Temporal Constraint Reasoning With Preferences

Content areas: temporal reasoning, constraint satisfaction
Tracking number: 207

Abstract

A number of reasoning problems involving the manipulation of temporal information can naturally be viewed as implicitly inducing an ordering of potential local decisions involving time (specifically, associated with durations or orderings of events) on the basis of preferences. For example, a pair of events might be constrained to occur in a certain order, and, in addition, it might be preferable that the delay between them be as large, or as small, as possible. This paper explores problems in which a set of temporal constraints is specified, where each constraint is associated with preference criteria for making local decisions about the events involved in the constraint, and a reasoner must infer a complete solution to the problem such that, to the extent possible, these local preferences are met in the best way. A constraint framework for reasoning about time is generalized to allow for preferences over event distances and durations, and we study the complexity of solving problems in the resulting formalism. It is shown that, while in general such problems are NP-hard, some restrictions on the shape of the preference functions, and on the structure of the preference set, can be enforced to achieve tractability. In these cases, a simple generalization of a single-source shortest path algorithm can be used to compute a globally preferred solution in polynomial time.

1 Introduction and motivation

Several real world problems involving the manipulation of temporal information in order to find an assignment of times to a set of activities or events can naturally be viewed as having preferences associated with local temporal decisions, where by a local temporal decision we mean one associated with how long a single activity should last, when it should occur, or how it should be ordered with respect to other activities. For example, an antenna on an Earth Orbiting Satellite such as Landsat 7 must be slewed so that it is pointing at a ground station in order for recorded science or telemetry data to be downlinked to earth. Assume that as part of the daily Landsat 7 scheduling activity a window \(W = [s, e] \) is identified within which a slew activity to one of the ground stations for one of the antennae can begin, and thus there are choices for assigning the start time for this activity. Antenna slewing on Landsat 7 has been shown to occasionally cause a slight vibration to the satellite, which in turn might affect the quality of the image taken by the scanning instrument if the scanner is in use during slewing. Consequently, it is preferable for the slewing activity not to overlap any scanning activity, although because the detrimental effect on image quality occurs only intermittently, this disjointness is best not expressed as a hard constraint. Thus if there are any start times \(t \) within \(W \) such that no scanning activity occurs during the slewing activity starting at \(t \), then \(t \) is to be preferred. Of course, the cascading effects of the decision to assign \(t \) on the scheduling of other satellite activities must be taken into account as well. For example, the selection of \(t \), rather than some earlier start time within \(W \), might result in a smaller overall contact period between the ground station and satellite, which in turn might limit the amount of data that can be downlinked during this period. This may conflict with the preference for attaining maximal contact times with ground stations, if possible.

Reasoning simultaneously with hard temporal constraints and preferences, as illustrated in the example just given, is the subject of this paper. The overall objective is to develop a system that will generate solutions to temporal reasoning problems that are intuitively globally preferred in the sense that the solutions simultaneously meet, to the best extent possible, all the local preference criteria expressed in the problem. Of course, local preference criteria might conflict, as suggested in the example just given, so an intelligent resolution of such conflicts is a component in meeting the overall objective.

In what follows a formalism is described for reasoning about temporal preferences. This formalism is based on a generalization of the Temporal Constraint Satisfaction Problem (TCSP) framework [4], with the addition of a mechanism for specifying preferences, based on the semiring-based soft constraint formalism [1];
2 Temporal constraint problems with preferences

The proposed framework is based on a simple merger of two existing formalisms: Temporal Constraint Satisfaction Problems (TCSPs) and soft constraints based on semirings. The result of the merger is a class of problems called Temporal Constraint Satisfaction Problems with preferences (TCSPPs). In a TCSPP, a soft temporal constraint is represented by a pair consisting of a set of disjoint intervals and a preference function: $(I = \{[a_1, b_1], \ldots, [a_n, b_n]\}, f)$, where $f : I \rightarrow A$, and A is a set of preference values.

Examples of preference functions involving time are:

- **min-delay**: any function in which smaller distances is preferred, that is, the delay of the second event w.r.t. the first one is minimized.

- **max-delay**: assigning higher preference values to larger distances.

