Proceedings

from the

2001 NASA
Occupational Health
Conference

Risk Assessment and Management
In 2001

February 25 - March 2, 2001
Galveston Island, Texas
Proceedings
from the
2001 NASA Occupational Health Conference
Risk Assessment and Management in 2001
February 25 – March 2, 2001
Galveston Island, Texas

Prepared for
The National Aeronautics and Space Administration
Occupational Health Program Office
John F. Kennedy Space Center, Florida

By
The Bionetics Corporation
Mail Code BIO-5
Kennedy Space Center, Florida 32899

Under Contract S-NAS10-001
to the
Dynamac Corporation
Proceedings
from the
2001 NASA Occupational Health Conference
Risk Assessment and Management in 2001
February 25 – March 2, 2001
Galveston Island, Texas

Foreword 9
Welcome and Opening Remarks 10
Plenary Sessions 11
Johnson Space Center Tour 48
Keynote Address 73
Breakout Sessions 84
Professional Development Courses 104
Welcome Reception 106
Continuing Education 108
Conference Participants 109
Welcome and Opening Remarks
William Barry, MD, MPH
Manager, NASA Occupational Health Program
Principal Center, Kennedy Space Center

Welcome and Opening Remarks
Guy Camomilli, CSP, CHMM, CHSP
Senior Industrial Hygienist
NASA Occupational Health Program
Principal Center, Kennedy Space Center

Welcome and Opening Remarks
Fatima Phillips, MD, MPH, MS
Manager, Occupational Health Program Support Office
The Bionetics Corporation
Principal Center, Kennedy Space Center

Principal Center Updates
William Barry, MD, MPH
Manager, NASA Occupational Health Program
Principal Center, Kennedy Space Center

NASA Headquarters Updates
Richard Williams, MD, MPH
Acting Chief Health and Medical Officer
NASA Headquarters
**Healthy People 2010**

Cathy Angotti, RD, LD  
Director, Occupational Health  
Office of the Chief Health and Medical Officer  
NASA Headquarters

**Biological Terrorism:**  
*The Current Threat*  
CDR Randy Culpepper, MD, MPH  
Operational Medicine  
United States Army Medical Research  
Institute of Infectious Diseases

**Occupational Safety and Health Administration (OSHA) Recordability**  
Linda Ballas  
Linda Ballas & Associates

**Workers Compensation Issues**  
Larry Regan  
Assistant United States Attorney  
United States Attorney’s Office  
Western District of Louisiana

**The Role of Space Medicine in Management of Risk in Spaceflight**  
Jonathan B. Clark, MD, MPH  
Risk Analysis and Management  
NASA Johnson Space Center
Advanced Power and Propulsion: Insuring Human Survival and Productivity in Deep Space Missions
Astronaut Franklin Chang-Diaz, PhD
Johnson Space Center

Emotional/Mental Challenges Pre, In, and Post-Flight
Astronaut Janice Voss, PhD
Johnson Space Center

Johnson Space Center Tour
Dawn Fadner
Assistant Tour Coordinator
Environmental Health Laboratory Supervisor/Director
Johnson Space Center

Contracting Officer Technical Representative Briefing
Alan Gettleman, MBA
Program Analyst
NASA Occupational Health Program
Principal Center, Kennedy Space Center

An Overview of the Final OSHA Ergonomics Standard
Graciela Perez, ScD, CPE
University of California
Los Alamos National Laboratory
Ergonomic Panel Discussion
Bruce Kelly, CIH, CSP
Senior Industrial Hygienist
Occupational Health Program Support Office
The Bionetics Corporation

Bridging the Gap Between Aerospace Medicine and Occupational Health
Jeff Davis, MD, MS
Preventative Medicine and Community Health
University of Texas Medical Branch

What Are Those Martians Doing With Our Space Crafts?
—An EAP Response to Mission Losses
Cynthia Cooper, MFT, CADC, CEAP
Employee Assistance Coordinator
Jet Propulsion Laboratory

Resiliency Skills for the 21st Century:
How to Add Life to Your Years and Years to Your Life?
Jack Singer, PhD
Luncheon—Key Note Speaker
Psychologically Speaking
BreakOut Sessions

Physician’s Breakout Session
William Barry, MD, MPH — Moderator
Manager, NASA Occupational Health Program
Principal Center, Kennedy Space Center

Nurses Breakout Session
NASA Occupational Health Database
Helen Shoemaker, MS, RN, COHN-S/CM
Occupational Health Program Support Office
The Bionetics Corporation
NASA Occupational Health Program

Nurses Breakout Session
Joint Commission on Accreditation of Healthcare Organizations (JCAHO)
Martin Myers, BSN, RN
Performance Improvement
Johnson Space Center Flight Medicine Clinic

Nurses Breakout Session
Injury/Illness Case Management
Connie Hesselgesser, RN
Case Manager, Performance Improvement
Johnson Space Center Occupational Health Clinic
Industrial Hygiene Breakout Session
Hydrazine Detection at the 10 PPB Level
John Houseman, CIH
Jet Propulsion Laboratory

Industrial Hygiene Breakout Session
Noise Control
Reginald Keith, MS, PE
Hoover & Keith, Inc.
Pre Conference Events

Professional Development Course 1
Exposure Assessment Strategies and Statistics
Bernard Silverstein, CIH
Bernard D. Silverstein, Inc.

Susan Arnold, CIH
Bernard D. Silverstein, Inc.

Professional Development Course 2
Advanced Cardiac Life Support (ACLS) Recertification Course
University of Texas Medical Branch at Galveston

Mardi Gras Welcome Reception
Moody Gardens Hotel
View Finders Terrace
Sheri Roberson
Meeting and Communications Specialist
Occupational Health Program Support Office
The Bionetics Corporation
NASA Occupational Health Program

Pg 104

Pg 105

Pg 106
**Foreword**

Knowledge Management is the utilization of systematic approaches to collect, analyze, disseminate and use knowledge to create added value. One value created is the reduction of risk to mission success. The paradigm exists that the more valuable the knowledge, the less sophisticated is the technology to contain it. Explicit knowledge can be shared through hard copy papers or reports, books, or electronic media. Tacit knowledge – from experience, rules of thumb, intuition, etc. - can account for up to 80% of valuable knowledge. This tacit knowledge is best shared through people. Throughout the year through various communities of practice which include ViTS teleconferences, a Health Physics Conference, and small group visits between Centers have facilitated this exchange of knowledge. This year’s NASA annual Occupational Health Program (OHP) Conference brings a wider range of specialties and knowledge together in one area. Risk management and audit issues, this year’s Conference emphasis, are in line with NASA’s continued efforts to insure mission success.

NASA, in re-assessing its activities produces actions and recommendations to serve as a framework in which to safely and successfully execute our Agency’s mission. This effort to enhance mission success is reflected in the themes of the NASA Integrated Action Team (NIAT) report. Several of these themes apply to our Conference emphasis and OHP’s continued efforts. Theme I “Developing and Supporting Exceptional People and Teams” applies to all disciplines represented by OHP. The specific action (NIAT-1) stated under this first theme is to “Provide a physically and psychologically safe and healthy work environment for all NASA employees.” During the past year, in looking at new ways to detect skin cancer and discussing improved Hydrazine detection, we have touched upon Theme II “Delivering Advanced Technology.” Theme III “Understanding and Controlling Risk” also reflects this Conference’s emphasis. The action (NIAT-7) under this theme is “Risk Identification, Assessment, and Management.” Theme IV is “Ensuring Formulation Rigor and Implementation Discipline.” OHP’s disciplines and activities reflect some of the theme’s actions – “Integrated Review Process (NIAT-10), “Surveillance” (NIAT-13), “Verification and Validation” (NIAT-14). “Improving Communication” is Theme V. The actions under this are “Organizational Communication” (NIAT-16), and “Knowledge Management” (NIAT-17).

The Conference and speakers have afforded the attendees an opportunity to see how integration of OHP discipline knowledge is frequently necessary to reach NASA’s risk management goals. Topics in this year’s Conference range from the discussion of internal work pressures and stress to external risks that can threaten NASA’s mission.

Besides our conference topics, we have provided specific educational opportunities and a tour of the host NASA Center – Johnson Space Center.

While these Conference Proceedings capture some of the explicit information from the conference, it is our hope that this conference has also allowed an opportunity to capture and exchange some of the wide expanse of our attendees’ tacit knowledge.

As always, it has been a pleasure to work and interact with NASA’s exceptional people and teams.

William S. Barry, M.D., M.P.H.
Manager, NASA Occupational Health Program
Dr. William Barry, Manager of the NASA Occupational Health Program, opened the conference, welcomed all attendees, gave an overview of the purpose and structure of the Conference, and introduced his staff. They, in turn, described the specialty areas of their responsibilities and highlighted recent activities of general interest.

Staff contributors included Mr. Guy Camomilli, NASA Senior Industrial Hygienist, Mr. Alan Gettleman, NASA Program Analyst, and Dr. Fatima Phillips, Manager, Occupational Health Program Principal Center Support Office (The Bionetics Corporation). Some of the subjects addressed were: new and pending requirements, both from within and external to NASA; the growing content and use of the dedicated NASA OHP Web Site; and new training provisions at individual Centers covering specific subjects and broadly through joint collaborations and invited experts (as via ViTS and these Agency Conferences). Dr. Phillips also introduced her support staff and overviewed their roles at the Principal Center.

Editors' Note: Summary provided by Dr. G. Wyckliffe Hoffler.
NASA’s Occupational Health Program Manager briefed attendees on current Agency initiatives and projects affecting Center Occupational Health personnel. Plans, insight, and expectations for the coming year will be discussed.

OHP Areas of Emphasis

- NASA Integrated Action Team (NIAT)
- Self Assessment Checklists
- Handbook
- Individual Center Activities
- Audit Tool

• NASA Integrated Action Team (NIAT)

A required framework to safely and successfully execute NASA’s mission.

Themes:
- Developing and Supporting Exceptional People and Teams
- Delivering Advanced Technology
- Understanding and Controlling Risk
- Ensuring Formulation Rigor and Implementation Discipline
- Improving Communication

• NASA Integrated Action Team

Theme: Developing and Supporting Exceptional People and Teams

NIAT I Action: “Provide a physically and psychologically safe and healthy work environment for all NASA employees.”

A. Continued implementation of the Agency Safety Initiative
B. Implement key recommendations for reducing stress
   1. Reassign new initiative, explore aligning workforce
   2. Enhance EAP stress efforts, and retain telephone depression screening capability
   3. Establish a complaint and improvement opportunity reporting system for workplace stress
C. Develop training modules and train supervisors and employees to be aware of stress levels and mitigation
D. Implement key recommendations for reducing stress
• Self Assessment Checklists
  • Infection Control
  • Environment of Care
  • Medication Management
  • Professional Credentialing and Privileging

• Occupational Health Handbook
  • Information on specific topics
  • Self Assessment Checklists
  • ISO type flow diagrams

• Individual Center Activities
  • Center Preventive Health Efforts
    • Number of Clinic Preventive Health Patients
    • Participants in Health Programs
    • Participants in Fitness Centers

• Individual Center Activities
  • Center Preventive Health Efforts

• Individual Center Activities
  • Center Preventive Health Efforts

• Individual Center Activities
  • Center Preventive Health Efforts

• Occupational Health Audit Tool
  • Health Care
  • Employee Assistance Program
  • Fitness Centers
  • Environmental Health
  • Health Physics
From DOHA to (A)CHMO

The Quest for a Suitable Acronym
**Major roles and responsibilities remain unchanged**
- Seamless transition
- Staff remains the same

**Principal Center remains responsible for implementation oversight**

**Primary administrative support for Health Council**

**Headquarters oversight for Medical Quality Improvement and Assurance Effort**
- Medical Quality Improvement Expert

**Credentials and Privileging Process**
- Cornerstone of practice
- Medical Staff Review Functions
- Administrative and clinical

**Periodic Site Visits**
- Emphasis on safety of practice, infection control, etc.
- Checklist Methodology
- Principal Center, augmented as necessary
- JCAHO influence

**Medical Quality Assurance Program**
- Protected incident investigation methodology

**Aerospace Medicine Residencies**
- Wright State University
- University of Texas, Galveston

**East-West Space Science Center**

**Sponsorship of workshops and skills development seminars**

**Video-teleconference series on Selected Health Topics**
- 2 per year
- 15-20 hours CME offered per series

**Occupational Health Policies**

**Public Health Policies**

**Bioethics**

**Health Surveillance and Maintenance in the Workplace**

**Emerging Diseases**

**Aging**

**99 Hours CME Delivered**

**Clear distinction between motives of investigators and research subjects**

**Potential conflict between need to rest hypotheses and requirement to respect and protect subjects**

**Many prospective research subjects believe research connotes benevolence**

**History of abuse and exploitation**
- Tuskegee Syphilis Study
- Human radiation studies

**Oversight is required to ensure abuses do not occur**

**1994 - Advisory Committee on Human Radiation Experiments (ACHRE) created**
- Investigate reports of federally sponsored human research involving radioactive materials
- Assess current state of protection for research participants

**1995 - National Bioethics Advisory Commission established**

**1997 - "No person in the United States should be enrolled in research without the twin protections of informed consent by an authorized person and independent review of the risks and benefits of the research" - Clinton, 1997**
Care and Protection of Research Subjects and Patients

- NASA is a research organization
- Human research is necessary to develop countermasures to microgravity and the extreme environment of space
- Human research will be necessary to develop the evidence base to support the practice of medicine in space
- Animal research is necessary to explore the fundamental biology of microgravity
- NASA Institutional Review Boards and the NASA Animal Care and Use Committee exist to protect the health and safety of human research subjects and to assure the ethical and humane treatment of animal research subjects

- No other opportunities for research subjects on orbit at present
- No immediate benefit for Astronauts as participants in research, may benefit subsequent crewmembers
- Astronauts begin in good health - why volunteer to participate in research that may involve risks?
- Why volunteer to participate in additional physiological tests that may reveal a medical problem?
- Investigator/subject dynamics are particularly difficult.

Flight Surgeons

- Primary purpose is to care for the crewmembers
- Essential link in NASA human research

OCHMO Role

- Serve as a center of excellence for Bioethics in the Agency and for the Nation
- Provide review and oversight for NASA IRB and ACUC activities
- Provide expertise to investigate untoward events if necessary
- Liaison to NBAC
- Work with NASA Chief Scientist to help address research integrity issues (if required)

Health Care in Space - Long Duration Flight

- Primary prevention
- Secondary prevention
- Tertiary prevention

Pre-flight
- Preventive Health Screening/Countermasures
- Preventive Health Screening/Countermasures
- Preventive Health Screening/Countermasures

In-flight
- Limited Countermasures & Intensive Monitoring
- Improved Countermasures & Intensive Monitoring

Post-flight
- Rehabilitation
- Maintenance of Health

1999 2006 2010

Medicine of Extreme Environments

- Provide a national resource for developing databases and analysis of experience in the medicine of extreme environments
  - Polar medicine
  - Submarine analogs
  - Surface ship analogs
  - Contingency support experience/Military medicine
- Development of space medicine practice
  - Workshops co-sponsored by OCHMO and JSC
  - Develop "best practice" based on available evidence
- Explore analog opportunities
  - Underwater habitats
  - Remote site medical support
  - Confinement/isolation

- Close liaison with Code M and JSC Medical Operations
  - Teaching opportunities
- Ongoing review/analysis of the Longitudinal Study of Astronaut Health
- Aerospace Medicine
  - Administrative support to Medical Policy Board
  - Support to NASA non-astronaut pilots
  - Intercenter Aviation Operations Panel (IAOP) participation
- Review and validation of health related research requirements and research deliverables
New role for CHMO - established by NASA Administrator
Serves as the "FDA" of NASA
Review and validation of health research requirements
  - Requirements articulated by Code M
    - Automated Corpus
    - Flight Surgeons
    - Mission Support Personnel
  - Reviews accomplished via panels or advisory groups with nationally recognized expertise in subject matter under review

Review and validation of health research deliverables
  - Pharmacological regimens
  - Exercise protocols
  - Medical treatment protocols, etc.
  - Reviews accomplished via panels or advisory groups with nationally recognized expertise in subject matter under review.

The CHMO assists the Administrator to ensure the health and safety of NASA employees in space and on the ground by establishing guidelines for health and medical practice in the Agency, developing health and medical policy, providing oversight of health care delivery and professional competency Agency-wide, and reviewing/validating research requirements and deliverables. The CHMO also monitors human and animal research and clinical practice to ensure that the Agency adheres to the highest medical and ethical standards and satisfies all regulatory and statutory requirements.

The Office of the Chief Health and Medical Officer

- CHMO will maintain oversight
  - health and safety initiatives
  - health care in space
  - external review and accreditation
  - research requirements and deliverables review
- CHMO will facilitate key agency programs
  - support health care for each NASA field center
  - women's health
  - coordinate telemedicine technology transfer
  - multicultural public health education
  - agency-wide multi-phased Coping with Stress
  - support NASA flight ops
  - establish preventive and corrective actions based on critical health and safety issues

Risk
- Monitoring & warning
- Increased skin cancer and related risk
- Workforce stressors
- Multicultural work environments
- Exposure to international travel

Radiation
- Physical hazards (noise)
- Space systems engineering design
- Confined environments
- Hypothermia
- Microgravity-induced physiologic changes
- Human machine interfaces

Stress
- Toxic exposures
- Environmental issues
- Biological hazards
- Chemical hazards

Noise/Vibration
- Physical hazards
-sigma
- Physical hazards

Habitability
- Toxic exposures
- Environmental issues
- Biological hazards
- Chemical hazards

Toxicology
- Toxic exposures
- Environmental issues
- Biological hazards
- Chemical hazards
Healthy People 2010
Catherine M. Angotti, RD, LD
Director, Occupational Health
Office of the Chief Health and Medical Officer
NASA Headquarters

NASA Occupational Health Program
Conference
Galveston, Texas
February 25-March 2, 2001

Catherine M. Angotti, R.D.
Office of the Chief Health and Medical Officer

Role of Prevention in the National Health Care Agenda

Background: Major HP 2000 Goals closely tied to prevention were not met nationally

- Physical activity DID NOT improve; evidence that it actually decreased
- Obesity DID NOT decrease; increased in all groups, actually doubling in children
- Incidence of Type II diabetes DID NOT decrease; evidence that it increased in all age groups

Prevention and HP 2010
In the 1990’s NASA identified 85 of the 226 HP 2000 objectives as being applicable to the Agency workforce

- Selected the objective relating to exercise, increase physical activity by 30%, for decadal focus
- Used first year of Exercise for the Health of It data for baseline year
- Heartly inter-Center, multi-year competition. Improved exercise participation even though goals not met. HQ, SSC, and DFRC came closest

Prevention and HP 2010
Jan. 4, 2001, President Clinton issued a White House Directive on Preventive Health Services at the Federal Workplace

- Acknowledged progress made in preventive screening activities and the challenges remaining to motivate positive lifestyle changes for disease prevention
- Designated federal worksites as the logical place to provide preventive health information and programs such as smoking cessation, sun avoidance, physical fitness, etc.
- Each Federal agency required to provide OPM with program descriptions for Best Practices publication
Prevention and HP 2010

HP 2010 has two major goals
(467 objectives grouped into 28 focus areas)

- Increase the years and quality of healthy life
- Eliminate health disparities

The Nation is still trying to move from tertiary medical care to self-reliance and equal access to preventive services

Prevention and HP 2010

Surgeon General’s Leading Health Indicators

- Areas of broad public health importance
- Linked to HP 2010
- Measurable at the State and local levels
- Ability to motivate people to change behavior

Prevention and HP 2010

Leading Health Indicators

- Physical activity*
- Overweight and obesity*
- Tobacco use*
- Substance abuse
- Responsible sexual behavior
- Mental health*
- Injuries and violence*
- Environmental quality*
- Immunizations*
- Access to healthcare

Prevention and HP 2010

Economic Factors

- Environmental-type changes, not changes in genetics, lie behind increases in obesity and overweight over the past two decades.

