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Search for Effects of an Electric Potential on Clocks in the Frame of Reference of Charged Particles 

Executive Summary 

A series of Nuclear Magnetic Resonance (NMR) experiments were performed to search for a change 
in the precession rate of the proton magnetic moment in a hydrogen atom subjected to an intense 
electrostatic potential, as predicted by a new theory coupling space-time to matter and charge. The theory 
self-consistently imbeds classical electrodynamics within the framework of non-Riemannian space-time by 
way of introduction of an electrodynamic Torsion tensor into Einstein's equations. It predicts that an 
intense, external electrostatic potential should measurably shift the internal clock of a charged particle 
analogous to the gravitational red shift. The internal clock refers to time as seen by a particle of charge-to
mass ratio, elm, in its rest frame. 
The precession rate (Larmor frequency) of the proton was set to 354 MHz in an 8AT magnetic field of a 
superconducting magnet. The three experiments included: 

( I ) A proton subject to a spatially and temporally constant 5kY electrostatic potential -voltage on 
versus voltage off and voltage reversed NMR signals. 

(2) A proton subject to a spatially constant but time varying 6kY electrostatic potential. 
(3) A proton in a hydrogen atom physically moved through a spatially non-uniform, constant 5kY 

electric field-voltage on versus voltage off and dummy voltage NMR signals 

No change in the proton's clock (the 354 MHz proton NMR resonance in a hydrogen atom) was 
observed in any of the three experiments. The experiments were done very carefully so that shifts in 
frequency of as little as O.Olppm - that is about 3 Hz out of 354 MHz - could be observed. 5,OOOY was 
typically used resulting in a predicted shift of approximately 5ppm, more than enough to see with the stated 
sensitivity. The null results of the first two experiments were consistent with the predictions of the new 
theory and thus were not definitive. The third experiment was particularly important. The null result could 
not be explained by the present theory. This theory is, like the theory of gravitation, a single particle 
theory. However, a hydrogen atom also has an electron that interacts with the proton. In order to maintain 
the single particle character of a metric theory while simultaneously including the effects of the electron, a 
new conjecture, the "Clock Principle" (CP) is proposed. This principle states that the work done on the 
proton's clock changes its time. This automatically includes the work done by all the forces acting on the 
proton, including the external electric field and the electron. The net work done on the proton by the 
external electric field is cancelled against the work done by electron 's force on the proton. We take this to 
be the reason for no clock effect. This is not the usual picture envisioned by General Relativity (GR), a 
theory depending on geometry alone. 

CP may be false for the present theory and only coincidentally true for GR due to the equivalence 
principle, leaving only potential rather than potential energy (and therefore work) responsible for time 
changes. 

If CP is true, it follows directly that negative rest mass cannot exist. Its 
existence violates the equivalence principle. This does not preclude the existence 
of negative energy since the general energy-momentum relation has both positive 
and negative energy roots (see "Clock Conclusions"). 

If CP is shown to be false then it follows that no metric theory incorporating 
electromagnetism is possible, thus formally ending Einstein's dream through a real experiment. 

We demonstrate CP for three clocks: the NMR clock, the atomic clock and the pendulum clock. These and 
all known clocks can be shown to satisfy the conjecture. 
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I. Introduction 

The goal of the present work is to investigate an electromagnetic alternative to exotic physics for the 
purpose of coupling matter to space-time. Electromagnetic forces have distinct advantages. They are 1040 
times stronger than gravity. They can be manipulated at will. Resources to create intense fields of virtually 
any geometry are readily available. However, there is currently no accepted theory linking electrodynamics 
directly with the geometry of space-time other than to curve it via extremely high energy densities. The 
mainstream approach taken is "bottom up", attempting to unite all forces in the context of quantum gauge 
field theory which has to-date been successful in unifying the weak and electromagnetic forces and 
describing the strong force in what is known as "the standard model" . Gravity and therefore space-time 
geometry remains isolated from the internal geometry of gauge theory. 

The proposed experiment is a measurable, predicted consequence of a completed and solved theory 
[1], linking space-time geometry and electrodynamics, describing effects of intense electrostatic potentials 
on time as seen in charged particle reference frames. This is grounded upon E. Schrodinger's later works on 
gravitation theory [2] . In his work, Schrodinger attempted to link electromagnetism to geometry through a 
non-symmetric affine connection (Torsion tensor). He failed at the attempt, primarily because of an error 
of oversight. The theory upon which the present work is based corrects this error [3], resulting immediately 
in the definition of a new type of affine connection - an electrodynamic connection - that precisely 
matches SchrOdinger' s concepts and furthermore satisfies the classical equations of motion for both charge 
and spin, thus finding a common denominator for both external space-time coordinates and internal spin 
coordinates. Following Schrodinger, once the connection is identified, it is merely a formality to extract 
the Einstein field equations and find solutions subject to the appropriate boundary conditions for 
electromagnetic fields . 

II. Theory and Approach 

Ideal Experiment 

The theory [summarized in Appendix A] predicts that a particle of charge e, and mass m, immersed in 
a suitable electric field but unshielded and supported will see, in its rest frame, a time differing from the 
proper time of an external observer arising from the electrostatic potential at its location. In general , from 
the theory, the time shift in a clock interval is related to the potential difference between the two points; 

dr 
_ 2 = 1 + 2K(<P2 - <PI) (1) 
drl 

where K = -e/mc2
• As an example, let us suppose that we have a distribution of test charges, say free 

protons, between two concentric cylindrical electrodes, an inner cylinder of radius R and an outer cylinder 
I 

of radius R~ . We further suppose we are able to create a situation in which the protons are momentarily at 

rest while experiencing an intense electric field . For example, they may be at the extreme of an oscillation 
in a vacuum. The relation between proper time elements at any two positions rand r within the medium, 

I 2 

for the case of a cylindrical potential was found as an exact solution of the theory and is given by 

dr2 -1 2·, A 1 r2 --- + /V\ n-
drl 'i ' 

(2) 

where A is the line charge density. This equation is exactly analogous to that for the gravitational red 
shift. The negative electrode is the zero potential reference for the free proton. 

One possible clock for such a test is Nuclear Magnetic Resonance. A proton placed in an intense 
electric field within a radio-frequency transverse field " H " coil aligned orthogonally to a uniform 

I 

magnetic field, H , is resonant at the Larmor frequency, W = Y H, where the gyromagnetic ratio, y, for the 
o 0 

proton spin is proportional to elm. We thus have a natural clock. From eq.(2) we expect the proton's 
clock frequency to depend on its position with respect to the zero potential electrode at RJ: 
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w(r) ~ w(R, {I + 2iG\ In ~' J 
The Larmor field distribution is then given by: 

(3) 

(4) 

From this it is straightforward to calculate the NMR lineshape and shift that will result when the electric 
field is turned on as compared to the field off. This is accomplished by performing a convolution of eq.(4) 
with the sharp Lorentzian line (seen in Fig.I). Figure 1 shows the result of this calculation for R / R =0.50. 

I 2 

With the E-field off, all the protons resonate simultaneously at the Larmor frequency and a sharp sweep 
field line will result, it's width broadened by the H -field inhomogeneity and local fields. With the 

o 
electric field on, protons at different potentials will contribute to the signal at different times in the sweep 
thus further broadening and shifting the line while reducing the line intensity. We assume the natural width 
is much less than the electrostatic broadening. Under ideal circumstances, for a supported proton in a 8T 
magnetic field with a 5kY/cm electric field, a line shift and broadening of approximately five parts per 
million is expected. Pulsed NMR with FFT evaluation can be used in place of line sweeps. 

g( H) 

0.5 

-20 o 
H - Ho 

6H 

20 40 

Figure 1. Normalized NMR lineshape as a function of magnetic field for electric field off 
(sharp line) and on (broadened). t.H is the line width. 

Present Approach 

In practice it is experimentally difficult to "support" a charged particle. Generally, this can be 
accomplished electromagnetically, but then, by definition, the electric field and force at the particle location 
must vanish since the charge does not accelerate. Nonelectromagnetic support leaves only gravitational 
balance, which is very weak, and the nuclear force, which is very strong. At first sight, it would appear 
from the field equations that the presence of an electric field at the charged particle site is essential. But 
this may in fact not be the case, since the metric solutions to the theory depend on the potentials rather than 
on the electric fields. Thus it would appear that only potential differences are necessary to produce 
observable effects. The approach we have chosen uses the proton in a hydrogen atom. It is supported 
electromagnetically. The consequences of this approach will be the main subject of the conclusions of this 
work. A detailed description of the three experiments performed follows. 
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III. Experiments 

Three experiments were performed. The first experiment, a constant potential applied to the proton in 
the hydrogen atom, was expected to produce null results both classically and within this theory. It was 
considered a "warm-up" experiment to verify the operating system. A constant potential is classically 
arbitrary to within a gradient of a scalar. This is a manifestation of the "Coulomb gauge condition" for the 
field and thus has no physical effects. Thus, a null result is expected. 

