Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies

Gloria L. Manney,1,2 Joseph L. Sabutis,2 Steven Pawson,3,4 Michelle L. Santee,1 Barbara Naujokat,5 Richard Swinbank,6 Melvyn E. Gelman,7 and Wesley Ebisuzaki7

Abstract. A quantitative intercomparison of six meteorological analyses is presented for the cold 1999-2000 and 1995-1996 Arctic winters. The impacts of using different analyzed temperatures in calculations of polar stratospheric cloud (PSC) formation potential, and of different winds in idealized trajectory-based temperature histories, are substantial. The area with temperatures below a PSC formation threshold commonly varies by ~25% among the analyses, with differences of over 50% at some times/locations. Freie Universität Berlin analyses are often colder than others at T ≤ 205 K. Biases between analyses vary from year to year: in January 2000, U.K. Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses warmest, while NCEP analyses were usually coldest in 1995-1996 and Met Office or NCEP/National Center for Atmospheric Research Reanalysis (REAN) warmest. European Centre for Medium Range Weather Forecasting (ECMWF) temperatures agreed better with other analyses in 1999-2000, after improvements in the assimilation model, than in 1995-1996. Case-studies of temperature histories show substantial differences using Met Office, NCEP, REAN and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), qualitatively similar results were obtained for all analyses. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with large cold regions near the polar vortex edge), distributions of “potential PSC lifetimes” and total time spent below a PSC formation threshold varied significantly among the analyses. Largest peaks in “PSC lifetime” distributions in January 2000 were at 4-6 and 11-14 days, while in the 1996 periods, they were at 1-3 days. Thus different meteorological conditions in comparably cold winters had a large impact on expectations for PSC formation and on the discrepancies between different meteorological analyses. Met Office, NCEP, REAN, ECMWF, and DAO analyses are commonly used for trajectory calculations and in chemical transport models; the choice of which analysis to use can strongly influence the results of such studies.

1. Introduction

The joint SAGE III Ozone Loss and Validation Experiment and Third European Stratospheric Experiment on Ozone II (SOLVE/THSEO) were conducted during the 1999-2000 Arctic winter to investigate processes involved

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.
2New Mexico Highlands University, Las Vegas, New Mexico
3NASA/Goddard Space Flight Center, Greenbelt, MD
4Goddard Earth Science and Technology Center, UMBC, Baltimore, MD
5Institut für Meteorologie, Freie Universität Berlin, Germany
6Met Office, Bracknell, Berkshire, UK
7Climate Prediction Center, NCEP, NWS, NOAA, Washington, D.C.
in Arctic ozone loss. The 1999-2000 winter was one of the coldest on record, comparable in recent years only to 1995-1996 [e.g., Manney and Sabatis, 2000; Davies et al., 2001]. There is evidence for substantial ozone loss in both winters [e.g., Manney et al., 1996a; Santee et al., 2000], and for widespread denitrification in 1999-2000 [e.g., Santee et al., 2000]. Numerous studies of polar processes, including polar stratospheric cloud (PSC) formation, denitrification and ozone loss, have been and are being conducted for the 1995-1996 and, especially, the 1999-2000 Arctic winters (e.g., P. A. Newman and N. R. P. Harris, “An overview of the SOLVE-THESEO 2000 campaign”, submitted to Journal of Geophysical Research - Atmospheres). PSC formation, composition, and the potential for denitrification all depend critically on temperature; chlorine activation and subsequent ozone loss are in turn strongly dependent on those processes [e.g., World Meteorological Organization, 1999, and references therein].

While many instruments made local temperature measurements during SOLVE/THESEO, polar processing studies frequently require large-scale meteorological analyses. The most commonly used products for polar process studies have been those from the US National Centers for Environmental Prediction/Climate Prediction Center (NCEP), the U.K. Met Office, the NCEP/National Center for Atmospheric Research (NCAR) Reanalysis Project (REAN), NASA’s Data Assimilation Office (DAO), and the European Centre for Medium Range Weather Forecasting (ECMWF); also, temperatures and geopotential heights on a few levels in the lower stratosphere are produced daily by the Freie Universität Berlin (FUB). Winds from the Met Office, REAN, DAO, and ECMWF data, and winds calculated from the NCEP data, are commonly used to drive transport models and trajectory calculations for polar process studies. Because many processes in such studies depend so critically on temperature (especially “threshold” phenomena such as PSC formation), and because it is inherently difficult to quantify the uncertainties in the meteorological analyses, it is of interest to assess the magnitude and impact of the differences between them.

Several previous studies have compared subsets of the analyses listed above for Arctic winter conditions or compared them with other local temperature datasets. Manney et al. [1996b] found that NCEP temperatures were consistently closer to radiosonde temperatures and lower than those from the Met Office during the 1991-1992 and 1994-1995 Arctic winters. Knudsen [1996], Knudsen et al. [1996], and Pullen and Jones [1997] found similar high biases in ECMWF and Met Office temperatures with respect to sondes and other balloon observations in several Arctic winters. Pawson et al. [1999] compared temperatures from
the FUB data with those derived from geopotential heights from the TIROS Operational Vertical Sounding (TOVS) system, and showed that the FUB temperatures were generally lower, but with large dispersion around the mean difference. More recently, B. M. Knudsen et al. ("Comparison of stratospheric long-duration balloon data in February and March 2000 with analysis temperatures and trajectories", submitted to *Journal of Geophysical Research - Atmospheres*, hereinafter Knudsen et al., submitted manuscript) compared temperatures from ECMWF, Met Office, NCEP, REAN and DAO analyses with those from long-duration balloon flights during SOLVE/THSEO: they found that the NCEP and REAN data had larger scatter around the balloon values than the Met Office and ECMWF data, and that Met Office, REAN, and NCEP data had a cold bias with respect to balloon measurements at high temperatures, and a warm bias at low temperatures. Bevilacqua et al. [2001] compared Met Office data with high-latitude radiosondes in November 1999 through January 2001 and found larger individual differences later in the season, but no clear systematic or time-varying bias. Manney and Sabutis [2000] showed that Met Office minimum temperatures were lower than those from NCEP in January 2000. Davies et al. [2001] found that in cold regions Met Office temperatures were lower than ECMWF temperatures in January 2000 but higher in February 2000: Met Office January temperatures were lower than those from radiosondes at a few stations examined in the high Arctic. They also showed that CTM runs driven with ECMWF and Met Office fields produced significantly different patterns of denitrification, chlorine activation, and ozone loss.