- **close to k**: assign higher values to distances which are closer to k; in this way, we specify that the distance between the two events must be as close as possible to k.

As with classical TCSPs, the interval component of a soft temporal constraint depicts restrictions either on the start times of events (in which case they are unary), or on the distance between pairs of distinct events (in which case they are binary). For example, a unary constraint over a variable X representing an event, restricts the domain of X, representing its possible times of occurrence; then the interval constraint is shorthand for $(a_1 \leq X \leq b_1) \land \ldots \land (a_n \leq X \leq b_n)$. A binary constraint over X and Y, restricts the values of the distance $Y - X$, in which case the constraint can be expressed as $(a_1 \leq Y - X \leq b_1) \land \ldots \land (a_m \leq Y - X \leq b_m)$. A uniform, binary representation of all the constraints results from introducing a variable X_0 for the beginning of time, and recasting unary constraints as binary constraints involving the distance $X - X_0$.

An interesting special case occurs when each constraint of a TCSPP contains a single interval. We call such problems Simple Temporal Problems with preferences (STPPs), due to the fact that they generalize STPs [4]. This case is interesting because STPs are polynomially solvable, while general TCSPs are NP-hard, and the effect of adding preferences to STPs is not immediately obvious. The next section discusses these issues in more depth.

A solution to a TCSPP is a complete assignment to all the variables that satisfies the distance constraints. Each solution has a global preference value, obtained by combining the local preference values found in the constraints. To formalize the process of combining local preferences into a global preference, and comparing solutions, we impose a semiring structure onto the TCSPP framework.

A *semiring* is a tuple $(A, +, \times, 0, 1)$ such that:

- A is a set and $0, 1 \in A$.
- $+$, the additive operation, is commutative, associative and 0 is its unit element;
- \times, the multiplicative operation, is associative, distributes over $+$, 1 is its unit element and 0 is its absorbing element.

A c-semiring is a semiring in which $-$ is idempotent (i.e., $a + a = a, a \in A$), 1 is its absorbing element, and \times is commutative.

c-semirings allow for a partial order relation \leq_S over A to be defined as $a \leq_S b$ if $a + b = b$. Informally, \leq_S gives us a way to compare tuples of values and constraints, and $a \leq_S b$ can be read b is better than a. Moreover: $+$ and \times are monotone on \leq_S; 0 is its minimum and 1 its maximum; (A, \leq_S) is a complete lattice and, for all $a, b \in A$, $a + b = lub(a, b)$. If \times is idempotent, then (A, \leq_S) is a complete distributive lattice and \times is its glb.

In our main results, we will assume \times is idempotent and also restrict \leq_S to be a total order on the elements of A. In this case $a + b = max(a, b)$ and $a \times b = min(a, b)$.

Given a choice of semiring with a set of values A, each preference function f associated with a soft constraint (I, f) takes an element from I and returns an element of A. The semiring operations allow for complete solutions to be evaluated in terms of the preferences values assigned locally. More precisely, given a solution t in a TCSP with associated semiring $(A, +, \times, 0, 1)$, let $T_{ij} = (I_{ij}, f_{ij})$ be a soft constraint over variables X_i and X_j, and (u_i, v_i) be the projection of t over the values assigned to variables X_i and X_j (abbreviated as $(v_i, u_i) = t_{i,j} X_i, X_j$). Then, the corresponding preference value given by f_{ij} is $f_{ij}(v_j - v_i)$, where $v_j - v_i \in I_{ij}$. Finally, where
$F = \{x_1, \ldots, x_k\}$ is a set, and \times is the multiplicative operator on the semiring, let $\times F$ abbreviate $x_1 \times \ldots \times x_k$.

Then the global preference value of t, $val(t)$, is defined to be $val(t) = \times \{ f_i(v_i) | (v_i, p_i) = t_i \}$.

