
USING AUTOMATION TO IMPROVE THE FLIGHT SOFTWARE

TESTING PROCESS

James R. O'Donnell, Jr., Ph.D. 1, Wendy M. Morgenstern 1, Maureen O. Bartholomew 2

NASA Goddard Space Flight Center

Greenbelt, MD 20771 USA

One of the critical phases in the development of a spacecraft attitude control system

(ACS) is the testing of its flight software. The testing (and test verification) of ACS
flight software requires a mix of skills involving software, knowledge of attitude

control and attitude control hardware, data manipulation, and analysis. The process of

analyzing and verifying flight software test results often creates a bottleneck which
dictates the speed at which flight software verification can be conducted. In the

development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem,
an integrated design environment was used that included a MAP high fidelity (HiFi)

simulation, a central database of spacecraft parameters, a script language for numeric

and string processing, and plotting capability. In this integrated environment, it was
possible to automate many of the steps involved in flight software testing, making the

entire process more efficient and thorough than on previous missions. In this paper,

we will compare the testing process used on MAP to that used on other missions. The
software tools that were developed to automate testing and test verification will be

discussed, including the ability to import and process test data, synchronize test data
and automatically generate HiFi script files used for test verification, and an

automated capability for generating comparison plots. A summary of the benefits of

applying these test methods on MAP will be given. Finally, the paper will conclude
with a discussion of re-use of the tools and techniques presented, and the ongoing

effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.

INTRODUCTION

The development of the attitude control system (ACS) for the Microwave Anisotropy Probe

(MAP) spacecraft (see Figure 1) included a number of firsts for the Goddard Space Flight

Center. It was the first time that the MatrixX integrated simulation, analysis, and design toolkit

was used at Goddard. Of greater note, it was the first time that automatically generated flight

software, generated from the MAP high fidelity (HiFi) simulation using the AutoCode feature of

the MatrixX toolkit, was used here. A number of papers (ref. 1, 2, 3) have been written about the

use of the MatrixX toolkit on the MAP project, as well as on the special considerations that

needed to be taken into account when testing automatically generated flight software.

During the development and testing of the MAP ACS subsystem, a number of tools were

developed to automate portions of the ACS flight software test process. This set of MAP test

tools, combined with some of the other integrated features of the MAP project, greatly increased

the efficiency and thoroughness of the flight software testing. In the remainder of this paper,

these tools will be discussed, along with a discussion of their application to the Triana spacecraft.

Flight Dynamics Analysis Branch, Code 572

2 Flight Software Branch, Code 582

295

FLIGHT SOFTWARE TEST PROCESS

Figure 1: The MAP Spacecraft

On the MAP project, as with many past and

present missions, the ACS flight software test

process was divided up into a number of steps.

At the lowest level, as the flight software

developers wrote each piece of code, tests were

performed at the unit test level. Once the flight

software for the spacecraft was integrated onto

the spacecraft or test facility, software testing
was done first at the build test and then the

acceptance test levels. During build testing,

testers verified the correct operation of each

specific flight software function. By and large,

each of these tests was driven by a specified

requirement of the software, and testing was used to verify that the requirement was met. At the

acceptance test level, more realistic tests were run that verified that the spacecraft would operate

in both nominal conditions and in the face of anomalies. These acceptance tests sought to cover

the full lifetime of the spacecraft, from launch and early orbit operations to orbit maneuvers to

the spacecraft science mode. Finally, in addition to the build and acceptance test levels, the MAP

test team performed a number of sets of regression testing; this was an abbreviated set of build

and acceptance tests performed after late additions or changes to the flight soRware.

For MAP, the test facility mentioned above was known as FlatSat. It consisted of engineering

test units of the spacecraft main processor, attitude control electronics, and several other

electronics boxes. The spacecraft's sensors and actuators, as well as the dynamics and other

environmental modeling, was done using a hybrid dynamic simulator (HDS). The MAP HDS

had very high fidelity, and it was possible to do very realistic testing with it on FlatSat.