The second experiment, a time-varying potential applied to the proton in the hydrogen atom, was 
initially expected to produce an effect. However, it was found during the course of this program that this 
theory was also invariant under a pure time-varying potential [4], a result consistent with the classical 
"Lorentz gauge condition" which is the relativistic generalization of the Coulomb gauge condition. That is, 
it states that the potential is also arbitrary to an additive time-derivative of a scalar. Thus, a null result is 
also expected. 

The third experiment involves the physical displacement of a proton in a hydrogen atom through an 
electric field while NMR is performed on the proton. An observable shift in the proton NMR line is 
predicted. Care was taken to use a non-uniform electric field since Cassenti has shown [Appendix B) that a 
uniform field, such as that between two large, parallel, metal plates can lead to a possible null effect or, at 
the very least, confusion in interpretation of the data. Cas senti has calculated the electric field distribution 
for the chosen electrode geometry thus ensuring the non-uniformity of the field . In the present theory, in 
principle, only the potential difference between electrodes induces a frequency shift. The non-uniformity is 
merely "double insurance". 

Experiment 1 - Constant potential 

The 354 MHz, 8.4 Tesla rig was chosen for the experiments. This unit has a field homogeneity of 0.1 
ppm or about 35 Hz, more than sufficient to resol ve the predicted 5ppm effect. The proton sample was 
Benzene. The initial experiment, (Fig.2), was a simple free induction decay (FID) with the E-field on vs. 
off. The sample was enclosed in a 2mm thick al uminum can placed at high potential. Thus the E-field will 
vanish in the interior of the can at the sample but there will remain a constant potential. The voltage 
terminal (sample chamber) could be set + or - with respect to ground and the NMR FID was monitored. 

HO 

±5kV 

Figure 2. NMR "can" arrangement. External magnetic field, HO, is perpendicular to the radio 
frequency field, HI, applied through a coil wrapped around the proton sample, S. The SkY 
electric field is applied outside the can leaving a constant SkY potential inside. 

An initial proton NMR line obtained from a water sample showed a field homogeneity of 0.3 ppm at 
a field intensity of 8.4 T. The goal was a homogeneity of 0.1 ppm or better. A field homogeneity of 10 
ppb, far exceeding our goal and sufficient to resolve the smallest effects was achieved by shimming the 
magnetic field, reducing the sample size and confining the sample geometry to a long thin tube parallel to 
the external magnetic field thereby reducing end effects. Figure 3 shows the full double can probe with 
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inner can cover and outer ground shield removed. Figure 4 shows the probe head details before and after 
the sample geometry change. Figure 5 shows the probe head with the inner can in place and outer ground 
can removed. 

Figure 3. Full probe assembly with double cans removed showing probe head. 

Figure 4. NMR probe head with low homogeneity sample geometry (left) and high 
homogeneity "needle" sample (right) . 

Figure 5. NMR probe head with constant potential inner can cover in place. 
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Following the high homogeneity tuning, the first trial of three major experiments was completed. A 
SkV electric field was applied between the inner shielding can in which the proton sample (benzene) 
resided and the outer ground can. FID NMR was performed with field on and off in steady state. The 
electrostatic potential in the shield can was thus a constant 0 or SkY. A second test was performed using a 
+3kV to -3kV potential reversal between the cans. In both tests the observed line shift, Figures 6a and 6b, 

was /). V / V = 0 ± l.OxlO-9 
, consistent with a null prediction of both classical E&M and the present 

theory. 

30 

20 
>-
~ 
U1 
c: 

~ 
Cl) ... c: - +5kV 

10 

o 
-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 

Frequency (Hz) 

Figure 6a. NMR proton line in Benzene sample showing zero shift upon application of SkV potential 
between shield can and ground can. 

30 

20 

>-
;t:: -+3kV 
U1 
c: - oV 
Cl) ... --3kV c: 

10 

o 
-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 

Frequency (Hz) 

Figure 6b. NMR proton line in Benzene sample showing zero shift upon reversal of 3kV potential 
between shield can and ground can. 
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Experiment 2 - Time-varying potential 

Originally, considerations in the theory suggested that a time-varying potential in the metric might be 
equivalent to a time-varying coordinate system and thus changes in clock rates. However subsequent 
calculation of this effect clearly showed that even the new Einstein equations were invariant under a time
varying potential in &xJ . 

The NMR "spin-echo" technique was employed in this experiment to monitor the precession. In the 
spin-echo technique, the proton ' s nuclear spins, precessing at 354 MHz and aligned along the external 8.4T 
magnetic field "z" direction, are first rotated 900 with respect to "z". This is accomplished by application of 
an rf pulse (90 pulse) at the Larmor frequency to a coil around the sample oriented in that direction. 
Following the rotation, the spin vectors dephase with characteristic time T2* and spread out in the "x-y" 
plane. At a time"t later a second rf pulse (180 pulse) is applied that rotates all the in-plane spin vectors an 
additional 1800 which causes them to reverse directions in the x-y plane and thus rephase. The net 
rephased signal is the so-called "echo". Any miniscule line shifts occuring during the rephasing process 
will affect the echo amplitude and phase because an exact time reversal will not occur. Figure 7 shows the 
NMR spin-echo pulse sequence. 

-; 90 pulse 
c 
0.0 

'(ij 

time, t 

180 pulse 

Figure 7. NMR spin-echo timing sequence showing spin rephasing time"t. 

In order to ensure that the experiment had sufficient sensitivity, a small milliamp-level calibration 
current was injected into the NMR "shim coils" - those coils used to correct for small field gradients in the 
region of the sample in order to improve the magnetic field homogeneity. The current injection simulated 
the on-off and off-on step voltage procedure in order to quantify the expected NMR phase shift behavior. 
This calibrated response could then be compared to the observed step-voltage response as a function of "to 
Figure 8 shows the NMR system response to the current injection. The "on-on" and "off-off' states refer to 
the current being constant - either on or off during the NMR acquisition period, "t, between the "90" pulse 
and the" 180" pulse. These data overlap. There is no expected difference since these are steady states and 
the phase increases linearly with "to This signal is the "control" data and represents the system response with 
no effects present. The rising "on-off' and falling "off-on" signals result from the current injection and are 
phase-reversed as expected. The phase difference between the control signal and the injected signal is 2500 

at"t =1 second, corresponding to 0.7Hz or 2ppb. 

The proton sample (H20) was shielded inside an aluminum can as before. This ensures that the 
sample will see only a voltage potential , spatially constant inside the can, with zero electric field. The 
voltage on the can, with respect to ground, was changed during the NMR signal acquisition. The phase 
change, resulting from any magnetic line shifts arising from clock rate changes, was measured to an 
accuracy of approximately 2 degrees (M = 0.035 rad.) corresponding to a frequency shift of 0.005 Hz 
( M min = 11¢i/ 2nT max ; T max == T 1= 1 sec). This, in turn, corresponds to a frequency shift sensitivity of 
0.005/354 ,000,000 or approximately O.Olppb . . Upon application of a 5KV step-function (20 ms risetime) 
between the aluminum can and ground in both tum-on and turn-off modes, zero shift was observed in the 
NMR line to an accuracy of 0.0 I ppb. 
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Figure 8. NMR calibration spin-echo phase signal as a function of90-180 separation 
time Tau. Cycling refers to the switching of a small test magnetic field shi ft. 

Figure 9 show the results of the second spin-echo experiment. For the control response, the "on-on" 
and "off-off' electric fie ld states are reproduced. In the "on-off' state, the SOOOV electric field is on and 
turned off at ti me 'to In the "off-on" state, the electric field is off and turned on at time 'to The risetime is 
approximately 30ms. 't was varied from zero to 1000 ms. No change from the control signal was observed 
to an accuracy of 0.01 ppb as evidenced by the same phase for the cases at each Tau. 
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Figure 9. NMR data spin-echo phase signal as a function of 90-180 pulse separation 
time Tau. Cycling refers to the switchi ng of the electric fie ld . 
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Experiment 3 - Physical displacement of Hydrogen atom through high electric field 

For the third and final experiment, hydrogen in benzene at room temperature was gravity-flowed 
between two electrodes, an upper one at ground potential and a lower one at +5000 V, both situated in the 
NMR coi l in the external 8.4T magnetic field while NMR was performed with the electric fie ld on and off. 
The electrodes were copper discs placed in the 3mm I.D. of glass tubing and connected to a high voltage 
source through glass/epoxy seals. The electrode spacing was 1.0 cm giving an average electric field of 
SOOOV/cm. The 2-turn NMR coil diameter was 1.5 cm ensuring that the HV region was inside the coil. The 
coil was untuned to avoid radiation damping si nce the signal was already very large. The electrode spacing 
was chosen for two reasons: (1) to avoid the situation of "uniform electric field" which would have been 
approximately the case for spacings of 1-2mm or less. Cassenti has shown [Appendix B] that the case of 
uniform electric field for this theory is reducible to a Riemann-flat space, thus making interpretation of 
results more difficult or questionable. A non-uniform field, as in the present electrode geometry, ensures 
that this does not occur and that only the potential difference between electrodes - which is the same 
regardless of electric field - is relevant. (2) the larger spacing avoids electric breakdown effects, creating 
unwanted currents, in the benzene. Figure 10(a) shows the NMR coil system schematic. Figure lOeb) 
shows the actual assembly lying on its side and opened for inspection. 