The optimal solutions of a TCSPP are those solutions which have the best preference value, where "best" is determined by the ordering of the values in the semiring. For example, consider the semiring $S_{\text{fuzzy}} = (0, 1, \text{max}, \min, 0, 1)$, used for fuzzy constraint solving [8]. The preference value of a solution will be the minimum of all the preference values associated with the distances selected by this solution in all constraints, and the best solutions will be those with the maximal value. Another example is the semiring $S_{\text{exp}} = (\{\text{false, true}\}, \&, \lor, \text{false, true})$, which is related to solving classical constraint problems [7]. Here there are only two preference values: true and false. The preference value of a complete solution will be determined by the logical and of all the local preferences, and the best solutions will be those with preference value true (since true is better than false in the order induced by logical or). This semiring thus recasts the classical CSP framework into a TCSPP.

Given a constraint network, it is often useful to find the corresponding minimal network in which the constraints are as explicit as possible. This task is normally performed by enforcing various levels of local consistency. For TCSPPs, in particular, we can define a notion of path consistency. Given two soft constraints, (I_1, f_1) and (I_2, f_2), and a semiring S, we define:

- the intersection of two soft constraints $T_1 = (I_1, f_1)$ and $T_2 = (I_2, f_2)$, written $T_1 \oplus_S T_2$, as the soft constraint $(I_1 \oplus I_2, f)$, where
 - $I_1 \oplus I_2$ returns the pairwise intersection of intervals in I_1 and I_2, and
 - $f(a) = f_1(a) \times f_2(a)$ for all $a \in I_1 \oplus I_2$;

- the composition of two soft constraints $T_1 = (I_1, f_1)$ and $T_2 = (I_2, f_2)$, written $T_1 \circ_S T_2$, is the soft constraint $T = (I_1 \circ I_2, f)$, where
 - $r \in I_1 \circ I_2$ if and only if there exists a value $t_1 \in I_1$ and $t_2 \in I_2$ such that $r = t_1 + t_2$, and
 - $f(a) = \sum (f_1(a_1) \times f_2(a_2))$ or $a = a_1 + a_2$, $a_1 \in I_1, a_2 \in I_2$.

A path-induced constraint on variables X_i and X_j is $P_{ij}^{path} = \oplus_S \forall k(T_{ik} \otimes T_{kj})$, i.e., the result of performing \oplus_S on each way of composing paths of size two between i and j. A constraint T_{ij} is path-consistent if and only if $T_{ij} \subseteq P_{ij}^{path}$, i.e., T_{ij} is at least as strict as P_{ij}^{path}. A TCSPP is path-consistent if and only if all its constraints are path-consistent.

If the multiplicative operation of the semiring is idempotent, then it is easy to prove that applying the operation $T_{ij} := T_{ij} \oplus_S (T_{ik} \otimes S T_{kj})$ to any constraint T_{ij} of a TCSPP returns an equivalent TCSPP. Moreover, under the same condition, applying this operation to a set of constraints returns a final TCSPP which is always the same independently of the order of application. Thus any TCSPP can be transformed into an equivalent path-consistent TCSPP by applying the operation $T_{ij} := T_{ij} \oplus_S (T_{ik} \otimes T_{kj})$ to all constraints T_{ij} until no change occurs in any constraint. This algorithm, which we call Path, is proven to be polynomial for TCSPPs (that is, TCSPPs with the semiring S_{exp}): its complexity is $O(n^2R^2)$, where n is the number of variables and R is the range of the constraints [4].

General TCSPPs over the semiring S_{exp} are NP-complete; thus applying Path is insufficient to solve them. On the other hand, with STPPs over the same semiring that coincide with STPPs, applying Path is sufficient to solve them. In the remaining sections, we prove complexity results for both general TCSPPs and STPPs, and also of some subclasses of problems identified by specific semirings, or preference functions with a certain shape.

3 Solving TCSPPs and STPPs are NP-hard

As noted above, solving TCSPs are NP-hard [4]. Since the addition of preference functions can only make the problem of finding the optimal solutions more complex, it is obvious that TCSPPs are NP-hard as well.

We turn our attention to the complexity of general STPPs. We recall that STPPs are polynomially solvable [4], thus one might speculate that the same is true for STPPs. However, it is possible to show that in general, STPPs fall into the class of NP-hard problems.

Theorem 1 (complexity of STPPs) General TCSPPs are NP-hard problems.

