Titan IV Fairings

- Delta III's 4-m-dia composite fairing
- Used on Delta IV Medium, Delta IV Medium-Plus

- Delta II's 10-ft-dia composite fairing
- Successfully flown 13 times
 - 11 for Motorola Iridium®
 - 2 for Globalstar

- Boeing manufactured 200-in.-dia aluminum Titan IV fairing
- 100% success rate over the 24 Titan IV missions flown

As of 01 October 1996
Secondary Payload Accommodations

Delta IV–M/M+

Delta III 4-m composite fairing

New payload adapter

Delta III cryogenic upper stage

Negotiable payload area

Payload attach fitting

P91-1 Secondary

Delta II-7920 Guidance Section
Secondary Payload Considerations

- Presents no hazard to primary payload
- Requires approval of primary payload program manager
- Satisfies primary payload mission orbit requirements
- Delta has excess performance margin
 - Secondary mission withdrawn if margin reduced
- Compatible with launch times
- Maintains primary payload clearance envelope
- Keeps launch services separate from primary mission
- Complies with range safety requirements
Secondary Payload Integration
Parallels Primary Mission Process

L-36 to 24 mo
Mission planning

Assembly and checkout

Primary mission

Questionnaire

Mission analysis
- Dynamics
- Fairing clearance
- Strength report
- Environments
- Mission MODS

Readiness reviews
Payload fitcheck
L-13 mo - L-4 mo

Secondary mission

Payload processing

Integrated procedures

L-24 mo

Delta II

Astrotech

Encapsulation
Processing

Integrated Delta team throughout process
Vandenberg Air Force Base Facilities

Launch Complex 2

Astrotech

Bldg 8510 RLCC

Interim HIF

VAFB Dock

SL-3

SL-4

SL-5

SLC-6

Boat House

To Los Angeles

To San Diego & Soledad

To Santa Barbara & Los Angeles (101)

PACIFIC OCEAN

VAFB Airport

Vandenberg Village

Boeing

9P237000-13
4/13/98B
Flight Sequence of Events
Delta IV Medium

T + 4042 sec
Second stage ignition (IGN2)

T + 4274 sec
T + 4374 sec
TDRS telem
(S-band)

S/C separation

T + 5500 sec
CCAM

T + 861 sec
Second stage ignition (IGN1)

T + 274 sec

First-second stage separation
T + 252 sec

T + 279 sec
PLF jettison

T + 249 sec
MECO

T0 liftoff

Range safety tracking
(S-band)

Telemetry
(S-band)

Range safety radar
(C-band)

Ground station

Ground station

Ground station

Secondary Payload Mission Sequence
- Initiate after primary mission separation
- Deploy secondary from upper stage
- Remain on upper stage
- End of mission
Delta Program has a Long History Of Secondary Payload Mission Successes

- Secondary payload must be compatible with primary mission
- Generally two year mission integration cycle
- Boeing conducting study on EELV secondary payload adapter
- Next secondary mission for NASA is May 1999
 - Citizen Explorer (University of Colorado)
 - Munin (Sweden)
Delta Payload Planning Information

Mission planning information available from multiple sources

Delta Web Page
http://www.boeing.com/defense-space/space/delta/delta2/guide/
http://www.boeing.com/defense-space/space/delta/delta3/guide/
http://www.boeing.com/defense-space/space/delta/delta4/guide/

Contact Delta Launch Services (714) 896-4321
Backup
<table>
<thead>
<tr>
<th>Delta No.</th>
<th>Mission</th>
<th>Secondary</th>
<th>Launch Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>Pioneer-C</td>
<td>TTS; Cal-NCE</td>
<td>12-13-67</td>
</tr>
<tr>
<td>56</td>
<td>GEOS-B</td>
<td>Cal-NCE</td>
<td>01-11-68</td>
</tr>
<tr>
<td>60</td>
<td>Pioneer-D</td>
<td>TTS</td>
<td>11-08-68</td>
</tr>
<tr>
<td>72</td>
<td>OSO-G</td>
<td>PAC</td>
<td>08-09-69</td>
</tr>
<tr>
<td>76</td>
<td>TIROS-M</td>
<td>OSCAR</td>
<td>01-23-70</td>
</tr>
<tr>
<td>86</td>
<td>OSO-H</td>
<td>TUR</td>
<td>09-29-71</td>
</tr>
<tr>
<td>91</td>
<td>ITOS-D</td>
<td>OSCAR</td>
<td>10-15-72</td>
</tr>
<tr>
<td>104</td>
<td>ITOS-G</td>
<td>OSCAR, INTASAT</td>
<td>11-15-74</td>
</tr>
<tr>
<td>139</td>
<td>Landsat-C</td>
<td>OSCAR, PIX</td>
<td>03-05-78</td>
</tr>
<tr>
<td>145</td>
<td>Nimbus G</td>
<td>Cameo</td>
<td>10-24-78</td>
</tr>
<tr>
<td>157</td>
<td>SME</td>
<td>UOSAT-A</td>
<td>10-06-81</td>
</tr>
<tr>
<td>166</td>
<td>IRAS</td>
<td>PIX II</td>
<td>01-25-83</td>
</tr>
<tr>
<td>174</td>
<td>Landsat-D</td>
<td>UOSAT-B</td>
<td>03-01-84</td>
</tr>
<tr>
<td>206</td>
<td>Navstar 11-11</td>
<td>LOSAT-X</td>
<td>07-03-91</td>
</tr>
<tr>
<td>212</td>
<td>Geotail</td>
<td>DUVE</td>
<td>07-24-92</td>
</tr>
<tr>
<td>219</td>
<td>GPS-1</td>
<td>SEDS-1</td>
<td>03-29-93</td>
</tr>
<tr>
<td>221</td>
<td>GPS-3</td>
<td>PMG</td>
<td>06-26-93</td>
</tr>
<tr>
<td>226</td>
<td>GPS-6</td>
<td>SEDS-2</td>
<td>03-09-94</td>
</tr>
<tr>
<td>229</td>
<td>RADARSAT</td>
<td>SURFSAT</td>
<td>11-04-95</td>
</tr>
<tr>
<td>261</td>
<td>Deep Space 1</td>
<td>SEDSAT</td>
<td>10-24-98</td>
</tr>
<tr>
<td>267</td>
<td>P91-1 ARGOS</td>
<td>Oersted Sunsat</td>
<td>02-23-99</td>
</tr>
</tbody>
</table>
Atlas Evolution