B 

10.4--- 5000 V 

(a) (b) 

Figure 10. NMR coil and flow arrangement for E-field experiment: (a) schematic, (b) opened 
assembly on its side (flow left to right). 

An NMR FID experiment was performed with and without flow. A 20-30 ms T2 was obtained by 
careful adjustment of the B-field shim coils. The NMR line and effects of flow without the presence of an 

E-field were modeled. The T2 value gives a line width of approximately 17 Hz (11/ = 1/ rtT2 ). Figure 

11(a) shows the measured NMR line as a function of flow velocity through the coi l varying from 3 cm/s to 
50 cm/s. Since the FID has a time constant of 20-30 ms, the proton must stay in the HI field at least this 
long in order to contribute a significant time-shift signal arising from the maximum SkV potential change. 
This corresponds to a flow speed of 15-30 cm/s, the mid-range of the chosen flows. Note that the 
measured shift with zero volts is approximately 10 Hz, from 0 to 50 cmls flow rate, in approximate 
agreement with the theoretical calculation, Figure 11(b) . Figure 12 shows the predicted lines for a 
maximum potential of 5000 Volts . The shift is at least ten times that for zero volts. 
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For the flow experiment. the NMR line was obtained for voltage off. voltage on. and a dummy 
voltage on (voltage on but HV cable disconnected). The probe voltage was discharged when the dummy 
experiment was performed. This data is shown in Figure 14a-14f. A typical NMR FID signal is shown in 
Figure 13 and compared to the calculated FID. 

c.. 
E 
~ 

-130 -110 

Resonance - 0 Volts 

-90 

Hz 

90 
-0 flow 

70 -3 cm/s 

-6cm/s 
50 

-12 cm/s 
30 -25 cm/s 

10 -50 cm/s 

-70 

Figure ll(a). Measured NMR lines for zero E-field and flows from 0 - 50 cm/s. 

0.5 

95 110 1:15 140 

frequency. Hz 

Figure ll(b). Calculated NMR lines for zero E-field for flows of O. 12. 25 and 50 cm/s. 
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Figure 12. Calculated NMR lines for 5000Y/cm E-field for flows of 0, 12,25 and 50 cm/s. 
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Figure 13. Typical measured FID signal (left) compared to calculated signal for prediction(right) . 

We note in Figure 14 that there is no change in the line position for each flow greater than the FFT 
resolution of ± 2 Hz corresponding approx imately to a variation of 6 ppb, at least a hundred times smaller 
than the predicted shift of Figure 12. Figure 11 is the overlay of Figs. 14 for zero flow. 

When the experiment was completed, the probe was disassembled and carefully inspected to ensure 
that all voltage connections were secure. 
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Figure 14a. Variation in NMR line for zero flow and applied voltage. 
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Figure 14b. Variation in NMR line at 3cmls flow and applied voltage. 
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Figure 14c. Variation in NMR line at 6cmls flow and applied voltage. 
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Figure 14d. Variation in NMR line at 12cmls flow and applied voltage. 
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Figure 14e. Variation in NMR line at 2Scmls flow and applied voltage. 
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Figure 14f. Variation in NMR line at SOcmls flow and applied voltage. 
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IV. Conclusions 

Experimental Conclusions 

All three experiments showed null results. The first experiment, constant potential applied to the 
proton in the hydrogen atom, produced a null result as expected and explained earlier. The second 
experiment, a time-varying potential applied to the proton in the hydrogen atom, also produced a null result 
as expected and explained. From the second experiment we have learned that the present theory is 
relati vistically Gauge Invariant in the context of Max well's equations - as it should be. 

The third experiment, physical displacement of a proton in a hydrogen atom through an electric field, 
was expected to produce a freq uency shift in the NMR line. No change was observed to high precision. 
This is explained as follows. When a hydrogen atom is placed in an electric field, classically, only one 
effect is produced - an induced dipole moment of the atom resulting from the stretching of the electron 
orbital. Otherwise, no work is done on the hydrogen atom (except for the exceedingly small amount 
involved in stretching) since the work done on the proton is cancelled by the opposite work done on the 
electron(due to its negative charge) in the electric field. Furthermore, it is straightforwar.d to show 
(Appendix C) that no work is actually done on the proton itself since the electric force on it is precisely 
balanced an opposing force, in the field direction , from the electron. 

Implied Conclusions 

The fact that no work is done on the proton provides a clue to explaining the present null result. The 
present theory is a single particle theory and does not take into account effects of other charged particles on 
the proton. It simply places the proton in a potential field and assumes there will be a metric effect similar 
to that in GR, which is also a single particle theory. It ignores the nearby electron as simply an additional 
non-interacting "test particle" in an external electric field. But that is wrong. The electron clearly interacts 
dynamically with the proton to cancel forces. Note the term forces. 

The same can be stated for GR. If there is a nearby interacting massive particle, then GR will be 
inadequate in its present form to deal with this. This is a particularly glaring issue in GR since GR is 
independent of the mass of the test particle. GR will simply ask; what is the potential at the test particle 
location? If there is a nearby interacting particle in the same external field, GR will simply add the two 
potentials (one arising from the source and one from the second particle) at the location of the initial test 
particle to predict the effect on clocks. This, however, clearly ignores the dynamical effect of the second 
particle on the first. The metric , after all, can only accommodate one particle. That is the difficulty with 
the so-called "two body problem" in GR. The source of this difficulty seems to be the lack of a solid 
Hamiltonian formalism for GR that can accommodate forces. 

A possible way out of this difficulty for both GR and the present theory is to use the concept of work 
done on the test particle by the external field and any other interacting particle. This approach still allows a 
single-particle metric theory, but accommodates the dynamics of a multiple-particle system as a cumulative 
effect on the single particle metric . Thus for the present theory, since zero work is done on the proton, 
there should be no dynamical effects and hence no clock change. 

In the next section. we shall quantify this approach and show that it is consistent with GR in its present 
form, does not alter any known predictions of GR and can be generalized to include the present theory as 
well as predict new results within GR. 

Relation of the Metric to the Lagrangian and Work Done 

Let L be defined as the specific Lagrangian or Lagrangian per unit rest energy, 

[= (T - V) 

mc2 
(5) 

where T, Vand m are the kinetic energy, potential energy and rest mass of the test particle respectively. 
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Suppose we are at rest at some height Z in a gravitational field, so that T=O and V=mgz, then 

L = gz / e 2 
. We have shown (Appendix E) for weak fields and nonrelativistic speeds that the proper time 

element can be written in terms of the Specific Lagrangian and coordinate time element as 

dr = "/1- 2L dt . (6) 

Consider two positions in the gravitational field Zl and Z2 = Zl + h. Assume a proper time interval dr1 

at z, and dr2 at Z2. Then, approx imating the square root for weak fields, 

dr2 =1_ g (Z2- Z,) =1 _ gh 

dr, c2 c2 

We can rewrite this in terms of the change in potential energy and Lagrangian: 

dr2 = 1- mg~ = 1- (4 _ ~) = 1-6i = 1- (~T - ~ V) . 
d~ me ~c 

In general, a variation in the Specific Lagrangian results in a change in the clock rate. 

(7) 

(8) 

Referring more concisely to the metric for a single particle, p, we may express the Lagrangian 
change more clearly in terms of the net conservati ve work, We , done on p. 

- ~Tp +Wc 
!1L =-!:....--~ 

P m e2 
p 

The change in proper time intervals for the particle between two locations is thus 

dr' = I-M 
dr p 

The weak-field, non-relativistic, metric for a given particle, i , acted upon by forces and hence net 
conservative work, Wei ,done upon it by all other particles in the field is given by 

where 

(9) 

(10) 

(11) 

(12) 

We have rewritten the metric in this way because potential is not well-defined except through 
potential energy and work, where it is defined as work per unit mass in gravitation and work per unit 
charge in electromagnetism. 

It can be shown that this formulation ofGR does not alter the major known GR experiments, the 
perihelion shift of Mercury, the bending of light and the gravitational red shift to within the current 
experimental error. Indeed, the change to the perihelion shift very nearly removes the remaining 0.25% 
discrepancy. The measured precession of Mercury 's perihelion is 43.11" ± O.21"/century [5]. GR predicts 
42.98". The present work corrects this to 43.18"/century, in closer agreement with the measurement. 