Proof:

We prove this result by reducing an arbitrary TCSPP to an STPP. Thus, consider any TCSPP, and take any of its constraints, say $I = \{[a_1, b_1], \ldots, [a_n, b_n]\}$. We will now obtain a corresponding soft temporal constraint containing just one interval (thus belonging to an STPP). The semiring that we will use for the resulting STPP is the classical one: $S_{\text{exp}} = (\{\text{false, true}\}, \&, \lor, \text{false, true})$. Thus the only two allowed preference values are false and true (or 0 and 1). Assuming that the intervals in I are ordered such that $a_i \leq a_{i+1}$ for $i \in \{1, \ldots, n-1\}$, the interval of the soft constraint is just $[a_1, b_n]$. The preference function will give value 1 to values in I and 0 to the others. Thus we have obtained an STPP whose set of solutions with value 1 (which are the optimal solutions, since $0 \leq 1$ in the chosen semiring) coincides with the set of solutions of the given TCSPP. Since finding the set of solutions of a TCSPP is NP-hard, it follows that the problem of finding the set of optimal solutions to an STPP is NP-hard. □

These properties are trivial extensions of corresponding properties for classical CSPs, proved in [2].
4 Linear and Horizontal Preference Functions

It is easy to infer from the above proof that the hardness result for STPPs derives either from the nature of the semiring or the shape of the preference functions. In this section, we introduce two examples of classes of preference functions which define tractable subclasses of STPPs.

When the preference functions of an STPP are linear, and the semiring chosen is such that its two operations maintain such linearity when applied to the initial preference functions, it can be seen that the given STPP can be written as a linear programming problem, solving which is tractable [3]. Thus, consider any given TCSPP. For any pair of variables X and Y, take each interval for the constraint over X and Y, say $[a, b]$, with associated linear preference function f. The information given by each of such intervals can be represented by the following inequalities and equation: $X - Y \leq b$, $Y - X \leq -a$, and $f = c_1(X - Y) + c_2$. Then if we choose the fuzzy semiring $([0, 1], \max, \min, 0, 1)$, we have the inequality $V \leq f$ for each preference function f in the problem, and $\max(V)$ as the overall goal. If instead we choose the semiring $([\mathbb{R}, +, \min, +\infty, 0])$, where we want to minimize the sum of the preference levels, we have $V = f_1 + \ldots + f_n$ and $\min(V)$. In both cases the resulting set of formulas constitutes a linear programming problem, solving which is tractable.

Linear preference functions are expressive enough for many cases, but there are also several situations in which we need preference functions which are not linear. A typical example arises when we want to state that the distance between two variables must be as close as possible to a single distance value, but in which there are some subintervals where all values have the same preference. In this case, the preference criteria define a step function, which is not convex.

A class of function which includes linear, convex, and also some step functions will be called horizontal functions. Horizontal functions are so-called because if one draws a horizontal line anywhere in the cartesian plane defined by the function, the set of X such that $f(X)$ is not below the line forms an interval. Figure 1 shows examples of horizontal and non-horizontal functions.

More formally, a horizontal function is one such that, for all y, the set $\{ X \text{ such that } f(X) \geq y \}$ forms an interval. It is easy to see that horizontal functions include linear ones, as well as convex and some step functions. For example, the close to k criteria cannot be coded into a linear preference function, but it can be specified by a horizontal preference function, which could be $f(x) = x$ for $x \leq k$ and $f(x) = 2k - x$ for $x > k$.

Horizontal functions are closed under the operations of intersection and composition defined in Section 2, when certain semirings are chosen. For example, this happens with the fuzzy semiring, where the intersection performs the \min, and composition performs the \max operation. The closure proofs follow.

Theorem 2 (closure under intersection) The property of functions being horizontal is preserved under intersection. That is, given two horizontal functions f_1 and f_2 which return values over a totally-ordered semiring, let f be defined as $f(a) = f_1(a) \times f_2(a)$, where \times is the multiplicative operation of the semiring. Then f is a horizontal function as well.