Process Steps

The basic flight software test flow began with developing test scenarios. These scenarios

defined the initial conditions of the test as well as the flow of the test, including mode transitions,

telemetry verification and failure conditions. From these scenarios, test procedures were

developed, then executed on the test environment. The test environment included a ground

system that was used to send commands and receive telemetry from the flight system. It also

included the flight system comprised of hardware and flight software. Ground support equipment

such as the HDS was another critical component of the test environment. Once the tests were

executed, the results needed to be analyzed in order to verify that the flight software met the test

objectives. In general, the test results needed to be plotted for the analysis.

In parallel, the test scenario was duplicated in the high fidelity (HiFi) simulation, producing

results which were used to compare with the flight software test output results from the FlatSat

test environment. The HiFi results were the "truth" used to determine if the performance of the

flight system was adequate.

296

Therewereseveralaspectsof flight softwaretestingcritical to its timely success.First, the
ability to replicatethe initial conditionsandtestflow in theHiFi is extremelyimportantsincethe
resultsof theflight softwaretestwerecomparedwith theHiFi results.Second,theflight
software,theHDS, andtheHiFi needto beconsistent.Thereweremanyvariablessuchasscale
factors,biases,andalignmentsthatexistedin two or moreof thesesystemsandmustbeidentical
in each.Third, theability to plot andanalyzetheresultswith easewascrucial.

"Old vs New" Comparison

In order to appreciate the benefits of the automation that was done on MAP, it is important to

understand the process and bottlenecks on previous projects. In order to illustrate this, the testing

process used for past missions, such as the Rossi X-Ray Timing Explorer (XTE), will be

contrasted with that of MAP. It should be noted first, though, that XTE has been a very

successful mission; the fact that bottlenecks or possible areas for improvement in their flight

software testing process are identified below in no way diminishes from that fact.

XTE Flight Software Test Process

Figure 2 shows the flight software test process used for XTE. As denoted by the grey shaded

arrows, there were many steps in this process that were manual and, therefore, prone to errors.

........ Test Scenarios
* t I

Test Procs_ HiFi Script '
: i

HDS HiFi

Spacecraft

HW FSW
i.-

Ground System _
.............................. i

Matlab, WORM,

Results Plots

I HiFi Results

WORM

 ,otsI
manual automated[

Figure 2: "Old" Flight Software Test Process Includes Many Manual Steps

297

On XTE, flight softwaretestproceduresweredevelopedon thegroundsystem.Theinitial
conditionsfor thesetestswerethengivento anACS analystto replicatethe initial conditionsin
HiFi, whichwereusedto definetheexpectedtestresults.Theflight softwaretestprocedures
wereexecutedin theflight softwarelab.Theresultswereplottedusingthetestauthor'sfavorite
plottingpackage,whichwasusuallydifferentfrom anyof theothertester'sfavoriteplotting
package.Theresultingplots from both theHiFi andtheflight softwaretestexecution,plotted
separately,werethenheldsideto sideandvisually compared.Anothercritical pieceto theflow
wasthatthereexistedaplethoraof variablesthatneededto beconsistentbetweentheHiFi, HDS,
andflight software.OnXTE, thesevariablesweremaintainedin aspreadsheet.Thevariables
werethenmanuallyenteredinto theHiFi, HDS,andflight sol, care.