- People may eat unhealthy diets and maintain sedentary lifestyles because future health is a lower priority than current taste and convenience or demanding schedules.

- Need a broader outcome variable, e.g. health or healthy lifestyles, rather than merely nutrition or weight status.

Prevention and HP 2010

Like the 90’s NASA Fitness Challenge efforts to meet HP 2000 goals, HP 2010 prevention efforts will have the greatest impact on health risk reduction by focusing on the top two leading health indicators; physical activity (exercise) and overweight and obesity (diet).

Prevention and HP 2010

Why promote physical activity?

- Can reduce CHD by 50%
- Can reduce hip fractures in the elderly by 40-50%
- Can reduce the impact of depression
  - Recent Duke study showed that after 1 year, exercise was as effective in reducing the impact of depression as the most common medication and after 2 years it was even more effective.
- Can reduce and prevent Type II diabetes
- Can reduce severity and prevent hypertension
- Can reduce body fat
- Can enhance psychological well-being
Prevention and HP 2010

Why promote normal body weight?

- Obesity is associated with higher death rates
- Obesity increases risk of hypertension, hyperlipidemia, and diabetes
- Obesity carries a social stigma and decreases self-esteem

Prevention and HP 2010

Mental Health as a Leading Health Indicator

- No single illness interferes with health and productivity more than depression. Mental illness is second only to cardiovascular disease (leading cause of death and disability) for impact and prevalence.
- Recent Duke University study showed that after 1 year, depressed individuals who exercised regularly showed improvement similar to those on medication. After 2 years, the exercise group showed greater improvement.

Back-up

We should encourage individuals to go on a program of exercise and good nutrition to improve their health and quality of life NOT just to lose weight

Back-up

Prevention and intervention activities are complicated by political will, knowledge, and social strategies.

Prevention program emphasis should be placed on small behavioral changes with a strong focus on motivating factors

Back-Up

Increase years and quality of life
First goal focuses not only length of life but also the quality and health of those added years. (HP 2000 goal was to increase healthy life span)

This goal looks at physical and mental health as well as interactions in one's social and physical environment

Back-Up

Eliminate health disparities
HP 2000 sought only to reduce health disparities Second HP 2010 goal recognizes the need to take a multidisciplinary approach as the U.S. population becomes more diverse with certain ethnic populations continuing to have higher rates of infant deaths, CHD, HIV, etc.

These conditions translate into poorer general health and reduced life expectancy.
At beginning of the 20th century leading causes of death dominated by infectious diseases
100 years later, the leading causes of death can be attributed, for the most part, to behaviors and environmental factors.
Leading Health Indicators reflect the major public health concerns in the U.S.
Intended to help everyone more easily understand the importance of health promotion and disease prevention and to encourage wide participation in improving health in the next decade.

Life is full of golden opportunities carefully disguised as insurmountable problems.
Bioterrorism is a very real threat to US civilians as we have seen an increased worldwide interest in bioterrorism over the past several years. Although the risk of a bioterrorism event occurring in any one location is low, the catastrophic consequences from an event could be overwhelming.

Our country is vulnerable to foreign and domestic terrorism and we must prepare to defend against biological weapons such as anthrax, smallpox, plague, and botulinum toxins.

The first responders in a biological terrorist attack will be our healthcare providers in emergency rooms and primary care clinics. They must have a raised index of suspicion in the setting of mass casualties for the possibility of bioterrorism. The epidemiology of a bioterrorist event would be similar to that of naturally occurring diseases. Medical countermeasures such as pre- and post-exposure antibiotics are available against many of the bioterrorist agents and we must remember that some of the agents are highly transmissible person-to-person (e.g., smallpox, pneumoniia plague). A tiered laboratory response network is being established by the Centers for Disease Control and Prevention to aid in the rapid detection and diagnosis of biological terrorism agents.
The Changing World

Cold War
- For 50 years, military power was bi-polar
  - Western free world
  - Eastern block countries tied to the Soviet Union
- Threat was Mutual Assured Destruction

Now
- Classic threat has disappeared
- Nations with contrary ideological and economic motives
- The global political environment is more complex, uncertain, and volatile
- Proliferation of Weapons of Mass Destruction

"Any new war will be characterized by mass use of air power, various types of rocket, atomic, thermo-nuclear, chemical and biological weapons."

Soviet Defense Minister Georgi Zhukov, 1956

State Supporters of Terrorism

<table>
<thead>
<tr>
<th>Country</th>
<th>BW Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuba</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Iraq</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Iran</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Libya</td>
<td>Confirmed</td>
</tr>
<tr>
<td>North Korea</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Sudan</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Syria</td>
<td>Confirmed</td>
</tr>
</tbody>
</table>

Why is Biodefense a Very High Priority?
- Low risk occurrence - catastrophic consequences
- Protect civilian populations, airfields, ports, depots
- Prevent, mitigate terrorism against population centers
- Bioengineering technology may lead to new pathogens

Soviet BW Priorities

"Agents Likely to be Used"
- Anthrax: 4000 tons annually
- Smallpox: 300 tons annually
- Marburg: 250 tons annually
- Plague: 2200 tons annually
- Smallpox
- Plague (engineered?)
- Anthrax
- Botulism
- VEE
- Tularemia (engineered?)
- Q Fever
- Marburg
- Influenza
- Melioidosis
- Typhus

U.S. Vulnerability

February 1993: World trade Center bombing
- Foreign terrorism in the U.S.
U.S. Vulnerability

June 1996: Dhahran, Saudi Arabia military barracks bombing

Reexamination of DoD security programs to protect its forces overseas

Bioterrorism

The premeditated, unlawful use or threat of use of microorganisms or toxins derived from living organisms:

- to produce death or disease
- in humans, animals, or plants
- to create fear and/or intimidate governments & societies
- in the pursuit of political, religious, or ideological goals

Protection

Through integration and teamwork

Physical Countermeasures
- Detection
- Individual protection
- Collective protection
- Decontamination

Intelligence
- Agent
- Delivery system
- Organization
- Time

Medical Countermeasures
- Vaccines
- Diagnostics
- Therapeutics

Education & Training
- Health care providers
- Electronic communication
- Distance learning

Possible Bioterrorism Agents

BACTERIA
- Bacillus anthracis
- Yersinia pestis
- Francisella tularensis
- Brucella species
- Coxiella burnetii
- Chlamydia sp.
- Salmonella sp.

TOXINS
- Staphylococcal enterotoxins
- Botulinum toxins
- Ricin
- Tetrodotoxin mycotoxins

VIRUSES
- Alphavirus encephalitis viruses
- Varicella virus (smallpox)
- Hemorrhagic fever viruses (Marburg and Ebola)

* Included in the former U.S. offensive program (destroyed 1971-1973)
Bioterrorist Agents

Most Likely Candidates

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Toxins</th>
<th>Viruses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthrax *</td>
<td>Botulinum *</td>
<td>Smallpox *</td>
</tr>
<tr>
<td>Plague *</td>
<td>Ricin</td>
<td>VHF's *</td>
</tr>
<tr>
<td>Tularemia *</td>
<td></td>
<td>VEE</td>
</tr>
<tr>
<td>Salmonella</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Highly contagious, easily disseminated, or highly lethal

How likely is a Bioterrorist Attack?

“Not a matter of if it's going to happen, it's when”

Robert Shier
Former FBI's counterterrorism section

Recent Bioterrorist Activity

- FBI
  - Increased interest - few actual verified incidents
  - Bio threats >>> chemical threats
  - Over 220 current NBC investigations
- Sources of information for terrorists
  - Internet, gun shows, survivalist fairs
  - The Terrorists Handbook
  - Kurt Saxon

Terrorist Organizations

- Armed Islamic Gp.
- Aum Shinrikyo
- Hamas
- Japanese Red Army
- Khmer Rouge
- Kundistan Workers' Party
- Abu Nidal Org.
- Abu Sayyaf Gp.
- Gama's Al-Isalmiya
- Harkat Ul-Ansar
- Al-Jihad
- Aum Shinrikyo

Shining Path
- Liberation Tigers of Tamil Eelam
- Rev. Armed Forces of Colombia
- Euskadi Ta Askatasuna
- Kadhaf
- Kamleh Chi
- Manuel Rodriguez Patriotic Front
- Mujahedeen-e-Khalq Gp.
- National Liberation Army
- Palestine Liberation Army
- W. German Red Army faction
- Palestine Liberation Fd
- POG Fd for Liberation of Palestine
- Rev. Day, 17 November
- Rev. People's Liberation Party/Front
- Revolutionary People's Struggle
- Tupac Amaru Rev. Movement
- Order of the Rising Sun
- Bhagwan Shree Rajneesh

Aum Shinrikyo
Tokyo Sarin Attack
March 1995

- 15 Subway stations affected
  - Hibiya Line had heaviest casualties
- 3,796 injured
- 1,000 require hospitalization
- 12 dead or dying
**Biological Weapons**
**Aum Shinrikyo**
- Asahara's first WMD interest
- Dedicated toxin production laboratory as early as 1990
- Two new labs: Kamakura, and Tokyo
- Produced and attempted to aerosolize:
  - Botulinum toxin, Anthrax, Cholera, Q-Fever
- Ebola Zaire - 1993

**Aum Shinrikyo Bioterrorism Activities**
- April 1990 - Tokyo
  - *Botulinum Toxin* released near Diet
- Early June 1993 - Tokyo
  - *Botulinum Toxin* again sprayed from vehicle
  - Timed to coincide with royal wedding
  - Released around Imperial Palace

**Aum Shinrikyo Bioterrorism Activities**
- Late June 1993 - Tokyo
  - Anthrax spores released from office building in East Tokyo
  - Foul smells, "brown" steam, pet deaths
- March 1995 - Tokyo
  - Briefcase devices in subway intended to release Botulinum toxin
  - No reports of any injuries

**Future of Aum Shinrikyo**
- Actively recruiting
- 50 seminars/month
- 15 offices, 16 training centers, 17 factories and other sites
- 100 hideouts / 700+ live-in followers
- Back in the computer business
- Estimated income: $30 million
- Cult is buying real estate

**Other Recent Bioterrorist Activity**
- 1988-90: ~400 bio-hoaxes nationwide
- 1998: Larry Wayne Harris, Las Vegas: *anthrax, vet vaccine*
- 1997: James Dalton Bell: *bot toxin & ricin*
- 1995: Aum Supreme Truth, Tokyo: *anthrax, bot, sarin*
- 1995: Larry Wayne Harris, Ohio: *7 pests* (bubonic plague)
- 1993: Thomas Levy, Canada: *ricin*
- 1992: Minnesota Patriot's Council: *ricin*

**Bioterrorist Threats 1998 - 2000**

<table>
<thead>
<tr>
<th></th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>181</td>
<td>267</td>
<td>155</td>
</tr>
<tr>
<td>Bio</td>
<td>112</td>
<td>187</td>
<td>82</td>
</tr>
<tr>
<td>Chem</td>
<td>23</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Nuc/Rad</td>
<td>29</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Combo</td>
<td>17</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>
**Biological Terrorism**

**The Ultimate Weapon?**

- Easy to procure
- Inexpensive
- Disseminate at great distance
- Invisible
- Detection quite difficult
- First sign is illness
- Overwhelms medical capabilities
- Simple threat creates panic
- Perpetrators escape before effects
- Ideal terrorist weapon

---

**Bioterrorist Threats 1999 - 2000**

<table>
<thead>
<tr>
<th>Disease</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthrax</td>
<td>237</td>
</tr>
<tr>
<td>Ebola</td>
<td>2</td>
</tr>
<tr>
<td>TB</td>
<td>2</td>
</tr>
<tr>
<td>Ricin</td>
<td>3</td>
</tr>
<tr>
<td>Cholera</td>
<td>2</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>2</td>
</tr>
<tr>
<td>Bubonic Plague</td>
<td>1</td>
</tr>
<tr>
<td>&quot;Black&quot; Plague</td>
<td>1</td>
</tr>
<tr>
<td>Epstein Barr</td>
<td>1</td>
</tr>
<tr>
<td>Phenol</td>
<td>1</td>
</tr>
<tr>
<td>Mercury</td>
<td>1</td>
</tr>
</tbody>
</table>

---

**Line Source**

**Distinctive downwind pattern - plume**

---

**Hypothetical Dissemination**

50 kg avg, 2 km front, exposed city of 500,000

<table>
<thead>
<tr>
<th>Disease</th>
<th>Downwind (reach km)</th>
<th>Dead</th>
<th>Dead/Incapacitated</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVF</td>
<td>1</td>
<td>400</td>
<td>35000</td>
</tr>
<tr>
<td>TBE</td>
<td>1</td>
<td>9500</td>
<td>35000</td>
</tr>
<tr>
<td>Typhus</td>
<td>5</td>
<td>1000</td>
<td>85000</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>10</td>
<td>500</td>
<td>100000</td>
</tr>
<tr>
<td>Q fever</td>
<td>&gt;10</td>
<td>150</td>
<td>125000</td>
</tr>
<tr>
<td>Tularemia</td>
<td>&gt;10</td>
<td>3000</td>
<td>125000</td>
</tr>
<tr>
<td>Anthrax</td>
<td>&gt;&gt;20</td>
<td>9500</td>
<td>125000</td>
</tr>
</tbody>
</table>

---

**Portals of Entry**

- **Cutaneous**
  - Effective barrier vs BW agents (ex. T-2 mycotoxins)
  - Abrasions, wounds, exposed mucosal surfaces

- **Gastrointestinal**
  - Food & water delivery

- **Inhalational (aerosol)**
  - 1-5 micron diameter particles
  - Focal infection (pneumonia)
  - Susceptible to aerosol delivery
  - Hematogenous metastasis, systemic illness
Gastrointestinal Exposure

- "Potentially" significant route of delivery
- Food supply contamination
  - MREs vs locally procured foods
- Water supply contamination
  - Significant contamination unlikely
  - Dilution results in nontoxic exposure
  - Water treatment (chlorination, filtration) effective
- End-user supply: potential risk

Medical Countermeasures

- Minimize potential impact of BW
  - Environmental Detection
  - Protective Equipment
  - Immunization
  - Chemoprophylaxis
  - Diagnosis
  - Therapy

BW RESPONSE TIMELINES

- Pre-exposure: Immunization (active)
- Incubation period: Detection (class or agent specific)
- Overt Disease: Rapid diagnosis
- Treatments:
  - Antibiotics
  - Antivirals
  - Antitoxins
- Communication

Clinical Specimens

- Immediate Post Exposure Period (0-24 hours)
  - Swab: nose, face, hairy portions of face
  - Serum (archive)
- Acutely Ill Patient (>24 hours)
  - Swab: nose and throat
  - Blood, urine, sputum
- Critically Ill Patient
  - Swab: throat
  - Blood, urine, sputum, feces
- Autopsy: spleen, lymph nodes, kidney, liver, brain, and lung

Projected Timeline

<table>
<thead>
<tr>
<th>Action</th>
<th>Elapsed Time, hours</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive sample</td>
<td>0</td>
<td>Chain-of-custody</td>
</tr>
<tr>
<td>Initial risk assessment</td>
<td>1 - 2</td>
<td>Threat/Non-threat</td>
</tr>
<tr>
<td>Sample processing</td>
<td>2 - 7</td>
<td>Sample dependent</td>
</tr>
<tr>
<td>Immunodiagnosis</td>
<td>4 - 5</td>
<td>Antigen/Toxin ID</td>
</tr>
<tr>
<td>Nucleic acid analysis</td>
<td>6 - 12</td>
<td>Workflow dependent</td>
</tr>
<tr>
<td>Culture confirmation</td>
<td>26 h to 30 days</td>
<td>Agent dependent</td>
</tr>
</tbody>
</table>

✓ Assumes unknown agent
Classification of Bioterrorism Laboratory Response Network

- Level D Lab
  - BSGL-4
  - Highest level characterization (Federal)
  - Molecular assays, reference capacity
  - Limited confirmation, transport
  - Rule-out and forward agonstsm

- Level C Lab
  - BSGL-3

- Level B Lab
  - BSGL-2
  - Assumes roles for access and use based on federal

- Level A Lab
  - ASSM levels (state/local)
  - Assumes roles for access and use on federal

Have a Plan: Level A Labs

- Be aware
- Have a plan, test your plan, and keep it updated
- Provide training in-service to your staff
- Know whom to call
- Know chain of custody requirements
- Know shipping requirements

Action Items

- What is the BT level of my lab?
- Is my lab active in the LRN?
- Where is the nearest higher level lab?
- What guidelines should be followed to package and ship biological agents?
- Whom should I call?
- Review your current protocols and safety practices
- Incorporate BT plan into your SOP
- Keep updated
  - Additional agent protocols
  - Additional training opportunities (NLTN, professional societies, etc.)

