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Abstract

Vve address the problem of scheduling observations

for a collection of earth observing satellites. This

scheduling task is a difficult optimization problem,

potentially involving many satellites, hundreds of
requests, constraints on when and how to service

each request, and resources such as instruments,

recording devices, transmitters, and ground sta-
tions. High-fidelity models are required to ensure

the validity of schedules; at the same time, the

size and complexity of the problem makes it un-

likely that systematic optimization search meth-
ods will be able to solve them in a re_onable time.

This paper presents a constraint-based approach to

solving the EOS scheduling problem, and proposes
a stochastic heuristic search method for solving it.

1 Introduction

NASA's growing fleet of Earth-observing satellites

employ advanced sensing technology to assist sci-
entists in the fields of meteorology, oceanogra-

phy, biology, and atmospheric science to better un-
derstand the complex interactions among Earth's

lands, oceans, and atmosphere. Demand on these
satellites is already high, and is expected to in-

crease significantly in the near future. Currently,
science activities on different satellites (e.g. the

AM Constellation) or even different instruments
on the same satellite (e.g. the ASTER instrument

on the Terra satellite [11]), are scheduled indepen-

dently of one another, requiring the manual coor-
dination of observations by communicating teams

of mission planners.

It is unlikely that this approach to daily mission
planning and scheduling will be viable in the fu-
ture. As constellation sizes and the number of ob-

servation requests grow large, manual coordination

will no longer be possible. A more effective way to
manage observation scheduling is by allowing cus-

tomers of the data (viz. the scientists themselves)

to request data products, and centrally schedule
all requests using information about all possible

data gathering resources. Customer preferences
will constrain which satellite or satellites will be

used to collect the data. Automated techniques
can reason about all of the resources that are in-

volved in collecting data, storing the data tem-

porarily on board satellites, and transmitting the
data back to Earth. This will enable more efficient

management of the fleet of satellites as well as the
communication resources that support them.

In this paper we discuss the problem of schedul-

ing observations for a collection of earth observing
satellites. We first formulate the problem in Sec-

tion 2 as a constrained optimization problem, in-

volving a set of observation requests, each with as-
sociated constraints that must be satisfied by any

solution to the problem, and a set of resources, in-

cluding imaging instruments, solid state recorders
(SSRs), antennae and transmitters, and ground

stations. Typically, there will be too many ob-
servations to schedule with available satellite re-

sources. Therefore, we assume requests are prior-
itized, and search for the best subset of requests

to service, subject to operational constraints. In
Section 3, we survey approaches to solving the

EOS scheduling problem. In Section 4, we intro-
duce our approach to solving the problem, based
on the Constraint-Based Interval Planning (CBIP)

paradigm [16]. In CBIP, actions and fluents (or
states) are uniformly described as intervals dur-

ing which a state variable maintains a particular
value. CBIP uses a model to specify how states
are related to each other in a plan. Candidate
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i)l:msarc representedby v:triablcsandconstt'ah_ts
which r(:llect tlt(: temporal relati(mshipsbetween
_t(:tioIIs, ordering decisions l)et,ween actions, and
the paranmters of states or actions. In Section 4

we also formulate our approach to conducting and

controlling an algorithm based on Heuristic Biased
Sto(:h;ustic Search (HBSS) [3] using _ heuristic re-

lated to priority and resource contention.

2 Problem Description

We assume that constellations of the future will

contain many satellites with heterogeneous capa-
bilities. The satellites may be in any orbit. Each

satellite is equipped with a suite of instruments;

some satellites have pointable instruments, giving
increased flexibility in what they can observe at

any point in an orbit. Further, some imaging in-
struments are meant to be on almost continuously,

in order to ensure global coverage (e.g. the ETM+
on Landsat 7). Others are designed to be operat-

ing on a limited basis to obtain high resolution,

detailed maps of selected parts of earth's land sur-
face.

Image data acquired by an earth observing satel-
lite are either downlinked in real-time, or recorded

on board for playback at a later time. TDRSS

satellites and ground stations are available to re-

ceive downlinked images. Different satellites may
be able to communicate with only a subset of these

resources, and transmission rates will differ from
satellite to satellite and from station to station.

Further, there may be different costs associated

with playing back data through different ground
stations.