Proof: From the definition of horizontal functions, it suffices to prove that, for any given y, the set $S = \{ x : f(x) \geq y \}$ identifies an interval. If S is empty, then it identifies the empty interval. In the following we assume S to be not empty:

$$\{ x : f(x) \geq y \} = \{ x : f_1(x) \times f_2(x) \geq y \}$$

$$= \{ x : \min(f_1(x), f_2(x)) \geq y \}$$

(\times is a lower bound operator since it is assumed to be idempotent)

$$= \{ x : f_1(x) \geq y \land f_2(x) \geq y \}$$

$$= \{ x : x \in [x_1, b] \land x \in [a_2, b_2] \}$$

(since each of f_1 and f_2 is horizontal)

$$= [\max(a_1, a_2), \min(b_1, b_2)]$$

Theorem 3 (closure under composition) The property of functions being horizontal is preserved under composition. That is, given a totally-ordered semiring with an idempotent multiplicative operation \times and binary additive operation $+$ (or \sum over an arbitrary set of elements), let f_1 and f_2 be horizontal functions which return values over the semiring. Define f as $f(a) = \sum_{b+c=a}(f_1(b) \times f_2(c))$. Then f is a horizontal function as well.

Proof: Again, from the definition of horizontal functions, it suffices to prove that, for any given y, the set $S = \{ x : f(x) \geq y \}$ identifies an interval. If S is empty, then it identifies the empty interval. In the

![Figure 1: Examples of horizontal functions (a)-(f) and non-horizontal functions (g)-(i)](image-url)
following we assume S to be not empty.

\[\{ x : f_i(x) \geq y \} \]

\[= \{ x : \sum_{u,v} \alpha(f_i(u) \times f_j(v)) \geq y \} \]

\[= \{ x : \max_{u,v} \alpha(f_i(u) \times f_j(v)) \geq y \} \]

(since $+$ is an upper bound operator)

\[= \{ x : f_i(u) \times f_j(v) \geq y \} \]

\[= \{ x : \min(f_i(u), f_j(v)) \geq y \} \]

\[= \{ x : u + v \geq y \} \]

(\(\times \) is a lower bound operator since it is assumed to be idempotent)

\[= \{ x : f_i(u) \geq y \land f_j(v) \geq y \}
\]

\[= \{ x : u + v = x \} \]

\[= \{ x : u \in [a_1, b_1] \land v \in [a_2, b_2] \}
\]

\[= \{ x : x \in [a_1 + a_2, b_1 + b_2] \}
\]

These results imply that applying the Path algorithm to an STPP with only horizontal preference functions, and whose underlying semiring contains a multiplicative operation that is idempotent, will result in a network whose induced soft constraints also contain horizontal preference functions. These results will be applied in the next section.

5 Solving STPPs with Horizontal Functions is Tractable

We will now prove that STPPs with horizontal preference functions and an underlying semiring with an idempotent multiplicative operation can be solved tractably.

First, we describe a way of transforming an arbitrary STPP with horizontal preference functions into a STP. Given such an STPP and an underlying semiring with A the set of preference values, let $y \in A$ and (f, I) be a soft constraint defined on variables X_i, X_j in the STPP, where f is horizontal. Consider the interval defined by \(\{ x : x \in I \land f(x) \geq y \} \) (because f is horizontal, this set defines an interval for any choice of y). Let this interval define a constraint on the same pair X_i, X_j. Performing this transformation on each soft constraint in the original STPP results in an STP, which we refer to as STP_y. (Notice that not every choice of y will yield an STP that is solvable.) Let opt be the highest preference value (in the ordering induced by the semiring) such that STP_y has a solution. We will now prove that the solutions of STP_{opt} are the optimal solutions of the given STPP.

Theorem 4 Consider any STPP with horizontal preference functions over a totally-ordered semiring with \times idempotent. Take opt as the highest y such that STP_y has a solution. Then the solutions of STP_{opt} are the optimal solutions of the STPP.