In the following, we compare temperatures from all of the commonly used meteorological analyses for the cold and much studied 1999-2000 and 1995-1996 Arctic winters. We focus on comparisons of low temperatures that are relevant to PSC formation and chemical ozone loss. We also examine temperature histories along trajectories for four of these analyses (Met Office, NCEP, REAN, DAO) to explore in more detail how differences between the analyses may affect polar processing studies. Finally, in comparing analyses and temperature history differences between 1995-1996 and 1999-2000, we show how different overall meteorological conditions in comparably cold winters may impact both polar processing and the agreement between meteorological datasets.

2. Data and Analysis

2.1. Data

A brief description of the analysis systems compared here, including key references, is given below.
2.1.1. Met Office Data. The Met Office data are from the troposphere-stratosphere data assimilation system developed for the Upper Atmosphere Research Satellite (UARS) project [Swinbank and O'Neill, 1994]. The assimilation uses an analysis-correction scheme as described by Lorenc et al. [1988]. The model upon which the Met Office assimilations are based uses a hybrid vertical coordinate, changing from a terrain-following coordinate in the troposphere to a pressure coordinate in the stratosphere, with vertical resolution of ~1.6 km in the stratosphere. Satellite data used in the Met Office assimilations are National Environmental Satellite Data and Information Service (NESDIS) layer-mean temperatures from the TOVS sounders on the National Oceanic and Atmospheric Administration (NOAA)'s TIROS-N series of satellites. The Met Office data (three-dimensional winds, temperature and geopotential height) are supplied once-daily at 12UT on a 2.5° latitude by 3.75° longitude grid, and at UARS pressure levels (6 levels per decade in pressure) between 1000 and 0.3 hPa (~2.5 km vertical spacing). There were no major changes in the Met Office assimilation system between 1995-1996 and 1999-2000. However, erroneous top level ozone data were in use in 1999-2000: this resulted in large decreases in upper stratospheric temperatures and could also account for a systematic change of ~1 K in the lower stratosphere.

2.1.2. NCEP Data. The NCEP/CPC objective analysis system is a modified Cressman analysis for pressure levels 70, 50, 30, 10, 5, 2, 1, and 0.4 hPa [Finger et al., 1965, 1993; Gelman et al., 1986, 1994]. The analyses in the upper stratosphere are based on TOVS and Revised TOVS (RTOVS) data: at and below 10 hPa, radiosonde data are also used. Analyses at and below 100 hPa are from the tropospheric analysis and forecast cycle [Derber et al., 1991], which directly assimilates radiances from the TOVS instruments [Derber and Wu, 1998; McNelly et al., 2000]. The NCEP data are provided once a day at 12UT on a 65×65 polar stereographic grid for each hemisphere; for the analyses shown here, these have been interpolated to a 2.5°x5° latitude/longitude grid. Horizontal winds are calculated from the NCEP geopotential heights using a form of the primitive equations that neglects the vertical advection and time tendency terms [Randel, 1987; Newman et al., 1989]. Several changes were made in the satellite data inputs to the NCEP objective analysis system between 1995-1996 and 1999-2000: differences introduced by these changes are typically smaller than 1 K below 10 hPa.

2.1.3. NCEP/NCAR Reanalysis Data. The NCEP/NCAR 50-year reanalysis project is described by Kalnay et al. [1996] and Kistler et al. [2001], and is based on a version of the 3D variational assimilation system used in NCEP's operational forecast system. This includes a spectral model at
The assimilation system has been constant (although the inputs have changed) during the entire period of the reanalysis. After 1978, the NESDIS retrievals of TOVS/RTOVS data were included. The REAN data, including winds, temperature and geopotential height, are available at 17 pressure levels between 1000 and 10 hPa (including 100, 70, 50, 30, 20, and 10 hPa), on a 2.5° × 2.5° latitude/longitude grid. They are available as both 4 times daily and daily average files. Trenberth and Stepaniak [2001] noted a pathological problem in REAN data in the stratosphere that affects primarily the wind fields over steep topography: although strongest effects are over the Andes, the topography of Greenland is large enough that such effects might be present in Arctic winter (K. Trenberth, private communication). In March 1998, a problem with filtering of the TOVS data was introduced, which resulted in global mean temperature increases near 100 hPa; this problem may have had some impact on lower stratospheric (near 50 hPa) winds and temperatures in 1999-2000.

2.1.4. Freie Universität Berlin Data. The Freie Universität Berlin data are from a subjective analysis based on radiosonde data; thicknesses from satellites are utilized over data-sparse areas [Pawson et al., 1993; Pawson and Naujokat, 1999]. FUB temperatures and geopotential heights are available once daily at 00UT on a 5° × 5° latitude/longitude grid for the northern hemisphere, at 50, 30, and 10 hPa. Since these data are available only on three levels, they are used only in comparisons of temperatures on those individual levels. The FUB analysis system did not change between 1995-1996 and 1999-2000.

2.1.5. ECMWF Data. The ECMWF analysis system was considerably changed between 1995-1996 and 1999-2000. The model uses a hybrid vertical coordinate, changing from a terrain-following coordinate in the troposphere to a pressure coordinate in the stratosphere. A 31-level version was operational in 1995-1996 with coarse vertical resolution in the lower stratosphere (top levels at 70, 50, 30, and 10 hPa). The assimilation system in use was a 3D variational system using preprocessed NESDIS radiances and radiosonde data [Ritchie et al., 1995]. The 1995-1996 data are available on a 2.5° × 2.5° latitude/longitude grid. In 1999, a 60-level version was introduced, extending to 0.1 hPa with a vertical spacing of 1.5 km between 60 and 5 hPa [Unch and Simmons, 1999], providing substantially better stratospheric analyses and forecasts. Additionally, the 4D variational assimilation system (in use since 1997) now uses raw TOVS/Advanced TOVS (ATOVS) radiances [McNally et al., 1999], leading to additional improvement, especially in the lower stratosphere. Spectral data for both winters have been transformed to a 2.5° × 2.5° latitude/longitude grid. Data are
used here at 100, 70, 50, 30, and 10 hPa for 1995-1996 and 100, 70, 50, 30, 20, 10, 7, 5, and 3 hPa for 1999-2000.