An observation request is typically specified in
terms of the type of data and instrument desired,

a series of locations and times for the sensing

event, and a priority for satisfying the request.
A proposed observation sequence must satisfy a
number of constraints. These constraints include

the requirement that the observation requests be

matched with the satellites capable of collecting
the requested data, and that observation times

must obey duration and ordering constraints as-

sociated with the imaging, recording, and down-

linking tasks. In addition, SSR capacity, and
constraints on communications equipment such as

satellite antennae and ground stations must be sat-

isfied. There may also be set-up times associated
with satellite systems, which generate further or-

dering constraints. Servicing requests may involve

coor(linaling activities among different satellites.

For ex;ttnple, a stereo image will involve multi-

ph: sensing events of the same location at different

viewing angles. In other cases, adequate spectral

coverage may require the use of two or more in-
struments to sense the same land area, or to sense

both land use and atmospheric conditions. Finally,

scientists may want to image the same area at dif-

ferent times of day.
There will be too many observations to sched-

ule with available satellite resources. Solutions are

preferred based on objectives such as maximizing

the number of high priority requests serviced and

the expected quality of the observations, and min-

imizing the cost of downlink operations.
EOS science management requires continuous

scheduling and rescheduling of activities. Requests
can be submitted at any time, and high priority

targets of opportunity (e.g., fires, earthquakes, vol-

canos) may result in the need for updating a par-
tially executed schedule. In addition, there are nu-

merous sources of uncertainty in the satellite obser-

vation scheduling domain. One of the most impor-
tant, and difficult, aspects of the EOS scheduling

problem arises from the uncertainty of the weather,

specifically, with respect to cloud cover. On the

one hand, image quality typically is heavily de-
termined by the amount of cloud cover; on the

other hand, many parts of the world have long
seasons where clouds are omnipresent, and if a

simple "no cloud" scheduling policy were followed,

these parts of the world would virtually never be
observed. Thus, it is important to enforce a so-

phisticated scheduling policy which mollifies a "no
cloud" cover restriction with the need for coverage.

3 Previous Work

Previously reported work on EOS scheduling prob-
lems includes both theoretical investigations using

abstract models, as well as operational schedulers

for ongoing EOS missions. We divide our survey

of previous approaches into two parts: modeling

and algorithms.

3.1 Models of EOS Scheduling

Very few theoretical approaches consider multiple
satellites or the coordination of observations. Bur-

rowbridge [4] discusses the important problem of
managing telemetry and data acquisition (TDA)
resources needed by multiple satellites, but does



m_t t.r_,_Ltproblemsiuw_lvingobservatious,dat.a
gat:lwring,or downlinkingdata. Theoreticalap-
pro;_chesusuallyinvolvesimplifiedmodelsof the
satellitesdudcommunicationresources.Forexam-
pit,,LcmMtreet al. [10],Pemberton[12]andWolfe
and Sorensen[18] do not discusson-boarddata
storageor communicationssystemmanagement.
tBensanaet. al. [2] describeproblemswith on-
boardstorageconstraints,but without communi-
cationssystemmanagement.Pemberton[12]and
Wolfi_andSorensen[18]assumethat thereareno
precedenceconstraintsor any other logicalcon-
straints betweenthe requests,while Lem£itreet
al. [10]and Bensanaet al. [2] compilethe com-
plexconstraintsdownto simplebinaryandtrinary
exclusionconstraints.

There are severaloperationalsystemsfor on-
goingEOSmissions.The ASTER schedulerde-
scribedin [11] and the Landsat7 scheduler[13]
are two examples.Theseschedulersrelyon quite
detailedmodelsof thesatellitesandthecommuni-
cationsenvironmentwhenschedulingoperations.
However,theydosufferfromsomelimitaitons. For
example,ASTER schedulingis performedinde-
pendentlyof other instrumentsonboardtheTerra
satellite. A fixedamountof memoryis allocated
for this instrument; if it is unused,it can't be
usedby any other instrument, resulting in sub-
optimal schedules.Additionally, thesemodelsdo
not accountfor all of thestepsthat occuronboard
thesatellitesduringoperations.Forinstance,the
ASTER instrumentis aimable,yet thereis noac-
countingfor the time requiredto aim the instru-
mentbetweenobservations.Similarly,Landsatre-
quirestime to shutdownand powerup its instru-
ment;this isassumedto takeplacebetweenscenes.
While this maybe sufficientfor Landsat,it may
not begoodenoughfor futuresatelliteswith more
advancedcapabilities.A notableexceptionis AS-
PEN,whichwasusedto modelandsolvetheEO-1
dataacquisitionSchedulingproblem[14,15]. AS-
PENis anintegratedplanningandschedulingsys-
tem that can representcomplexresources,activi-
ties that taketime, aswell as subgoalsof activi-
ties. However,theschedulingproblemdescribedin
[15]doesnot appearverydifficult; EO-1canonly
schedule4 observationsa day. It is not clearhow
their approachscalesto manysatelliteswith many
instrumentsof varyingcapabilities.