Thepitfalls thattheXTE processsufferedwerein eachof thosemanualprocesseslisted
above,namelyreplicatingtheinitial conditions,plotting of theresults,andmaintaining
consistencybetweenall of thevariables.Especiallyin theinfancyof theXTE flight sot_waretest
program,it wasnotunusualto go throughseveraliterationsof aparticulartest,trying to match
theinitial conditionsandvariables.Inconsistencieswouldbediscoveredin theplot results
reviewwhichwould resultin adiscoverythat,for example,theKalmanfilter wasnot enabledin
theflight softwaretestbut wasenabledin theHiFi versionof thetest,creatingdifferent results.
Sometimestheinconsistenciesweremoresubtle,suchasanumberswapof oneof thedigits of a
variable(e.g.,flight softwaregyrobias= 3.0234,HiFi gyrobias= 3.0243).Timeconsuming
iterationswerealsomadein theplottingprocess.Whencomparingtheflight softwaretestplots
with theHiFi plots,consistencyin scalingandunitsareextremelyimportant.Many times,the
flight softwareplotswouldhaveto berecreatedin orderto scaletheplotswith enoughdetail to
verify theresultswith HiFi or to changetheunitsto facilitatecomparison.

Finally, theseparatenatureof theflight softwaretestingandHiFi verificationpathsabove
createdapotentialslowdownin theprocess.TheHiFi verificationrunscouldnotbecreated
exceptby a memberof theACS analysisteamfamiliar with theHiFi, andcould alsonotbedone
with anyconfidenceuntil theflight softwaretestresultswereviewed.Thelimited numberof
analysts,aswell asthefact thattheanalystwouldneedto interactwith thetesteronmultiple
occasionsfor eachtest,frequentlyresultedin abottleneckwaiting for teststo beverified.

MAP Flight Software Test Process

On MAP, many of the manual processes were automated, streamlining the testing process.

Figure 3 illustrates the flight software test flow that MAP followed, highlighting those areas that

were automated. Unlike XTE, MAP's flight software testing process had tools that dissected a

flight software test procedure, automatically producing a HiFi script that replicated the flight

sot_vare test procedure flow. In addition, MAP had a centralized database that defined and

linked all of the variables used in HiFi, HDS, and the flight sotb_vare. With the press of a button,

the database generated the source files for each of these systems which guaranteed consistency.

Finally, the plotting process was streamlined since the MAP tools defined a standard set of plots

that were used to plot the flight software, HiFi, and HDS test results on one plot.

In the next two sections of this paper, the specific tools that were developed to perform each

of the tasks shown in Figure 3 will be discussed. Additionally, the other assumptions necessary

for the correct operation of these tools will be shown; each of these assumptions involved a

298

specificstandard way of writing procedures or formatting output that was established to improve

the MAP testing flow.

Test Scenariosj_
r

Test Procs]

: HDS Cfg
i

Spacecraft

HW FSW

:IG Syround stem Results
Xmath

I
HiFi Script ::

i

Cfg HiFi I

HiFi & Test I
I

Results I

Plots I

Figure 3: Automating Testing Steps Makes Test Process More Efficient

The different pieces of the test process flow shown in Figure 3 will be discussed in the next two

sections, along with the software tools that implement them.

INTEGRATED DESIGN ENVIRONMENT

In order to be able to apply the automated test tools developed for the MAP flight software

test effort to maximum effect, it was necessary to combine the elements of the subsystem and the

testing tools into an integrated design and testing environment.

Parameter Database

One of the key elements to the success of the MAP flight software testing effort was the

parameter database used by the ACS subsystem. This database was used to configuration manage

virtually all of the variables, control gains, failure detection and correction (FDC) parameters,

and other parameters used by the MAP ACS. As shown in Figure 3, the database fed into all of

the ACS elements. As each parameter was placed in the MAP database, it was assigned to an

appropriate subsystem engineer, in order for the database to be populated with the correct
information and verified.

299

Uponareleaseeachnew versionof flight softwarefor eitherthespacecraftmain processoror
attitudecontrolelectronics,acorrespondingreleasefrom theMAP databasewascreated.Output
templatesfromthedatabasewerecreatedasheaderfiles for theflight software;additionally,
scriptfiles for initializing theHDS andHiFi weregeneratedat thesametime. In thisway,when
flight softwaretestsandHiFi verificationsimulationswereperformed,aconsistentsetof
parametersacrosseachtestsystemcomponentwasassured.