2.1.6 GSFC Data Assimilation Office Data The DAO analyses are performed with the Goddard Earth Observation System, version 3 (GEOS-3) dataset. The dataset is obtained by the assimilation of ground- and space-based observations in a system based on the GEOS model, the Physical-space Statistical Analysis Scheme (PSAS, Cohn et al. [1998]) and the Incremental Analysis Update (IAU, Bloom et al. [1996]) technique of combining model forecast and analysis. Aspects of the GEOS-3 data relevant to the middle atmosphere are described in more detail by Pawson et al. [2001]. The analyses in the lower stratosphere are impacted most strongly by the inclusion of radiosonde observations of wind and temperature and by geopotential thicknesses from NESDIS retrievals. Analyses are produced four times a day on a 1° x 1.25° latitude/longitude grid on 48 terrain-following levels, with a vertical resolution of about 1.2 km in the lower stratosphere. For the purposes of this study the 12UT data were interpolated to a 2° x 2.5° latitude/longitude grid on standard meteorological levels, including 100, 70, 50, 40, 30, 20, and 10 hPa.

2.2. Diagnostics

While some of the datasets used here are available up to four times daily, the diagnostics shown here are done once daily at 12UT (except for the FUB which is available only at 00UT), for comparability: Knudsen et al. (submitted manuscript) and Keil et al. [2001] noted that differences in time resolution have a larger effect than spatial resolution on calculated trajectories. Analyses of minimum temperatures and areas of low temperature are done on the grids noted above, where the high-resolution datasets (DAO, ECMWF) were interpolated to grids comparable to other datasets. To make plots of vertical sections, the analyses are linearly interpolated in log-p to UARS pressure levels. For gridpoint by gridpoint temperature comparisons, all other analyses are bilinearly interpolated to the coarsest grid, 5° x 5°, of the FUB data. Potential Vorticity (PV) is calculated from each dataset using a version of the algorithm described by Manney et al. [1996b], adapted from that used by Newman et al. [1989].

The area with temperature less than the formation threshold for nitric acid trihydrate (NAT) PSCs (T_{NAT}), as calculated by Hanson and Mauersberger [1988], is shown here. To obtain “standard” profiles for the calculation, we have averaged UARS Cryogenic Limb Array Etalon Spectrometer nitric acid and Microwave Limb Sounder water vapor data.
during December and January 1991-1992 and 1992-1993. Using these profiles, the NAT threshold at 50 hPa is 195.5 K and at 30 hPa is 193.5 K. For calculations on the 465-K isentropic surface, 195 K is used as an approximate value for the NAT threshold.

Isentropic trajectory calculations at 465 K are used to obtain temperature histories from Met Office, NCEP, REAN, and DAO analyses. The trajectory code is an isentropic version of that described by Manney et al. [1994a]. It uses once-daily (12 UT) horizontal winds from each analysis on the latitude/longitude grids described above. While isentropic trajectories are not realistic for 20-30-day periods (the length of calculations done here), these calculations provide quantitative comparisons of very large numbers of trajectories in order to characterize differences between analyses and the impact of different meteorological conditions; they are neither intended nor appropriate for detailed polar processing studies.

3. Synoptic Temperature Comparisons

Examination of monthly average and minimum temperatures, the number of days with $T \leq T_{\text{SAT}}$ [e.g., Manney and Sabutis, 2000], and other diagnostics in the lower stratosphere indicate that there are notable differences between the analyses even in monthly means. In both Januarys, temperatures remained below 195 K for the entire month in substantial regions [e.g., Naujokat and Pawson, 1996; Manney and Sabutis, 2000]; the size of these regions varies between analyses. The fact that substantial differences are visible in monthly means suggests the presence of persistent, systematic differences between analysis temperatures.

Plate 1 shows time series of minimum 50 hPa temperatures for November through March in the two winters. The evolution of minimum temperatures, as shown here, is frequently used in polar processing studies to provide an overview of the times favoring PSC formation [e.g., Manney et al., 1994b; Bevilacqua et al., 2001]. While the lines for various analyses frequently cannot be easily distinguished, the envelope indicates differences between analyses of up to ~5 K, with many of the largest differences occurring at low temperatures. Some systematic differences are apparent: In December 1999 and January 2000, the Met Office analyses are usually coldest, while the NCEP analyses are often warmest. In contrast, in 1995-1996, the Met Office and REAN are frequently warmest, while the FUB and NCEP are coldest during January. Larger differences, with similar apparent biases, are seen at 50 hPa (not shown), with the REAN data in 1995-1996 standing out as almost always 1-2 K warmer than the Met Office, which is in turn usually warmer than the ECMWF. NCEP, and REAN. Since the analyses differ by up to 5 K, and since these estimates would
be expected to vary further depending on the grid that is used when finding the minimum values. Any conclusions drawn from such plots should recognize that the uncertainties are well over 5 K.

Comparing the curves for 1999-2000 with those for 1995-1996 emphasizes how similar these two winters were when judged solely by the minimum temperature evolution: Both show very low temperatures in January, an increase in late January, lower temperatures again in February, and a final warming beginning in mid-March. While January 2000 was slightly colder than January 1996. February 1996 was colder than February 2000.

Similar patterns of differences between analyses can be seen in Plate 2, the area with $T \leq T_{\text{nat}}$ (referred to hereinafter as A_{nat}). Overall variations in A_{nat} are commonly ~25%, and occasionally over 50% (e.g., at 30 hPa in January 1996), during the cold periods, with from 7 to 17 days difference between analyses in time spent as $T \leq T_{\text{nat}}$. Consistent with the higher minimum temperatures, the REAN stands out at 30 hPa with smallest A_{nat} and fewest days with $T \leq T_{\text{nat}}$. While ECMWF shows relatively large A_{nat} at 30 hPa in late December 1995 and January 1996, it shows substantially smaller A_{nat} at 50 hPa than the other analyses; this difference between levels is absent in the 1999-2000 ECMWF data, probably a result of improvements in the assimilation system including much better vertical resolution in the lower stratosphere. The Met Office analyses are among the coldest in 1999-2000, and the NCEP among the warmest, while the opposite is true in 1995-1996. A_{nat} in January was comparable between the two years, but a bit larger in 2000; A_{nat} in February was larger (in both area and vertical extent) in 1996 than in 2000.