Have a Plan: Level A Labs

- Be aware
- Have a plan, test your plan, and keep it updated
- Provide training in-service to your staff
- Know whom to call
- Know chain of custody requirements
- Know shipping requirements

Medical Biological Defense BW Vaccine Status

- Anthrax (Bacillus)
- Brucellosis (Bacillus)
- Tetanus (Clostridium)
- Q Fever (Coelomorphae)
- Yersinia Pestis (Yersinia)
- Eastern Equine Encephalitis (EEE)
- Western Equine Encephalitis (WEE)
- Yellow Fever (Plasmodium)
- Russian Virology

- Botulinum (toxin A, B, C1, D)
- Staphylococcal enterotoxins

- 4-8 yrs
- 6-9 yrs

Vaccines

USAMRIID Bioengineered Vaccine Candidates

- Staphylococcal enterotoxins
- Botulinum toxins
- Anthrax (B. anthracis)
- Plague (Y. pestis)
- Alphaviruses
- VEE, WEE, and EEE
Medical Management of BW Casualties

- Epidemiologic assessment
  - Naturally occurring epidemic vs BW attack
- Disease reporting
  - Immediately report to Public Health authorities
- Laboratory specimens
  - Forward to designated laboratories
- Disposition of fatalities

BW Attack or Naturally Occurring Disease

- Environmental detectors may not be sufficient
- Sentinel ill patient: First evidence of BW attack
- Occurrence of large numbers of acutely ill patients
- Unusual or impossible agent for geographical area
- Unusual distribution of disease
- Unexplained number of dead animals
- Direct evidence of munitions with BW agents

Sverdlovsk Epidemic April 1979

- Onset 4 April-15 May
  - Median incubation period: 9-10 days
- 77 patients
  - 55 males, ages 24-52 (mean age 42)
    - 60% of 33 moderate or heavy smokers
    - 50% of 33 moderate or heavy TEQ
  - 22 females, ages 24-66 (mean age 55)
  - 73 of 77 lived/worked within 4 Km in narrow zone southwest of Compound 19 during 1st week of April, 1979
  - 2 April: Prevailing southwest winds 18 Kmph

Sverdlovsk Outcome

- 11 survivors, 66 fatalities (Case fatality = 87%)
- Average length of hospitalization:
  - 2-3 days for fatalities
  - 3 weeks for survivors

Sverdlovsk Estimated Spore Release

- Spore release estimated from a few milligrams to <1 gram (computer modeled)
- LD<sub>50</sub> 8,000-10,000 spores
- Implications: Consequences of intentional release of biological agent
**Shopping Mall Scenario Denver**

- Anthrax aerosolized into shopping mall ventilation
  - 10,000 people present
  - 3,000 people are exposed
- Terrorist announces attack 24 hours after release
- 90% of exposed started on antibiotics by end of second day
- 10% cannot be found initially

**Resources required**

- Total patients hospitalized = 4950 (55%)
- Total ICU beds required = 2925 (33%)
- Total ICU beds available = 180 out of 300
- Total ventilators required = 2601 (29%)
- Total deaths = 855 (9%)

Even a small scale bioterrorism event can overwhelm a city's medical care resources

The 13,000 military beds deployed to the Persian Gulf War would still not provide enough ICU beds (only about 1300)

**Impact on the Medical System**

- Terrorism in the affected population and in the medical care system
- Overwhelming numbers, ICU demands, or special medication needs
- Need for personal protection in medical care, clinical laboratory, and autopsy suites
- Problems with handling of remains

**Summary**

- Bioterrorism is a very real threat to U.S. civilians
- Vulnerable from foreign and domestic terrorists
- Anthrax, smallpox, plague, botulinum toxins
- Suspect BT in setting of mass casualties
- Epidemiology similar to naturally occurring disease

**Summary**

- Medical countermeasures ARE available
- Person-to-person spread uncommon
  - Smallpox
  - Pneumonic plague
- Pre- and post-exposure prophylactic measures exist for many agents
- Tiered laboratory response network

"Awareness without paranoia"
This presentation is intended to provide attendees with an overview of OSHA record keeping guidelines with regard to occupational injuries and illnesses. Both recordable and non-recordable cases will be discussed, various types of medical treatment guidelines, definition of work-relationship and modified duty issues.

OSHA 200 Forms

Recordable Cases:
You are required to record information about every:
- Occupational Death
- Non-Fatal Occupational Illness

Regulations

OSHA Recordkeeping Guidelines for Occupational Injuries & Illnesses
1. An injury or illness is considered work related if it results from an event or exposure in the work environment. The work environment is primarily composed of:
   - The employer’s premises, and
   - Other locations where employees are engaged in work related activities or are present as a condition of their employment. When an employee is off the employer’s premises, work relationship must be established. When on the premises, this relationship is presumed. The employer’s premises encompass the total establishment, not only the primary work facility, but also such areas as company storage facilities. In addition to physical locations, equipment or materials used in the course of an employee’s work are also considered part of the employee’s work environment.

Regulations (cont.)

- Those non-fatal occupational injuries which involve one or more of the following:
  - Loss of consciousness
  - Restriction of work or motion
  - Transfer to another job
  - Medical treatment (other than first aid)
### OSHA Recordkeeping Guidelines for Occupational Injuries & Illnesses

2. All work-related fatalities are recordable.
3. All work-related illnesses are recordable.
4. All work-related injuries are recordable if they require medical treatment or involved loss of consciousness, restriction of work or motion, or transfer to another job.

### Medical Treatment

The following are generally considered medical treatment. Work-related injuries for which this type of treatment was provided or should have been provided are almost always recordable:

- Treatment of infection.
- Application of antiseptics during second or subsequent visit to medical personnel (if only antiseptics are used, now first aid).
- Treatment of second or third degree burn(s).
- Application of sutures (stitches).

### Medical Treatment (cont.)

- Application of butterfly adhesive dressing(s) or sterile strip(s) in lieu of sutures (line out in lieu of sutures).
- Removal of foreign bodies embedded in eye.
- Removal of foreign bodies from wound, if procedure is complicated because of depth of embedding, size, or location.
- Use of prescription medications (except a single dose administered on first visit for minor injury or discomfort).
- Use of hot or cold soaking therapy during second or subsequent visit to medical personnel.

### First Aid Treatment

The following are generally considered First Aid treatment (e.g., one-time treatment and subsequent observation of minor injuries) and should not be recorded if the work-related injury does not involve loss of consciousness, restriction of work or motion, or transfer to another job:

- Application of antiseptics during first visit to medical personnel.
- Treatment of first degree burn(s).

### First Aid Treatment (cont.)

- Application of bandage(s) during any visit to medical personnel.
- Use of elastic bandage(s) during first visit to medical personnel.
- Removal of foreign bodies not embedded in eye if only irrigation is required or cotton swab, Q-tip.
- Removal of foreign bodies from wound, if procedure is uncomplicated, and is, for example, by tweezers or other simple technique.
First Aid Treatment (cont.)
- Use of nonprescription medication and administration of single dose of prescription medication on first visit for minor injury or discomfort.
- Soaking therapy on initial visit to medical personnel or removal of bandages by soaking.
- Application of hot or cold compress(es) during first visit to medical personnel.
- Application of ointments to abrasions to prevent drying or cracking.
- Application of heat therapy during first visit to medical personnel.
- Use of whirlpool bath therapy during first visit to medical personnel.
- Negative X-ray diagnosis.
- Observation of injury during visit to medical personnel.

First Aid Treatment (cont.)

The following procedure, by itself, is not considered medical treatment:
- Administration of tetanus shot(s) or booster(s). However, these shots are often given in conjunction with the more serious injuries; consequently, injuries requiring tetanus shots may be recordable for other reasons.

Reminder: Work-related injuries requiring only First Aid Treatment and that does not involve loss of consciousness, restriction of work or motion, or transfer to another job are not recordable.

The concept of restricted work is based on three criteria as follows:
1. The employee was assigned to another job on a temporary basis.
2. The employee worked at a permanent job less than full time.
3. The employee worked at his permanently assigned job but could not perform all the duties normally connected with it.

Major Changes
Definition of Work Relationship
Work relationship is established under the OSHA recordkeeping system when the injury or illness results from an event or exposure in the work environment. The work environment is primarily composed of:
1. The employer's premises.
2. Other locations where employees are engaged in work-related activities or are present as a condition of their employment. When an employee is off the employer's premises, work relationship must be established; when on the premises, this relationship is presumed.

The phrase, "employee's normal job duties" has been interpreted to include any tasks that the employee performs or may be expected to perform throughout the calendar year.
Modified Issue Positions

Company Ball Fields
Injuries to employees in employer controlled recreational facilities are not recordable unless the employee was engaged in some work-related activity, or was required by the employer to participate.

Modified Issue Positions (cont.)

Company Parking Lots
Injuries to employees on/in parking lots are not presumed to be work-related and are not recordable unless the employee was engaged in some work-related activity.

Modified Issue Positions (cont.)

Travel Status
Injuries and illnesses are not recordable if it occurred during normal living activities; or if the employee deviates from a reasonable direct route of travel.

Modified Issue Positions (cont.)

Prescription Medications
A single dose is the measured quantity of a therapeutic agent to be taken at one time. More than a single dose is recordable.

Modified Issue Positions (cont.)

Occupational Illness
Occupational illnesses must be diagnosed to be recordable. Diagnosis may be by a physician, registered nurse, or a person who by training or experience is capable to make such a determination.
Workers Compensation

Larry J. Regan
Assistant United States Attorney, Senior Litigation Counsel
United States Attorney’s Office, Western District of Louisiana

A. Overview of the Federal Employees Compensation Act
   1. Rationale for the program
   2. FECA is not a retirement program

B. Impact of Fraud on the FECA Program and NASA Budgets
   1. First year FECA Program in effect—$35,000 expended
   2. At end of this century—total program costs—approximately 1.9 to 2 billion dollars.
   3. In beginning funds came out of U.S. DOL budget—within last 20 years—FECA costs for each federal agency/department are charged back to that agency/department at end of DOL’s fiscal year.
   4. FECA Program funds are administered through regional DOL offices by the Office of Workers Compensation Programs (OWCP).
   5. NASA as DOD has set budget figure to cover its FECA Program costs. If budget amount exceeded in any given year comes out of NASA’s hide in other ways. Impacts other areas in NASA. In DA at Installation level—training, we well as health and morale funds lost.

C. Fort Polk - A Community of Success in Curtailing FECA Fraud and Costs
   2. The Method of Attack to Correct the Problem – Criminal prosecution and civil suits. Resulting drop in claims and time out on COP.
   3. The results - 1993-1999 - Attack on problem during this time period was successful. Resulting savings - current and future-money returned to Ft. Polk.
   4. Current situation at Ft. Polk - Four cases are being investigated as of this time. Medical providers are being looked at. Rise in claims beginning as employees
anticipate the next rift. DA civilians are going to have to be reminded again that federal prosecutors and investigators in the Western District of Louisiana are not going to sit by idly while they rip the taxpayers off with fraudulent claims.

5. Not all cases will get prosecuted or handled by civil suit. If a person voluntarily takes steps to end fraudulent claims and agrees to make restitution of overpayment prior to his or her being investigated, then strong consideration would be given to not prosecuting that person.

D. Case Study of Significant Cases:

1. Carlous Pelt
2. Alton Norris
3. Jerry Mitchell
4. Tony Clemons
5. John L. Hoss
6. Civil Case - Richard Bottini - First FECA civil case tried under FFC Act 1998 (5th Cir. Aff'd, S.Ct. cert denied)
The Role of Space Medicine in Management of Risk in Spaceflight

Jonathan B. Clark, MD, MPH
Risk Analysis and Management
NASA Johnson Space Center

The purpose of Space Medicine is to ensure mission success by providing quality and comprehensive health care throughout all mission phases to optimize crew health and performance and to prevent negative long-term health consequences. Space flight presents additional hazards and associated risks to crew health, performance and safety. With an extended human presence in space it is expected that illness and injury will occur on orbit, which may present a significant threat to crew health and performance and to mission success. Maintaining crew health, safety and performance and preventing illness and injury are high priorities necessary for mission success and agency goals. Space flight health care should meet the standards of practice of evidence based clinical medicine. The function of Space Medicine is expected to meet the agency goals as stated in the 1998 NASA Strategic Plan and the priorities established by the Critical Path Roadmap Project. The Critical Path Roadmap Project is an integrated NASA cross-disciplinary strategy to assess, understand, mitigate, and manage the risks associated with long-term exposure to the space flight environment. The evidence based approach to space medicine should be standardized, objective process yielding expected results and establishing clinical practice standards while balancing individual risk with mission (programmatic) risk. The ability to methodically apply available knowledge and expertise to individual and mission health issues will ensure appropriate priorities are assigned and resources are allocated. NASA Space Medicine risk management process is a combined clinical and engineering approach. Competition for weight, power, volume, cost, and crew time must be balanced in making decisions about the care of individual crew with competing agency resources.
Common Questions?
- What are the space flight risks to health and performance?
- How can the health risks best be managed within acceptable range (to ensure mission success and prevent negative health consequences)?
- How do the potential health risks and impacts stack up against other mission priorities?
- What are the minimal medical and health-related resources required? (What do we REALLY need?)

Overview
Human space exploration is inherently risky

Risk Management Strategy:
- Identify risks
- Understand risks
- Reduce uncertainties associated with predicting risk
- Manage risks by preventing or reducing their effects to acceptable levels

Potential Impacts From Significant Medical Event
- Decreased crew performance during mission
- Minor impairment, illness or injury
- Negative behavioral changes
- Decreased performance during descent and egress
- Post-flight debilitation
- Long term health effect
- Crew rescue required due to risk of severe illness, injury, or life threatening event
- Mission failure
- Death of a crewmember

Medical Concerns in Space Operations
The Threats
- Medical events affecting mission timeline
- Medical events affecting mission accomplishment
  - Damaged spacecraft, injured or ill crew
- Catastrophic events affecting vehicle integrity and crew survivability
  - Class 1 alarms:
    - Fire, toxic atmosphere, cabin depressurization

Space Shuttle
- Four orbiter fleet
- Primary component of US Human Space Flight Program
- 7 person crew

Soyuz Launch Vehicle
- Primary component of Russian Human Space Flight Program
- 3 person crew
**Hazards of Space Flight**

- **Space Environment**
  - Reduced Gravity
  - Radiation
  - Vacuum
  - Debris

- **Space Craft Environment**
  - Isolation and confinement
  - Noise and Vibration
  - Closed loop environment (life support)
  - Payloads and construction activities
  - Waste production

- **Space Flight**
  - Remoteness and communication access
  - Flight activity (propulsion, G-forces, impacts)
  - Circadian rhythms and crew schedule changes

---

**Significant Illness or Injury**

Definition: would normally require evacuation, emergency room visit, or hospital admission (as applied to the operational environment)

Compilation of:
- U.S. and Russia space flight data
- Astronaut longitudinal study data
- Submarine crew data
- Antarctic winter-over data
- Military aviator data

Risk of occurrence = 0.06 to 0.07 per person year
Subset requiring advanced life support = 0.02 per person year

---

**Space Fatalities**

- **Russian Space Program**
  - 1 Fatality – Soyuz 1 (1967) parachute entanglement during reentry
  - 3 Fatalities – Soyuz 11 (1971) cabin decompression during reentry

- **U.S. Space Program**
  - 3 Fatalities – Apollo 1 pad fire
  - 7 Fatalities – Challenger STS 51-L (1986) launch breakup

---

**Medical Evacuation from Space**

- Salyut 5 space station (1976) abandoned 49 days into 54 day mission for intractable headaches
- Salyut 7 space station (1985) evacuation 56 days into 216 day mission for sepsis/prostatitis
- Mir space station (1987) evacuation 6 months into 11 month mission for cardiac dysrhythmia

---

39
Medical events in
Russian Space Program

- Events not resulting in mission termination or early return
  - Kidney stone - 1982
  - Hypothermia during EVA - 1985
  - Psychological stress reaction - 1988
  - Spacecraft depressurization - 1997
  - Toxic atmosphere - 1997

Medical events in
U.S. Space Program

- Events not resulting in mission termination or early return
  - Apollo 8 crew - 1st Americans to report SMS
  - Apollo 9 - SMS caused EVA to be rescheduled (1st timeline change due to medical cause)
  - Apollo 11 - Type 1 DCS in command module pilot
  - Apollo 13 - Kidney infection during mission
  - Apollo 15 - Cardiac disrhythmia
    (PVC, PAC, bigeminy) during lunar EVA
  - Apollo Soyuz Test Project - Nitrogen Tetroxide chemical pneumonitis on reentry

Medical symptoms in
U.S. Space Program

- Shuttle program (89 missions) 1981-1998
- 508 crew (439 men, 69 women)
- 4443 flight days
  - 79% reported Space Motion Sickness
  - 98% reported some medical symptom
    - 67% reported headache
    - 64% reported respiratory complaints
    - 59% reported facial fullness
    - 32% reported gastrointestinal complaints
    - 26% reported musculoskeletal complaints

Summary of medical events
Russian space flight experience

<table>
<thead>
<tr>
<th>Mission</th>
<th>Launch date</th>
<th>Crew</th>
<th>Duration</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soyuz</td>
<td>Sept. 27, 1983</td>
<td>Titov, Strekalov</td>
<td>Explosion 90 sec before launch; LES activated, 17G, unharmed</td>
<td></td>
</tr>
<tr>
<td>Soyuz TM2 - MIR</td>
<td>Feb. 6, 1987</td>
<td>Romanenko, Laveikin</td>
<td>326d 11h 174d 2h</td>
<td>Laveikin returned early following cardiac dysrhythmia</td>
</tr>
<tr>
<td>Soyuz TM10 - MIR</td>
<td>Aug. 1, 1990</td>
<td>Manakov, Strekalov</td>
<td>130d 36 min</td>
<td>Crewmember exhibited URI, EVA delayed until recovery</td>
</tr>
</tbody>
</table>

Summary of medical events
Russian space flight experience

<table>
<thead>
<tr>
<th>Mission</th>
<th>Launch date</th>
<th>Crew</th>
<th>Duration</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soyuz 18</td>
<td>May 24, 1975</td>
<td>Klimuk, Savitskyev</td>
<td>836 23 hrs 31 min</td>
<td>First use of oral saline as countermeasure for PFOI</td>
</tr>
<tr>
<td>Soyuz 21</td>
<td>July 7, 1976</td>
<td>Volkov, Zubkov</td>
<td>48d 6h 24 min</td>
<td>Early return of crew due to crewmember headaches</td>
</tr>
<tr>
<td>Soyuz 26</td>
<td>Dec. 1977</td>
<td>Romanenko, Grotchko</td>
<td>96d 3h 59 min</td>
<td>Significant CV deconditioning postflight due to poor compliance with countermeasures</td>
</tr>
<tr>
<td>Soyuz 32</td>
<td>Feb. 25, 1978</td>
<td>Lopukhin, Ryumin</td>
<td>175d 36 mm</td>
<td>Recurrent vestibular symptoms on orbit and postflight</td>
</tr>
<tr>
<td>Soyuz 74</td>
<td>Mar. 12, 1981</td>
<td>Kovalenko, Savichnykh</td>
<td>74d 18h 36 mm</td>
<td>Significant postflight vestibular disturbances</td>
</tr>
<tr>
<td>Soyuz 75</td>
<td>May 12, 1982</td>
<td>Bersenyov, Lebedev</td>
<td>211d 8h 25 min</td>
<td>Reported renal colic possible urethritis, no mission impact</td>
</tr>
</tbody>
</table>
Summary of medical events
Russian space flight experience