Scripting Language with String Processing

The MathScript scripting language of MatrixX was used extensively with the MAP HiFi in

order to set up simulations and to perform many data analysis functions. MathScript allows flight

software and HiFi simulation to be analyzed, it interfaces with MatrixX's SystemBuild

simulation environment to allow simulations to be created and run, and provides the mechanism

for creating comparison plots between flight software and HiFi simulation verification data.

MathScript is a very complete scripting language for data processing, particularly matrix

processing, and provides all of the functions necessary for interfacing numerical data and the

HiFi simulation. One capability it lacks, however, is for doing extensive string processing.

Because of the need to process the sequentially printed data output files from the MAP ground

system, which are mixed numeric and text, and to process STOL procedures and RDLs (which

are used to run test procedures and describe MAP data packets, respectively) as well, string

processing is necessary.

writes*

MathScript Command or Function

executes

PERL Script executes

writes

I MathScript Script File

Figure 4: MathScript Architecture Allows Additional Capabilities to be Added

Figure 4 shows the solution implemented to add the string processing abilities necessary for

the MAP test tools. The solution makes use of the ability that MathScript has to call external

commands native to the underlying operating system. In order to add string processing to

MathScript functions, the following steps were followed:

3O0

. A MathScript function, using its fprint f statements, writes a PERL script out to the file

system. (In some cases, a pre-existing PERL script is used instead, in which case this step is

not necessary.)

2. Using a native operating system command, the PERL script from step 1 is executed.

. The PERL script executes and processes the test procedure sequential print data output files,

STOL procedures, or RDLs, as appropriate. As output, the PERL script writes out a new

MathScript script file.

4. Finally, the original MathScript function calls the newly created script file, which might, for

example, read the test data into MatrixX.

When the MAP test tools were originally developed, a combination of the Unix commands

and utilities of bash, sed, and grep were used to implement these functions. Eventually, though,

PERL was used instead because it could perform all of the functions that were divided between

the other utilities, plus it is widely available on many different platforms.

Configured HiFi Simulation

Figure 5 shows the top-level block diagram of the MAP HiFi simulation, shown here to give

a sense of what the simulation looks like as implemented in the MatrixX SystemBuild simulation

environment. SystemBuild is a hierarchical block diagram editor made up of SuperBlocks, such

as the ones shown in Figure 5, and lower level blocks that can be used to implement the different

mathematical functionsand dynamic elements needed in a simulation.

6

r61

rT_

_a

_6o

¼o

L61

LTI

LS_

;8*

_94,

4Q

6_

7"

;4o

;5o

37o

38.

39_

14

2_

3"

_84

Figure 5: MatrixX Simulation Environment Lends Itself to Automation

301

The MatrixX integrated toolkit, its Xmath command environment (in which the MathScript

scripting language is based), and its SystemBuild simulation component lend themselves

especially well to the automation process devised in the MAP test tools. As described in the

previous section, the scripting language acts as the glue that holds the simulation and testing

process together. Through the string processing extensions, test data can be read in and

processed. Using SystemBuild Access, an extension to Xmath that allows it to access and control

SystemBuild simulations, MathScript functions can complete the process of data analysis and

test verification by creating and running HiFi simulations.

It should be noted that while the MatrixX integrated toolkit lends itself particularly well to

the design of automated test tools, such tools could be designed in other settings. The key

ingredient that is necessary is a scripting language around which the rest of the system can be

built. The Matlab/Simulink environment, using Matlab's m-file scripting, could also be used.

Even a dedicated simulation such as one written in a language such as FORTRAN or C can be

used with the automated test techniques described herein by using an environment such as
Matlab or MatrixX as a front end interface.

Plotting Capability

The final capability needed to support the automated test tools is a flexible plotting

capability. By being able to plot test data and HiFi verification simulation data on a common

plot, the verification process is made much simpler. Along with the test tools, which will be

described in the next section, that input test data and automatically set up HiFi simulations, the

plotting of an arbitrary number of verification plots is supported. This becomes the final step in

the test verification process; after comparison plots are created, they can be analyzed to verify a

flight software test.