Application to the hydrogen atom 

The advantage of the work formulation is that it is true for any field. In particular, it is true for gravity 
as well as the present theory. There are now two possible interpretations for changes in clock rates. The 
first is that the potential enters directly through the metric and the second uses the work done on the 
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particle. Assume the first is correct, and consider the case of neutral monatomic hydrogen atoms moving at 
a constant speed through an electric field. The ratio of the clock rates, using equation (8), are given by (for 
weak fields and small velocities) 

d-r e[tp(z)-C] v; 
-=1- +--
dt mc2 2c2 

(13) 

where e is the electric charge of the proton, C is a constant, the potential energy is from an electric field that 
varies only with the z coordinate, and the velocity is constant and in the z-direction. If the clock rates are 
set to be the same at z = Zo (i.e., dTldt= 1) then equation (13) becomes 

Note that the constant is given by 

d-r =1- e[tp(z)-tp(Zo)] 
dt mc2

' 

mv2 

C = tp(zo) --< . 
2e 

(14) 

(15) 

For the nuclear magnetic resonance experiment we can take dt = 11 f and d-r = 11 fo where fo is now 

the rest frame frequency . Then 

L=I- e[tp(z)-tp(zo)] 

fo mc2 
(16) 

Thus, from a potential description only, we are left with an ill-defined consideration of the potential 
difference between two points affecting time and would conclude that the proton's clock should change. 
This approach clearly does not take into account the forces of the electron upon the proton. Hence we go to 
the next approach, consideration of forces and work done to defi ne potential energy change for the proton. 

An interpretation based on the work done requires a description of the forces acting on the proton. 
Consider the hydrogen atom oriented as in Figure 15. Here the electron is assumed to be a classical point 
particle. The electron and the proton orbit about a line through the common center of mass, with the 
centers displaced along the direction of the electric field . 

! lE e l 

~ 
jP 

Figure 15. Hydrogen atom in an electric field 

Note that there are two forces acting on either the proton or the electron. There is the internal attractive 
force acting on a line between the proton and the electron and the force due to the external electric field. 
The component of the internal force along the electric field exactly balances the force due to the external 
field. The remaining component of the internal force acts perpendicular to the motion for either the proton 
or the electron. 

Hence, if the work interpretation is used no work is done on the proton and the frequency remains 
the same, resulting in the null experiment (see full discussion in Appendix E) . 
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The Clock Principle 

Potentials, potential energy and work 

In the previous section we found a simple Lagrangian formu lation that places gravitation on an equal 
footing with our theory in regards to changes in the temporal portion of the metric. This serves to simplify 
the interpretation of our results by a direct comparison to what is expected of standard gravitation theory 
under similar conditions. The Lagrangian formulation deals with kinetic and potential energy changes. 
Clocks raised in a gravitational field are at rest in the two positions and can be slowly moved between 
them. Thus the Lagrangian becomes simply the negative change of potential energy of the clock, moved 
from the lower position to the upper. But, for conservative fields, this is precisely the conservative work 
done on the clock. However, we must be careful and can no longer use the word "clock" loosely. When 
we refer to "clock" henceforth, we mean the mechanism of the clock. Thus we mean that work is 
performed on the mechanism. Clearly all clock mechanisms are driven by energy changes. What is not as 
obvious is that the mechanism of any clock must reflect the proper time variations in a gravitational field. 
For example, the mass-spring mechanism of a simple clock must somehow change with different heights in 
a gravitational field. Similarly, a pendulum clock must exhibit changes in its mechanism. Even an atomic 
clock is subject to this consideration. This brings us to the first clock postulate: 

1) Every clock has a mechanism which must be held accountable for observed changes in its 
measurement of time. 

We shall now examine the relationship between work and changes in clock time in a gravitational 
field. We use the notation "nc" to mean nonconservative and "c" for conservative. Conservative forces, 
by defi nition can be represented by a gradient of potential energy, V: 

F =-VV c (17) 

Einstein Rocket -- Equivalence Principle for clock changes in a Gravitational Field 

We shall employ the famous Einstein rocket "gedanken-experiment" to demonstrate our concepts. 
Consider a rocket lifting a mass, m, by a stiff wire in a gravitational field. Let us suppose that we adjust its 
thrust to precisely oppose the graviational pull on the mass. The rocket-mass system is now balanced and 

hovers, for example, at the surface of the earth. An arbitrarily small external force, £, may now raise the 

system to a height, h. This is shown in Figure 16. The force t does no work on the system since it can be 
made arbitrarily small. However, upon rising a height h, due to the infinitesimal assistance of the guiding 
force, the rocket does work on the mass m. The potential energy of the mass is VI at the surface and V2 at 
height h. 

v-2 

h 

v -i 

Figure 16. Balanced force configuration of a rocket-mass system 
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In this situation, the nonconservative force is that of the rocket. This is equal and opposite to 
gravity. We make the following definitions: 

~ "-

dS = dzk g=-gk 

Then the non-conservative work performed on the mass m by the rocket is 
Z2 

Wnc = f F;,c'dS = mgh. 
z, 

and the conservative work performed on the mass m by gravity is 
Z2 

WC = f Fc . ds = -mgh . 
Z, 

Now, from the definition of conservative work we have, 

t. V = V2 - ~ = -We = mgh. 
Summarizing, we find for the conservative work done on m: 

Wc =-mgh=-t.V 

Einstein rocket replaced by negative mass 

(18) 

(19) 

(20) 

(21) 

(22) 

Let us now reconsider the rocket of Figure 16. We can equally well replace the rocket by negative 
mass equaJ in magnitude to the lower positive mass - Fig.17. The earth's gravitational field repels negative 
matter and thus an amount -m will precisely balance the force of attraction on m, a situation equivalent to 
the rocket. Note, however, that the inertial response of -m to this is to fall downward along with m. 
Nevertheless, since only forces enter the definition of work, no work is done to maintain the position of the 
mass dipole and, indeed, just as in the case of the rocket, no work is done by an arbitrary small external 

force, e, that raises the rocket a height h in the gravitational field. 

h 

Figure 17. Balanced force configuration for rocket replaced by negati ve mass 

We evaluate the work done in this situation. There are two forces acting on m, Fg and F_m . This 

time both forces are conservative. Therefore, 

and (23) 
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The total work done on the mass m is zero because there is no change in the kinetic energy, since 
- -
F_m = -Fg . 

W;OIal = f Pg • cIS + f P_1Il . cIS = b.T = 0 (24) 

However, now the total work done on m is conservative since, unlike with the rocket, there are no non
conservative forces acting. The rigid wire transmits the conservative force from -m. Thus we find: 

W =W +W =0 r g - Ill 
(25) 

This model of a massive neutral dipole is exactly equivalent to an electric neutral dipole such as the proton 
and electron of a hydrogen atom in an electric field. In the latter case, the two forces acting on the proton, 
the external electric field and the opposing force of the electron are both conservative. The total 
conservative work on the proton is zero when the atom is moved a distance h through a known potential 
difference [Appendix EJ. That is precisely our experiment. There was no clock change observed. 

This leads us to the second and third Clock Postulates: 

2) External conservative work done on a clock mechanism is responsible for changes in its rate 
when the motion of the clock can be neglected. 

3) When the clock is not at rest, the change in its rate arises more generally from the change in 
the Specific Lagrangian for the mechanism. 

The third postulate takes into account the change when there is kinetic energy present [Appendix EJ. 

These postulates reconcile the observations and considerations of the present experiment with those 
observed for gravity. Therefore one should not expect to see a clock change in the imagined massive 
dipole experiment since there was no net conservative work done on m. 

Inconsistency between General Relativity and existence of a neutral mass dipole 

Now consider a clock on the mass m attached to the rocket. The mass m might itself be part of a 
clock mechanism. Upon reaching height h, the clock will change. 

Assume a proper time interval drl at Z I and dr2 at Z2 = ZI + h. Then, we have shown that the 

relation between the two intervals is given by 

dr2 _ 1 gh _ 1 mgh 
dr, - - ----;? - - mc2 

(26) 

and is related to the work, -mgh , done by gravity on m. But the mass m cannot distinguish between the 
pull of the rocket on the wire from that of the negative mass. In both instances the clock is displaced a 
height h and must change according to the single particle metric of GR. In the case of the negative mass, 
the Clock Principle states that since no net conservative work is done on m , no clock change will be 
observed. 

Since we assume GR to be true, either the Clock Principle is false or a mass dipole cannot exist as the 
analogue of a charge dipole. Thus, if the clock principle is true, negative mass cannot exist. 

If the clock principle is false, then work and energy change are not related in general to time change. 
Itfollows that a metric theory offorces other than gravitation cannot be constructed. 
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Clock Conclusions 

We have arrived at the following three postulates regarding behavior of clocks and time: 

1) Every clock has a mechanism that must be held accountable for observed changes in its 
measurement of time. 

2) External conservative work done on the clock mechanism is responsible for changes in its rate 
when the motion of the clock can be neglected. 

3) When the clock is not at rest, the change in its rate arises more generally from the change in 
the Specific Lagrangian, defined in terms of work, for the mechanism. 

It is generally agreed that in order for a clock to indicate the passage of time. energy change in the 
mechanism is required. The mechanism itself is always reducible to a mass or energy. Thus, it appears that 
space is coupled to time through energy. When a clock is raised in a gravitational field. work is performed 
on the mechanism. Conservative work, We, performed on the mechanism changes its rate. We includes the 
net work done by all conservative forces acting on the mechanism. If We =0 so that applied forces 
opposing conservative forces are also conservative, then there will be no observed clock change. In general, 

a change in the specific Lagrangian L will result in a change in the clock rate. 