Plate 3 shows a comprehensive pressure-time view of A_{nat} (calculated as a function of pressure, nitric acid, and water vapor, as described in section 2.2). The Met Office analysis in 1999-2000 shows strikingly larger A_{nat} than any other analysis in November through January. The very large area of low temperatures extending into the middle stratosphere in the 1999-2000 Met Office data likely results from the erroneous top-level ozone data in use at this time (section 2.1.1). The NCEP analyses show significantly smaller A_{nat} than the other analyses in December 1999 through February 2000. In contrast, in 1996, the NCEP analyses show overall larger A_{nat}, and the REAN smaller, although differences between all analyses are larger in 1995-1996 than in 1999-2000. From the areas shown here, the Met Office, REAN, and ECMWF (as well as FUB at 30 and 50 hPa, Plate 2) suggest that conditions were more favorable for PSC formation in the lower stratosphere in January-February 2000 than in January-February 1996, but the NCEP analyses suggest the opposite.
Turning to a more general comparison of high-latitude temperatures, Figure 1 shows, at 50 hPa for January and February, the difference between each of the analysis temperatures and the ensemble mean (the average temperature over all analyses at each gridpoint) in the region north of 60°N, versus the ensemble mean. As described in section 2.2, these comparisons were made on a 5° × 5° grid. Table 1 shows the average differences between the ensemble mean and each of the analyses for November through March in the two winters. As seen dramatically in Figure 1, by far the largest scatter around the average difference is in the FUB analyses. This may be because, as a subjective analysis relying almost solely on radiosonde data, the FUB analyses may capture local variations that are smoothed out in systems that also give weight to low vertical resolution satellite data in their analyses [e.g., Pawson et al., 1999]; such smoothing is expected to be a larger effect in cold regions with mountain wave activity or warm regions with very sharp vertical temperature gradients. At temperatures above ~210-215 K the FUB temperatures have a large high bias, which causes all the other analyses to show some degree of low bias. The opposite is generally true at lower temperatures; that is, the FUB data tend to be colder than average and the NCEP, REAN, and ECMWF warmer. The Met Office data are usually near the ensemble mean but also show a slight high bias at low temperatures in January 1996 and a comparably low bias in January 2000. The low bias in the Met Office data at lowest temperatures in February 1996 comes from two or three very cold days (including 20 February) when a strong upper tropospheric ridge resulted in a large cold region near the vortex edge in the lower stratosphere [e.g., Manney et al., 1996a]; on these days, the Met Office analyses produced lower temperatures than any of the others.

Table 1 shows that there is considerable variation in the overall high-latitude temperature biases during the two winters. Of particular note is the overall low bias in Met Office analyses throughout 1999-2000, contrasted with a high bias in November 1995 through January 1996. This may be related to the incorrect top-level ozone data used in 1999-2000. In both years the FUB shows large low biases in November and December, smaller low biases in January, and high biases in February and March. NCEP, REAN, ECMWF, and DAO all show modest high biases in November through January. Root-mean-square differences between analyses and the average (not shown) indicate that FUB analyses show larger scatter than the other analyses throughout the winter. Met Office, NCEP, REAN and ECMWF analyses typically show larger scatter in February and March than in earlier months.
4. Trajectory Histories

Temperature histories along trajectories are used to examine more closely how the meteorological dataset used may affect calculations common to polar processing studies.

To examine temperature histories at high latitudes and in the vortex, 30-day back trajectories on the 465-K isentropic surface were run for parcels initialized from 40° to 90°N on an equal area grid with 0.5×0.5° equatorial spacing (~50 km spacing, ~30,000 parcels); parcel positions were saved every 3 hours. These runs were initialized on 30 January and 10 March 1996 and 2000. From these, we constructed maps of the total number of days air was at T≤195 K (Plate 4). This diagnostic is relevant to chlorine activation, in that the total time air parcels spend in PSCs strongly influences the amount of chlorine activation. In January 2000, each of the analyses shows parcels remaining at T≤195 K for the entire 30-day period; however, the number and spatial distribution of the parcels that do so vary considerably between the analyses. The maximum total time spent at T≤195 K is 14-16, 17-20, and 10-12 days for the February/March 2000, January 1996, and February/March 1996 cases, respectively. As will be seen below, temperatures in 1999-2000 were usually nearly concentric with the vortex [e.g., Manney and Sabutis, 2000], while in 1995-1996 the cold region was frequently near the vortex edge [e.g., Manney et al., 1996a]. Temperatures were comparable in January 2000, January 1996, and February 1996. In January 2000, however, the parcels spent a longer time being advected within the cold region, rather than moving in and out of it as they did in 1996. Less variability in the vortex and low temperature region, and a stronger correlation between those regions, in January 2000 than in the other periods can also be seen in the position of the overlaid temperature contours, which are averaged over the duration of the trajectory runs.

Compared to the other analyses, the NCEP plots in January 2000 shows higher average temperatures and the vortex less completely filled with parcels that remained cold for a long time. The Met Office analysis shows more of the vortex filled with air that spent the entire month at low temperature. In each of the other three cases, the REAN calculations show the shortest times at low temperature and highest average temperatures. In 1996, the NCEP results show the longest time and largest area of parcels at low temperature, and the lowest average temperatures. Some of the analyses, particularly in January 2000 and February 1996, show tongues or filaments drawn off the vortex that have spent significant time at low temperature; this behavior may have implications for the mixing of chemically processed air into midlatitudes [e.g., Norton and Chipperfield, 1995].

To examine in more detail the history of parcels at low
temperature, trajectory runs at 465 K were initialized with parcels on an equal area grid with \(0.25^\circ \times 0.25^\circ\) equatorial spacing within the area with \(T \leq 195\) K on the initialization day; these runs used \(\sim 1800-18,000\) parcels, depending on the initialization day and the analysis. These runs were initialized on 10 January and 20 February 1996 and 2000; 20-day trajectories were run both backward and forward, and the parcel positions were saved every hour. Plate 5 shows temperatures, along with an indication of the extent and strength of the polar vortex, on two of the initialization days, 10 January 2000 and 20 February 1996. Besides substantial differences in the size of the cold region between analyses (to be quantified by the number of parcels in each run), the difference in the relative locations of the cold regions with respect to the vortex in 2000 versus 1996 is seen clearly here; as mentioned previously, during most of the 1999-2000 winter the cold region was centered in the vortex, while in 1995-1996, it was most commonly near one edge of the vortex. The NCEP data show a much smaller area of low temperatures on both initialization days in 2000, and a larger area in 1996, than the other analyses.