<table>
<thead>
<tr>
<th>Mission</th>
<th>Launch date</th>
<th>Crew</th>
<th>Duration</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vostok 1</td>
<td>April 12, 1961</td>
<td>Gagarin</td>
<td>1hr 48min</td>
<td>First human space flight</td>
</tr>
<tr>
<td>Vostok 2</td>
<td>July 21, 1961</td>
<td>Titov</td>
<td>1d 1hr 18min</td>
<td>First reports of space motion sickness</td>
</tr>
<tr>
<td>Voskhod 2</td>
<td>March 18, 1965</td>
<td>Belyayev, Leonov</td>
<td>2 hrs 2 min</td>
<td>First EVA visor fogging</td>
</tr>
<tr>
<td>Soyuz 1</td>
<td>April 23, 1967</td>
<td>Komarov</td>
<td>1d 45 min</td>
<td>Parachute system failed first space flight casualty</td>
</tr>
<tr>
<td>Soyuz 11-</td>
<td>June 6, 1971</td>
<td>Dobrovolsky, Volkov, Patsayev</td>
<td>2d 18hrs 2 min</td>
<td>First space station, nearly sudden depressurization caused death of crew members</td>
</tr>
<tr>
<td>Soyuz 18a</td>
<td>April 5, 1975</td>
<td>Lazarev, Makarov</td>
<td>21 min</td>
<td>Mission to Salyut-4 aborted, third stage failure on launch Crew experiences minor injuries from up to 20 G</td>
</tr>
</tbody>
</table>

Clinical Health Monitoring

- Astronaut selection
- Annual physical exams
- Pre-flight screening and certification
- In-flight monitoring
- Hazard exposure monitoring
- Clinical / science investigations
- Post-flight evaluations
- Longitudinal (career) studies

Utilization of Clinical Monitoring

- Medical screening and certification
- Medical diagnosis and treatment of individuals / health maintenance
- Establishing crew member baseline values
- Defining population norms
- Validating countermeasures and clinical protocols
- Performing risk analysis
  - Updating medical standards
  - Refining likelihood ratios
  - Setting medical requirements
  - Defining medical resource needs

Inflight Care Emergent Crew Return

Worst case - complete program interruption

Cost of incapacitation of single crew-member causing an ISS increment to be terminated could be over $500 M in total program costs (utilization of crew return capability, additional Shuttle flights, disruption / cancellation of science program elements, re-programming of ground processing)

Mid-level scenario - major program disruption

Cost of one or more crew members unable to fulfill mission assignments (e.g., 25% reduction in 2 crewmembers) could cost the program between $25 to $50 M - reduced science production and the overall rescheduling in future increments to make up the deficit

Stabilization and Evacuation

- Crew Return Vehicle (CRV)

Crew Return Vehicle

- Contingency Evacuation
  - ISS Life Support System Failure
    - 4 to 7 deconditioned crew members
  - Medical Event
    - one incapacitated crew member
    - transport to a Definitive Medical Care Facility in 24 hours
Off Nominal Crew Return

- Contingency Evacuation
  - ISS Life Support System Failure
    - 3 to 7 deconditioned crew members
  - Medical Event
    - one incapacitated crew member
    - transport to a Definitive Medical Care Facility in 24 hours

Consequences of Medical Events

- General Crew Health
  - Difficult readaptation to 1g environment
  - Prolonged periods between flight readiness for individual crewmembers
  - Acute or long-term health consequences
- Crew operational impact
  - Loss of productive time
  - Illness
  - Injury
  - Death
- Mission Impact
  - Postponement
  - Interruption
  - Loss of mission objective(s)
  - Failure
- Program Impact
  - Program disruption/stand-down
  - Loss of program objectives
  - Decreased program effectiveness

Risk Mitigation and Definition

- Probability of occurrence of an undesired event within a stated period of time
- Resulting severity of harm, or illness/disorder
- Uncertainties associated with probability and severity
- Cumulative effects of exposures

Risk Mitigation Matrix

Risk Mitigation requires predicting, preventing, monitoring and responding to these risk areas.

Current Overview of Status

<table>
<thead>
<tr>
<th>Area</th>
<th>Prevent</th>
<th>Monitor</th>
<th>Respond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral Health</td>
<td>Poor</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Adaptation</td>
<td>Fair</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Environment</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Sleep and Mood</td>
<td>Poor</td>
<td>Fair</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Medical Risk Management

Space Flight Issues
- Training mishaps and prevention
- Osteoporosis
- Hearing conservation
- Radiation exposure and cancer risk
- Back pain
- Kidney stones
- Post-flight orthostasis
- Space motion sickness
- Risk of in-flight illness
- Risk of Decompression sickness
- Clinical protocols for CPR, ACLS, ATLS, surgical care, dental care, ultrasound imaging, physical examination

Risk Management Logic

What is the probability of injury or illness?
What is the impact of an incident of the crew member?
What is the impact of the program?
Is the level of risk acceptable?

[Feedback loop]
Medical Risks in Space

CLASS I
Mild symptomatology
Minimal effect on performance
Not life threatening
MISSION IMPACT: Minimal

CLASS II
Moderate to severe symptomatology
Significant effect on performance
Potentially life threatening
MISSION IMPACT: Requires significant inflight capability to prevent mission termination and crew return where appropriate

CLASS III
Immediate severe symptomatology
Acutely life threatening - possibly sudden death
Requires immediate resuscitation capability
MISSION IMPACT: Requires significant inflight capability for resuscitation and assured crew return to definitive care facility

Examples
- Small Laceration
- Headache
- SAS/SMS
Medical Risk Analysis

<table>
<thead>
<tr>
<th>Probability of Occurrence</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Minor</td>
<td>Major</td>
<td>Minor</td>
</tr>
<tr>
<td>Low</td>
<td>Minor</td>
<td>Minor</td>
<td>Minor</td>
</tr>
</tbody>
</table>

Severity of Illness/Injury

Clinical Problems

- Expected illnesses and ambulatory medical problems
  - Orthopedic and musculoskeletal problems
  - Infectious, hemostological, and immune-related diseases
  - Dermatological, ophthalmologic, and ENT problems
- Acute medical emergencies in space
  - Wounds, lacerations, and burns
  - Toxic exposure and acute anaphylaxis
  - Acute radiation illness
  - Dental emergencies
  - Ophthalmologic emergencies
  - Psychiatric emergencies
- Chronic diseases
  - Radiation induced problems
  - Responses to dust exposure
  - Presentation or acute manifestation of nascent illness

Medical Support for Space Operations

- Focus on prevention of illness and injury
- Can support common medical conditions
- Can temporarily support life threatening emergency to some degree
- Crew Surgeon
- Crew Medical Officer (CMO)
- Crew Health Care System (CHeCS)
  - Health Maintenance, Countermeasures, and Environmental Health systems

Crew Health Care System

- Health Maintenance System (HMS)
  - In-flight preventive, diagnostic, and therapeutic medical care
  - Patient stabilization and transport for serious medical situations
- Environmental Health System (EHS)
  - Monitor microbial contamination, atmosphere, water, and radiation
- Countermeasures System (CMS)
  - Partially counteract the physiological effects of microgravity

Health Maintenance

- Prevention and countermeasures
- Physical and behavioral health
- "Ambulatory" care clinic
  - minor illness
  - minor injury

Clinical Care Requirements

- Medical care required to be available to all crew members
  - capability to treat injury and illness and to return a crew member/patient to health
- Components include:
  - Airway management
  - Anesthesia
  - Blood and blood product replacement
  - Central supply
  - Consultation
  - Dental care
  - Fluid therapy
  - Fluid containment
  - Hypertonic treatment
  - Imaging diagnostics
  - Informatics
  - Laboratory diagnostics
  - Minor treatment
  - Morgue
  - Patient restraint and support surface
  - Pharmacy
  - Physical exam diagnostics
  - Physiologic monitoring
  - Rescue/ resuscitation/ stabilization
  - Safe haven
  - Surgery
  - Telemedicine
  - Training and simulation
  - Transport
  - Ventilatory support
  - Waste management

Current ISS planning: not designed for on-orbit care and rehabilitation from major illness or injury

Resuscitation
**Summary**

- Space Medicine Program risk management strategy, longitudinal study of astronaut health, and critical path roadmap can be effective tools in providing foundation for practice of evidence based medicine in support of space flight.
- Fully able to:
  - define the problem (given time and resources)
  - track down information sources
  - critically appraise information (intramural experts, IPT's, NSBRI, clinical and academic consultants)
  - apply the information on behalf of patients (within program constraints)
  - evaluate effectiveness (clinical and scientific monitoring)
  - respond to forces of change

**"As for the future, your task is not to foresee it, but to enable it."**

Antoine de Saint-Exupery
Dr. Chang-Diaz gave an intriguing presentation of his research in advanced rocket propulsion and its relevance for planning and executing crewed deep space explorations. Though not necessarily exclusively Martian, his thrust looks critically at future Mars missions. Initially Dr. Chang-Diaz showed the time constraints of Mars missions due to orbital mechanics and our present chemically powered rocket technology. Since essentially all the energy required to place current generation spacecraft into a Martian trajectory must be expended in the early minutes of a flight, most of such a mission is spent in free-fall drift, captive to the gravitational forces among Earth, the Sun, and Mars. The simple physics of such chemically powered missions requires nearly a year in transit for each direction of a Mars mission. And the optimal orientations of Earth and Mars for rendezvous require further time on or around Mars to await return.

These extensions of mission duration place any crew under a three-fold jeopardy: physiological deconditioning (which in some aspects is still unknown and unpreventable), psychological stress, and ionizing radiation. This latter risk is due to exposure of crew members for extended time to the highly unpredictable and potentially lethal radiations of open space. Any gains in shortening mission duration would reap equivalent or greater benefits for these crew concerns.

Dr. Chang-Diaz has applied his training and expertise (Ph. D. from Massachusetts Institute of Technology in applied plasma physics) toward development of continuous rocket propulsion which would offer great time advantages in travel, and also more launch options than are now available. He clearly explained the enormous gains from a relatively low thrust accelerative force applied essentially continuously versus the high, but short-lived propulsion of present chemical rockets. In fact, such space craft could be powered throughout the mission—accelerating to approximately the mid point and decelerating during the latter half. This would not only provide some level of gravity (acceleration) throughout the mission but also allow very high velocities to be achieved, thus saving many months of travel time.

In proposing the design of such a space craft propulsion system, Dr. Chang Diaz was quick to acknowledge the need for a large power source—which undoubtedly must be nuclear fueled at the solar distances involved. He calls his system the Variable Specific Impulse Magnetoplasma Rocket (VASIMR). The other major ingredient is a mass (deuterium, which could also function as a radiation shield for crews) for energizing into the ultra hot, high velocity exhaust plasma. He foresees models now functional in the laboratory soon to be tested in space. In fact, some of these concepts have already been tried there. His optimism and determination would have operational rockets in the next decades.

Editors' Note: Summary provided by Dr. G. Wyckliffe Hoffler.
Emotional/Mental Challenges Pre-, In-, and Post-flight

Janice Voss, Ph. D.
Astronaut
NASA Johnson Space Center

Dr. Voss has flown aboard the Space Shuttle five times. She knows well her inner concerns, emotions, and mental challenges attending such highly demanding and risky adventures. And she has shared those ideas with her colleagues. She notes that their busy training schedules and fully committed on orbit time allow little time for dwelling on most of these issues. However, they are nonetheless real and may not be ignored with impunity. She thinks that perhaps they are more striking for rookie space farers, but all spacecrew members share them and can profit by assuring proper support and unique solutions for their own specific situation—which could vary with the mission.

In her own experience, she found notable benefit from sharing with close members of her family, both before flight and during. The latter has proved of great value to all crew persons in the form of their personal ground contact time with family and friends. In addition, how one arranges and what one provides in the on board personal space and time goes far toward keeping a confident and upbeat view of the big picture. The type and amount of off duty diversions (e.g., music, reading material) are important, as are how one participates in group time. And it is universally agreed that viewing time at the spacecraft windows offers great joy and calm.

Dr. Voss conjectures that there could be a difference in how people deal with these matters on busy, short-duration (Shuttle type) missions versus those of longer ones, particularly out of low earth orbit, where the options in the advent of mishap are fewer. Her final opinion is one of optimism and assurance that the human person will do well in coping with this new environment.

Editors' Note: Summary provided by Dr. G. Wyckliffe Hoffler.
Johnson Space Center Tour

Dawn Fadner
Environmental Health Laboratory Supervisor/Director
NASA Johnson Space Center

Approximately 60 attendees of the OHP conference were guests of the Johnson Space Center for one day during the conference. Established as the Manned Spacecraft Center in 1961, the Lyndon B. Johnson Space Center (JSC) is responsible for the design, development, and operation of human space flight. JSC is the training base and home for the nation’s astronauts and site of Mission Control.

The visit to JSC started with breakfast in the newly renovated Gilruth Center Ballroom. The Gilruth Center, named for the late Center Director, Robert Gilruth, houses meeting facilities and all physical fitness programs at JSC including a weight/exercise room and basketball courts. At the Gilruth, two guest speakers from the JSC Astronaut Office presented individual talks to the group. Astronaut, Dr. Franklin Chang-Díaz, spoke on the topic of Reducing Occupational Exposures in Space Travel, and Dr. Janice Voss spoke on the topic of Emotional/Mental Challenges Pre, In and Post-Flight. Tour guests then had the opportunity to speak to the Astronauts, ask questions, acquire autographs and take pictures.

The visit continued with lunch in the JSC Cafeteria. The cafeteria has a large gift shop with a variety of souvenirs and tour attendees were able to purchase items of their choice. After lunch, the group boarded buses for an afternoon tour of JSC that included visits to three onsite buildings and the Sonny Carter Training Facility, located about eight miles from JSC.

The actual tour began with a visit to Building 9 and a view of the Space Shuttle Trainers and International Space Station (ISS) Trainers. An engineer closely linked to the ISS project gave a lengthy presentation on the current status of the project as well as interesting facts. The ISS is the largest and most complex international scientific project in history. The station is in orbit with an altitude of 250 statute miles with an inclination of 51.6 degrees. This orbit provides excellent Earth observations with coverage of 85 percent of the globe. The two-module complex now in orbit has a mass of more than 74,000 pounds and measures 76 feet long with a 78-foot wingspan tip to tip. The international partners, Canada, Japan, the European Space Agency, and Russia, will contribute key elements to the ISS including laboratories, living quarters, and a robotic arm.

Next stop on the tour was a visit to the Mission Control Center (MCC). Both the National Historic Landmark Mission Control Center and the current modernized MCC were visited. A Flight Controller conducted this part of the tour. Since 1965, the Mission Control Center has been the nerve center for America’s manned space program. A team of experienced engineers and technicians monitor systems and activities aboard spacecraft 24 hours a day during missions. During its time, the original MCC was a technological wonder and served the Gemini, Apollo and Space Shuttle programs well, but with the invention of new computer systems, it grew outdated and was decommissioned in 1996. One of the main flight control rooms, the Apollo Mission Control Center, has been designated a national historic landmark.

The tour guests were then escorted through the Lunar Sample Laboratory Facility in Building 31. This building at JSC was constructed in 1979 to provide for permanent storage of the lunar
sample collection in a physically secure and non-contaminating environment. The purpose of the Lunar Sample Lab is to maintain the specimens in pristine condition and preserve a priceless national and scientific resource. Between 1969 and 1972, six Apollo missions brought back 382 kilograms (842 pounds) of lunar rocks, core samples, pebbles and sand and dust from the lunar surface. The six space flights returned 2200 separate samples from six different exploration sites on the Moon. They have been processed into more than 97,000 individually catalogued samples. Nearly 1000 samples are distributed each year to approved scientists and educators for research and teaching projects.

The final stop on the tour was the Sonny Carter Training Facility (SCTF) and the Neutral Buoyancy Laboratory (NBL). JSC named this facility in honor of the late astronaut M. L. “Sonny” Carter. Dr. Carter was instrumental in developing many of the current space-walking techniques used by the astronauts. The NBL at the SCTF provides controlled neutral buoyancy operations that simulate the zero-g or weightless condition that is experienced by spacecraft and crew during space flight. This is an essential tool for the design, testing and development of the International Space Station and future NASA programs. For the astronaut, the facility provides important pre-flight training for extravehicular activities as well as the dynamics of body motion under weightless conditions. The NBL was sized to house mockups sufficiently large enough for realistic and meaningful training. It is 202 feet long, 102 feet wide and 40 feet deep (20 feet above ground level and 20 feet below) and holds 6.2 million gallons of water. Even at this size, the Space Station at 350 feet x 240 feet when complete, will not fit inside the NBL. Two overhead bridge cranes and several smaller cranes around the perimeter of the NBL are used to configure mockups for each training session. The water within the NBL is recycled every 19.6 hours. It is automatically monitored and controlled to a temperature of 82-88 degrees F and chemically treated to inhibit contaminant growth and corrosion effects on training mockups and equipment. Video coverage of all training activities is accomplished using hard-mounted and hand held cameras. A full complement of voice communication systems is available. This includes full two-way communications among the suited astronauts, topside trainers, facility test coordinators and the flight control team in JSC’s Mission Control Center.
Dr. Chan, Dr. Chang-Diaz, Dr. Popovic

Joyce Eagan, Dr. Chang-Diaz, Dr. Dye, David Thaxton

Dr. Chang-Diaz and Randy Scott

Dr. Janice Voss and Sharmila DeMello-Zieschang

Dr. Janice Voss and Dr. Fatima Phillips

The Bionetics Conference Team and Dr. Janice Voss

Conference attendees waiting patiently to enter Neutral Bouyancy Facility.
Mission Control

Surgeons Console at Mission Control.

Moon rocks at the Lunar Sample Laboratory Facility in Building 31.

Close up of a moon rock at the Lunar Sample Laboratory Facility.

Space Shuttle mock up at Building 9.

View of the Space Shuttle and International Space Station Trainers.
Robotic Arm Trainer

Soyuz Simulator

Close up of Soyuz

Sonny Carter Training Facility

Inside the Sonny Carter Training Facility.

Mock ISS module inside the Sonny Carter Test Facility.

Scuba diver working on the ISS module.