If conservative work changes clocks then negative mass cannot exist . . This does not preclude the 
existence of negative energy since the general energy-momentum relation has two roots, 

E = ±) p 2
C

2 + m 2
c

4 

of which the positive root, in the rest frame of a particle of mass m (p=O), is the famous Einstein energy
mass relation. 

V. Future Directions 

The third experiment performed in this work leaves open the possibility that this theory and all metric 
theories of electromagnetism are invalid. One may inquire as to whether there is a definitive experiment, 
having learned from the present work, that would settle this issue. In fact we have identified two possible 
experiments - both involving free charges as opposed to the bound systems of the present work. These 
would provide unambiguous tests of the theory. Both test the Lagrangian formalism which is the 
generalization of the Clock Principle. These are; (1) an Electron Spin Resonance test of the Lagrangian 
formulation , and (2) a classical measurement of the quantum Aharonov-Bohm Effect. We will focus on an 
experimental description of (1) since (2) is considerably more exotic and exceedingly difficult. 

(1) Microwave Cavity Test of the Single Particle Lagrangian Formulation 

A conceptually simple. but technically difficult, test of the Lagrangian interpretation for a classical 
theory unifying gravity and electromagnetism would utilize a diode vacuum tube- consisting of two 
charged plates. at a constant potential, with electrons between the plates. The electrons accelerating from 
rest between the cathode to the anode would have a constant total energy (T +U=O) but the Lagrangian (T
U) would change by a factor of two in the metric. If Electron Spin resonance (ESR) measurements were 
performed on the electrons in the diode, then there would be a relative change in the resonant frequency of 

each electron as it moved from the cathode to the anode given by Eq.lO, d,,' / d" = 1 + M = 1 + 2T / me
2 

• 
p 

The result would be a broadening of the line by a factor of two over the shift due to the Lorentz time 
dilation - a readily distinguishable effect in the proper experiment. 

Fairly large voltages (SkV or greater) would have to be used to produce an observable broadening. But 
large voltages will also result in large accelerations and short resident times for the electrons in the diode. 
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Hence it will be necessary to trap the electrons between the plates. This could be accomplished by 
alternating voltage between the plates at a sufficiently high frequency to prevent most electrons from 
reaching either plate. If the electrons are to be confined to within a centimeter, then the field strengths 
required for an observable shift in the ESR frequency will result in microwave frequencies . A microwave 
magnetron would be a more sensiti ve device in which to test these ideas. Advantage could be taken of the 
resonant cavity to excite the electrons but the measurement must still utilize ESR within the cavity so as to 
be performed in the electron rest frame as required by the theory. 

(2) A classical measurement of the quantum Aharonov-Bohm Effect 

In the Aharonov-Bohm Effect [9], an electron beam is split and impinges on a long, fine, solenoid, 
whereupon the two electron-wave components are permitted to interfere on a distant screen. This is all 
arranged in an electron microscope. A long solenoid is equivalent to a so-called "infinite solenoid". The 
internal field, B, is constant with flux <D. Although the external field is zero, the vector potential is 
nonzero. Only magnetic fields generate observable forces - vector potentials are unobservable and do not
so there are no forces on the electron beam outside the solenoid. With the magnetic field off in the solenoid, 
the two interfering beams create an interference pattern consisting of bright and dark bands on the screen. 
With the field on, the pattern is observed to shift even though there are no forces acting on the beam. This 
effect is attributed to the quantum phase of the correlated beams which is directly affected by the vector 
potential. This is seen as a strictly quantum effect. However, we have shown (Appendix G) that the 
present theory exactly accounts for it through the Lagrangian approach. The expected effect is a small time 
delay of one beam relative to the other as they pass the solenoid. In order to convert this real time delay to 
a phase shift, to agree with QM, one must associate a frequency with the electron beam. That frequency is 
the so-called "zitterbewegung" freq uency and is the natural frequency to choose. 
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Appendix A. On the Compatibility of Gravitation and Electrodynamics 

The present work is a highly condensed summary of a theory that is shown to correctly represent both 
gravity and electromagnetism classically within a Pseudo-Riemannian geometry[ 1] . It is grounded upon a 
new affine connection which derives from an electrodynamic torsion acting upon charged particles in an 
electromagnetic field. The geometry is that seen by a charged particle and depends upon the 
electromagnetic potential at the particle location within a space-time that can include gravity. The present 
theory applies to weak fields and therefore does not couple the two fields . Present gravity experiments 
remain unaffected and the correct electromagnetic potentials derive from metrical solutions of the field 
equations. Thus both the Einstein equations and the Maxwell equations are satisfied by the metric solutions. 

It is shown, however, that pure electromagnetic geometry should produce effects similar to those of 
gravity. These effects are resolved within the particle reference frame since that represents the simplest 
solution. The result is a consistent field theory with solutions and an experimental prediction. 

In ref.[3] the new connection is derived from first principles but can be found effectively from 
introducing an electrodynamic torsion. The same connection was found by Schrodinger [2] but not 
identified or recognized as such - indeed he discarded the antisymmetic part of his connection(pure torsion) 
since it did not contribute to the motion. 

This torsion, given by 

- A K A 
ll,uvl = -u FJ.lv' 

2 
(1) 

does not alone contribute to the Lorentz motion of a charged particle. Its properly symmetrized 
contribution to the connection (eqn. 2 below) does, however. The pure torsion, eqn. (1) alone, was shown 
to be the source of the well-known Thomas Precession term in the "classical spin" equation of motion. It 
cannot be physically ignored. It can be said that the connection is fully determined by the metric tensor and 
the torsion as seen in eqn.(2) . 1. Vargas [6) has independently found the same torsion tensor from a 
Differential Forms approach. 

The electrodynamic connection is : 

- A A A 
lJ.lv = lJ.lv +KAJ.lv 

A 1 a:.< a a lJ.lV =-zg (J.lgva+ vgJ.la-aagvJ.I) 
(2) 

A 1 a:.< 
AJ.lv =zg (uJ.lFva +uvFJ.la -uaFvJ.l) 

FJ.}J = AJ.I;A -AA;J.I 

uA is the test particle 4-velocity and K = -e/mc2 . 

Torsion is traditionally identified with angular momentum, which, it seems, has not borne physical 
fruit in the present context. The present work departs from tradition and clearly identifies it with 
electromagnetic objects. 

In a second paper[3], the new Einstein tensor is developed fro m that connection. This follows the 
work of 1. Schouten [7] exactly. The new Einstein tensor has both charged and "displacement" currents as 
sources. The electromagnetic energy density is ignored as contributing only higher order massive effects 
on the geometry in comparison to the new current terms. Solutions of the new field equations are presented 
that yield the classical electromagnetic potentials together with gravitational potentials in the appropriate 
cases. These solutions include (1) spherical electric plus gravitational field; (2) cylindrical line charge 
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field and (3), cylindrical uniform magnetic field. 

Riemann and Einstein tensors with torsion: 

The Riemann tensor is given by: 
Er 

R~va = R~va +K g2 (uvFJJr:a +uJJ Fvr:a +urFJJv;a -uaFJJr:v -uJJFcrr:v -UrFJJa:v) (3) 

This Riemann tensor satisfies the following Cyclic Identity upon alternating indices: 

(4) 

In deriving (3), covariant differentiation was passed through 4-velocities. Thus the identity (4) implicitly 
assumes this. Eqn. (4) can be derived from a Differential forms approach, as shown in the Addendum, 
without this assumption. The Einstein tensor is given by: 

(5) 

The Einstein tensor separates into symmetric and anti symmetric parts(eq.6). The symmetric part provides 
the metrical field equation while its conservation yields the Max well source equations as our second field 
equation. The antisymmetric part yields the homogeneous Maxwell equations as a solution for arbitrary u 
since it must vanish. Eq . (4) also yie lds the homogeneous Maxwell equations. 

(j(JJV) = GJJv - ~ ua 
(Fva:JJ + FJJV:a - gvaF;:r - gJJaFv~r + 2gJJV F:;r) (6) 

- K 
G(JJV( =Zua(FJJv :a + Fva:JJ + FaJJ :v) 

where real currents in (6) are defined fro m, 

F~~r = -J JJ 

Following Schrodinger, the Einstein tensor on the right of eq.(6) is taken to vanish since this is purely 
gravitational and the electromagnetic field is assumed to contribute a negligible energy density compared to 
the massive source for this solution. This leaves G-tilda on the left with no apparent structure except as 
determined by its electromagnetic torsion effects on the right. Since we have shown that this tensor is 
symmetric and pseudo-Riemannian we assert that its structure will be that of the usual Einstein tensor but 
that it now is a more general function of a metric tensor that includes the effects of electromagnetic 
torsion. We can drop the tilda notation since g-tildas on the right will only contribute in second order. This 
leads us to the new Einstein equation. 