TOOL DESCRIPTIONS

In this section, the specific automated test tools that were developed for use on the ACS

flight software testing for MAP will be discussed. These are the MathScript and PERL functions

that implement the capabilities described in the previous section.

Test Data Processing

The main tool for processing the sequential print data output from flight sottware testing is

called pktproc. This procedure, using the PERL-enhanced string processing methods described

in the 13revious section, reads in STOL sequential print data and description files. It is able to

automatically combine split packets (large packets must sometimes be split to accommodate

ground system limitations). Each packet of data is formatted into an Xmath PDM (a data

structure used by Xmath that is able to store a matrix along with auxiliary data, such as a time

domain vector, and names applied to each column of data, in this case the packet telemetry

names). The pktproc routine then writes out each set of packet data PDM for later processing

by other Xmath test tools.

There are other test data processing functions used by the MAP test tools. These are used for

post-processing flight software test data, calculating parameters not downlinked directly.

302

Synchronization and Data Analysis

Once the flight software test data has been processed and imported into the Xmath

environment, the two most important functions of the automated test tools are implemented. The

first is implemented with the msync function. This function finds the beginning of a test run and

synchronizes the test data from each packet. This is necessary because when sequential prints are

started at the beginning of a flight software test, each packet begins to be output at a different

time. A standard test format was established for the MAP flight software testers in which all of

the sequential prints were begun, and then the "restart" process was begun in the FlatSat flight

software test facility which set the initial conditions for the test. The msync function analyzes

the appropriate data packet for signs in the output data of this "restart". It then determines the

offset into each packet that corresponds to this time. The offsets are saved for use by the other

test tools. In this way, though the packets each begin at a different time, the "zero point" for each

packet in the test is determined.

In addition to the msync function, the other critical test data analysis function for purposes of

implementing the MAP automated test tools is the t rans i t ions function. The t rans i t ions

function examines many of the different test data output packets for different aspects of the test

run. This information is then used to automatically create a MathScript script file for a HiFi

simulation that will match the test run. Some of the flight software test conditions that

transitions looks for are the following:

• initial conditions: time, spacecraft position and velocity, initial spacecraft attitude quatemion,

system momentum, and body rates

• Safehold and Safehold rate sensor transitions

• ACS control mode transitions

• Observing Mode spin down transitions

• thruster one-shots

• command quatemion transitions

• reaction wheel override commands

• Delta V Mode commanded bum times

• commands to enable or disable the Delta V impulse controller

• HDS commands to enable or disable sensor and actuator noise

In many ways, the t ran s it ions function is the heart and soul of the MAP automated test

tools. By allowing software testers to automatically create matching HiFi simulations, it is

possible for anyone, not simply ACS analysts familiar with the HiFi, to create HiFi verification

runs for flight software tests. Analysts are still necessary for verifying the flight software tests,

303

butby makingthecreationof the HiFi verification run automatic, one potential bottleneck is

removed from the test and test verification process.

Plotting and Test Verification

Once the flight software test data is imported into Xmath and analyzed, and a HiFi

verification simulation run, the final step is to plot the test data along with the HiFi data for

comparison. Because of the data synchronization and automatic HiFi simulation setup, it is a

simple matter to create these comparison plots.

Figure 6: Plot Tools Offer Flexibility and Batch Processing

Figure 6 shows the graphical interface to the test tool mapplot function. This function gives

the user the ability to create one or more of many predefined comparison plots. If a plot is

selected, then test data and HiFi data are plotted together, such as in the plot shown in Figure 7.

As shown on the left of Figure 6, there are a number of options that the user can select in

addition to picking one of the plots. If the SELECT/DESELECT PLOTS option is selected, the

window shown at right is given, which allows the user to select which plots are appropriate for a

given run. Once back at the main screen, any of these plots can be created and, if desired, copied

to a printer or a PostScript file. In addition, the AUTO-POSTSCRI PT option allows for all of the

selected plots to be automatically created and copied to PostScript files.