As mentionedpreviously,mostof the problems
describedin thesepapersare optimizationprob-
lems.The usualgoal is to maximizetheweighted

slml ,_f t,h{' sctwduh_d obs{_'rvations. Wolfe and

Sorc'nsen [18] describe a slightly different probh;m,
in which obserwttions are vahwd based on when

they are performed and how much data is col-

lected. This makes the optimization problem more
difficult to solve.

3.2 Scheduling Algorithms

Many of the search algorithms described in these

papers are incomplete algorithms. The primary
reason for focusing on such algorithms is that, even

for small numbers of satellites, the problems are

large enough that solving them optimally is im-

practical. The usual approach is to greedily select

the next highest priority request to try and sched-

ule, and reject it if there is nowhere for it to go.

The ASTER scheduler [11] works exactly this way,
as does of the approaches described by Wolfe and

Sorensen [18]. Pemberton [12] describes a family
of algorithms ranging from strictly greedy to com-

plete search; after sorting the requests, blocks of n

requests are scheduled optimally, with all previous
allocations acting as constraints on the next set
of observations to schedule. Wolfe and Sorensen

[18] describe a greedy search which sorts requests

by priority, breaking ties using the amount of
slack (extra space for the request), then greedily

scheduling the request in the best place for it. A
modification performs lookahead to decide where

the request leads to the best schedule, thereby ac-

counting for its future impact. Another modifi-

cation generates input lists using a genetic algo-
rithm, with the option of rejecting a request pre-

emptorily. Burrowbridge's scheduler [4] greedily

schedules requests based on the earliest finishing
time of the request. The Landsat 7 scheduler [13]

greedily schedules requests based on the earliest
finishing time until resources run out, then pre-

empts previously scheduled observations based on
priority. ASPEN [14] uses a local search algorithm

that generates an initial schedule, then identifies
and repairs conflicts in the schedule by changing

variable assignments. This algorithm is quite com-

plex, with 10 distinguished types of conflicts and
heuristics required to identify both the conflict to
work on and the method of addressing it.

As a final note, the priority of observations is

normally derived from a number of factors, some
of which are dynamically determined. For exam-

ple, estimated cloud cover and nearness to the
end of the feasibility window are normal inputs.

The Landsat 7 scheduler [13] also attempts to find
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scheduleswith hmgsoquencesof adj;u:mlt sc_m<_
to reduce the ow;rhead on datll acquisitions.

4 Technical Approach

We believe that effectiCe coordination of EOSs re-

quires high-fidelity modeling of the entire EOS en-
vironment. Not only do we need to model on-
board satellite resources, commtlnication resources

and requests, but we must also model the detailed

activity sequences on the spacecraft and on the

ground. However, we would like to make use of

search techniques developed for solving combina-

torial problems. To balance these needs, we use the

Constraint-Based Interval Planning (CBIP) frame-
work.

4.1 Constraint-Based Interval Planning

The CBIP framework [16] is based on an inter-
val representation of time. A predicate is a uni-

form representation of actions and states, and an
interval is the period during which a predicate

holds. A token is used to represent a predicate

which holds during an interval. Each token is de-

fined by the start, end and duration of the interval

it occurs, as well as other parameters which fur-
ther elaborate on the predicate. For instance, a

Take-Image predicate may have a parameter de-

scribing the resolution, which can be either low or
high. The planning domain is described by plan-

ning schemata which specify, for each token, other
tokens that must exist {e.g. pre and post con-

ditions), and how the tokens are related to each

other. Figure 1 shows an example of a planning
schema. Schemata can specify conditional effects

and disjunctions of required tokens. For instance

in Figure 1, a Take-Image interval can be met by
a Calibration period if a high resolution image

is to be taken. The value of the ?mode parameter
indicates whether or not a Calibration period is
required. Planning schemata can also include con-

straints on the parameters of the token. As shown

in Figure 1, the Take-Image interval has a con-
straint relating the mode and the amount of data

stored by the operation.

