An Evaluation of Alternative Designs for a Grid Information Service

Motivation
- The Globus info. service wasn't working well
 - Many updates of data from Globus daemons
 - Saturated the single server
 - Users couldn't retrieve information
- Created a second server for NASA & Alliance
 - Things were great on that server, but a bit slow on the other server
- How exactly is the info. service being used?
- What are the best servers & configurations?

Outline
- Background
- Workload characterization
- Methodology
- Performance evaluation
- Conclusions

Globus Metacomputing Directory Service
- The Globus grid information service
- Information about organizations, people, computers, networks, software, applications, ...
- Specified data format and access protocol but not implementation

MDS History
- Originally contained in a single Netscape LDAP server that ended up at NCSA
- Then contained in 2 Netscape LDAP servers at NCSA
 - 1 server for NASA and the Alliance
 - 1 server for everything else
- Now:
 - NASA is currently using 4 Netscape LDAP servers at 3 sites
 - Globus v1.1.3 totally changed the MDS
 - No central servers
 - Many OpenLDAP servers

LDAP
- Data organized as entries in a tree
- Entries named using their position in the tree
- Entries can be added, deleted, modified
- Searches can be performed over attributes of entries
- Many providers of LDAP servers
Improving LDAP Performance

- Distribution of data
 - Sub-trees of data can be placed on different servers
 - Find the server by using referrals
 - Supports more updates but slows broad searches

- Replication of data
 - More servers for searches
 - More servers to update data

- Indexes
 - Lookup table based on an attribute value
 - Servers can construct and maintain
 - Improve search performance

Uses of MDS

- Host registration and periodic update
 - Host, network interfaces, networks, software
 - Periodic GRAM reporter updates
 - Load, queues, users that have access, running applications
 - By default: Every 30 seconds and no user or application information

- Finding GRAM contacts for a host
- Determine status of applications
- Currently, complex queries not performed often

Workload Characterization

- 20 hours of trace data
- Recorded when there was a single server
- 86,695 connections
- 633,672 operations
- 8.8 operations per second

Operations in Workload

<table>
<thead>
<tr>
<th>Operation</th>
<th>Number of Operations</th>
<th>Percent of Total Operations</th>
<th>Percent of Operations Resulting in Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>1,044</td>
<td>0.73</td>
<td>90.33</td>
</tr>
<tr>
<td>Delete</td>
<td>81</td>
<td>0.06</td>
<td>7.41</td>
</tr>
<tr>
<td>Modify</td>
<td>13,461</td>
<td>93.84</td>
<td>2.83</td>
</tr>
<tr>
<td>Search</td>
<td>7710</td>
<td>5.37</td>
<td>76.10</td>
</tr>
<tr>
<td>Total</td>
<td>143,466</td>
<td>100.00</td>
<td>7.41</td>
</tr>
</tbody>
</table>

- Modifies are from GRAM reporter
- Adds are tried when modifies fail
 - Typically adds also fail

Open Connections

- 90 open connections on average
- Periodic spike: Netscape LDAP maintenance?

Connection Properties

- 88% less than 120 sec, 97% less than 240 sec
- 97% have 2 or less operations
Classification of MDS Connections
- Classified 99.96% of all connections
- 67.45% are connections from GRAM reporters
- 22.34% are connect, bind failure, unbind, close
- Use this knowledge in our experiments

Experimental Analysis I
- Perform trace-driven simulation of accesses to the MDS
- Trace data does not record changes to entries in the MDS
 - Use our knowledge of Globus to construct realistic entries off-line
 - For example, place a random number as the value in the free nodes attribute
- Simulator:
 - Written in Java
 - Runs on 1+ workstations
 - Simulate accesses in real time, faster, or slower

Experimental Analysis II
- Use 1 or 2 UltraSparc workstations to run MDS servers
- Start the server(s)
- Load initial MDS contents
- Run the simulation
- Record MDS access times in the simulator

Single Server Comparison

<table>
<thead>
<tr>
<th>Load</th>
<th>LDAP Server</th>
<th>Add (ms)</th>
<th>Delete (ms)</th>
<th>Modify (ms)</th>
<th>Search (ms)</th>
<th>Weighted Average (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Vendor 1</td>
<td>121</td>
<td>106</td>
<td>159</td>
<td>2463</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Vendor 2</td>
<td>933</td>
<td>1230</td>
<td>903</td>
<td>1358</td>
<td>928</td>
</tr>
</tbody>
</table>

OpenLDAP crashed unless we limited open connections to 50 and new connections per second to 20
- Vendor 2 optimized for search performance
- CPU load for Vendor 2 was 5.5, Vendor 1 was 0.1

Indexing
- Hash table for a specific attribute keyed on the value
- Advantage: Improve search performance
- Disadvantage: Must be maintained
- We added an index to the Vendor 1 server
 - GlobalJobID attribute
 - Improve job status searches which are made over the entire tree
 - Improved search performance by 79%
 - Decreased update performance by 38%
 - Slower updates may not be worth faster searches

Data Distribution
- Purpose is to
 - Support very large databases
 - Improve add, modify, and delete performance
 - Can improve search performance
- For our experiment, we:
 - Distribute data across 2 servers
 - NASA & Alliance on one, everything else on the other
 - Used the LDAP server from Vendor 1
 - Performed a simulation in ½ real time
Data Distribution II

• In general, we found that:
 • Update time increased by 27%
 • Due to higher load on one machine
 • Search time decreased by 76%

• On the NASA/Alliance server:
 • XXX initial records
 • Update time
 • Search time

• On the other server:
 • XXX initial records
 • Update time
 • Search time

Globus 1.1.3

• Grid Resource Information Server (GRIS) on each machine
 • OpenLDAP front end over a GRAM reporter
 • Can be queried (almost) like any other LDAP server

• Organizational server
 • OpenLDAP
 • GRIS servers register
 • Chosen to get data from GRIS servers
 • Caches data from GRIS servers
 • Could be higher-level servers or not

Conclusions

• Analyzed accesses to the Globus information service
 • 90 connections open on average
 • 8.8 operations per second
 • 94% of operations are modifies

• Evaluated LDAP servers using trace-driven simulations
 • OpenLDAP not very robust
 • One commercial server has better performance
 • Other commercial server appears to be optimized for search performance and SMPs
 • Indexing reduces search time but increases update time
 • Distributing data increased our update time and decreased the search time

Future Work

• Evaluate more configurations of LDAP servers
• Evaluate Globus v1.1.3 MDS
• Develop a simulation environment with synthetic users, machines, daemons
 • More flexible experiments
 • Planning future needs