The mapplot function included a number of globally defined plots that users could employ.

By defining a standard set of plots, it became that much easier for each tester to produce a

complete review package for each test run. In addition, mapplot supported a very simple format

3O4

for eachuserto define their own plots, either globally across all of their flight software tests, or

specific to a given test.

0_3_

0,

"_03

_Ol

X 0

-6.1 - _

0.05

0.04

0.03

_'0.02

_)0.01

_ o
-0.01

>-'0.02

-6,03

-6+04

-6.05

3

In F rt De, 1_g8 m2bobs_12a kl asia dss: Estimated Spacecraft Rates [p_acs rates]

, : -- EST (HIFi)

.... i L j i....... LL -- -- -- ACS EST (p041)

.:.......•......;.......:......._......_......................................

-1....... " '-,....... :....... '_...... i :....... " _ :.......

...... J , L a.

..... a , L__ _a.

i i n i i , _ i , i i
i , D , , L i i L i i

25 4 J _ 4 , L 4 i L _ i.......

2 _ :.............. • _....... L a I
"G

i-

1 i i i i i a i i p
I I

o_ ...;-......:.......:......
i = _ i t i i i i i =

0 L d i L. d i L_ i

"0.5 100 200 300 400" 500 600 " 700 ' ' 'B;0' ' 9'00 1000 1100 1200

HiFI _ers k_n : mapdb. I _3 Time fseconds_

: Figure 7: Synchronized Data on Common Plots Aids Test Verification

In addition to the mapplot function, a lower-level plotting function was provided in the test

tools, called pktplot. Unlike mapplot, which provided a choice of a number ofpredefined

plots, pkl:p].ot gave access to any telemetry point in any test data output packet, or any HiFi

output variable. This ability was primarily meant for troubleshooting problems or anomalies in a

given flight software test, or for producing a very specific plot.

One final piece of the plotting capabilities of the MAP automated test tools should be

mentioned. In defining the plots used by the rnapplol: function, the tools only make it necessary

to specify the telemetry point desired. How then do the tools know what data packet a given

telemetry point is in? This information is kept in the "packet key". A setpktkey function was

written which operated in the background, calling a PERL script to process through the standard

set of sequential print STOL procedures that all flight software tests employed. By parsing out

the telemetry points from each STOL procedure, a packet key matching telemetry points and

packets was established. This packet key was then used by the other test tools to figure out where

to find each needed telemetry point.

305

Summary of Flight Software Test Verification Steps

Referring back to Figure 3, which detailed the automated test process used on the MAP

project, the following short list of steps reflect everything needed to be done to perform a flight
software test and its verification:

1. From a flight software test scenario, write a STOL procedure to test that scenario on FlatSat.

2. Copy the sequential print output files to the MatrixX computer.

3. Within MatrixX, run the pktproc function to process the data; pktproc automatically calls

msync and transitions to synchronize the data and set up the HiFi simulation.

4. After a review of the HiFi simulation script created in the previous step, run the simulation.

5. Use the mapplot function to create an appropriate set of comparison plots.

6. Review the comparison plots to determine whether or not the flight software test passed.

As can be seen in the above process, the only major manual step is in step 1, where the original

flight software test procedure is created. Other than possible manual tweaks that might be

required for the HiFi verification simulation in step 4, everything else is automated by the MAP

test tools until the final step where the flight software test data is compared with the data from

the HiFi simulation and a PASS or FAIL is given to the test.

REUSABILITY

The flight software test tools used for MAP ACS flight software testing and described above

were not the result of a formal development process. Rather, the tools began as an assortment of

testing shortcuts from one of the MAP testers; as the collection grew, these shortcuts were

assembled into a toolset that eventually allowed much of the test verification process to be

automated. Because the tools were written in an assortment of MatrixX's MathScript scripting

language and the Unix utilities and languages of bash, grep, sed, and PERL, and not thoroughly

documented, they were exclusively geared towards use on the MAP project.