Plate 6 summarizes the average temperature history of the air parcels in each of the four periods. Often, differences of a few K between average temperature histories from different analyses could affect the amount, type and/or extent of PSC formation, e.g., on 29 December 1999, 5 February 2000, 2 January 1996, and 14 February 1996. The large scatter about the average (the one standard deviation envelope of \(\sim 10-20\) K) indicates large variations in the temperature histories of different parcels all initialized within the cold region on a given day. This scatter is smaller during January and early February 2000, when the cold region was nearly concentric with the vortex. The impact of different meteorological conditions during comparably cold periods is immediately apparent in comparing January 2000 with both January and February 1996; while most of the air remained cold for long periods (tens of days in some cases) in January 2000, the initially cold air in both January and February 1996 moved rapidly in and out of the cold region. Lower Met Office temperatures in January 2000 combined with a cold region that was concentric with the vortex resulted in a Met Office average that was continuously below the NAT PSC threshold for much longer than the other analyses.

The discrepancies between analyses seen in Plates 4 and 6 result from differences in both winds and temperatures. Plate 6 shows that the minima and maxima are often concurrent in all analyses but of different amplitudes. This suggests parcel trajectories that are similar, but pass through different temperature extrema. Some qualitative differences (e.g., early March 1996, late December 1995) suggest differences in the morphology of wind and/or temperature fields. In a
further attempt to diagnose whether differences in winds or temperatures may be dominant. Temperature histories like those in Plate 4 were calculated using temperatures from each of the analyses with the Met Office trajectories and, conversely, trajectories from each analysis with the Met Office temperatures (not shown). While both had significant effects, in most cases, using Met Office temperatures with individual trajectories produced temperature histories with closer agreement (suggesting that temperature differences between the analyses had a greater impact). Exceptions are for the REAN and DAO analyses in January 2000, for which runs with Met Office trajectories produced closer agreement (suggesting differences in the trajectories had a greater impact). Thus there is some variation in which effect is dominant, although differences in temperature most often seem to play a larger role.

To look more quantitatively at the differences in temperature histories, Figures 2-5 show histograms for each of the four cases initialized in the cold regions of the total time the parcels were at T<195 K (referred to hereinafter as TT195) during the 40-day period covered by the runs, and the time they were continuously at T<195 K before and after the initialization day (referred to hereinafter as CT195). The former diagnostic (TT195) is related to the total amount of processing on PSCs and hence to chlorine activation. The latter diagnostic (CT195) is more directly relevant to PSC formation and denitrification since the continuous time at low temperature affects the composition and size of PSC particles, and hence the rate at which they sediment. A quantity like CT195 has been used to estimate potential PSC "lifetimes"; for example, Tabazadeh et al. [2000, 2001] did similar calculations during cold periods in several Arctic winters, using 40 parcels in each cold region and combining the statistics for many days. The four cases shown here are sufficient to examine the dependence of the results on the analysis and on a variety of meteorological conditions. The number of parcels used to construct the histograms is proportional to the area of the cold region on the initialization day.

In general, the distributions of both TT195 and CT195 are broad and multi-peaked. Substantial differences are seen between analyses in both the averages and the location of peaks in the distributions. In January 2000 (Figure 2), both TT195 and CT195 distributions from each analysis have broadly similar shapes. The NCEP TT195 distribution is less strongly peaked; the Met Office, REAN, and DAO TT195 distributions show a strong peak near 28-35, 27-33, and 24-30 days, respectively. The CT195 distributions from each of the analyses have peaks near 1-2 days, 4-6 days, and 11-14 days, with ~65-70% of the parcels in the 4-9 and 11-16 day bins. About 11-18% of the parcels stay cold continuously for 0-3 days and all distributions also show a small but sig-
nificant peak in CT195 (~4% for NCEP, ~9-11% for others) near 19-24 days. The multi-peaked distribution of expected PSC lifetimes is consistent with the presence of both small particles that form quickly and very large particles that take longer to grow but would sediment quickly once formed, as seen in aircraft observations [Fahey et al., 2001].

In February 2000 (Figure 3), Met Office, NCEP, and REAN TT195 distributions have double peaks at times varying by ~2 days between analyses; the DAO distribution has a very different shape. The CT195 distributions for February 2000 all show substantial qualitative differences. In January 1996 (Figure 4), the TT195 and CT195 distributions from the three analyses are broadly similar. The CT195 distributions have peaks near 2 and 3 days, with ~25-30% of the parcels in bins at less than 2 days, and ~15-30% in bins from 2-3 days. Each of the TT195 distributions in February 1996 (Figure 5) has a different character. The NCEP and Met Office CT195 distributions in February 1996 are broadly similar (~55% of parcels at 2-3 days), while the REAN distribution shows strongest peaks at lower lifetimes (~60% of parcels at 1-2 days).

The conditions in January 2000 represent a situation where the parcels' histories are less dependent on the details of the wind and temperature fields, so a more consistent picture is seen between the different analyses. Situations like the other periods studied (with higher temperatures and/or low temperatures less concentric with the vortex) are more common in Arctic winter [e.g., Pawson and Naujokat, 1999], so one may expect trajectory-based temperature histories in general to depend very strongly on which analysis is chosen for the calculations. In the 1996 cases, even the averages for TT195 differ by nearly 6 days between the longest and shortest time.

PSC lifetimes of one to a few days (as in CTL95 in February 2000 and in 1996) are in the range where such processes as phase changes in PSCs may occur [e.g., Tabazadeh et al., 1996, 2001; Fahey et al., 2001], so even small differences can be very significant.

To test the sample size needed to accurately represent the distributions, subsamples of various sizes were made. Figures 2-5 also show the distributions obtained by reducing the number of parcels by a factor of 256. The impact of retaining too few parcels is clear in February 2000 (Figure 3), when the reductions resulted in fewer than 25 parcels used; some of the strongest peaks during this period are at locations substantially different from those in the full distribution. While retaining 40-80 parcels gives a reasonable distribution, using more than 100 parcels in any of these cases gave a distribution very similar in character to that obtained using the complete set of parcels.

The huge impact of the different meteorological conditions in 1996 and 2000 is reflected in averages and peaks at
much shorter times in TT195 and CT195 distributions for 1996 than for January 2000, even though the temperatures were comparable to those in January 2000. Average "potential PSC lifetimes" (CT195) in January 2000 were 9-10 days, whereas in each of the other time periods, they were 1.6-4.0 days, with nearly all parcels having expected lifetimes less than 7.5 days. These averages, however, frequently lie near minima in the distributions, and thus are not representative of common lifetimes. The distributions for February 2000 show more parcels with lifetimes over ~3 days (~20-40%) than in February 1996 (~0-7%), even though February 2000 was much warmer; short lifetimes in 1996 are consistent with the location of low temperatures near the vortex edge, and the behavior shown in Plate 6. The prevalence of very long lifetimes in 1999-2000 may have led to phenomena that are quite uncommon in the Arctic winter: large solid PSC particles [e.g., Fahey et al., 2001], widespread denitrification [e.g., Santee et al., 2000; Popper et al., 2001], and large ozone losses [Santee et al., 2000; Sinnhuber et al., 2000; Richard et al., 2001; Gao et al., 2001, and others]. Neither widespread denitrification nor as much ozone loss as in 1999-2000 were seen in the comparably cold 1995-1996 winter [e.g., Santee et al., 1996, 2000, 2001; Manney et al., 1996a].