Proof: First we prove that every solution of STP_{opt} is an optimal solution of STPP. Take any solution of STP_{opt}, say t. This instantiation in the original STPP, has value $val(t) = f_1(t_1) \times \ldots \times f_n(t_n)$, where t_i is the distance $r_i - e_i$ for an assignment to the variables X_i, X_j. Let $v_e(t)$ be the preference value associated with the soft constraint (I, f), with $r_i - e_i \in I$. Now assume for the purpose of contradiction that t is not optimal in STPP. That is, there is another instantiation t' such that $val(t') > val(t)$. Since $val(t') = f_1(t'_1) \times \ldots \times f_n(t'_n)$, by monotonicity of the \times, we can have $val(t') > val(t)$ only if each of the $f_i(t'_i)$ is greater than the corresponding $f_i(t_i)$. But this means that we can take the smallest such value $f_i(t'_i)$, call it w_i, and construct STP'_w. It is easy to see that STP'_w has at least one solution, t', therefore opt is not the highest value of y, contradicting our assumption.

Next we prove that every optimal solution of the STPP is a solution of STP_{opt}. Take any t optimal for STPP, and assume it is not a solution of STP_{opt}. This means that, for some constraint, $f(t_i) < opt$. Therefore, if we compute $val(t)$ in STPP, we have that $val(t) < opt$. Then take any solution t' of STP_{opt} (there are some, by construction of STP_{opt}). If we compute $val(t')$ in STPP, since $x = \text{glob}$ (we assume \times idempotent), we have that $val(t') \geq opt$, thus t was not optimal as initially assumed.

This result implies that finding an optimal solution of the given STPP with horizontal preference functions reduces to a two-step search process consisting of iteratively choosing a w, then solving STP_w, until STP_{opt} is found. Under certain conditions, both phases can be performed in polynomial time, and hence the entire process can be tractable.

The first phase can be conducted naively by trying every possible “chop” point y and checking whether STP_y has a solution. A binary search is also possible. Under certain conditions, it is possible to see that the number of chop points is also polynomial, namely:

- if the semiring has a finite number of elements, which is at most exponential in the number n of variables of the given STPP, then a polynomial number of checks is enough using binary search.
- if the semiring has a countably infinite number of elements, and the preference functions never go to infinity, then let l be the highest preference level given by the functions. If the number of values not above l is at most exponential in n, then again we can find opt in a polynomial number of steps.

The second phase, solving the induced STP_y, can be performed by transforming the graph associated with this STP into a distance graph, then solving two single-source shortest path problems on the distance graph [4]. If the problem has a solution, then for each event it is possible to arbitrarily pick a time within its time bounds, and find corresponding times for the other events such that the set of times for all the events satisfy the interval constraints. The complexity of this phase is $O(en)$ (using the Bellman-Ford algorithm [3]).
The main result of this discussion is that, while not surprisingly, general TCSPs are NP-hard, there are sub-classes of TCSP problems which are polynomially solvable. Important sources of tractability include the shape of the temporal preference functions, and the choice of the underlying semiring for constructing and comparing preference values.

6 Related work
The merging of temporal CSPs with soft constraints was first proposed in [10], where it was used within a framework for reasoning about recurring events. The framework proposed in [11] contains a representation of local preferences that is similar to the one proposed here, but uses local search, rather than constraint propagation, as the primary mechanism for finding good complete solutions, and no guarantee of optimality can be demonstrated.

Finally, the property that characterizes horizontal preference functions, viz., the convexity of the interval above any horizontal line drawn in the Cartesian plane around the function, is reminiscent of the notion of row-convexity, used in characterizing constraint networks whose global consistency, and hence tractability in solving, can be determined by applying local (path) consistency [12]. There are a number of ways to view this connection. One way is to note that the row convex condition for the 0-1 matrix representation of binary constraints prohibits a row in which a sequence of ones is interrupted by one or more zeros. Replacing the ones in the matrix by the preference value for that pair of domain elements, one can generalize the definition of row convexity to prohibit rows in which the preference values decrease then increase. This is the intuitive idea underlying the behavior of horizontal preference functions.

7 Summary
We have defined a formalism for characterizing problems involving temporal constraints over the distances and duration of certain events, as well as preferences over such distances. This formalism merges two existing frameworks: temporal CSPs and soft constraints, and inherits from them their generality, and also allows for a rigorous examination of computational properties that result from the merger.

References