GTO Capability (klbs)

Atlas II/III Family

Atlas V Family

Continually improving value for our customers.
Atlas V Common Element Concept

Legend:
- Qualified Hardware/Qual Req'd
- Prototype/Qual Testing Underway
- Testing Initiated/Planned

Atlas Extended Payload Fairing (EPF)
Contraves 5-m Short/Medium PLF
Single- or Dual-Engine Centaur
Contraves 5-m Long PLF

Common Avionics Module
RL10A-4-2
Common Core Booster™
RD-180

Atlas V 400
Atlas V 500
Atlas V Heavy
Atlas V (552) Launch System

SRM manufacturer—Aerojet
- Identical—interchangeable Solids
- Simple and reliable
 - All ground lit
 - No TVC system—Fixed 3-deg nozzles
 - Monolithic—No segments
 - Ship and shoot

Maximum Mission Flexibility
One - Five SRMs Provide- GTO: 9-19k Lbm, LEO: 24-40k Lbm
Hardware Development Progress

RD-180 Engine Final Assembly Building
Atlas V Tank Dome
Atlas V Tank in VTF
Contraves 5-m PLF
Atlas V 11 ft. PLF
Single Engine Centaur Final Assembly Building
Atlas V Tank in AWC
Atlas V Tank in ARL
Honeywell Fault-Tolerant INU
BF Goodrich Data Acquisition System
Atlas V Tank in VTF

Atlas V is accomplishing key development milestones
Atlas V Tailored Critical Design Review Summary

- Series of 12 reviews—4 vehicles and 2 pads
- 34 review days—May 18-July 29
- 8,107 briefing charts in addition to supporting materials
- TCDR Preceded by Several Months of Detailed Subsystem Briefings

TCDR judged as “Excellent” by the Customer and Independent Review Panels
RD-180 Engine Team

Lockheed Martin
Launch Vehicles

American/Russian Rocket
Company Joint Venture
West Palm Beach, Florida

Support US Government
Launches
Pratt & Whitney
West Palm Beach, Florida
US Co-Produced Engines

Support International
Commercial Launches
NPO Energomash
Khimky, Russia
Russian Produced Engines
RD-180 Update

- RD-180 is a derivative RD-170 engine
 - 70% Parts Commonality
 - Staged combustion LOx-kerosene engine
 - Only Throttleable Production Expendable Engine (47-100%)
- Thrust (100%)
 - 933.4 lbf (vac)
 - 860.3 lbf (sl)

>16,000 seconds of hot fire testing completed on 20 engines
 - Khimky Russia at NPO Energomash
 - NASA Marshall Space Flight Center

The RD-180 Engine Is Certified For Flight
Common Operational Concept

- Features
 - Common Concept at LC-41 and SLC-3W
 - Common Procedures and Equipment at CCAS and VAFB
 - Minimum Time on Pad
 - Common Processing for All Vehicle Configurations
 - Full Weather Protection in VIF
Summary

- Low Risk, Heritage Design
- Standard Payload Interfaces
- High Performance Within Each Vehicle Class
- 4 and 5 meter Payload Fairings
- Modular, Common Element Design
- High Launch Rate
- Efficient Operations
- Commitment to Mission Success
Proceedings of the First Annual NRO-OSL/GSFC-ATS Rideshare Conference—April 15–16, 1999

Authors:
- W. Cutlip, Ed.

Performing Organization:
- Mission Integration and Planning Division
- Project Formulation Office
- Goddard Space Flight Center
- Greenbelt, Maryland 20771

Sponsoring/Monitoring Agency:
- National Aeronautics and Space Administration
- Washington, DC 20546-0001

Distribution/Availability Statement:
- Unclassified-Unlimited
- Subject Category: 15
- Report available from the NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, MD 21076-1320. (301) 621-0390.

Abstract:
This document contains the proceedings of the First Annual NRO-OSL/GSFC-ATS Rideshare Conference. The conference was held April 15–16, 1999, at the Litton/TASC Facility, Dulles, Virginia, and was co-chaired by William Cutlip, Goddard Space Flight Center Access to Space Group, and Jim Liller, National Reconnaissance Office, Office of Space Launch.