52
Contracting Officer Technical Representative Briefing

Alan Gettleman, MBA
Program Analyst, NASA Occupational Health Program
Principal Center, Kennedy Space Center

AGENCY OCCUPATIONAL HEATH PROGRAM

A Transitional Year

AGENCY OCCUPATIONAL
HEALTH PROGRAM

- Organizational Changes
- Personnel Changes
- KSC-OHP resides in Safety, Health & Ind Assessment
- Principal Center Support Office
  - Fatima Phillips, MD, MPH

- Medical Program Standardization
- Joint Commission Review of KSC and JSC Medical Clinics
- If clinics wished to pursue, they could be accredited
  - Many facility safety type issues of aging facilities
  - Incorporation of basic elements in our medical reviews

- HQ (Code AM)
  - Dr. Nicogossian
  - Dr. Williams

- HQ Code AM established in Office Chief
  - Health & Medical Officer
AGENCY OCCUPATIONAL HEALTH PROGRAM

- Upcoming Events
  - 2001: AIHA (New Orleans June)
  - Fed. Work Comp. Conference (Chicago August)
  - EAPA Conference (Vancouver, October)

- Health People 2010
  - Best Practices in Government sector
  - Health initiatives
  - Long term focused
  - Follow-on to Healthy People 2000

- Where we are going:
  - Medical Quality Assurance
  - EAP sid. Assessment methodology
  - Interactive web page
  - Stress Management

AGENCY OCCUPATIONAL HEALTH PROGRAM

- Upcoming Events
  - 2002: Combined Safety/Health Mgrs Meeting, Cocoa Beach, FL Feb
  - Agency Occupational Health Conference Washington, DC in June
  - HEALTH SCIENCES & THE GOVERNMENT

- Where we are going:
  - Recognition of employee health as a core Agency value
  - Database development
  - Standard contract Statements of Work

- WEB PAGE
  - CALENDAR
  - REGS AND POLICIES
  - TRAINING RESOURCES
  - WEBSITE LINKS TO: GOVERNMENT PRIVATE SITES
  - WRING DIAGRAMS AM & PM
  - PHOTO GALLERY
  - WHAT'S NEW IN OCC HEALTH NASA/GOV/PRIVATE
An Overview of the Final OSHA Ergonomics Standard

Graciela, M. Perez, ScD, CPE
University of California
Los Alamos National Laboratory

Scope
- General Industry
- Not construction, maritime or agriculture
- Reasons: best data, inspection experience, phase-in approach

All employees must receive information - www.osha.gov
- Common MSDs and their signs and symptoms
- The importance of early reporting
- How to report
- Risk factors, jobs, and work activities associated with MSD hazards
- Brief description of OSHA ergo standard

Dual action Trigger
- MSD incident - recordable and work related
- 7 days persistent signs or symptoms
- The dirty dozen exposures
- Covers: repetition force awkward postures contract stress vibration
Congressional Review Act

- To be introduced tomorrow or sometime next week - Never used before
- Allows congress to introduce Resolution of Disapproval in house and senate
- Resolution forced to the floor w/o comm.
- 10 hr. debate and no filibuster
- Need simple majority of 51 votes
State Programs
- WA and CA have 90 days to review and comment
- Can adapt or adopt
- WA is proactive and more protective
- CA is more reactive and will need to adapt or adopt

What should we do - pronto?
- Grandfather program
- Good ergonomics means good economics
- Implement a program that makes sense for you

OSHA Resources
- Current gag order on all speeches
- No letters to employers
- No ergo citations
- No directive
- No new courses or outreach materials
- Davis Layne is acting Asst. Sec. - Lame duck period for new Asst. Sec. ~ 60 days.

Disclaimer
- The contents of this presentation may not reflect the views of OSHA or the University of California.

Contact Information
Smartwork@tycos.com
Statistics show that work-related musculoskeletal disorders (MSD's) are the most prevalent, most expensive and most preventable workplace injuries in the country. Work-related MSDs account for more than one third of all occupational injuries and illnesses that are serious enough to result in days away from work. More than 600,000 employees suffer lost-workday MSDs each year resulting in billions of dollars in workers' compensation costs each year. For these reasons the subject of ergonomics is a very high priority for Occupational Health Professionals particularly in the light of the pending implementation of the OSHA Ergonomics Standard. NASA's OHP leadership believes that the best approach to solving ergonomic issues is through the joint efforts and coordination of a multidisciplinary team.

The introduction of a new OSHA standard brings with it many questions and implementation issues. In an effort to air those common questions and form a consensus on the Agency's approach, a panel of agency representatives was assembled and time was provided to hold an open forum for discussion.

Representing medical on the panel was William S. Barry, MD, MPH, manager of NASA's Occupational Health Program (OHP) based at the Kennedy Space Center (KSC). Dawn Elliott, PhD, a Flight Systems Engineer at KSC represented Human Factors Engineering. Mr. Jon Mullin, MA, CMSO manager of Operational Safety in the Office of Safety and Mission Assurance, Safety and Risk Management Division at NASA Headquarters represented the field of safety. Mr. Guy Camomilli, CSP, CHMM, CHSP, Senior Environmental Health Officer with NASA's OHP at KSC represented the environmental health field. The Panel was moderated by Mr. Bruce Kelly, CIH, CSP with the Bionetics Corporation's Occupational Health Program Support Office at KSC.

Questions ranged from the development of NASA's written policy to issues of procurement and workstation accommodation. The allotted time was filled with lively discussion which, regrettably, had to be ended to keep with the conference schedule.
Aerospace Medicine is one of the three specialty areas of Preventive Medicine (aerospace, occupational, and general preventive medicine/public health). Practitioners of aerospace or occupational medicine receive core training in preventive medicine and many receive an MPH degree. Specialists have practiced in both fields over the years due to the similarities in training and practice. Both aerospace and occupational medicine are concerned with maintaining the health of an individual at the worksite, and in the impacts of the work environment on health. Extreme work environments may be encountered in either specialty; aerospace medicine may be distinguished from occupational medicine somewhat by the nature of the extreme environments encountered such as acceleration, low ambient pressure, radiation and fractional gravity. Both fields are concerned with health and productivity, safety, and enhancing performance. This presentation will explore the similar training and practice environments, as well as areas of needed expertise, for the aerospace and occupational medicine practitioner.
Training

- Residency training in preventive medicine
  - 40 programs (approx) in general preventive medicine and public health
  - 40 programs (approx) in occupational medicine
  - 4 programs in Aerospace Medicine
  - 200 applicants took the Board examination in 2000:
    - 164 Occupational
    - 36 Aerospace

Program requirements definitions (cont)
  - Occupational medicine focuses on the health of workers including the ability to perform work; the physical, chemical, biological and social environments of the workplace; and the health outcomes of environmental exposures.

  - Aerospace medicine focuses on the health of the operating crews and passengers of air and space vehicles, together with the support personnel who are required to operate such vehicles. Segments of this population often work and live in remote, isolated, and sometimes closed environments under conditions of physical and psychological stress.

Training

- Core training leading to an MPH degree
  - Biostatistics
  - Epidemiology
  - Environmental Health
  - Health Services Administration
  - Clinical preventive medicine
  - Environmental health
Training

• Competencies in Preventive Medicine
  - New program requirements 7/1/200X
  - Core competencies
    • Communication and needs assessment
    • Computer applications
    • Interpretation of laws and regulations
    • Ethical, social and cultural issues
    • Organizational and decision making processes
    • Management and administration
    • Occupational and environmental health

Training

• Competencies in Occupational Medicine
  - Manage health status in diverse work settings
  - Monitor workforce and surveillance data for prevention of disease; enhance health and productivity
  - Manage worker insurance documentation
  - Recognize outbreaks of public health significance
  - Report clinical and surveillance evaluations

Training

• Competencies in Aerospace Medicine
  - Health status of individuals in aerospace environment; includes operations
  - Promote passenger health, safety and comfort
  - Facilitate care of patients transported in aerospace environment
  - Apply human factors/ergonomic concepts to aerospace environment
  - Interpret, integrate and perform aeromedical research

Training

• Similarities of specialties
  - Health promotion and prevention
  - Medical standards
  - Health surveillance exams
  - Interactive nature of individual health with environmental hazards
  - Newer aspects: health and productivity; optimal human performance

Practice

• Health promotion
  - Education to maintain health of workers
    • Focus programs to high-risk groups
      - Lifestyle risk factors
      - Depression and stress
      - Ergonomics
      - Substance abuse
    • Specific programs based on the work environment
Practice

- Medical standards
  - Standards for safety sensitive and security sensitive jobs
  - Usually concerned with sudden incapacitation and performance
  - Periodic exams to maintain health
  - Outcomes focus on abilities to perform work

Practice

- Screening
  - For risk factors
  - Cardiovascular - blood pressure, cholesterol, ECG/treadmill
  - Pulmonary function
  - Musculoskeletal - ability, range of motion
  - Vision and hearing for some jobs
  - Specific health issues for men and women
  - Prostate, breast, colon, lung cancers
  - Focused lab tests as baselines - blood, urine, X-ray

Practice

- Surveillance
  - Noise: hearing conservation programs
  - Specific toxic exposures
  - Dosimetry
  - Repetitive stress injuries
  - Tuberculosis (health care workers)
  - Substance abuse: drug and alcohol screening

Practice

- Hazards of workplace and safety
  - Education
    - Hazardous materials
    - Radiation
    - Thermal stress
    - Fire safety
    - Ergonomics
    - Blood borne pathogens (first responders)
    - Public health - use of AEDs
Practice

• Medical care and return to work
  - Onsite medical care with trained practitioners
  - Onsite rehabilitation growing in practice
  - Fitness for duty assessments
  - Modified duty programs
  - Employee Assistance Programs
  - Environmental health and safety

Practice

• Human performance
  - Human factors considerations in the workplace
  - Modify worksite to enhance safety and performance
  - Accident investigation
  - Common to both fields for prevention
  - Fatigue and circadian shifting – scheduling to improve performance, safety

Practice

• Policies and programs
  - OSHA
  - DOT
  - FAA
  - DOL
  - Americans with Disabilities Act
  - Best practices – improve health, reduce costs
  - Lifestyle programs and fitness
  - Cancer prevention
  - Injury prevention
  - Stress management

Commercial Aviation

• Health promotion
  - Cardiovascular risk reduction for pilots
  - Carpal tunnel disease prevention for reservation agents
  - Back injury program for ramp workers
  - Breast cancer prevention for entire workforce, but especially flight attendants and office workers

Commercial Aviation

• Medical examinations
  - Pilot standards set by the FAA
  - Special issuance process
  - Other exams for flight attendants, other safety workers often set by the airline
Commercial Aviation

- What is a common special issuance request?
  - Heart disease accounts for over 50% of the causes for loss of medical certificates
  - Special issuance can be granted after a heart attack for example
    - Six month waiting period for recovery
    - If requested in less than 6 months, the FAA will reject the premature application

Commercial Aviation

- Special issuance for a heart attack
  - A letter requesting a special issuance
  - Copies of all medical and hospital records
  - Cardiovascular evaluation - preferably by a cardiologist or internist
    - All original records, tracings, reports and opinions will be required
  - A panel of consultants will render an opinion

Other FAA special procedures

- Statement of Demonstrated Ability (SODA) - granted after a medical flight test
  - Does not expire
  - Must be listed on the Form 8500 for a medical examination

Commercial Aviation

- Screenings
  - Required FAA examinations for pilots
  - Noise in workplace; hearing conservation program for many workers
  - Pulmonary for confined space entry
  - Voluntary
    - Lifestyle risk factors
    - mammography
### Commercial Aviation

- **Surveillance**
  - Asbestos
  - Lead
  - Substance abuse - DOT drug and alcohol screening for pilots, flight attendants, mechanics and security screeners

- **Hazards of the workplace and safety**
  - Ergonomics (ramp, reservations)
  - Radiation (aircrew)
  - Thermal stress
  - Fatigue (aircrew)
  - First responders (blood borne pathogens)

- **Medical care and return to work**
  - Onsite medical clinics - full service
  - Onsite rehabilitation
  - Moving toward primary care clinics
  - Modified duty programs

- **Policies and Programs**
  - ADA - company wide programs for accommodations
  - Best practice programs
    - Cancer screening
    - Prenatal care

### Future Issues

- **Health and Productivity Management**
  - Five key elements
    - Turnover
    - Group health
    - Workers’ compensation
    - Unscheduled absences
    - Disability

- **HPM**
  - MEDSTAT benchmarking study 1999
    - 43 organizations participated
    - Average cost of 5 items $9,900
    - Opportunity for improvement (to 25th percentile) $2,600
    - 50% of improvement opportunity in turnover
Future Issues

- HPM cont
  - Major opportunities in turnover
  - Work-life policies
  - Stress management and depression
- Group health
  - Disease management
  - Asthma: childhood asthma increasing, worker absent for child
  - Diabetes

Future issues

- HPM cont
  - Workers' compensation
  - 24-hour coverage
  - Prevention and safety programs
  - Disability
  - Modified duty programs
  - Accommodations for permanent conditions
  - Unscheduled absences
    - Difficult to get accurate data to manage
    - Affected by company culture, morale

Future Issues

- Optimal human performance
  - Well-being
    - Depression, stress are major reasons for decreased work performance and absence
  - Fatigue and scheduling; flexible scheduling
  - Spirituality issues at work
  - Finding meaningful work experiences

Research

- Corporate Health Research Programs
  - Stanford Corporate Health Program
  - University of Michigan
  - Health Enhancement Research Organization
  - UTMB Corporate Health Consortium
    - All are focused on improving health and productivity at the worksite

Research

- UTMB Corporate Health Consortium (CHC)
  - Initiated 1999 – modeled after the Stanford program
    - Currently 14 corporate, 10 collaborative members
    - Meets twice per year to develop and report on projects
    - Interactive website for project development
### Research - members

**Corporate**
- Air Canada
- Ambetter
- Chevron
- CIGNA
- Dupont
- INTRIK
- Johnson & Johnson
- JANSKY
- MEDSTAT
- Merck
- Memorial Hermann
- Pfizer
- Schering-Plough
- Shell-Alliance
- United Airlines

**Collaborative**
- American Heart Association
- Baylor City of Houston
- Houston Business Group on Health
- Houston Business Journal
- NASA
- Stanford
- UT Houston
- UT Tyler

Membership is a blend of several corporations, including airlines. Large corporations have the same interest in the health and productivity of their workforce. As noted above, many issues are the same and results can be extrapolated to different industries.

### Completed projects

- "One of a Kind Health Promotion" with the American Heart Association
- JOBFIT with Johnson & Johnson
- MEDSTAT benchmark study

### Ongoing projects

- Cardiovascular risk reduction with web-based interactive health promotion tool. With Stanford, United Airlines, St. Luke's, Pfizer
- Prostate screening retrospective analysis of effectiveness - with Baylor, United Airlines
- Injury reduction - St. Luke's

### New projects

- Patient safety study based on assessment of fatigue and performance. Utilize data from aviation experience. Possible participants: Alertness Solutions, Veterans Administration, Georgetown University (CogScreen)
- Nutrition and performance study

### Automatic External Defibrillators

- Community-based studies
- Adopted by major airlines
- Expanding to Federal Office buildings
- May further expand into more public locations with lay providers

---

**Research**

- UTMB CHC
  - Membership is a blend of several corporations, including airlines
  - Large corporations have the same interest in the health and productivity of their workforce
  - As noted above, many issues are the same and results can be extrapolated to different industries

- UTMB CHC
  - Completed projects
    - "One of a Kind Health Promotion" with the American Heart Association
    - JOBFIT with Johnson & Johnson
    - MEDSTAT benchmark study

- UTMB CHC
  - Ongoing projects
    - Cardiovascular risk reduction with web-based interactive health promotion tool. With Stanford, United Airlines, St. Luke's, Pfizer
    - Prostate screening retrospective analysis of effectiveness - with Baylor, United Airlines
    - Injury reduction - St. Luke's

- UTMB CHC
  - New projects
    - Patient safety study based on assessment of fatigue and performance. Utilize data from aviation experience. Possible participants: Alertness Solutions, Veterans Administration, Georgetown University (CogScreen)
    - Nutrition and performance study

---

**Public Health example**

- Automatic External Defibrillators
  - Community-based studies
  - Adopted by major airlines
  - Expanding to Federal Office buildings
  - May further expand into more public locations with lay providers

---
What Are Those Martians Doing With Our Spacecrafts? ? ? ?

Cynthia D. Cooper, MFT, CADC, CEAP
Employee Assistance Coordinator
Jet Propulsion Laboratory

This presentation looked at how the Jet Propulsion Laboratory (JPL) Employee Assistance Program (EAP) responded to the losses of the 1999 Mars Missions. The challenges and lessons learned will address the following topics: multiple mission losses in an environment that had been impacted by agency downsizing, coordination of efforts with other contracting companies, utilization of multiple communication vehicles, utilization of Critical Incident Stress Management interventions to mitigate stress response and maintain team functioning, collaboration with management, identification of team dynamics, identification and interventions for family members, issues related to the media, and impact on the workforce of the Laboratory.
Pre-existing Conditions

- Mars Observer
- Mars Pathfinder
- Mars Surveyor
- Five years of downsizing, outsourcing, and reorganizing

Goals of Critical Incident Stress Management

- Mitigate the psychological impact of a traumatic event
- Prevent the development of post-traumatic syndrome and/or disorder
- Identify individuals who may require professional mental health follow-up

Interventions

Primary Interventions
- Lessen stigma
- Prevent isolation
- Provide professional support

Secondary Interventions
- Assessment
- Referral
Preventative Interventions
- "Stress Inoculation"
Factors Which Compound Trauma

- Unusual attention from the news media
- Prolonged and extraordinary expenditures of physical and emotional energy
- Serious repercussion to individual careers, job status

Communication to Team Leaders

- Services provided by EAP
- Tips for managers during intense and compacted work projects
- Symptoms of a distressed employee

Tips for Managers During Intense & Compacted Work Projects

- Rotation
- Cross training
- Post project "letdown"
- Encouragement of wellness
- Critical incident stress debriefing/meeting
- Intervention of distressed employee

Communication to Team Members & Their Families

- EAP and Occupational Health Services
- Self care reminders
- After the landing

Communication to Team Members and Families

- Rest and recovery
- What is "Post-traumatic Stress Reaction"
- Tools for stress for employee and family
- Reactions individuals may experience

Feedback

Response from employees, their families, and management indicated that the EAP interventions were beneficial in the following ways:

- Provided a safe, supportive, and confidential service for employees to share their experiences
- Provided employees and their families with information and practical tools which assisted in mitigating the impact of the stress
- Provided a service in which employees and their families expressed an appreciation that they felt the management of the Laboratory truly cared about their well-being
- Provided consultation to management and made resources available which benefited the entire JPL community
RESILIENCY SKILLS FOR THE 21ST CENTURY: HOW TO ADD LIFE TO YOUR YEARS AND YEARS TO YOUR LIFE!

An Exclusive Workshop For The OCCUPATIONAL HEALTH CONFERENCE

NASA

MARCH 1, 2001
Galveston, Texas

DESIGNED AND CONDUCTED BY

JACK N. SINGER, Ph.D.
ABOUT YOUR SPEAKER....

Dr. Jack Singer received his doctorate in the dual specialties of Industrial/Organizational and Clinical Psychology and he has been awarded the Diplomate status from the American Academy of Behavioral Medicine. He has taught in the Psychology Departments of seven universities, including the U.S. Air Force Academy.

A member of the National Speakers Association, Jack has spent twenty-five years speaking for and consulting with Fortune 500 companies and professional associations from Miami to Malaysia. His stress management consultations with medical practices and hospitals have been featured in articles across the world and in USA-TODAY.

Jack's research and self-help articles appear in business, medical and human resource journals and periodicals across the USA. He has produced several self-help tapes and he is a featured author in "The Great Speakers Anthology Series," with "Conquering Your Internal Critic...So You Can Sing Your Own Song".

A sought after media guest, Jack appears frequently on MSNBC, on FOX SPORTS and on radio and TV talk shows across the U.S. and Canada.