EUROPA [6] is a CBIP planning paradigm
which continuously reformulates the planning

problem as a Dynamic Constraint Satisfaction
Problem (DCSP). This is done by mapping each

partial plan to a CSP. The temporal constraints
form a Simple Temporal Network, which can be el'-

ficienily solw'd [5], whih! the rest. of the constraints
form a general, non-binary CSP represented by

procedural constraints [8]. An additional feature

includes the ability to produce plans with flexible

time; that is, activities may start and end at any

time in an intervM [9]. This gives the plan some

flexibility, should activities take longer or shorter

than expected. Figure 2 shows a plan fragment

and its induced CSP. Assignments of variables in
the CSP correspond either to the adding of new

plan steps, or the assignment of parameters of plan
steps. As steps are added to or removed from the

plan, the CSP is updated to reflect the current

partial plan. For example, in Figure 2, adding

the Take-Image step to the plan requires adding
several new variables and constraints to the CSP.

At any time, if the CSP is inconsistent, then the

partial plan it represents is invalid; if a solution
is found to the CSP, then that solution can be

mapped back to a plan which solves the problem.

The advantage of such a representation is that any
algorithm which solves DCSPs can be used to solve

the planning problem.

[_"-'______¢.7".'_°Q,''"_°,'_'_-j

Con$1nlinllParamiilr I SSR-Cilpilcil'i{'linil'_llil"ldunili°n"lr'n°_l) I

Inte_il
Conlllrlin,l

Billl_lve

C°_llrti"= I Ecl('m°de HI'Hi > _ll i_Y Calibrit'O l

Figure 1: The planning schema for a Take-Image

interval. This schema consists of four components:
the master token of the schema, constraints on the

parameters of the schema, a description of other
tokens which must exist when the master token is

in the plan, and a disjunction of tokens which may
exist when the master token is in the plan.

EUROPA has the ability to model various types
of resources. A domain model consists of a number

of attributes, each of which represents an aspect

of the objects that interact in the world. Each of
these attributes may be in only one state at a time;

hence, if a camera is taking an image, it can't also

be turning. This permits simple modeling of re-
sources. Complex resources such as fuel and power

can be modeled using numerical constraints. In

Figure 1, the filling of the SSR is modeled by a
constraint that relates the initial amount of stor-

age, the final amount of storage, and the rate at
which the data acquisition task fills the buffer.
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Figure 2: A partial plan and its DCSP representa-

tion. Tile partial plan consists of 2 tokens, shown

at the top of the figure. The DCSP variables are
in rounded boxes. Edges between DCSP variables
arc labeled with the constraints on those variables.

4.2 A CBIP Model of the EOS Domain

A CBIP model for the EOS domain will describe

ttle attributes of a set of satellites with different

types of sensing instruments and resources, as well
as different orbital tracks. Resources to be mod-

eled for each satellite include the instruments, the

SSR, and a set of antennae and transmitters for

downlinking data. We not explicitly model power
consumption or satellite maneuver operations, al-

though maneuver periods and power-related duty
cycles may constrain the schedule. Other model

elements are data receiving stations, either ground
stations or TDRSS satellites.

A sensing instrument is defined primarily in

terms of the type of data it acquires, its spatial and
spectral resolution (for spectrometers), its swath

width, and pointing limitations (field of view, slew

rate, and so on). A solid state recording device
(SSR) is defined by the storage capacity and the
rate at which it stores data. Antennae and trans-

mitting devices are defined by whether they are
slewable, and also by their data transmission rate.
Data receiving stations are associated with a fre-

quency band, and also by the number of downlink

channels they support. Each of these entities will
correspond to one or more attributes of a model.

Requests are identified by their location, either

specified in World Reference System (WRS) units,
or latitude and longitude. We may also model a
"Quality of Service" (QoS) type for each request.

For example, in Landsat 7, requests for images

made by non-U.S, international ground stations
are usually serviced through direct downlink to

the the requesting ground station. By contrast,

so-c:alled "special" requests on Landsat 7 corre-

sport(ling to exceptional events are typically simul-

taneously recorded and directly downlinke(l to a

ground station, and later also played back for re-

dundancy. As noted earlier, requests are associ-
ated with a user-defined priority, but other, de-

rived priorities emerge during the scheduling pro-

cess. For example, a request may undergo a boost
in priority as a result of the delay since the previous

time an image of the area was taken, or because
of limited opportunities for capturing the image.