Field equations and solutions: 

The governing equations are chosen to be (for vanishing charge current sources): 

GJJV = - ~ ua 
(Fva:JJ + FJJa :v) 

FJJr = 0 
;r 

(7) 

These equations are functions not only of the metric and electromagnetic fields but also of the test particle 
4-velocity. The dependence on the 4-velocity is not unexpected since in classical correspondence the 
velocity-dependent Lorentz force must be accounted for and the connection describes precisely those 
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forces . This has been a bone of contention, but this is a classical theory and that is life. The test charge rest 
frame is chosen for simplicity in the solutions. Conservation of the Einstein tensor yields exactly the wave 
equation for the EM field and thus Maxwell's source equations: 

G T K U( T ) 
Jlr ; = -2U FjJ.u:r : + J JI :U - J U ;JI (8) 

This vanishes identically since it can be shown that the wave eq. is 

and thus the new Einstein tensor is conserved. Solutions of Eq.7 for the three cases described above are: 

(1) Spherical Gravity plus Electric Field 

The spherical interval is: 

We ignore charge-mass (QM) product terms for our "zero coupling approximation" to find solutions: 

eV = 1- 2M _ 2KQ ; (9) 
r r 

(2) Line Charge Electric Field 

The cylindrical interval is gi ven by : 

The solutions are: 

e" = 1 (10) 

e" = e'~""''') = 1 + 4KA In ( ~ ) 
E = 2A 

r 

We have taken KA« 1. R is a constant of integration. A is the line charge density. The temporal 
metric coefficient fits the standard electric potential form, 1-2K<l>el ' analogous to the gravitational form, 

1+2<l>gr which was also the case for the spherical electric field so lution. <l>el is precisely the Maxwell line 

charge potential. 

(3) Cylindrical Uniform Magnetic Field 

For this case, the classic Rotating Frame metric was found to be an exact solution of the new Einstein 
equation. It can be stated that the magnetic field is equivalent to a rotating spatial frame. The interval is 
given by: 
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The solutions are: 

FOI = mBr 
/"'"" 

(11 ) 

g02 = KBr2 

Fol u." = (vx B)r = mBr F =-B 
12unit 

(j) = -KcB is the cyclotron frequency for the orbit. EM field solutions are shown here with respect to 
standard unit vectors. B is a constant, the magnetic field. Note that the solutions are given with respect to 
standard "unit vectors" . The solutions as found from the theory are with respect to "base vectors". The 
relation between unit and base vectors is given by : 

FJJVba.w = ~lgJJJJgw l FJJv""il (not summed) 

Thus, for example, in the magnetic solution: 

FI ? = -Br 
- b<u, 

FOI = mBr 
b<u, 

Mathematical issues 

In order to obtain the above results, covariant derivatives were passed through the 4- velocities. The 
motivation for this, other than it greatly simplifies the work and gives physically correct results, is that the 
4-velocity is a parallel vector field on the curve (geodesics) hence invariant to order K in the field 
equations on the right. This was not a rigorous assumption at the time, just a compelling one. Below is a 
rigorous proof that 4-velocities effectively pass through covariant differentiation with respect to the 
coordinates in the Appendix using a Differential Forms approach [8]. The proof derives the fundamental 
Identity (eqn. 3) that Riemann satisfies and clearly shows that the four velocities fall out "as though they 
are constant". It therefore asserted in this work that differentiation can pass through the 4-velocities. A full 
rigorous approach might use a Finsler Space context (1. Vargas uses such an approach in his works) in 
which the 4-velocities are independent variables. But that is beyo nd the scope of the present work. 

ADDENDUM: Validation of field equations using Differential Forms 

The curvature 2-form for a differentiable manifold Xn referred to local coordinates xV endowed with a 

general nonsymmetric connection is given by: 

The torsion 2-form is given by: 

where, 

Q/ =..!. RE dxv /\ dxG 

.JJ 2 .JJva 
(AI) 

(A2) 

(A3) 

is the torsion tensor of this work. This torsion, although a direct product of a vector field on a curve in Xn 

with a tensor field on Xn is nevertheless valid with regard to defining a differentiable manifold since each 

field is itself differentiable on its domain. It can be shown that the exterior covariant derivative of the 
torsion 2-form is related to the curvature 2-form from the well known result [8]: 
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DQ/ = -Q~ 1\ dxA (A4) 

The crucial point of this result is that with differential forms, the covariant derivative is the absolute 
derivative, so that partial covariant derivatives, relevant in coordinate representations, need not be 
considered at all at this point. 

Now the vector ut in general is the sum of a geodesic gravitational component and an electromagnetic 
contribution of order K. We can ignore the electromagnetic contribution to the geometry since it will enter 

the field equations as order K2. Thus, since ut is then a vector on a geodesic, we may conclude without 
hesitation or question that 

Du E =0 (A5) 

We now expand (A4) using the above results to find: 

(A6) 

Now utilizing the covariant partial on the spatial field F yields: 

(A7) 

In component form this becomes precisely the equation, (4) above, 

(A8) 

Thus Eq.(3) is a valid result and the fact that the partial covariant derivative passes through ut is an artifact 
of the component representation of a possible Differential Forms approach to this theory. I choose to 
adhere to the component approach and adopt the rule that covariant partial differentiation with respect to 

local coordinates, x v, in Xn will pass through vector fields defined on a geodesic in Xn. 

Theory summary and conclusions: 

We have shown that classical electrodynamics, neglecting radiative effects, can be embedded in a 
geometric framework in a self consistent way through the solutions of the field equations for the 
appropriate metrical and electromagnetic field variables. In the process, Maxwell's equations fall out 
naturally from conservation and symmetry requirements. From these solutions, not only are the correct 
electromagnetic fields found for a spherical electric field plus gravity, a line charge electric field and a 
uniform magnetic field, but also the expected electromagnetic potentials appear in the metric tensor 
alongside gravitational potentials. The procedure by which this is accomplished is partly grounded in 
Schrbdinger's affine theory through a new "electrodynamic connection" . 

All that we have shown here is consistent with what is currently observed. Coexisting electric and 
gravitational fields act independently, within the scope of present measurements, on charged test particles, 
yet appear to share simi lar geometries. A classical neutral particle can pass with impunity through an 
electromagnetic field suggesting that electromagnetic fields do not influence the global geometry. In a 
sense we have a "relativity of geometry" since test charges with different K experience correspondingly 
scaled geometries in their rest frames. Indeed, electromagnetic forces are velocity-dependent which stems 
from the nature of the Lorentz transformation. 

Finally, it should be stressed that we have made several simplifications. We have only included order 
K terms from the start. We have ignored the energy-momentum tensor. For the electric field solution we 

chose the rest frame and assumed spherical symmetry which is not strictly correct . We also ignored weak 
coupling terms. 
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Appendix B. Metric for Constant Fields 

For constant electromagnetic fields (i.e., constant in space and time) a metric accurate to first order 
in the fields can be written as 

gjJV = 17jJv +~(ujJFvr +UVFJlT)X
T

. 
me 

Where 17 jJV is the Lorentz metric in rectangular coordinates, Fl' v is a constant anti-symmetric tensor that 

will be identified with the electromagnetic fields, u)J=d.x'"lds is the four velocity of the particle, x<7 are the 
coordinates (ct,x,y,z) and 

ds
2 = gjJv dxjJdxv . 

Then to highest order in the fields 

gjJv = 17 jJv -~(uJi F V T + UV FjJ T}xT . 
me 

To first order in the fields the connections are 

(1) 

(2) 

(3) 

(4) 

Note, to first order in the fields the Lorentz metric, 17)J'" raises and lowers indices. 

['O'JlV =----~--z(uI'Fv<7 +uvF/) . 

Eq. (4) can be written as 

2me 
(5) 

The geodesics become 

du <7 = _ e_ u v F <7 
ds me 2 

v 
(6) 

which are the correct equations of motion. 

The rank four Riemann curvature tensor can now be calculated. The Riemann tensor contains 
both products of the connections and partial derivatives of the connections with respect to the coordinates. 
The products can be neglected si nce they are second order in the fields, and the derivatives vanish. Hence. 
the Riemann curvature vanishes and the space is Riemann flat (i.e., it is equivalent to a flat Lorentz space.) 

Consider now the case of an electric field aligned along z. Then 

F" = [ ~ 
0 0 

~l 0 0 

0 0 

-E 0 0 
(7) 

For arbitrary four velocities the metric becomes 

1 + 2euoEz eu\Ez eu 2 Ez e(uoEet - u)Ez) 

mc 2 me 2 mc 2 me 2 

eu\Ez 
-1 0 

_ eu\Ez 

gjJv = me 2 me 2 
(8) 

eu 2 Ez eu 2 Ez 

me 2 
0 -1 

me 2 

e(uoEet - u)Ez) _ eu\Ez eu 2 Ez 
-1-

2eu)Eet 

me 2 me 2 
me 2 me 2 
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Note that the component 

1 
2euoEz 

goo = + 2 
me 

(9) 

is as expected. 

The metric in equation (8) can be shown to be Riemann flat. Hence, the metric can be transformed 
to that of a freely falling (inertial) reference frame. 