5. Discussion and Conclusions

We have compared temperatures from the Met Office, NCEP, REAN, FUB, ECMWF, and DAO (for 1999-2000) analyses in the 1999-2000 and 1995-1996 Arctic winters. Temperature histories from trajectory calculations were compared for Met Office, NCEP, REAN, and DAO analyses. The two winters chosen for study were the coldest recent winters, and among the most frequently used in Arctic polar process studies. Although they were comparably cold in January and February, the meteorological situations were otherwise very different, with the cold region typically centered in the vortex during 1999-2000 and near the vortex edge in 1995-1996.

Minimum lower stratospheric temperatures typically vary by up to ~5 K between the analyses. Areas of low temperature usually vary by ~25% between analyses during cold periods, with occasional variations of over 50%. There are several periods during which one or two analyses stand out as significantly different. In December and January 2000, Met Office temperatures were substantially lower than those of each of the other analyses, during the same period. NCEP temperatures were typically highest. In contrast, in 1995-1996, Met Office temperatures were among the highest, and NCEP temperatures among the lowest. January 2000 would be thought to be warmer than January 1996 if looking at NCEP data, but the opposite conclusion would be drawn by
looking at Met Office, REAN, ECMWF, or FUB. In 1996, before substantial improvements in the ECMWF analysis system and lower stratospheric vertical resolution, ECMWF temperatures were among the warmest at 50 hPa but among the coldest at 30 hPa: in 1999-2000, ECMWF temperatures agreed much better with other analyses.

Differences between temperature analyses were generally larger in 1995-1996 than in 1999-2000: since only one of the analyses (ECMWF) underwent very substantial changes between these two years, this is likely to be related in part to the different meteorological conditions in the two years. In the more variable situation in 1995-1996, with very low temperatures often near the vortex edge, whether an analysis captured particular local features may depend more strongly on the horizontal and vertical resolution and on the details of how the data are ingested into the analysis system.

Several of the analyses (REAN, and often NCEP, DAO, and ECMWF) typically have a high bias at low temperatures with respect to the average for all analyses. A similar bias is seen in the Met Office analyses in January and March 1996, but a low bias at the lowest temperatures is seen in 1999-2000 and in February 1996. The FUB data usually show the opposite, being generally colder than the other analyses at T ≤ 205 K. At higher temperatures, FUB data are generally warmer, and NCEP, REAN, and frequently Met Office, colder, than the average. The amount of scatter seen between the FUB temperatures and the average is much larger than in any of the other analyses. As subjective analyses based almost entirely on radiosondes, the FUB analyses may follow wider variations seen at particular levels in radiosonde data more closely than the analyses that also include the low vertical resolution satellite data. This may also explain the low bias of the FUB at low temperatures, since some of the other products typically have a high bias with respect to sondes low temperatures [e.g., Knudsen, 1996; Manney et al., 1996b; Pullen and Jones, 1997].

Temperature histories from trajectory calculations using the Met Office, NCEP, REAN, and DAO winds show how differences in temperature may impact polar processing studies. In these diagnostics, the effect of different meteorological conditions (not merely temperature) on the comparison between analyses becomes even more pronounced. Substantial and persistent differences between the analyzed temperatures in January 2000 were described above, of similar magnitude to those in other periods studied. However, the differences between temperature histories for January 2000 are considerably smaller than for any of the other periods. This period was only slightly colder than the January and February 1996 periods studied: more significant than the large region of low temperatures is the fact that the cold region was approximately centered within the vortex, so that many of
the parcels in the initially cold region were simply advected within that region. In January 2000, although temperature differences led to variations between analyses in the details of locations that spent the most time at low temperatures, the distributions of “potential PSC lifetimes” and total time spent at $T \leq T_{\text{LAT}}$ were qualitatively similar for each of the meteorological analyses. In the other cases examined here, the analyses showed qualitatively different distributions of both potential PSC lifetimes and total time spent at low temperature: the maximum difference in the average total time at $T \leq 195$ K was almost 6 days.

Estimates of potential PSC lifetimes for January 2000 show peaks near 1-2 days, 4-6 days, 11-14 days, and 19-24 days (with those at 4-6 days and 11-14 days accounting for more than half the parcels). Average lifetimes are 9-10 days and located in a deep minimum in the distribution. Each of the other periods studied (February 2000 and January and February 1996) had average lifetimes from 1.6-4 days, with peaks at very different times in different analyses. The February 2000 lifetimes were short because it was not very cold; the 1996 lifetimes were short because parcels passed rapidly into and out of the cold region. These four cases span a variety of the meteorological conditions encountered in the Arctic winter. For a comprehensive survey one would want to do calculations for many events [e.g., Tabazadeh et al., 2000]; this is feasible because only ~40-80 parcels in the cold region are needed to capture the main features of the distributions. However, it is important to keep in mind that an average lifetime from such calculations provides little information about the typically broad and multi-peaked distributions. In addition, calculations run along a smaller number of trajectories, such as those done by Tabazadeh et al. [2001] for 20 parcels, may not capture all the important features of the temperature history.

Potentially long PSC lifetimes in January 2000, compared to those in the comparably cold 1995-1996 winter, are consistent with reports of widespread denitrification in 1999-2000 but not in 1995-1996 [e.g., Santee et al., 2000]. Long continuous cold periods would spur the formation of large particles that quickly sediment, as reported by Fahey et al. [2001]. The effect of the contrasting meteorological situations in 1999-2000 and 1995-1996 on chlorine activation and ozone loss is much more complicated, as the location of the cold region on the vortex edge in 1996 would be expected to favor the distribution of activated chlorine throughout the vortex, and the asymmetry of the vortex would also tend to position it so as to receive more sunlight, thus facilitating greater ozone loss [e.g., Waters et al., 1993; Manney et al., 1997; Santee et al., 1997]. On the other hand, some studies indicate that denitrification may enhance ozone loss [e.g., Rex et al., 1997; Tabazadeh et al., 2000; Gao et al.,
Thus it is not immediately obvious which set of conditions might lead to greater ozone loss, although some observational studies indicate greater losses in 1999-2000 [e.g., Santee et al., 2000]. Many detailed modeling studies are being done [e.g., Davies et al., 2001] in an attempt to address these issues. In the performance of such studies, nearly all of which depend on one (or more) of the meteorological analyses discussed here, it is important to keep in mind that substantial quantitative and qualitative differences may arise from the choice of which meteorological analysis product to use.