Jack is among the world's leaders in promoting humor, fun and laughter as the most effective antidotes to stress and illness and his passion is to inspire, energize and motivate everyone to practice the FUNDamentals Of success over stress, JEST for the HEALTH of it!
THE IMPACT OF STRESS ON ALL OF US

1. Stress involved in 8 of 10 top causes of death.

2. $270 billion per year in lost productivity, medical bills, and insurance claims.

3. Impact of stress, anxiety and depression in the workplace:
   - 47% reduced productivity
   - 40% absenteeism
   - 40% morale problems
   - 21% turnover
   - 50% would not choose same career

4. 35% to 50% of physician visits are "worried well"

5. At least 65% of physician visits are for stress-related symptoms.

"People are about as happy as they make their minds to be."
Abraham Lincoln
Resiliency

Is the Capacity to Spring Back, Rebound, & Successfully Adapt in the Face of Adversity

Adapted from Moving Beyond Risk to Resiliency, by M. Rirkin and M. Hoopman. Minneapolis: Minneapolis Public Schools, 1991
"(People) are disturbed not by things, but by the views which they take of them."
Epictetus

"10% of your stress is caused by what happens to you and 90% by what you say
to yourself about it."
Anonymous

A Common Perception of Stress

A More Useful Perception of Stress
Are you at risk for BURNOUT?

If you smoke cigarettes and have high blood pressure you are more likely to die of a heart attack than someone who doesn’t. These are called risk factors. Applying the same method to burnout, we have identified the following five risk factors. See if you are at risk:

1) INDIVIDUAL PERCEPTION OF STRESS. Perception is a funny thing. What one person finds stressful, another person finds stimulating. Some people magnify stress in their own minds. Psychologists call this awfulizing. When little things go wrong this person always sees the worst possible scenario.

2) FAMILY STRESS. Stress at home contributes to one’s vulnerability to burning out at work. Managers who think that employees leave their personal problems at home are underestimating the power of family stress.

3) ENVIRONMENTAL STRESS. These are the stresses of daily life: inflation, crime, bad weather, a recession, or a traffic jam. To a certain extent we all put up with these stressors every day. But if these stressors pile up, or one particular stress—like the fear of crime—gets out of hand it puts us at greater risk.

4) JOB STRESS. Every business has its seasonal deadlines and its day-to-day pressures. When an important seasonal deadline is added on top of a job that’s already brimming with day-to-day stress, watch out, burnout is likely to ensue.

5) INSUFFICIENT STRESS RELEASE ACTIVITIES. Everybody has different ways of blowing off steam. The trouble is, once you start to burn out, stress-release activities like exercise, meditation, reading, vacations, etc., are the first to go. You feel you don’t deserve these pleasurable activities, or you think you don’t have the time.

The presence of one risk factor or all five doesn’t necessarily indicate that you are going to experience burnout. But as a general rule, if you have two risk factors you should seek to lower your stress. If you have three or four risk factors, you need to look seriously at changes you can make in both your lifestyle and your job. If you have five risk factors, you should seek professional help.
NEIL S. HIBLER, PH.D has developed this list of early warning signs that will let you know when you are under too much stress:

**Emotional signs:**
- Apathy. The blaths, feelings of sadness, recreation that is no longer pleasurable.
- Anxiety. Restlessness, agitation, insecurity, sense of worthlessness.
- Irritability. Feeling hypersensitive, defensive, arrogant or argumentative.
- Mental fatigue. Feeling preoccupied, having difficulty concentrating, trouble thinking flexibly.
- Overcompensation or denial. Grandiosity (exaggerating the importance of your activities to yourself and others), working too hard, denying that you have problems, ignoring symptoms, feeling suspicious.

**Behavioral signs:**
- Avoiding things. Keeping to yourself, avoiding work, having trouble accepting responsibility, neglecting responsibility.
- Doing things to extremes. Alcoholism, gambling, spending sprees, sexual promiscuity.
- Administrative problems. Being late for work, poor appearance, poor personal hygiene, being accident prone.
- Legal problems. Indebtedness, shoplifting, traffic tickets, inability to control violent impulses.

**Physical Signs:**
- Excessive worrying about or denial of illness.
- Frequent illness like recurrent colds.
- Physical exhaustion.
- Over reliance on self-medication, remedies like aspirin, antacids, etc.
- Ailments. Headache, insomnia, appetite changes, weight gain or loss, frequent indigestion, nausea, nervous diarrhea, constipation, sexual problems.

Stress-related illness doesn't hit without warning, we simply shut off our alarm system. Typically, people take better care of their cars than they do their own bodies. When a car starts to rattle or shake, you do something about it. The same should be true of our bodies. Look and listen for the early warning signs listed above. They could be telling you – you need to make some lifestyle adjustments.
**DEEP BREATHING**

Believe it or not, if you're like most people, you take about 17,000 breaths per day. And you do it without even giving it a second thought. Yet nothing can lower your stress levels faster or more effectively, than learning to breathe consciously, from your diaphragm.

To begin, place one hand over your navel. Take a deep breath in. You should feel your hand rise with the air coming in and falling as you breathe out.

This time count slowly to five as you breathe in. Hold the breath in for the count of five and then let the air out to the count of five. You can increase or decrease the number to suit you. The idea is to comfortably stretch out your normal breathing pattern and to take in more air.

You can use this exercise anytime you feel stressed, in a traffic jam, at your desk at work, or even in a grocery checkout line.

**DIFFERENTIAL RELAXATION**

**INSTRUCTIONS:**

Make a fist with your left hand and tense all the muscles in your left arm— all the way up to your shoulder. You can even tense the left side of your face by lifting one cheek and clenching one eye. Clench your jaw shut tight as you concentrate on tightening all the muscles on the left side of your body.

Now here's the tricky part. Think about relaxing the right side while you simultaneously tense the left. Notice how the tension wants to spread from the left side over to the right. Hold the tension for as long as you comfortably can, and then relax both sides of your body.

After a short pause, try this exercise again, this time relaxing the left side while you tense the right.

**PURPOSE:**

The underlying purpose of all relaxation techniques is to foster a sense of awareness between the mind and the body. In this particular exercise, we want you to notice how tension spreads. With a little practice, you can counteract this spread.

**CONCLUSION:**

Use only the muscles you need to perform tasks and relax the rest. Don't let your shoulders tense up, for example, while typing or driving. Let only your fingers and hands do the typing, and let only your hands and arms do the driving. CONSCIOUSLY RELAX THE REST OF YOUR BODY.
"Humor will add years to your life and life to your years!"

Anonymous

THE BENEFITS OF FUN AND LAUGHTER

Stimulates the Immune System
- Decreases serum cortisol
- Increases natural killer cells
- Increases number of T cells with helper receptors
- Increases antibodies in saliva which combat upper respiratory infections
- Releases endorphins
- Reduces blood pressure

Stimulates Mental Functioning
- Enhances creativity
- Enhances productivity
- Enhances motivation
- Fosters a positive attitude
- Reduces anger/hostility
- A wonderful antidote for Stress

"Humor is essential to any smoothly functioning system of interaction, to any healthy person, and to any viable group. Humor is, in the last analysis, no joke."

Dr. Gary Fine, University of Minnesota
10 WAYS TO LIGHTEN UP YOUR WORKPLACE

1. Show your people how to develop their own "humor survival kits." Visit joke and toy stores for fun contents.

2. Have monthly dress themes (e.g., Superbowl, Schooldays themes) or the ugliest socks day with goofy prizes.

3. Have "fun bulletin boards" in each department. All employees contribute fun cartoons, jokes or funny headlines.

4. Give fun awards and certificates for meaningful recognition and for departmental competition.

5. Have a "Stress Free Zone" in your workplace. (sometimes referred to as a "Whine and Geez Room")

6. Give unpredictable rewards (e.g., tickets to the movies).

7. Keep a joke book near the telephones for hold time.

8. Add fun to your memos and fax covers (see example).

9. Have a positive party funded by negative people.

10. Inject fun and excitement into all of your training!

The most important assets of any organization go home to have dinner at the end of the working day. Humor and fun at work will enhance teamwork, productivity, creativity, and job satisfaction. Everyone and the bottom line will benefit!!
Text Removed per Request.
Physician’s Breakout Session

William Barry, MD, MPH
Manager, NASA Occupational Health Program
Principal Center, Kennedy Space Center

Dr. William Barry, Manager, NASA Occupational Health Program, moderated this session. As in one of the opening sessions, he reiterated that the overall theme for the next year will be facilitating and implementing NIAT-1 (NASA Integrated Action Team – Action 1). He presented a candidate list of topics for consideration and discussion:

1. NIAT-1
2. Skin cancer detection and the NASA Solar Safe Program
3. Weapons of mass destruction
4. Quality assurance
5. Audits
6. Environment of care
7. Infection control
8. Medication management
9. Confidentiality of medical records

1. NASA Integrated Action Team – Action 1

The encompassing goal for this year and the future, as highlighted by the Action is “NASA should provide a physically and psychologically safe and healthy work environment for all its employees.” Items under this action for Health personnel include continued implementation of Agency Safety (and Health) Initiative, reduction of stress, development of training modules for supervisors and employees to be aware of stress levels and stress mitigation. All Centers were requested to address and support the NIAT actions.

2. Skin Cancer

Increased risk of sun exposure, especially at the NASA Centers located in the sun belt, resulted in the initiation of the Agency-wide Solar Safe Program in FY 2000. One of the metrics for that Program is an emphasis by NASA professionals to assure full body examinations of all employees processing through NASA Health Facilities. This will provide greater probability of detecting suspicious skin lesions and early referral of those employees to dermatologists.

Much discussion developed on the use of newer technologies which might assist occupational health providers in early detection of skin lesions. Some of the questions discussed were:

- How can we concurrently educate employees to contribute to their own health?
- Could specific dermatological training of our health care providers by dermatologists improve the overall effectiveness of our examinations?
- What is the most effective use of such new systems?
- Should teledermatology be implemented throughout the Agency?
- What kinds of liability or disclaimers would be necessary?

The discussions helped pave the way toward future decisions when and if technologies become available.
3. **Weapons of Mass Destruction**
A cogent plenary presentation had already been given on this topic. The essence of its discussion was to discuss implications for health care planning at all Centers. This must include assuring appropriate liaisons with counterparts in the local and regional communities where our Centers lie. The *Medical Management of Biological Causalities* and the *Medical Management of Chemical Casualties* handbooks were distributed.

4. **Quality Assurance**
The emphasis was on the essentiality of a Medical Quality Control program for NASA Occupational Health clinics. One early step in the program was a self-assessment/audit checklists. This will surely come with some individuality at the several Centers based on the services they provide, but a core of common requirements will likely emerge. Among these will be primary source verification of licensure, credentials and certifications, record review, and the standardization of training such as ACLS, BCLS, CPR, MRO as well as certain laboratory testing/procedural tasks/examinations.

5. **Audits**
Oversight of Occupational Health programs by audits is a given. To meet Agency needs, the Principal Center Office is in the process of developing audit tools and conducting specific “gap analysis” to assist Centers in assessing how their programs address Agency goals.

Self-assessment/audit checklists include areas such as Infection Control, Credentialing and Privileging, Medication Management, and Environment of Clinical Care.

6. **International Travel Medicine**
This subject evoked a lively interchange. With the world-wide-ranging activities of virtually all NASA Centers, health care for and advice to international travel become tasks for many of our health care providers. And while the health specifics vary according to the countries of destination, there are obvious areas where common policies and practices could benefit all.

One area discussed was support services for handling acute care and employee/patient transportation in areas where Western standards of care are not available. There was a discussion of the new contract arrangements with SOS for emergency evacuation. Financially NASA may only cover NASA personnel. Travel insurance by contract companies for their personnel and travel insurance for dependants should be strongly encouraged.

*Editors’ Note: Summary provided by Dr. G. Wyckliffe Hoffler.*
An overview of the NASA Occupational Health Program database project was presented. The presentation stimulated many questions and discussion surrounding the data elements.
**Center Health Promotion**
- Health Promotion Campaign
  - Solar Safe
  - Influenza and Colds
  - Nutrition
- Start/End Dates
- Activity Details
- Participants
  - NASA
  - Contractors
  - Others

**Center Population**
- Fiscal Year
- Number of NASA Civil Servants
- Number of Contractors

**OHP Contracts**
- Type of Contract
  - Medical
  - EAP
  - IH
  - HFC
- Contractor
- Contract Start/End Dates

**Health Screenings**
- Type of Screening
- Start/End Dates
- # of Participants
- # of Results within Normal Limits
- # of Abnormal Results
- # of Referrals

**NASA Center Certifications**
- Fiscal Year
- NASA Center
- Certification
  - VPP
  - ISO
- Start/End Dates

**OHP Staff**
- Fiscal Year
- Category
  - Medical, EAP, EH, HFC
- Type
  - MD, NP, RN, LPN, MT, EMT
- Total # of Employees by Type
- Total # of FTE
### Certifications by Staff Type
- Board Certifications
- Professional Certifications
- ACLS Certification
- BLS Certification

### OHP Clinical Services
- Health Maintenance Examinations
- Occupational Examinations
- Work-Related Evaluations
- Non-Work Related/Personal Health Evaluations
- Other Services
- Testing
- Health Promotion

### OHP Clinical Services
- Work-Related Evaluations
  - # of Work-Related Injury Evaluations
  - # of Work-Related Illness Evaluations
  - # of Cases Managed
- Non-Work Related/Personal Health Evaluations
  - # of Illness Evaluations
  - # of Injury Evaluations

### OHP Clinical Services
- Return-To-Work Evaluations
- HIV Testing
- Rehab Evaluations
- Emergency Ambulance Transports
- Allergy Injections
- Consultations
- HFC Clearance Evaluations
- Immunizations
- International Travel Health Evaluations
- Return-To-Work Evaluations
- HIV Testing
- Rehabilitation Evaluations
- Emergency Ambulance Transports
- Mammography
- Pap Smears
- PSA
- Sigmoidoscopy
- Stress Tests
- ECG
- Laboratory Tests
- X-Rays

### OHP Clinical Services
- Mammography
- Pap Smears
- PSA
- Sigmoidoscopy
- Stress Tests
- ECG
- Laboratory Tests
- X-Rays
OHP Clinical Services

- Health Promotion
  - Screenings
  - Education
  - Health and Safety Fairs

OHP Clinical Services

- NASA OHP Website
  - # of Web Hits
    - NASA
    - Other Government
    - All Others

Future Areas of Development

- Other Clinical Areas
  - AED
  - Medical Equipment
  - Scope of Services

- Audits
- Reports
- Training

Database will track occupational health and environment survey questions by Center for each Fiscal Year:
- Design will be flexible enough to allow new questions to be added as needed.
- Will allow reporting of surveys by Center, Program, Question or Any Combination of these.

Program Status Tracking

Programs Tracked:
- Asbestos
- Biohazards Exposure Program
- Bloodborne Pathogens
- Chemical Hygiene
- Cold Stress/Heat Stress
- Confined Space
- Ergonomics
- Hazard Communications
- Hearing Conservation
- IAQ
- Ionizing Radiation
- LASER
- Lead
- Microwave Radiation
- Noise
- Personal Protective Equipment
- Radio Frequency Radiation

- Annual monitoring or reassessment?
- Center-wide survey performed?
- Documented programs?
- Medical surveillance program in place (if required)?
- Personal monitoring or dosimetry performed?
- Pre-placement exam program?
- Training program in place?
EH Center Specific Questions

- Has center met all regular training requirements?
- How do the center's rates compare with the BLS averages?
- Is budget adequate to meet Environmental Health responsibilities?
- Short NASA center name (i.e., KSC)
- Are exposure assessments performed on any new equipment?
- Are exposure assessments performed on any new facilities?
- Are exposure assessments performed on any new processes?
- Are exposure assessments performed on all existing significant processes?
- Fiscal year Center's lost time illness rate.

Populating the Database

- Data To be Collected From Centers by Fiscal Year.
- Method Used to Gather The Information is Currently Under Discussion. Your Input Is Important!!!
- Possibilities include:
  - Web Forms
  - PDF Forms (fillable PDFs)
  - Excel Spreadsheets Mailed to Centers
  - Structured Text Files
  - Direct Extraction From Existing Databases (when feasible)
- Aim is to Make It Easy For The Centers To Supply The Information, With a Minimum of Data Entry Duplication
Nurse's Breakout Session
Joint Commission on Accreditation of Healthcare Organizations (JCAHO)

Martine Myers, BSN, RN
Performance Improvement
Flight Medicine Clinic
NASA Johnson Space Center

An overview of the JCAHO standards of care and identification of areas of concern noted by JCR. The "lessons learned" were reviewed and program improvements to improve the quality of care identified.
1. Rights and Responsibilities

Patient's rights and organization's ethics.
This section addresses how to improve patient outcomes by respecting patient's rights and conducting business relationships with patients and the public in an ethical manner.

2. Assessment

Addresses the organization's ability to determine what care is required to meet the patient's initial needs as well as the patient's needs as they change in response to the care given.

3. Care and Treatment

Addresses the organization's provision of individualized care in the best setting to meet the patient's needs.
Planning and providing care
Medication
Nutrition
Rehabilitation etc.

4. Education

Education of the patients and the families
Assesses how the organization improves patient outcomes by promoting healthy behavior and involving the patient in care and in care decision making.

5. Continuum of Care

Assesses how the organization defines, shapes and sequences processes and activities to maximize the coordination of care along the continuum of care.
Appropriate level of care
Appropriate access to care
Needs based decision making

6. Performance Improvement

Examines the processes that the organization has in place to improve care and patient health outcomes. There needs to be a well-designed formal process for improvement which includes design, data collection, aggregation and analysis, and actual performance improvement.
7. Leadership

Addresses the degree to which the organization's leaders provide a framework for health care services that are responsive to the patient's needs. Assesses the leadership's effectiveness in enabling the organization to fulfill its mission.

8. Environment of Care

Examines the safety of the organization's physical environment for patients, staff and visitors.
- Fire and Safety
- Emergency Plans
- Medical equipment
- Space

9. Management of Human Resources

Examines the planning for and provision of adequate numbers of qualified and competent personnel. Examines the education and training, the human resource planning and the credentialing and privileging of health care providers.

10. Management of Information

Addresses the extent to which the organization ensures that the right information is provided to the right people at the right time. It encompasses information management planning, patient specific data, knowledge based information and comparative data information.