Consider the case of a particle starting at an arbitrary velocity. The components in the x and y directions 
can be made to vanish by rotating the coordinates so that U, = U2=O. The metric then becomes 

1 2euoEz a a e(uoEet - u)Ez) 
+ 2 

me 2 me 
a -1 a a 

gJJv = (9) 
a a -1 a 

e(uoEet - u)Ez) a a -1-
2eu)Eet 

me 2 me 2 

Performing a Lorentz transformation so that the velocity in the z direction vanishes(then uo=l), the metric 
becomes 

1 + 2eEz a a eEet 
- --

? ? 

me me-
a -1 a a 

g JJV a a -1 a 
eEet a a -1 ---
me 2 

Equation (10) can be made diagonal by a change of coordinates. If we set 

, eE(et')2 
z = z + - -'---'---

2me 2 

while (' = ( , x' = x, and y' = y the new metric becomes 

1 2eEz' +--
me2 a a a 

, a -1 a a 
gJJv = 

a 0 -1 0 

a a a -1 
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Appendix C. Potential Due to Two Oppositely Charged Circular Loops and Plates 

Consider two charged loops with charge per unit length ± (j as shown in Figure 1. The loops have a 
radius, b, and are centered on the z-axis with a separation of L along z. The wires of each loop consist of a 
circular cross-section of radius a. 

Line Charge 
Density: +0 

Fig. 1 Charged Loop Geometry 

The centers of the loops are described by 

b 
. L x = cos 1fI , y = b sm 1fI, z = ± - . 

2 
The potential, q;, at all points is gi yen by 

q; =-1-5 abdlfl 
47Z'co o)(x -bcoslfI) 2 +(y-bsinlfl)2 +(z - LI2) 2 

1 2Jr abdlfl 

- 47Z'co I)(X-bCOSIfI) 2 +(y - bsinlfl) 2 +(z+LI2)2 

(1) 

(2) 

Using polar coordinates, (x = r cos e and y = r sin e ) and letting rjJ' = (7Z' - IfI + e) / 2 , equation (2) 

becomes 
Jr/2 

q;=~fr=======d=¢======== 
7Z'c 0 0 (1 r ) 2 ( Z - L I 2) 2 4 r . 2 n. +- + - -sm 'f 

b b b 
Jr/2 d¢ 

~o [---;=(l==r=) 2==(=Z =+=L=I=2=)=2 = 4= r ='= 2 =n. 
+- + - -sm 'f 

b b b 

The integrals in equation (3) are complete elliptic integrals of the first kind, K(rn), where 

Jr/2 drjJ 
K(m)= f ' 

o )1- msin 2 rjJ 
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Equation (3) can now be written as 

rp=~(K(m_) _ K(m+)], 
nco p_ p+ 

r 2 z±L12 2 4(rlb) 
where p ± = (l + - ) + ( ) ,and m± 

b b p; 
Figures 2 and 3 illustrate the potential between the loops. The potentials are related to the charge density 
through 

Vo 1 [ ] - = - rp(r = b + a, z = LI 2) + rp(r = b - a, Z = LI 2) 
2 2 

(5) 

(6) 

Figure 2 demonstrates that the potential is fairly linear over the center forty percent of the axial distance 
between the loops and does not vary significantly over the radial coordinates . Figure 3 shows a variation of 
less than ten percent in the potential at the surface of the loops. 

The solution between two charged wire loops can be readily extended to two finite disks by 
integrating over the radius of the loops. If the voltage is constant on the surface of the disks then a charge 
distribution that varies with the radius will be required. For the case of two disks of outer radi us band 
thickness h the potential is gi ven by 

rp =~ J p(r')K(m_)r'dr' 

nco 0 ~(r + r')2 + (z - LI 2)2 

_ ~ J p (r')K(m+ )r'dr' 

nco 0 ~(r + r') 2 + (z + LI 2)2 
(7) 

For a charge distribution gi ven by 

per') = Po ' (8) 

the constant Po can be set to obtain the correct voltage on the plates. Figure 4 shows the variation in the 

potential between the plates for the apparatus at Washington University. 
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Appendix D. Potential for Hydrogen in Electric Fields 

For a single hydrogen atom in an electric field, F , the energy, ET, is 

(I) 

qp is the charge on the proton (+e) , q, is charge on the electron (-e), mp and me are the masses of the proton 

and electron respectively, vp and Ve are the speeds of the proton and electron respectively, and rp, and r. 
are the position vectors of the proton and the electron respectively. In rectangular coordinates the position 
vectors can be written as 

(2) 

and 

re=XJ+ye1+z.k (3) 

Changing the velocities to momentum and substituting fo r the charges, equation (1) becomes 

2 2 2 
Pe P p e F- (- - ) --+------+e . r -r =E 

2 2 4 
p eT · 

me mp ncor 
(4) 

Where 

(5) 

- -
For a field in the z direction ( F = Fk ), the wave equation, from equation (4), becomes 

(6) 

Where <P is the wave function, 

2 iF a2 a2 

Ve =--2 +--2 +--2 ' 

aXe aYe aZe 
(7) 

and 

(8) 

Converting to center-of-mass position, R , and relative position, r coordinates, where 

(9) 

and 
- - -r = re - rp. (1 0) 

Then 

r = R - me r p , 

mp +me 
(11) 
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and 

The wave equation (6) now becomes 

Where 

and 

M=m p +me' 

m pme 
fi= , 

M 

2 a2 a2 a2 

V =--2 + --2 + --2 . ax ay az 
For the steady response we can use separation of variables, where 

<l>(X, Y, Z, x, y, z, t) = \f' (X, Y, Z)IfI(X, y, z)ei(E+E)llh . 

/i
2 /i2 2 

- 2 2 e -
--V \f'+--V lIf+-- - eFz= E+E. 
2M\f' 2fillf 471Eo r 

We can take 

Then 

Classically the potential energy at the electron's position, Ve is 

and at the proton's, Vp' is 

e 2 

V =----
e 471Eo r 

mp 
- eFz-eFZ, 
M 

e 2 m V = _____ e eFz+eFZ. 
p 47rcor M 

(12) 

(13) 

(14) 

(1 5) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

Note that the total potential energy is the sum of the last two terms in each equation (22) and (23) 
plus one-half the sum of the first terms in equations (22) and (23) . That is the total potential energy is the 
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sum of the potential energies due to the external forces plus one-half the sum of the internal forces, since 
the internal forces can only be counted once. We should also note that the total energy for the electron and 
the proton must include the kinetic energy of each. 

The potential, rp, appearing in the metric in goo is 

V 
rp=--2 . 

me 
The potential for the electron or the proton can be fou nd by substituting Ve or Vp for V in equation (24) 
respectively. The wave function can now be used to find the expected values for the potential of the 
electron and the proton using respectively, 

(rpe) = If \fII/frpelfl¥dr
3
dR 

3 
, 

R F 

and 

( rp p ) = f f \fI1/f rp p IfI¥ dr 3 dR 3 . 

R F 

Where Ii is the complex conjugate of u, and the wave functions have been normalized using 

and 

From equations (24) through (27), the expected potentials for the electron and the proton become 

and 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

The first two terms in equation (29) are in the energy for the Stark effect. The first two terms in equation 
(30) are at least rn.,Imp times smaller. The change in energy for the Stark effect in Hydrogen is (given in 
many texts) as 

!:ili - 9 3 F 2 
Stark - - ao ' (31) 

4 
where Qo is the Bohr radius. For a field of lOkeY/cm, the change in energy for the electron is O.82xlO-6 

m,.c2 and for the proton is 0.45xI0-9 mpc2. The last term in equations (29) and (30) represents the change in 
the potential due to the motion of the center-of-mass of the hydrogen atom. This can occur due the forced 
or free convection (Le., flow) of the hydrogen or just due to the random motion of the atoms. 

Consider the case of random motion of the atoms. The mean free path of the atoms at 300K, 
105Pa, and using a cross-section of2xl0- IO m is about 3.4xlO-7 m. Then the collision frequency is about 
0.14 ns and in 1 ~ there will be about 7100 collisions. The total distance traveled during the 1 ~ is 3xlO-5 

m_ Hence, the potential change in the metric for the proton (rp p) is 3xlO-8
. For the electron, the potential 

change in the metric ( rp e ) is 6x 10-5. 
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Appendix E. Relation Between Metric, Lagrangian and Work on a Clock 

We have seen that a possible explanation for our null result is that clock changes arise from work 
done on the system. In this case the system is a proton in a hydrogen atom. In order to permit an 
interpretation of the data it is necessary to relate the concept of mechanical work to the single particle 
metric of GR. We shall see that this approach will enable us to generalize this concept to any physical 
forces, in particular, the electromagnetic forces in the present theory. Below, we derive the relationship 
between the work done on a particle and it's space-time metric . 

The Schwarzchild metric in rectangular coordinates, for weak fields and small velocities (i.e., 

[d(et)] 2 »dx2 + dy 2 + dz 2), is 

ds' =( 1 + ~~ )c'd" -the' -dy' -dz' 

We may relate the gravitational potential , ¢ ,to the potential energy of the test particle, V, by simply 
rewriting this equation, recalling that inertial and gravitational mass are equivalent: 

where 

2 ( 2V J 2 2 2 2 2 ds = 1 + me 2 e dt - dx - dy - dz , 

V =m¢=- GMm 
r 

and m is the particle mass, c is the speed of light, G is the gravitational constant, M is the mass of the 
central body and r is the distance from the central mass. 