Acknowledgments. Thanks to the personnel responsible for producing the Met Office, NCEP, REAN, FUB, ECMWF, and DAO data. NCEP/NCAR reanalysis data were provided by the NOAA-CIRES Climate Diagnostics Center, Boulder, CO, USA. ECMWF data were made available by the German Weather Service (DWD). Thanks to Azadeh Tabazadeh for initially suggesting a temperature intercomparison for the 1999-2000 winter, Kingtse Mo, A. R. Ravishankara, Susan Solomon and Kevin Trenberth for helpful comments/discussions, and to Kristin Kruger, Nathaniel Livesey, Andrea Smedley, Robert P. Thurstans, and the JPL Microwave Limb Sounder Team for technical help, data management and computer support. Work at the Jet Propulsion Laboratory, California Institute of Technology, was done under contract with the National Aeronautics and Space Administration.

References

Gao, R. S., et al., Observational evidence for the role of denitrifica-
18

Detection of long term trends in global stratospheric temperature from NMC analyses derived from NOAA satellite data, Adv.
Gelman, M. E., A. J. Miller, R. M. Nagatani, and C. S. Long. Use
of UARS data in the NOAA stratospheric monitoring program,
Hanson, D., and K. Mauersberger. Laboratory studies of the nitric
acid trihydrate: Implications for the south polar stratosphere,
Kalnay, E., et al., The NCAR/NCEP 40-year reanalysis project,
Kell, M., M. Heun, J. Austin, W. Lahoz, G. P. Lou, and A. O’Neill,
The use of long-duration balloon data to determine the accuracy
of stratospheric analyses and forecasts. J. Geophys. Res., 106,
Kistler, R., et al., The NCEP-NCAR 50-year reanalysis: Monthly
Knudsen, B. M. Accuracy of Arctic stratospheric temperature
Knudsen, B. M., J. M. Rosen, N. T. Kjome, and A. T. Whitten,
Comparison of analyzed stratospheric temperatures and calculated trajectories with long-duration balloon data, J. Geophys.
Lorenc, A. C., R. S. Bell, and B. Macpherson. The Meteorological
Office analysis correction data assimilation scheme. Q. J. R.
Manney, G. L., and J. F. Sabatia. Development of the polar vortex
motion of air through the stratospheric polar vortex. J. Atmos.
Manney, G. L., M. L. Santee, L. Froidevaux, J. W. Waters, and
R. W. Zurek. Polar vortex conditions during the 1995–96 Arctic
of U. K. Meteorological Office and U. S. National Meteorological Center stratospheric analyses during northern and southern
Manney, G. L., L. Froidevaux, M. L. Santee, R. W. Zurek, and
J. W. Waters. MLS observations of Arctic ozone loss in 1996–
Manney, G. L., et al., Chemical depletion of ozone in the Arctic
434, 1994a.
McNally, A. P., E. Andersson, G. Kelly, and R. W. Saunders. The
use of raw TOVS/ATOVS radiances in the ECMWF a 4D-Var
McNally, A. P., J. C. Derber, W. Wu, and B. B. Katz. The use of
TOVS level-1b radiances in the NCEP SSI analysis system. Q.
Naujokat, B., and S. Pawson. The cold stratospheric winters
1996.
Newman, P. A., L. R. Lait, M. R. Schoeberl, R. M. Nagatani, and

Figure Captions

Plate 1. Time series of minimum temperature (K) at 50 hPa for November through March (left) 1999-2000 and (right) 1995-1996, for six analyses (five in 1995-1996). Minima are searched for north of 40°N.

Plate 2. Time series of the area with $T \leq T_{\text{Nat}}$ (fraction of a hemisphere) at (top) 30 and (bottom) 50 hPa for November through March (left) 1999-2000 and (right) 1995-1996 for six analyses (five in 1995-1996). Numbers for each analysis indicate the total number of days spent at $T \leq T_{\text{Nat}}$.

Plate 3. Pressure/time cross-sections of the area with $T \leq T_{\text{Nat}}$ (fraction of a hemisphere) for 15 November through 15 March, 2000 and 1996, from (top to bottom) Met Office, NCEP, REAN, ECMWF, and DAO (1999-2000 only) temperatures.

Figure 1. Scatter plots of the difference between temperatures from each analysis and the ensemble mean temperature (average over all analyses at each grid point) as a function of the ensemble mean, for all gridpoints on a 5° x 5° grid from 60° to 90°N, for January and February 2000 and 1996. The shaded region shows the area filled by the individual scattered points. The solid triangles show the average difference (analysis temperature - ensemble mean temperature) in each 1-K average temperature bin. The thin line is at zero difference.

Plate 4. Maps of total time spent at temperatures below 195 K in the 30 days prior to (left) 30 January and (right) 10 March 2000 and 1996, from 465-K back trajectory calculations from 40°N to the pole (see text) for Met Office, NCEP, REAN, and DAO (2000 only) trajectories. Note that the color scale extends to 30 days for 30 January 2000 and only 10 days for the other cases. Overlaid white contours show average temperatures over the 30 days of the runs; contour values are 200, 195, and 190 K (outermost to innermost). The map projection is orthographic, with 0° longitude at the bottom and 90°E to the right. The domain is from 40°N to the pole, with a thin dashed line at 60°N.

Plate 5. 465 K temperature maps on 10 January 2000 and 20 February 1996, from analyses used for trajectory calculations (Met Office, NCEP, REAN, and DAO for 2000). Overlaid white contours are PV on the same days in the vicinity of the vortex edge. The map projection is orthographic, with 0° longitude at the bottom and 90°E to the right. The domain is from equator to pole, with thin dashed lines at 30° and 60°N. The blue region shows the area below 195 K in which trajectory runs were initialized (see text).
Plate 6. Plots of the average (thick solid lines) and one standard deviation envelope (thin dashed lines) for the trajectory runs initialized within the cold region on (left) 10 January and (right) 20 February (top) 2000 and (bottom) 1996.