When development of the Triana spacecraft began at Goddard, the Triana ACS subsystem

team chose to base their high fidelity simulation on MAP's. Because this meant that the Triana

HiFi was closely related to the MAP HiFi, it was logical to assume that Triana could also benefit

from the test tools developed for MAP, after they were converted for Triana's use.

Tool Conversion

The decision was made to reuse the MAP test tools after the Triana lead ACS analyst

advocated their use. The MAP test tools were demonstrated for the flight software test lead, the

analytical team and the ACS flight software lead. Everyone was enthused, and agreed that their

use would be beneficial for Triana. Input was solicited on what people wanted to keep and what

they didn't want, and based on this input, Dave McComas, a member of the MAP flight software

development team, worked on reshaping the tools to Triana's wants and needs. While not the

306

originaldeveloperof thetools,hewasfamiliarenoughwith MAP, MatrixX, andtheUnix
utilities to beagoodcandidatefor adaptingthemfor Triana.

TheTrianateamidentifiedthefollowing featuresof theMAP testtoolsastheonesthey
wouldbemostinterestedin:

1. theability to time synchronizetestdata

2. theability to plot data,andto batchproduceasetof plots

3. theability to automaticallymakeamatchingHiFi verificationsimulation

Further,dueto timeandresourceconstraints,Trianachoseto adoptonly the first andsecond
featuresshown.In termsof thespecificMAP testtools,Trianaversionsofpktproc, mapplot,
msync,andpkeploe weredeveloped.Theroutineusedto automaticallyproduceaHiFi script
correspondingto thetest,erans itions, wasnot adapted.

Becauseof thenatureof theMAP testtools,thefirst stepnecessarybeforeadaptingthemto
useonTrianawasto "reverse-engineer"anddocumentthem,learninghow theywork. Thiswas
donewith theassistanceof theoriginal tool developer.Thetoolsandtechniquesthemselveswere
not difficult to translate,oncetheunderlyingassumptionsaboutstandardswereunderstood.As
mentioned,abig reasonthattheMAP testtoolsworkedaswell astheydid wasbecauseof the
widespreaduseof standardtestprocedureanddataoutputformatsestablishedfor MAP testing.
Oncethe assumptionsaboutthesestandardswereunderstood,it becamepossibleto adaptthem
to Trianaby establishingcorrespondingstandardsthere.

Thegreatestdifficulties in translatingtheMAP testtoolsfor Trianawascausedby
differencesin thegroundsystemsusedon thetwo projects.In particular,theTrianasystem
workedwith differenttime formats;in orderto beableto synchronizedatait is vital to beableto
workwith compatibletimes,soestablishingacompatiblestandardwasimportant.Also, because
theTrianagroundsystemhadto dealwith dataratesmuchhigherthanwith MAP (10Hz vs 1Hz
data)andwouldSometimesdropdatapacketsmorefrequently,theTrianatesttoolsneededto be
ableto dealwith that.

After discussionswith theTrianatestteamandanumberof iterations,aworkablesetof tools
wasproducedfor useon thatproject.Additionally,unlikewith the"homegrown" setof MAP
testtools,a completeuser'sguidewasproduced.

Experience with the Triana Test Tools

The experience of using the automated test tools on Triana ended up being significantly

different than MAP. In spite of the early enthusiasm on the part of the ACS flight software and

flight software test leads, as well as the ACS analysis team, the entire group did not "buy in" to
the use of the tools as much as would have been desired.

On the positive side, there were some features of the automated test tools that everyone liked,

and the tools saw their most use for these things. Especially useful was the tools' ability to

synchronize test data from different packets to allow it to be easily "lined up" within a data plot.

307

Theability to batchoutputanarbitrarily longseriesof standardizedplots for atestdatarunwas
alsofoundto beuseful.Finally, thepoint andclick userinterfaceto plotting (asshownabovein
Figure6) wasliked.