Conversely, a request priority may be demoted due

to expected excessive cloud cover over the area. A

given request may also correspond to a coordinated
activity involving multiple instruments. Coordi-
nated observation activities arise for many re_ons,

for example, to take a stereo image of an area, to

sample a region over different spectral regions, or
to calibrate instruments.

Each attribute of a CBIP model supports a
limited set of activities. Thus, an SSR can be

recording, playing back data, or idle, an antenna

can be slewing, or pointing to a receiving sta-
tion, and an imaging instrument can be off, idle,

or taking an image. The model will also repre-

sent set up events such as warming up an instru-

ment, or slewing for antennae or pointable sens-
ing instruments. Temporal constraints impose re-
strictions on the duration and ordering of tokens

in a plan. Temporal constraints may be associ-

ated with a single activity, such as the constraint
that an antenna be slewed to a certain location

before it can begin pointing at that location; or

a temporal constraint can involve pairs of activ-
ities, such as the constraint that a ground sta-
tion must be in contact with a satellite while

data is being downlinked. Resource constraints
include SSR capacity, communication bandwidth,

and duty cycle restrictions on imaging instru-

ments. Figure 3 shows how all of these aspects
are combined in a simple model. This model
shows the interaction of an instrument attribute

and an SSR attribute. The instrument tran-

sitions between Pointing, Idle, Calibrating
and Take-Image. The SSR transitions between

Recording, Playback and Idle. The time re-

quired for Pointing, Calibrating, Recording
and Playback activities are constrained. In addi-

tion, Take-Image and Recording activities must
be simultaneous, and whenever a Playback occurs
on the SSR the instrument must be Idle.

The EUROPA planner supports object-oriented
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./_ _ procedure HBSS(Ob._)Instrument Attribute XD : (_

//I c_,b,at_o-r,._,;,a,:t__ / _\ while Ob.s #
[ {. _:_a ' l_,( ,_o, "x----q po,o,,_r.,-_%a.b): i _ O = SelectObs(Ob._)

__ t = SelectTime(o)

P = PU o starting at time t
Obs = Obs - o

P = Propagate(P)

_-_'_-_ c_t=_d-By if no plan found return 0
equa, / end while

_ FindPlan(P)

__ _ __ return P

R ime(t,r,

_ _ I ,.d, _ Figure 4: HBSS Modified for the EOS Schedul-

__ _ ing problem. The algorithm repeatedly selects an
SSRAttribute observation, then selects a time to schedule the

observation or rejects the observation. This as-

Figure 3: Simplified model showing the interaction
of instrument and SSR attributes.

descriptions of models. Most subsystems of satel-

lites are quite similar, so we expect that we can

define a relatively large number of different satel-
lites quite easily. We can then vary the parameters
of these different satellite models to create more

or less challenging EOS domains. For instance, we

can vary the transmission rates and SSR capacities

of the satellites, the number of ground stations or

TDRSS contacts, as well as change the instrument
makeup of satellites, to assess the impact of differ-

ent scenarios for particular sets of requests.

5 The HBSS Algorithm

In theory, the optimal solution to an observa-

tion scheduling problem can be found using the
well known systematic branch and bound algo-

rithm. Unfortunately, complete search algorithms
are simply not practical for most large schedul-

ing problems. Bensana et al. [2] indicate that

they were unable to optimally solve problems with
more than about 200 observations using Russian
Doll Search (a clever but specialized variation on

Branch and Bound). Pemberton [12] makes simi-
lar observations. The only alternatives are to use

some form of greedy search or hill-climbing search,
possibly augmented with stochastic variation to

escape local optima. Fortunately, for observation

signment is added to the plan, and Propagate
then performs any inferences that result from the

scheduling of the observation. If all observations

are scheduled or rejected, FindPlan attempts to

schedule and subgoals that need to be scheduled,
and the resulting plan (there may not be one) is

returned. Heuristics strongly drive the SelectObs
and SelectTime steps•

scheduling these approaches tend to work well, be-
cause there are usually many local optima that are

nearly as good as the global optimum. Thus, by

injecting stochastic variation into a greedy search
procedure one of these resonably good solutions

can usually be found very quickly.