Figure 2. Histograms of (left) the total number of days spent at $T \leq 195$ K and (right) the number of days surrounding the initialization time continuously at $T \leq 195$ K for trajectory runs initialized in the cold region on 10 January 2000. Thick solid lines, labels, and arrows are for the complete set of initialized parcels; shaded lines, labels, and arrows are for a set of 1/256th of the parcels obtained by retaining every 16th parcel in both latitude and longitude. The arrows show the average number of days; number of parcels used and average number of days are given in the labels.

Figure 3. As in Figure 2, but for 20 February 2000. Note that the right-hand (continuous days at $T \leq 195$ K) axis goes only to 7.5 days, as opposed to 30 days in Figure 2 for 10 January 2000.

Figure 4. As in Figure 3, but for 10 January 1996.

Figure 5. As in Figure 3, but for 20 February 1996.
Table 1. Average differences in 60° to 90°N temperature

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Month</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nov</td>
<td>Dec</td>
<td>Jan</td>
<td>Feb</td>
<td>Mar</td>
</tr>
<tr>
<td>1999-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met Office</td>
<td>-0.08</td>
<td>-0.06</td>
<td>-0.59</td>
<td>-0.32</td>
<td>-0.50</td>
</tr>
<tr>
<td>NCEP</td>
<td>0.94</td>
<td>1.07</td>
<td>0.71</td>
<td>-0.29</td>
<td>-0.15</td>
</tr>
<tr>
<td>REAN</td>
<td>0.26</td>
<td>0.34</td>
<td>0.15</td>
<td>-0.29</td>
<td>-0.42</td>
</tr>
<tr>
<td>FUB</td>
<td>-3.10</td>
<td>-2.76</td>
<td>-0.72</td>
<td>1.94</td>
<td>1.65</td>
</tr>
<tr>
<td>ECMWF</td>
<td>0.67</td>
<td>0.70</td>
<td>0.37</td>
<td>-1.01</td>
<td>-1.07</td>
</tr>
<tr>
<td>DAO</td>
<td>1.34</td>
<td>0.70</td>
<td>0.22</td>
<td>-0.03</td>
<td>0.16</td>
</tr>
<tr>
<td>1995-1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met Office</td>
<td>0.43</td>
<td>0.72</td>
<td>0.41</td>
<td>-0.04</td>
<td>-0.50</td>
</tr>
<tr>
<td>NCEP</td>
<td>0.15</td>
<td>0.24</td>
<td>-0.44</td>
<td>-0.82</td>
<td>-1.08</td>
</tr>
<tr>
<td>REAN</td>
<td>0.66</td>
<td>0.74</td>
<td>0.46</td>
<td>0.18</td>
<td>-0.41</td>
</tr>
<tr>
<td>FUB</td>
<td>-2.17</td>
<td>-3.09</td>
<td>-0.93</td>
<td>1.23</td>
<td>3.13</td>
</tr>
<tr>
<td>ECMWF</td>
<td>0.94</td>
<td>1.39</td>
<td>0.49</td>
<td>-0.76</td>
<td>-1.42</td>
</tr>
</tbody>
</table>
Figures

Plate 1. Time series of minimum temperature (K) at 50 hPa for November through March (left) 1999-2000 and (right) 1995-1996, for six analyses (five in 1995-1996). Minima are searched for north of 40°N.

Plate 2. Time series of the area with T≤T_NAT (fraction of a hemisphere) at (top) 30 and (bottom) 50 hPa for November through March (left) 1999-2000 and (right) 1995-1996 for six analyses (five in 1995-1996). Numbers for each analysis indicate the total number of days spent at T≤T_NAT.
Plate 3. Pressure/time cross-sections of the area with $T \leq T_{\text{NAT}}$ (fraction of a hemisphere) for 15 November through 15 March, in 2000 and 1996, from (top to bottom) Met Office, NCEP, REAN, ECMWF, and DAO (1999-2000 only) temperatures.
Figure 1. Scatter plots of the difference between temperatures from each analysis and the ensemble mean temperature (average over all analyses at each grid point) as a function of the ensemble mean, for all gridpoints on a $5^\circ \times 5^\circ$ grid from 60° to 90°N, for January and February 2000 and 1996. The shaded region shows the area filled by the individual scattered points. The solid triangles show the average difference (analysis temperature - ensemble mean temperature) in each 1-K average temperature bin. The thin line is at zero difference.
Plate 4. Maps of total time spent at temperatures below 195 K in the 30 days prior to (left) 30 January and (right) 10 March 2000 and 1996, from 465-K back trajectory calculations from 40°N to the pole (see text) for Met Office, NCEP, REAN, and DAO (2000 only) trajectories. Note that the color scale extends to 30 days for 30 January 2000 and only 10 days for the other cases. Overlaid white contours show average temperatures over the 30 days of the runs; contour values are 200, 195, and 190 K (outermost to innermost). The map projection is orthographic, with 0° longitude at the bottom and 90°E to the right. The domain is from 40°N to the pole, with a thin dashed line at 60°N.
Plate 5. 465 K temperature maps on 10 January 2000 and 20 February 1996, from analyses used for trajectory calculations (Met Office, NCEP, REAN, and DAO for 2000). Overlaid white contours are PV on the same days in the vicinity of the vortex edge. The map projection is orthographic, with 0° longitude at the bottom and 90°E to the right. The domain is from equator to pole, with thin dashed lines at 30° and 60°N. The blue region shows the area below 195 K in which trajectory runs were initialized (see text).
Plate 6. Plots of the average (thick solid lines) and one standard deviation envelope (thin dashed lines) for the trajectory runs initialized within the cold region on (left) 10 January and (right) 20 February (top) 2000 and (bottom) 1996.
Figure 2. Histograms of (left) the total number of days spent at $T \leq 195$ K and (right) the number of days surrounding the initialization time continuously at $T \leq 195$ K for trajectory runs initialized in the cold region on 10 January 2000. Thick solid lines, labels, and arrows are for the complete set of initialized parcels; shaded lines, labels, and arrows are for a set of 1/256th of the parcels obtained by retaining every 16th parcel in both latitude and longitude. The arrows show the average number of days; number of parcels used and average number of days are given in the labels.
Figure 3. As in Figure 2, but for 20 February 2000. Note that the right-hand (continuous days at \(T \leq 195 \) K) axis goes only to 7.5 days, as opposed to 30 days in Figure 2 for 10 January 2000.
Figure 4. As in Figure 3, but for 10 January 1996.
Figure 5. As in Figure 3, but for 20 February 1996.