11. Surveillance, Prevention and Control of Infections

Evaluation of the organization's comprehensive program for infection surveillance, prevention and control. It should include all patient care and support services.
- Infectious wastes
- Sterilization Processes
- Program monitoring

Joint Commission Resource Review

- The JCR provided a comprehensive 9 day consultation on August 14-24, 2000 at NASA Johnson Space Center and Kennedy Space Center.
- The purpose of the consultation was to assist NASA in determining potential areas of improvement to be consistent with current practice in ambulatory healthcare organizations.
Objectives of the JCR review

- Educational update on Ambulatory Care Standards
- Review organization's rights philosophy and organizational ethics
- Assess patient education
- Evaluate patient outcome improvements

JCR Objectives (cont)

- Review role of leadership
- Evaluate human resources
- Review information management
- Assess Infection control
- Review care decisions and assessment functions
- Assess environment of care
- Review individualization of care

JCR Objectives (cont)

- Evaluate coordination of care
- Evaluate the organization's performance improvement program
- Evaluate facilities space allocation and resources.

JCR Areas of Concern

The following areas were noted to be in need of improvement
- Environment of care issues
- Medication control and use
- Credentialing and privileging process
- Staff competency assessment and management

JCR Areas of Concern

- Improving Organizational Performance
- Management of Information

Lessons Learned

Relate the following areas of concern to your own environment and take back with you a 'Positive Mental Attitude' on changes that can be made to enhance the patient care that is delivered to provide positive outcomes.
Environment of Care

- Infectious/biohazardous waste storage and control
- Medical equipment checks
- Space
- Safety and security plans
- Information collection and evaluation system to evaluate EC

Medication control and use

- Process of selection of medication
- Dispensing medication
- Medication storage
- Expired medications
- Medication recall system

Credentialing and Privileging Process

- Credentialing and privileging guidelines

Staff Competency

- Staff competency not continually assessed or maintained.

Improving Organizational Performance

Planning process for identifying and prioritizing areas of improvement

Management of Information

- Medical records audit process
- Incomplete medical records (lack of summary list of all significant diagnosis, procedures, drug allergies and medications
- Storage, privacy, and security of medical records (space is an issue)
- Patient's rights
On a positive note!

- There is a wealth of knowledge and experience within the organization to guide processes forward.
- Excellent preventative health measures and education program.
- Delivery of quality patient care and efforts to increase this quality even more.

Infection control

- Current infection control practices (biohazard storage, food in processing areas, sterilization and cleaning techniques, staff knowledge)
- Actions to prevent or reduce the risk of nosocomial infections in patients and health care workers.

Performance Improvement Measures

- Medical quality assurance/improvement program
  EDC: August 2001
- Infection control program establishment
  EDC: August 2001
- Medication Control and Dispensing Practices
  EDC: Immediate

Challenge of Performance Improvement

- Too complicated
- Passing fad
- Only for business people
- Doesn't work
- Terminology
- Wasn't taught this in school
- No time for it
Performance Improvement

Continuous Process
- Plan
- Do
- Check
- Act

PI Ownership
- Involvement and Participation
- Education and Information
- Positive Results
- Establishing Goals
- Common Interest

Involvement and Participation
- Look at the stakeholders
- Ask for ideas
- Respond to ideas
- Give feedback
- Regular meetings
- Making it a priority

Education and Information
- Regular part of staff meetings
- Seminars
- Newsletters
- Email / Internet
- Association with others

Positive Results
- Encourage positive actions and results
- Look at opportunities
- Modify when necessary (Semper Gumby)

Establishing Goals
- Internal Benchmarking
- External Benchmarking

"If you don't know where you are going, how do you know if you get there"  
Will Rogers
**Internal Performance Improvement Review**

> Where do you start?
> Who should start this?
> What resources should be allocated?

> "When you're on the right track, don't sit on the rail."
  
  -Will Rogers

---

**Common Interest**

- Find the common threat
- Rally around the common threat
- Define how this is a priority
- Encouragement

---

98
An overview of the work related injury and illness case management model developed at the Johnson Space Center was presented. The major accomplishments and the challenges of implementation were discussed.
Nurse Case Manager Role
Defined by: Multidisciplinary Team
- Occupational Health Officer
- Physician Project Manager
- Nurse Manager
- Nurse Case Manager
- Workers' Compensation Specialist
- Safety

Model 'Best Practice' Lockheed Martin
Collaboration utilized to define the role of NCM

Nurse Case Manager Objectives
- Coordinate healthcare for job-related injuries or illnesses
- Track incidences & contributing factors
- Assess Root Cause: Coordinate resolution
- Provide safe work environment
- Return healthy employee to safe work environment

Center Wide Education Campaign
Senior Management:
- Coordination Committee
- Executive Safety Committee
- Contractor Safety Forum

Marketing Strategies:
- Manager's Cue Card
- Newsletter/Roundup Article
- Web Page
- JSC Employee Safety & Health Guide
- STEP Class

Injury Case Management
Fundamentals Briefed Center Wide:
"Clinic First"
- Coordinated Medical Services
- Follow Up
- Outcome Oriented:
  - Employee Welfare
  - Return to Work (restricted duty, etc.)

Effective Case Management is a TEAM Effort!
- Employee
- Management
- Occupational Health
- Safety
- Industrial Hygiene/Ergonomist
- Human Resources/Legal
- Private Healthcare Providers
- Workers Compensation Specialist (Civil Servants)
- Case/Risk Management (Contractors)

Case Manager Responsibilities
- Notification: Management
  - Safety
  - Occupational Health Services
  - Occupation Health Officer
- Coordination of Care
- Employee Advocate:
  - Expedite safe return to work
- Continuity of Care:
  - Follow until resolution
Key Elements

• "Clinic First"
• Early medical treatment/intervention
• Active management involvement
• Coordination of care
• Timely return to work
• Compassionate Care

Challenges

• Education/cooperation of medical and Occupation Health Services
• Contractor contacts- feast or famine
• "Clinic First" policy not practiced by all contractors
• Untimely reporting of injuries
• Supervisor apathy or lack of knowledge
• After hour injuries

More Challenges

• Knowledge Deficit: Consistent definitions OSHA recordability
• Notion that a clinic visit equals an OSHA recordable incident
• Communication between Safety and Occupational Health

Looking Ahead

• Continue Marketing/Education
• Develop good working relationships with outside medical personnel
• Collaboration with contractor safety/HR personnel
• Work site visits
• DOL visit

Lessons Learned

• Top management must support
• Marketing/education is an ongoing process
• Change of the Culture will take time
• NCM balance: employee advocate & management productivity
• Never Ending Learning Experience

Case Management Team Members

Connie Hesselgesser, RN, Case Manager
Pam Daley, WC
Sandra Amundson, RN Nurse Manager

JSC Clinic, Building 8, (281)483-4111
Nurse Case Manager, (281)483-1132
The detection of hydrazine at the 10 ppb level in the atmosphere continues to be a challenge. Measurement of the presence of hydrazine-type compounds on the suits of astronauts in the Shuttle airlock is another area of great concern.

Kennedy Space Center, Johnson Space Center and the Jet Propulsion Laboratory are in the process of signing a Memorandum of Understanding to work on solving these problems in a joint effort. The emphasis will be on portable instruments.

Previous work by KSC led to the development of the electrochemical detector for hydrazine. The unit has definite limitations in response time and maintenance needs. JPL conducted a survey to identify promising new technology developments in this area. This survey included miniature gas chromatographs and mass spectrometers, the "electronic nose" concept, the ion mobility spectrometer, and a tunable laser diode spectrometer. Experimental work at JPL showed the technical feasibility of the tunable laser diode approach. The engineering problems of cost and size are still a challenge.

Recent work on a miniature focal plane mass spectrometer has shown considerable promise in the quest for an instrument that will satisfy the requirements in this area.
Mr. Reginald Keith, a principal with Hoover & Keith, Inc. has been engaged in noise and vibration control design for over 20 years. A great deal of his experience has been in the power, pipeline, petrochemical and HVAC industries. Mr. Keith has also provided professional services to the NASA Glenn Research Center (GRC) and helped the Industrial Hygiene professionals there to produce a noise demonstration CD that is used in training. Mr. Keith is a graduate of the University of Texas with a Masters Degree in Engineering and is a registered professional engineer in Texas and Oregon with a specialty in acoustics.

During the Industrial Hygiene breakout session Mr. Keith provided a three-hour presentation on industrial noise and noise control methodologies. The presentation included an introduction and review of sound terminologies and measurement techniques then touched on the subject of room acoustics and indoor sound distribution and transmission loss.

Mr. Keith provided many examples and photographs of projects illustrating control measures utilized in real-life industrial and manufacturing environments. Project examples included Heating, Ventilation, and Air Conditioning equipment, pumps, motors, fans, engines and other power generating equipment, as well as metalworking and other industrial process equipment. Included in the project summaries were alternate options considered, net effectiveness of the control measure implemented and the approximate cost. Control methods included full and partial enclosure, mufflers, various sound absorbing materials, vibration dampening and isolation, and noise cancellation.

Discussed briefly was the topic of outdoor sound propagation and community noise issues. Included in the discussion was the effect of distance, atmospherics, barriers, and trees on outdoor sound transmission.

A complimentary copy of the GRC CD-ROM Noise Demonstration Disk entitled *Auditory Demonstrations in Acoustics and Hearing Conversation* was provided to all breakout session attendees. Copies of the disk were graciously provided by the Noise Exposure Management Program at GRC.

*Editor's Note: Summary provided by Bruce Kelly.*
The course provided attendees with the knowledge and skills necessary to develop strategies for effectively managing workplace exposures. The strategies lead to more efficient use of monitoring resources, better evaluation of exposures and monitoring data, and improved communication of exposure risks to employees and management. The comprehensive two-day workshop described strategies for the collection and interpretation of occupational exposure monitoring and data. The course was based on American Industrial Hygiene Association's publication A Strategy for Assessing and Managing Occupational Exposures, 2nd edition, 1998. Key concepts from this recent publication covered in the course included exposure groups, sampling designs, statistical distributions, and interpreting exposure-monitoring data. Experience and lessons learned in the field were shared by attendees. Problem solving exercises were interwoven throughout the course and attendees worked through examples that helped them apply the concepts. Statistical tools to assist with decision-making regarding the acceptability of exposure monitoring results were also presented. The course received two American Board of Industrial Hygiene certification maintenance points and 16 hours of continuing medical education credit from the University of South Florida.

Course Outline:

**Day 1**
- Introduction
- Basic Characterization
- Qualitative Exposure Assessment
- Statistics Review
- Exposure Monitoring
- Normal and Log Normal Distributions

**Day 2**
- Interpretation and Decision-Making Exercise
- Special Topics (Graphing techniques, Censored data, ANOVA)
- Implementation Issues
- Statistical Software
- Consultation with Instructor
Professional Development Course 2
Advanced Cardiac Life Support (ACLS)
Recertification Course

University of Texas Medical Branch

The course implemented the American Heart Association (AHA) ACLS guidelines established in October 1992. The premise behind the new guidelines is to provide a more flexible and patient-focused approach for treating various cardiac dysrhythmias. Teaching in this course focused on lecture, practical skills, group interaction and case-based learning sessions. Each session provided Clinical Case presentations focusing on critical points related to specific algorithm. During Clinical Case presentations, the participants were expected to actively participate and perform/practice skills unprompted. The AHA's current Textbook of Advanced Cardiac Life Support was the recommended reference for this course. The text provided the skills, physiological, and pathophysiological knowledge base necessary for successful completion of this course. Advanced Cardiac Life Support skills were evaluated during the ACLS Clinical Cases. A total of seven hours of Category I credit toward the American Medical Associations (AMA) Physician’s Recognition Award, and/or seven hours in Category II for non-physicians were awarded for this course. The University of Texas Medical Branch is accredited by the Accreditation Council for Continuing Medical Education to sponsor continuing medical education for physicians.
The Mardi Gras Welcome Reception was well attended by Conference attendees. The evening’s theme was Mardi Gras and the festive Conference Court Jesters greeted each guest with beads. The reception provided an opportunity for attendees to reacquaint themselves with fellow NASA coworkers. The evening’s reception included hors d’oeuvres representing typical New Orleans’ and Cajun specialties.
Continuing Education Credit Information

Professional Development Courses

A. The *Exposure Assessment Strategies and Statistic* course was awarded 2.0 Certification Maintenance (CM) points by American Board of Industrial Hygiene (ABIH). The ABIH certification maintenance approval number is 15047.

B. The *Advanced Cardiac Life Support Recertification Course* was accredited for 7 hours of Category I credit toward the American Medical Associations (AMA) Physician’s Recognition Award, and/or 0.7 CEU credits (7 contact hours) in Category II for non-physicians. The University of Texas Medical Branch (UTMB) is accredited by the Accreditation Council for Continuing Medical Education to sponsor continuing medical education for physicians.

General Conference Sessions and Breakout Sessions

A. Physicians

1. The University of South Florida College of Medicine designates this educational activity for a maximum of 33.5 hours in Category I towards the AMA Physicians Recognition Award. Each physician should have claimed those hours of credit that he/she actually spent in the educational activity.

2. This activity had been planned and implemented in accordance with the Essential Areas and Policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the University of South Florida College of Medicine and NASA Occupational Health Program. The University of South Florida College of Medicine is accredited by the ACCME to provided continuing medical education for physicians.

B. Nurses

The American Association of Occupational Health Nurses (AAOHN) approved 24.0 contact hours of continuing education credit. The AAOHN approval number is 2-44-02.

C. Industrial Hygienists

The American Board Of Industrial Hygiene awarded a total of 3.0 Certification Maintenance Points. The ABIH certification maintenance approval number for the event is 15072.

Summary

<table>
<thead>
<tr>
<th>Discipline/PDC</th>
<th>Max. No. Hours/Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure Assessment Strategies and Statistic</td>
<td>2</td>
</tr>
<tr>
<td>ACLS Recertification</td>
<td>7</td>
</tr>
<tr>
<td>Physicians</td>
<td>33.5</td>
</tr>
<tr>
<td>Nurses</td>
<td>24</td>
</tr>
<tr>
<td>Industrial Hygienists</td>
<td>3</td>
</tr>
</tbody>
</table>
Conference Participants

Approximately 86 professionals, speakers, and support personnel participated in the 2001 NASA Occupational Health Conference. The NASA Occupational Health Program Principal Center and Support Office planned and managed the event. Johnson Space Center, Houston, Texas hosted the Conference.

The following list of registered participants contains their positions, postal addresses, and email addresses for use by readers of this Proceedings.
Sandra Amundson, RN  
Nurse Manager  
Johnson Space Center  
JSC/SD 22  
Houston, TX 77058  
samundso@ems.jsc.nasa.gov

Michael Cardinale, CIH  
Industrial Hygiene Officer  
Kennedy Space Center  
Mail Stop: TA-C2  
Kennedy Space Center, FL 32899  
Michael.Cardinale-1@ksc.nasa.gov

Catherine Angotti, RD, LD  
Program Executive, Occupational Health  
NASA Headquarters  
300 E Street, SW  
Washington, DC 20536  
cangotti@hq.nasa.gov

Wing Chan, PhD, MPH  
Senior Public Health Officer  
NASA Headquarters  
300 E Street, SW  
Washington, DC 20536  
wchan@hq.nasa.gov

William Barry, MD, MPH  
Manager, NASA Occupational Health Program  
OHP Principal Center  
Mail Code: QA  
Kennedy Space Center, FL 32899  
william.barry-1@ksc.nasa.gov

Kathleen Christian, PhD  
EAP Manager/Clinical Psychologist  
Dryden Flight Research Center  
P.O. Box 273 M/S 1626  
Edwards, CA 93523  
Kathleen.Christian@drfc.nasa.gov

Dolores Bellfore  
Contract Administrator  
Johnson Space Center  
2101 NASA Road 1, SD 22  
Houston, TX 77058  
Dolores.a.bellfore@jsc.nasa.gov

Cynthia Cooper, MFT, CADC, CEAP  
EAP Coordinator  
Jet Propulsion Laboratory  
4800 Oak Grove Drive, Bldg. 310-202  
Pasadena, CA 91109  
Cynthia.D.Cooper@jpl.nasa.gov

Terrence Bidnick, MD, MPH  
Medical Director/Project Manager  
Goddard Space Flight Center  
Mail Stop: 205.9, Bldg. 97  
Greenbelt, MD 20771  
tbidnick@pop200.gsfc.nasa.gov

Joanne Creech, CIH  
Manager, Environmental Health & Services  
Kennedy Space Center  
Mail Code: CHS-022  
Kennedy Space Center, FL 32899  
Joanne.Creech-1@kmail.ksc.nasa.gov

Shawn Boesen  
Safety Team Leader  
Goddard Space Flight Center  
Mail Stop: 205.2, Bldg. 17  
Greenbelt, MD 20771  
Shawn.M.Boesen.1@gsfc.nasa.gov

Denton Crotchett, CIH  
Manager, Occupational Health Programs  
Johnson Space Center  
2101 NASA Road 1  
Mail Code: SD23  
Houston, TX 77058  
Denton.r.crotchett1@jsc.nasa.gov

Guy Camomilli, CSP  
Senior Industrial Hygienists  
OHP Principal Center  
Mail Code: QA  
Kennedy Space Center, FL 32899  
guy.camomilli-1@ksc.nasa.gov

Pamela Daley  
Workers’ Compensation Officer  
Johnson Space Center  
2101 NASA Road 1  
Houston, TX 77058  
pamela.j.daley@jsc.nasa.gov

Kathleen Christian, PhD  
EAP Manager/Clinical Psychologist  
Dryden Flight Research Center  
P.O. Box 273 M/S 1626  
Edwards, CA 93523  
Kathleen.Christian@drfc.nasa.gov

Dolores Bellfore  
Contract Administrator  
Johnson Space Center  
2101 NASA Road 1, SD 22  
Houston, TX 77058  
Dolores.a.bellfore@jsc.nasa.gov

Cynthia Cooper, MFT, CADC, CEAP  
EAP Coordinator  
Jet Propulsion Laboratory  
4800 Oak Grove Drive, Bldg. 310-202  
Pasadena, CA 91109  
Cynthia.D.Cooper@jpl.nasa.gov

Terrence Bidnick, MD, MPH  
Medical Director/Project Manager  
Goddard Space Flight Center  
Mail Stop: 205.9, Bldg. 97  
Greenbelt, MD 20771  
tbidnick@pop200.gsfc.nasa.gov

Joanne Creech, CIH  
Manager, Environmental Health & Services  
Kennedy Space Center  
Mail Code: CHS-022  
Kennedy Space Center, FL 32899  
Joanne.Creech-1@kmail.ksc.nasa.gov

Shawn Boesen  
Safety Team Leader  
Goddard Space Flight Center  
Mail Stop: 205.2, Bldg. 17  
Greenbelt, MD 20771  
Shawn.M.Boesen.1@gsfc.nasa.gov

Denton Crotchett, CIH  
Manager, Occupational Health Programs  
Johnson Space Center  
2101 NASA Road 1  
Mail Code: SD23  
Houston, TX 77058  
Denton.r.crotchett1@jsc.nasa.gov

Guy Camomilli, CSP  
Senior Industrial Hygienists  
OHP Principal Center  
Mail Code: QA  
Kennedy Space Center, FL 32899  
guy.camomilli-1@ksc.nasa.gov