For our purposes, we have chosen to over-

lay a stochastic gready search algorithm on the
constraint-based planning techniques discussed

earlier. In particular, the greedy search will
choose and schedule observations, and the con-

straint based planning foundation will propagate
constraints to rule out possibilities inconsistent

with each observation assignment, and expand in-

dividual observations by including any necessary
setup and postprocessing steps required by the

scheduled observations. The stochastic greedy
search algorithm is based on the HBSS algorithm

developed by Bresina [3]. The basic algorithm
for HBSS looks like a simple greedy search with
restarts. A modified version of the algorithm ap-

pears in Figure 4.
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What dist.inguishesthe [[BSS Mgorithm fr,ml
or(tinarygreedysearchis the way in whichalter-
nativesarechosenin the SelectObsand Select-
Time steps.In apuregreedysearch,thesechoices
aremadeabsolutelyby a heuristic. In theHBSS
algorithm, the heuristicmust rank or scorethe
possil)lealternatives. HBSSthenchoosesproba-
bilistically from amongthe alternatives,weighted
accordingto their rankingor score.Thus, possi-
bilities rankedhighlyby theheuristichavehigher
probability of being selected,but other lower
rankedpossibilitiesaresometimesselected.This
meansthat severalalternativeswith roughly the
samescorewill haveroughlyequalprobabilityof
beingchosen. Because of this stochastic character,
alternative schedules are likely to be explored with

each successive restart of the algorithm.

The Propagate step performs simple inferences
after scheduling an observation. These inferences

include eliminating choices for observations and

otherwise eliminating the values of variables in the

DCSP representation of the plan, but may include

inserting subgoals into the plan. HBSS only selects
observations to be in the plan; these may lead to

subgoals, and these also need to be inserted in the

plan. Before the HBSS procedure completes, any
subgoals that have not been inserted into the plan
must be handled; this is done by the FindPlan

step.
Like most search procedures, the effectiveness

of HBSS depends critically on the quality of the
heuristic advice. Bresina [3] has shown that HBSS

is particularly effective when the ranking heuristics

typically give good advice. As the quality of the
heuristic advice declines, HBSS must search pro-

gressively longer (more restarts) to find near opti-
mal schedules. In the next section we develop con-

tention heuristics for ranking observation choices.

5.1 Contention Heuristic

The success of Greedy search methods depends

largely on the heuristic used to decide which vari-
able to assign next, and which value to assign to
that variable. These steps correspond to the Se-

lectObs and SelectTime steps.
For observation scheduling, an obvious heuristic

for choosing an observation is to select the one with

the highest 15riority. In general, thfs will ensure
that the schedule is loaded with as many high pri-

ority observations as possible before any lower pri-

ority observations are considered. However, there
may be many observations with the same priority,

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 5: Tile impact of variable and value or-

dering. Take-Image h has three possible times-
lots, while Take-Image B has only 1. Tile tempo-
ral constraints imply that scheduling Take-Image

h at time 1 makes it impossible to schedule

Take-Image B at all, since it can only start at time
2.

and the order in which we consider these observa-

tions can have a dramatic impact on the resulting

schedule. For example, consider the simple exam-

ple shown in Figure 5. Here there are two observa-

tions, A and B, of equal priority. As shown, there
are several opportunities for scheduling A. but only

one opportunity for scheduling B, which overlaps
with the first opportunity for A. If we choose ob-

servation A first, and foolishly schedule it in the

first available time slot, then observation B will

not appear in the schedule. In contrast, if we were
to schedule B first, other opportunities would still
remain for observation A.

These examples suggest a simple rule of thumb

for choosing which observation to schedule next:

prefer observations having the fewest remaining

opportunities. This heuristic resembles the Min-
imum Remaining Values (MRV) heuristic com-

monly used in the CSP community [7]. Calcu-
lating the number Of remaining opportunities for

an observation is appealing because it is simple to

compute, and provides at least some estimate of
how easy it is to schedule that particular observa-

tion. However, it does not give any estimate of how
nmch "contention" there is for those opportunities.