The equations of motion for the metric above can be found by minimizing the action, I, 
Tn 

1= f meds 

where ds = edT. Substituting equation (I) into equation (3) 

L is the Lagrangian function for the particle. 

The conjugate energy, E, and momentum, p, are given by 

(la) 

(lb) 

(2) 

(3) 

(4) 

and 
_ aL eli 
p= =m-

a( ::) dT 

(Sa,b) 

The metric can now be used to write a relationship between the energy and the momentum with the aid of 
the expressions in equations (5) : 

(6) 
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Solving for the energy and taking the positive square root yields 

For weak fields and small velocities equation (7) becomes 

2 

E =mc2 +V +L 
2m 

which is the correct nonrelati vistic expression for the total energy. 

Minimizing the action will result in equations of motion which are simply the geodesics. 

(7) 

(8) 

Assuming small velocities (i .e., dt / dr ::: 1) and weak fields the equations of motion for the rectangular 
components are 

dv V'V ----- (9) 
dt m 

Taking the dot product of the rectangular components of the velocity, v , on both sides of equation (9) and 
integrating 

1 2 p 2 
-mv + V = - + V = constant. ( 10) 
2 2m 

Hence, the energy, E, in equation (8) is also constant. 

For small velocities and weak fie lds the last equation of motion is 

d 2 (ct) _ 2 VV dF _ 2 dW 
ds 2 - - mc 2 • cdr - mc 2 cdr 

(11 ) 

where use has been made of ds = cdr and W is the work done on the particle. Integrating once 

(12) 

dt 
The clock rates can be synchronized by setting - = 1 at W = O. Then C = 1 and equation (12) can be 

dr 
written, 

dr -1 2W -- ---
dt me2 

(12') 

A similar result can be obtained from the metric in equation (1) where 

1=(1+~X~J2 __ 1 [(dxJ2 +(dY J2 +(dzJ21~J2 
mc 2 dr c 2 dt dt dt dr 

(13) 
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This reduces to 

or dr =~1-2L , 
dt 

1- 2(T- V) 
2 ' me 

(14) 

(15) 
- L 
L=-

me2 

where L is the "specific Lagrangian, and T is the kinetic energy. Note that there is an arbitrary constant 
in the potential energy that can be set so that d1ldt=i when the clocks are synchronized. Equation (14) is 
exactly the same as equation (12') . This can be shown by noting that dL=dT-dV, while from equation (10) 
dT =- dV=dW. This makes dL=2dWor L=2W+C and equations (12') and (15) are identical. 

Equation (15) is the desired relationship. For weak fields this can be approximated as 

dr = l-L. 
dt 
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Appendix F. Time Dilation and Work Done for a Hydrogen Atom 

The Clock Principle can be used to find the changes in the clock rates if the work done is substituted into 
the space-time metric. Recall that the Schwarzschild metric, for small velocities and weak fields can be 
written as 

c'dr' ~(l + ~~, }'dt' -dx' -dy' - dz', 

and that equation (1) can be written as 

dr
2 =(1- ~~2 )dt2, 

where L = T - V is the Lagrangian. The work done in the particle by all the forces is 

W= I F.dr, 
- - - - -

where dr = dxi + dyj + dzk . If the forces are conservative, then F = - \lV . Hence, 

W = -I vV . dr = - v . 

(1) 

(2) 

(3) 

(4) 

The constant resulting from the integration can be neglected by calibrating the clocks so the rates are equal 
when V is zero. Using the work done the Lagrangian can now be written as 

L=T+W. (5) 

The metric now becomes 

(6) 

Consider the case of a hydrogen atom in an electric field . A stable configuration exists with the hydrogen 
atom oriented as in Figure 1. Let the proton be at 

rp = X p T + Y p] + Z J;' (7) 

and let the electron be at 

re = xJ + y) + z.k. (8) 

The distance between them is 

Ro = ~ (x p - X e ) 2 + (y p - Ye) 2 + (z p - Z e ) 2 . (9) 

z 

y 

__ r------------------------------ x 

Figure 1. Hydrogen Atom in an External Electric Field 
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The potential energy at the location of the proton is given by 

e2 

V = eEz p ' 
47rcoRo 

where e the magnitude of the charge on the electron, E is the electric field strength, and &0 is the 
permittivity of free space. The force on the proton is given by 

where V p is the gradient with respect to the proton coordinates xP' yp' and zp. 

Then 

The equilibrium angle for the configuration in Figure 1 is given by 

. eE zp - ze 
sm a = = --'-- -

(e 2 /47rcoR~ ) Ro 
The force now becomes 

(10) 

(11) 

(12) 

(13) 

_ e 2 [(x p -xefi +(yp - yJ]] 
F=- (14) 

47rc R 3/2 . o 0 

In order to calculate the work done assume the projected orbits of the electron and the proton are circles in 
the x-y plane, then 

(15) 

where t is the time, Vo is the speed of the proton in the z-direction, OJ is the angular velocity, and Rp is the 
radius of the proton's orbit given by 

me 
Rp = Ro cosa . (16) 

mp +me 
The quantities me and mp are the mass of the electron and proton respectively. The force can now be 
written as 

F = e2 [T cosewt) + ] sinew£) ] 

4nEo~ 
The work done on the proton is 

Since the kinetic energy is also constant, there will be no change in the clock rates associated with the 
proton. 
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Appendix G. Quantum Aharonov-Bohm Effect Consistent with New Theory 

The spacetime metric in the T heory of General Relativity is basic to an understanding of the four 
dimensional motion of particles in a gravitational fie ld. For small fields and small velocities the interval 
can be written as 

dr2 = (l + 2 ~ )dt2 _~(dx2 + dl + dz 2). 
e e 

(1). 

Where rp is the potential energy per unit mass, r is the proper time, t is the coordinate time, x, y, z are the 

rectangular coordinates, and c is the speed of light. An extension of General Relativity to electromagnetic 
fields can be developed by considering the potential for a gravitational field due to a point mass M at the 
origin. For this case the potential is given by 

-GM -GMm 
rp=--=---

r mr 

Where r2 = x2 + y2 + Z2 is the dis tance from the source mass to the particle of mass m, and G is the 

gravitational constant. For small electromagnetic fields and small velocities, 

e( - ¢ + v.A) 
rp= . 

m 
-

(2) 

(3) 

Where V is the particle velocity, ¢ is the electric potential A is the magnetic potential, and e is the charge 

of the particle. For the case of no electric field the interval in equation (I) becomes 

2 ev·A 2 1 2 2 2 
dr = (1+2--J )dt -2(dx +dy +dz ). 

me e 

The relative rates of proper time and coordinate time can now be readily found for small fields and small 
particle velocities 

(4) 

(5) 

The elapsed coordinate time between two spacetime points 1 and 2 is given in terms of the proper time by 

[ 
- 2] 2 ev.A 1 v 

t l _2 =f 1--+-(-) dr. 
1 meJ 2 e 

(6) 

In the Aharonov-Bohm experiment over the two dis tinct paths (see Figure 1) the difference in arrival times 
is 

[ 
- 2] [ - 2] 4 ev.A 1 v 2 ev.A 1 v 

/).t=t3_ 4 -tl_2 =f 1--+-(-) dr-f 1--+-(-) dr 
3 meJ 2 e 1 meJ 2 e 

or, D.t- -- r+ -- r _ f 3( eV.A} f 2( eV.A} 
4 me3 

1 me3 
(7) 
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Over the paths from 2-3 and 4-1 the particle is at an infinite distance from the solenoid and there is no 
contribution to the difference in times . Hence, we can write 

flt = 1, (eA..Vdr}r = 1, eA..as. 
'fc me3 'fc me3 

Where C is the closed contour 1-2-4-3-1 in Figure 1. The quantity ~ c A.as is just the magnetic flux 

et> contained within the contour C. Hence, 

flt = eet> 
me 3 

(8) 

(9) 

In the Aharonov-Bohm experiment, the quantum phase angle difference, Lla, is measured making equation 

(Veet> 
fla = wflt = --3 . 

me 
(10) 

Where OJ is the frequency of particle in the rest frame of the particle, that is 

me2 

W =--
Ii 

Equations (10) and (11) give for the phase difference 

fla = eet> . 
lie 

This is the correct expression for the Aharonov-Bohm experiment. Note that General Relativity is 
incapable of predicting the change in phase unless electromagnetic potentials are included in the metric . 
Hence, the Aharonov-Bohm effect is an indication that there is a geometric interpretation for 
electromagnetic effects. 

Finally, the quantity eel> is quantized according to 

eet> = 2nnlie 

Hence, from equation (9), for a particle of mass m, time and space may be quantized according to 

3 
i , , , :-00 , , 
, 

1 

A _ 27D1.1i 
ut ---2-' 

me 

27D1.1i 
fll = eflt = - -

me 

o Solenoid 

4 

+00 

2 

Figure 1. Two particle paths past a perfect solenoid from points 1 and 3 at - 00 to 2 and 4 at + 00 
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