Pamela Daley  
Workers’ Compensation Officer  
Johnson Space Center  
2101 NASA Road 1  
Houston, TX 77058  
pamela.j.daley@jsc.nasa.gov

110
<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Role</th>
<th>Location</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bette Davis</td>
<td>CIH, CSP, Industrial Hygienist</td>
<td>Dryden Flight Research Center</td>
<td><a href="mailto:bette.davis@dfrc.nasa.gov">bette.davis@dfrc.nasa.gov</a></td>
</tr>
<tr>
<td>Jeff Davis</td>
<td>MD, MS, Professor</td>
<td>Galveston, TX 77555</td>
<td><a href="mailto:jdavis@utmb.edu">jdavis@utmb.edu</a></td>
</tr>
<tr>
<td>Sharmila DeMello-Zieschang</td>
<td>COTR, Manager</td>
<td>NASA Headquarters</td>
<td><a href="mailto:cziescha@hq.nasa.gov">cziescha@hq.nasa.gov</a></td>
</tr>
<tr>
<td>Manuel Dominguez</td>
<td>CSP, Chief, Glenn Safety Office</td>
<td>Johnson Space Center</td>
<td><a href="mailto:Manuel.Dominguez@gsc.nasa.gov">Manuel.Dominguez@gsc.nasa.gov</a></td>
</tr>
<tr>
<td>William Dye</td>
<td>MD, MPH, Program Manager, Medical Director</td>
<td>Huntsville, AL 35812</td>
<td><a href="mailto:william.dye@msfc.nasa.gov">william.dye@msfc.nasa.gov</a></td>
</tr>
<tr>
<td>Joyce Eagan</td>
<td>Contracting Officer Technical Representative</td>
<td>Huntsville, AL 35812</td>
<td><a href="mailto:joyce.eagan@msfc.nasa.gov">joyce.eagan@msfc.nasa.gov</a></td>
</tr>
<tr>
<td>Dawn Elliott</td>
<td>PhD, Flight Systems Engineer</td>
<td>Kennedy Space Center</td>
<td><a href="mailto:dawn.elliott-1@ksc.nasa.gov">dawn.elliott-1@ksc.nasa.gov</a></td>
</tr>
<tr>
<td>Robert Estrada</td>
<td>MD, MPH, Managing Physician</td>
<td>Jet Propulsion Laboratory</td>
<td><a href="mailto:Robert.R.Estrada@jpl.nasa.gov">Robert.R.Estrada@jpl.nasa.gov</a></td>
</tr>
<tr>
<td>Dawn Fadner</td>
<td>Supervisor/Director</td>
<td>Johnson Space Center</td>
<td><a href="mailto:dawn.fadner1@jsc.nasa.gov">dawn.fadner1@jsc.nasa.gov</a></td>
</tr>
<tr>
<td>Michael Foley</td>
<td>Industrial Hygienist</td>
<td>Houston, TX 77058</td>
<td><a href="mailto:michael.p.foley1@jsc.nasa.gov">michael.p.foley1@jsc.nasa.gov</a></td>
</tr>
<tr>
<td>Alan Gettleman</td>
<td>MBA, Program Analyst</td>
<td>Kennedy Space Center</td>
<td><a href="mailto:alan.gettleman-1@ksc.nasa.gov">alan.gettleman-1@ksc.nasa.gov</a></td>
</tr>
<tr>
<td>Bart Geyer</td>
<td>CIH, Industrial Hygiene Manager</td>
<td>Kennedy Space Center</td>
<td><a href="mailto:bart.geyer-1@kmail.ksc.nasa.gov">bart.geyer-1@kmail.ksc.nasa.gov</a></td>
</tr>
</tbody>
</table>
Miriam Glazer, MA, MPH
Health & Wellness Program Manager
NASA Ames Research Center
Mail Code: QH:218-1
Moffett Field, CA 94035
mglazer@mail.arc.nasa.gov

Sheilla Goldberg, MS
Training, Safety, Quality Coordinator
Johnson Space Center
Mail Stop: SD23
Houston, TX 77058
sheiila.o.goldbergl@nasa.gov

Leroy Gross, MD, MPH
Medical Director
Langley Research Center
10 West Taylor Street
Stop Code: 281
Hampton, VA 23681
l.p.gross@nasa.larc.gov

Ray Gruben, CSP
Industrial Hygienist
White Sands Test Facility
Building 101, Room 139
Las Cruces, NM 88012
rgruben@smtp3.wstf.nasa.gov

Homeyra (Mae) Hafizi, RN, MS
Workers' Compensation Nurse Case Manager
Kennedy Space Center
Mail Code: CHS-005
Kennedy Space Center, FL 32899
Homeyra.hafizi@jibosc.ksc.nasa

Linda Harrison, RN, COHN, MS
Director of Nursing
Goddard Space Flight Center
Mail Code: 205.9, Health Unit Bldg 97
Greenbelt, MD 20771
lharriso@pop200.gsfc.nasa.gov

Wyckliffe Hoffler, MD
Technical Coordinator
OHP Occupational Health Principal Center Support Office
Mail Code: BIO-5
Kennedy Space Center, FL 32899
wyckliffe.hoffler-1@ksc.nasa.gov

John Houseman, CIH
Chemical Safety Officer
Jet propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109
john.houseman@ipl.nasa.gov

Gail Howell, L.M.S.W.-A.C.P.,A.C.S.W
Counselor
Johnson Space Center
2101 NASA Road 1, SD242
Houston, TX 77058
ghowell@ems.jsc.nasa.gov

Steven Hulka, CIH
Senior Industrial Hygienist
Johnson Space Center
NASA-JSC-SD23
Houston, TX 77058
STEVEN.HULKA1@JSC.NASA.GOV

Jodi Jacobson, MSW
Work/Family Consultant
Goddard Space Flight Center
1120 G Street, NW, Suite 550
Washington, DC 20005
jjacobso@pop200.gsfc.nasa.gov

Bruce Kelly, CIH, CSP
Industrial Hygienist
OHP Principal Center Support Office
BIO-5
Kennedy Space Center, FL 32899
Bruce.Kelly-1@ksc.nasa.gov
Connie Hesselgesser, RN
Nurse Case Manager
Johnson Space Center
2101 NASA Road 1
Houston, TX 77058

Donald Kilbourn
Department Manager/Safety & Product Assurance
Johnson Space Center
2400 NASA Road 1
Houston, TX 77058
Don.kilbourn@lmco.com

Karen Koch, MA
Human Resources Analyst
Langley Research Center
Mail Stop: 140
Hampton, VA 23681
k.a.koch@larc.nasa.gov

Christina Kominoth, MSW
Work/Family Consultant
Goddard Space Flight Center
1120 G. Street, NW, Suite 550
Washington, DC 20005
ckominot@pop200.gsfc.nasa.gov

Charles Landrum
ESH Engineer
Johnson Space Center
2400 NASA Road 1
Houston, TX 77058
Chuck.landrum1@jsc.nasa.gov

Jose Limardo, MS
Occupational Health Specialist
Johnson Space Center
2101 NASA Road 1, SD13
Houston, TX 77058
jlimardo@ems.jsc.nasa.gov

Sean Keprta, CIH
Occupational Health Officer/COTR
Johnson Space Center
2101 NASA Road 1, SD13
Houston, TX 77058
Sean.R.Keprta@JSC.NASA.GOV

Bruce Mather, PhD
EAP Psychologist
Marshall Space Flight Center
Bldg 4249
Marshall Space Flight Center
Huntsville, AL 35812
bruce.mather@msfc.nasa.gov

Carl Matthews
Safety Manager
Johnson Space Center
2101 NASA Road 1, GC23
Houston, TX 77058
carl.j.matthews1@jsc.nasa.gov

Antoinette Mayor, MBA
Hazardous Chemicals Specialist
John H. Glenn Research Center
21000 Brookpark Road
Cleveland, OH 44135
antoinette.c.mayor@grc.nasa.gov

Candace Meyers, RN
Staff Nurse
Medical Unit
Johnson Space Center
2101 NASA Road 1
Houston, TX 77058
Candace.a.meyers1@jsc.nasa.gov

John Meyers, MD
Medical Director
Ames Research Center
Mail Stop: 215-8
Moffett Field, CA 94035
DJM@mail.arc.nasa.gov
Annette Loveday  
Safety & Occupational Health Specialist  
Marshall Space Flight Center  
NASA-MSFC, QS40  
Huntsville, AL 35812  
anette.loveday@msfc.nasa.gov

David Loyd  
Chief, QARSO  
White Sands Test Facility  
PO Box 20  
Las Cruces, NM 88004  
aloyd@wstf.nasa.gov

Stuart Nokes  
Administrative Director  
Kennedy Space Center  
Mail Code: CHS-005  
Kennedy Space Center, FL 32899  
Stuart.nokes@jbosc.ksc.nasa.gov

Gregory Oblom, MS, CSP  
Industrial Hygienist  
OHP Principal Center Support Office  
BIO-5  
Kennedy Space Center, FL 32899  
Gregory.Oblom-1@ksc.nasa.gov

Patricia Oleksiak, RN  
Lead Nurse  
John H. Glenn Research Center  
21000 Brookpark Road  
Mail Stop: 15-5  
Cleveland, OH 44135  
poleksiak@singhealth.net

Fatima Phillips, MD, MPH, MS  
Director, Bionetics OHP Principal  
Center Support Office  
OHP Principal Center Support Office  
Mail Code: BIO-5  
Kennedy Space Center, FL 32899  
fatima.phillips-1@ksc.nasa.gov

James Moeller, MD  
Medical Director  
Dryden Flight Research Center  
PO Box 273, Mail Stop: 2004  
Edwards, CA 93523  
jamess.moeller@dfrc.nasa.gov

Jonathan Mullin  
Manager, Occupational Safety  
NASA headquarters  
Mail Code: QS  
300 E Street SW  
Washington, DC 20546  
jmullin@hq.nasa.gov

Jackie Reese, MA, LPC  
Director, JSC EAP  
Johnson Space Center  
2101 NASA Road 1, Mail Stop: SD242  
Houston, TX 77058  
jreese@ems.jsc.nasa.gov

Deborah Ripley  
Occupational Safety & Health Technician  
John H. Glenn Research Center  
21000 Brookpark Road  
Cleveland, OH 44135  
deborah.a.ripley@grc.nasa.gov

Sheri Roberson  
Meeting and Communication Specialist  
OHP Principal Center Support Office  
BIO-5  
Kennedy Space Center, FL 32899  
sheri.roberston-1@ksc.nasa.gov

Manuel Rodriguez, CIH, CSP, MA  
Industrial Hygienist/Industrial Hygiene  
Services  
Johnson Space Center  
2101 NASA Road 1, SD-23  
Houston, TX 77058  
mrodrig1@jsc.nasa.gov
Stephen Pilkenton  
Health Program Analyst  
OHP Principal Center Support Office  
Mail Code: QA  
Kennedy Space Center, FL 32899  
PilkeSE@kscems.ksc.nasa.gov

David Rose  
Industrial Hygienists/Occupational Health Services  
Johnson Space Center  
2101 NASA Road 1, SD23  
Houston, TX 77058  
david.t.rose1@jsc.nasa.gov

Angel Plaza  
Occupational Specialist  
Johnson Space Center  
NASA JSC, Mail Code: EA5  
Houston, TX 77058  
angel.l.plaza@jsc.nasa.gov

Chuck Ross, DO  
Chief, Occupational Health and Test Support  
Johnson Space Center  
2101 NASA Road 1, SD-13  
Houston, TX 77058  
ceross@EMS.JSC.NASA.GOV

Calvin Popovici, MD  
Research Scholar  
University of Maryland  
East West Space Science Center, Building 224  
College Park, MD 20740  
calinp@wam.umd.edu

Therease Ross  
Contracting Officer’s Technical Representative  
John H. Glenn Research Center  
21000 Brookpark Road, MD 15-1  
Cleveland, OH 44135  
therease.c.ross@grc.nasa.gov

Alfred Rossum, MD  
Medical Director/Project Manager  
Johnson Space Center  
2101 NASA Road 1, Bldg 8  
Mail Stop: SD-22  
Houston, TX 77058  
alfred.c.rossum1@ems.jsc.nasa

Philip Scarpa, MD  
Medical Officer  
Kennedy Space Center  
Mail Code: TA-C2  
Kennedy Space Center, FL 32899  
philip.scarpa-1@ksc.nasa.gov

Tricia Smith-Araki  
Occupational Safety Office Manager  
Jet Propulsion Laboratory  
4800 Oak Grove Drive, Mail Code: 190-112  
Pasadena, CA 91109  
Patricia.J.Smith-Araki@jpl.nasa.gov

Randall Scott  
KSC Radiation Protection Officer  
Kennedy Space Center  
Mail Code: TA-C2  
Kennedy Space Center, FL 32899  
randall.scott-1@ksc.nasa.gov

Lisa Snelling, RN  
Chief Nurse  
Stennis Space Center  
Occupational Health clinic, Bldg. 1100  
Stennis Space Center, MS 39529  
Lisa.Snellings@ssc.nasa.gov

Richard Spinak, MD  
Center Medical Director  
Wallops Flight Facility  
Building F-160  
Wallops Island, VA 23337  
punim@jhu.edu
Helen Shoemaker, RN, COHN, MS  
Occupation Health Program Specialist  
OHP Principal Center Support Office  
Mail Code: BIO-5  
Kennedy Space Center, FL 32899  
Helen.shoemaker-l@ksc.nasa.gov

Liesel Short, RN  
Chief Nurse  
Ames Research Center  
Mail Stop: 215-8  
Moffett Field, CA 94035  
Lshort@mail.arc.nasa.gov

Kenneth Singleton, MD, MPH  
President-Singleton Health Services, L.L.C.  
John H. Glenn Research Center  
2328 W. Joppa Road, Suite 310  
Cleveland, OH 44135  
Singhelath@aol.com

Claire Sleboda, RN, COHN  
Chief Nurse  
Dryden Flight Research Center  
PO Box 273, Bldg. 4822  
Edwards, CA 93523  
claire.sleboda@dfrc.nasa.gov

Jeffrey Wagner  
Industrial Hygienist  
21000 Brookpark Road, MS 6-4  
Cleveland, OH 44135  
JEFFERY.T.WAGNER@GRC.NASA.GOV

Reta Warren  
Safety Professional  
Johnson Space Center  
JSC Bld 8, SD22  
Houston, TX 77058  
Reta.k.warren1@jsc.nasa.gov

Charles Smallwood, MD  
Deputy Medical Director  
Kennedy Space Center  
Mail Code: CHS-005  
Kennedy Space Center, FL 32899  
Charles.smallwood-1@ksc.nasa.gov

Maurice Taquino, MD  
Medical Director  
Stennis Space Flight Center  
Mail Code: JCWS, OHS Clinic, Bldg 1100  
Stennis Space, MS 39529  
Maurice.Taquino@ssc.nasa.gov

David Thaxton, CIH  
Occupational Health Officer  
Marshall Space Flight Center  
AD02  
Huntsville, AL 35812  
David.l.thaxton@msfc.nasa.gov

Richard Vogel, CIH, CSP  
Industrial Hygienist  
Langley Research Center  
MS 429, 5 Hunsaker Loop  
Hampton, VA 23881  
r.a.vogel@larc.nasa.gov

Shaun West  
Web Specialist  
OHP Principal Center Support Office  
BIO-5  
Kennedy Space Center, FL 32899  
Shaun.west-1@ksc.nasa.gov

Richard Williams, MD, MPH  
Acting Chief Health and Medical Officer  
NASA Headquarters  
300 E Street SW  
Washington, DC 20546  
Rwillia3@hq.nasa.gov
**Guest Speakers**

**Linda Ballas**  
Linda Ballas & Associates  
4413 Copper Creek Lane  
Toledo, OH 43615

**Franklin Chang-Diaz, PhD**  
Astronaut Appearances Office  
NASA/Johnson Space Center  
2101 NASA Road 1  
Houston, TX 77058

**Jon Clark, MD, MPH**  
Astronaut Appearances Office  
NASA/Johnson Space Center  
2101 NASA Road 1  
Houston, TX 77058

**Jeff Davis, MD, MS**  
University of Texas Medical Branch  
301 University Boulevard  
Sealy Professional Building, Suite 827  
Mail Route 0826  
Galveston, TX 77555

**Larry Regan**  
Assistant United States Attorney  
Western District of Louisiana  
611 Broad Street, Suite 347  
Lake Charles, LA 70601

**Cynthia Cooper, MFT, CADC, CEAP**  
EAP Coordinator  
Jet Propulsion Laboratory  
4800 Oak Grove Drive, Bldg. 310-202  
Pasadena, CA 91109  
Cynthia.D.Cooper@jpl.nasa.gov

**Janice Voss, PhD**  
Astronaut Appearances Office  
NASA/Johnson Space Center  
2101 NASA Road 1  
Houston, TX 77058

**Commander Randy Culpepper**  
U.S. Army Medical Research Institute Of Infectious Diseases  
Attn: MCMR-UIM-O  
1425 Porter Street  
Ft. Detrick, MD 21702

**Jack N. Singer, PhD**  
Psychologically Speaking  
28 Westcliff  
Laguna Niguel, CA 92677  
funspeaker@home.com

**Graciela Perez, ScD, CPE**  
307 Tano Road  
Santa Fe, NM 87501

Sheri Roberson and Bruce Kelly, Editors

NASA Occupational Health Program Office
NASA Safety and Health Independent Assessment Directorate
NASA Kennedy Space Center, FL 32899

National Aeronautics and Space Administration
300 E. Street, SW
Washington, D.C. 20546

Published as a NASA Conference Publication (CP)

This Conference convened approximately 86 registered participants of invited guest speakers, NASA presenters, and a broad spectrum of the Occupational Health disciplines representing NASA Headquarters and all NASA Field Centers. Two days’ Professional Development Courses on Exposure Assessment Strategies and Statistics and on Advanced Cardiac Life Support training and recertification preceded the Conference. With the theme, “Risk Assessment and Management in 2001,” conference members were first provided updates from the Program Principal Center Office and the Headquarters Office. Plenary sessions elaborated on several topics: biological terrorism, OSHA recordability, Workers’ Compensation issues, Federal ergonomic standards, bridging aerospace medicine and occupational health—especially in management of risk in spaceflight, and EAP operations with mission failures. A keynote address dealt with resiliency skills for 21st century workers and two NASA astronaut speakers highlighted a tour of the Johnson Space Center. During discipline specific breakout sessions, current issues in occupational health management and policy, credentialing and privileging, health risk assessment, measurement and standardization, audits, database development, prevention and rehabilitation, international travel and infection control, employee assistance, nursing process, and environmental health were presented.

Occupational Medicine, Environmental Health, Risk Assessment, Ergonomics

Unclassified

Unclassified

Unclassified

Unclassified

Unclassified

Publicly Available

Not copyrighted

118

Standard Form 298 (Rev. 2-89)

Prepared by ANSI Std. 239-18