For example, if there are two remaining opportuni-
ties for a high priority observation, but absolutely
no contention for one of the time slots, then the

observation will always be easy to schedule. In

contrast, if there are numerous other observations
that could use those time slots, then there is good
reason to schedule the observation early, to make

sure it gets one of those time slots.
This leads us to a more sophisticated measure

of contention. To start with, we will only consider
contention for time slots. We first define some

terms: Observations(t) is the set of observations
that could occur at time t, and Opportunities(o)

is the set of discrete opportunities for observation

o (noting that each discrete opportunity is exactly



long enoughto accomodatethe window.) For a
giventime slot, wecould measurecontentionby
countlingthe numberof obserw_tionsthat want
that time slot, weightedby thepriority of theob-
servation:

Contention(t)= _ Priority(o)
oEObservations(t)

However, this measure doesn't incorporate how

badly each observation needs the time slot; i.e. if
an observation can be scheduled in only that time

slot, it needs the time slot badly, but if it can be
scheduled in lots of different time slots, it doesn't

need the time slot very badly at all.
We can define the need of an observation as:

Priority(o)

Need(o) = iOpportunities(o) l

The contention for a particular time slot can
then be defined as:

Contention(t) = _ Need(o)
oEObser_'ations(t)

The contention for a particular observation can
then be defined as:

Contention(o) = min Contention(t)
t E Opportunities(o)

We take the minimum because there may be an

easy place to put an observation, and the con-
tention of an observation should not be lowered

by slots that are in higher demand. In other

words, adding another opportunity for an obser-
vation should never increase the contention mea-

sure for that observation. Note, however, that con-

tention should be recomputed as observations are
scheduled to account for slots that are no longer

available, leading to higher contention for the re-

maining observations.
In developing the equations above, we regarded

observations as if they only required a single scene

or time slot, and could only be scheduled for that

slot (i.e. no window of opportunity):. For observa-
tions that involve a sequence or group of scenes we

would have to sum up (or maximize over) the con-
tention measures for each of the individual scenes

(time slots). With pointable instruments, there is
an interval during which a given scene could be

taken. This can also bc incorporated (with some

further complication of the equations); this would
resemble, heuristics that attempt to maximize the

slack in a schedule [17, 1].

Measuring contention for a global resource like

SSR capacity involves generalizing the above con-
tention measure to consider the amount of the re-

source needed by an observation, the resource ca-

pacity, and the interval of time under considera-
tion.

Let Requires(o, r) be 1 if observation o requires
resource r and 0 otherwise, and let Capacity(r, i)

be the capacity of a resource over a time inter-
val i. Thus, an SSR with a capacity of 50 has a

Capacity(r, i) = 50; ifa playback of 20 units occurs
within the interval i, then Capacity(r, i) = 70. We

then generalize the above definitions to be:

Priority(o)

Need(o, r) = Requires(o, r) iOpportunities(o) l

_oEObservations(i) Need(o)

Contention(r, i) = Capacity(r, i)

Contention(r, o) = min Contention(r, i)
iEOpportunities(o)

Again, note that these measures change as ac-
tivities are scheduled. In particular, as activities

that empty the SSR are scheduled Capacity(r,i)

may increase, and as observations are scheduled

Capacity(r, i) may decrease. Intuitively, these con-
tention measures provide a more accurate assess-
ment of how hard it is to actually schedule an ob-

servation. Using these measures, our variable or-

dering heuristic is:

Schedule the observation of highest pri-

ority and highest overall contention

where contention will be a weighted sum of con-
tention measures for the different resources (time

slots, SSR capacity, ...). This approach assumes
that resources are independent; while not true, it

does provide an efficiently computable approxima-
tion. This heuristic provides a ranking of observa-
tions suitable for use with the HBSS search proce-

dure.

Given an observation to schedule, we would pre-

fer to put it in the place where it will compete
with the fewest other observations. We can use

the above contention measures to define a value

ordering heuristic:

8



Schcdlt[e an obserwttion in the opportu-

nity with the least contention

Again, this hruristic provides a ranking suitable

for use with the. HBSS search procedure.

6 Conclusions and Future Work

We have presented the problem of scheduling ob-

servations on a collection of Earth Observing Satel-

lites and discussed a candidate representation and

solution methodology. In order to produce good

plans, we advocated a high-fidelity model incorpo-

rating both satellite resources and communications

resources. In order to gain maximum flexibility

in solving problems, we used the CBIP paradigm,

which gives us access to algorithms from the DCSP

community. We believe that this problem is large

enough and complex enough that a biased greedy
stochastic search method with a well-motivated

heuristic is the best approach. We have motivated

and described such a heuristic, and shown how

it can be integrated with a modified form of the

HBSS algorithm.
Our next tasks are to choose the final form of

the heuristic, select the bias function to be used

with HBSS, and select the exact method by which
subgoals of scheduled observations will be inserted

into the plan. Once this is done, we can then begin
experiments to test the effectiveness of this proce-
dure on large, heterogeneous EOS scheduling prob-
lems.
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