For Triana,thereendedupbeingmorenegativefeelingstowardthetesttools thanpositives
for manymembersof thetestteam.Becauseof the lackof integrationof theflight softwareand
ACS teams,therewasagreaterdivision of labor thanwaspresentonMAP. Combinedwith the
factthattheerans 2eions procedureusedto "closetheloop", automaticallyproducinga HiFi
scriptto correspondto a giventestdataset,wasnot adaptedfor Triana,thismeantthattherewas
muchlessperceivedbenefit from usingthetools.Further,becausemanymembersof theteam
werenot familiar with MatrixX or Unix, andwerenotprovidedwith thetoolsuntil afterthe
projectwasalreadyunderway,theywerelesslikely to wantto changetheway theyweredoing
thingsin orderto usethem.

In summary,thedatasynchronizationandbatchplottingabilitiesof thetesttoolswerefound
to beinvaluableto theTrianaproject.However,becauseof the less-integratedflight softwaretest
andACSteamsonTriana,the"imposed"natureof thetool useresultingin lessbuy in from the
team,andthefact thatmanymembersof theteamhadestablishedtheir own proceduresbefore
thetoolsbecameavailable,meantthattheautomatedtesttoolsdid notmakeasbig animpacton
theTrianaprojectasonMAP.

CONCLUSION

What began as an ad hoc development of software "shortcuts" for ACS flight software

testing on the MAP spacecraft evolved over time into a very useful set of tools for greatly

increasing the efficiency of the testing process. By standardizing interfaces and test procedures

and developing new data analysis tools, the MAP project was able to leverage its existing ACS

subsystem-wide parameter database, an integrated test team consisting of flight software

developers, testers, and ACS analysts, and the MatrixX integrated simulation, analysis, and

plotting toolkit, to remove many of the testing bottlenecks that slowed down projects in the past.

As a result, MAP was able to go through build and acceptance testing, as well as a number of

rounds of regression testing to accommodate late software changes and additions, in a very

timely, efficient, and thorough manner.

Because the HiFi simulation used for the Triana project also used MatrixX and was directly

based on the MAP HiFi, it would have seemed that Triana was an ideal candidate for also

making use of the MAP test tools. However, the experience of trying to apply them for use on

Triana showed some of the potential pitfalls and limitations when attempting this sort of reuse.

Because the MAP test tools were not the result of a formal development process, they were not

well-documented at first. It took some time for the conversion and documentation process to be

performed, which meant that the tools were not available to Triana from the beginning.

Additionally, on many levels the Triana project was not as integrated as MAP, with no central

parameter database for all components of the testing environment, separate ACS and flight

software test teams, and more difficulty establishing the standard test procedure and data output

formats upon which the MAP tools depend. Nevertheless, while not used as widely or

universally on Triana as on MAP, the tools did provide some benefit to the Triana's ACS flight

308

softwaretestingeffort. It is clearthat thetechniquesinherentin theMAP testtools, if not the
actualtools themselves,canbeappliedto greatbenefit in futureprojects.

REFERENCES

[1] McComas, David C., James R. O'Donnell, Jr., Ph.D., and Stephen F. Andrews, "Using

Automatic Code Generation in the Attitude Control Flight Software Engineering Process",

23 ra Software Engineering Workshop, NASA Goddard Space Flight Center,

Greenbelt, MD, 1998.

[21 Ward, David K., Stephen F. Andrews, David C. McComas, and James R. O'Donnell, Jr.,

Ph.D., "Use of the MatrixX Integrated Toolkit on the Microwave Anisotropy Probe Attitude

Control System," 21 st AAS Guidance and Control Conference, Breckenridge, CO, 1999.

[31 O'Donnell, James R., Jr., Ph.D., Stephen F. Andrews, David C. McComas, and

David K. Ward, "Development and Testing of Automatically-Generated Flight Software for

the MAP Spacecraft," 14 th International Symposium on Space Flight Dynamics,

Iguassu Falls, Brazil, 1999.

309

