Microstructural Investigation of High Emittance Glass Coatings on Fibrous Ceramic Insulation

Don Ellerby, Dan Leiser, Robert Di Fiore, Jeff Figone and Dane Smith
NASA Ames Research Center
Moffett Field, CA
dellerby@mail.arc.nasa.gov

Ron Loehman¹,² and Paul Kotula²
¹University of New Mexico
²Sandia National Laboratories
Albuquerque, NM

Supported by DOE Contract DE-AC04-94AL85000 at Sandia National Laboratories

Sandia National Laboratories
Thermal Protection Materials and Systems Branch
Outline

- Background
 - Space Shuttle Thermal Protection System (TPS)
 - Types of TPS
 - Tiles, Blankets, Leading Edges, and Coatings
- Processing
 - Tiles
 - Coatings
- Properties
 - Mechanical
 - Impact Resistance
- Microstructural Examination of Toughened Uni-Piece Fibrous Insulation (TUF1)
- Summary
- Future Work
Typical Surface Temperatures Experienced During Reentry

LOWER SURFACE VIEW
- 1260°C
- 1095°C
- 1095°C
- 980°C
- 1260°C
- 1500°C
- 1260°C
- 650°C
- 425°C
- 315°C

ENTRY/ASCENT
- 370°C/400°C
- 400°C/445°C
- 455°C/480°C

UPPER SURFACE VIEW
- 315°C
- 650°C
- 425°C
- 650°C

SIDE SURFACE VIEW
- 425°C
- 315°C
- 650°C
- 425°C
- 980°C
- 1095°C
- 420°C
- 405°C

*DENOTES ASCENT TEMPERATURES (MAXIMUM YAW 8 DEG)
Ames Developed Thermal Protection Materials

Adopted to date on Shuttle

AFRSI Blanket
Gap Fillers
AIM-22 Tile
RCG Coating
TUF/AETB Tile
FRG-12 Tile
Rigid Fibrous Ceramic Tile and Coating Systems

Tile Systems
- Pure Silica
- Fibrous Refractory Composite Insulation (FRCI)
 - Silica and Aluminoborosilicate (Nextel 312) Fibers
- Alumina Enhanced Thermal Barrier (AETB)
 - Silica, Nextel 312, and Alumina Fibers

Coating Systems
- Reaction Cured Glass (RCG)
 - Borosilicate Glass and SiB₄ emittance agent
- Toughened Uni-Piece Fibrous Insulation (TUPI)
 - Borosilicate Glass, SiB₆ and MoSi₂
Raw Materials

Fibers
- Silica
 - 1-3 μm diameter
- Nextel 312
 - 62% Al₂O₃-14% B₂O₃-24% SiO₂
 - 8.5 μm diameter
- Alumina
 - 96% Al₂O₃-3% SiO₂
 - 1-3 μm diameter

Coatings
- Borosilicate glass
 - Porous Vycor 7930 w/ added B₂O₃
- Emissivity Agents
 - SiB₄ in RCG
 - MoSi₂ in TUF1
Typical Tile and Coating Processing Steps

- Fibers
- Silicon Carbide Ammonia

V-Blend → Fired ~1275°C → Drying Oven → Casting Tower → Finished Billet
Tile Microstructures

AETB Tile

LI-900 Pure Silica Tile
Typical Coating Process

Reaction Cured Glass (RCG)
Borosilicate Glass
SiB₄ emittance agent

Toughened Uni-Piece Insulation (TUPI)
Borosilicate Glass
MoSi₂ emittance agent
SiB₆ flux

Air
Coating

Spray

Drying Oven

Ball Milling

Firing

Coated Tile

Thermal Protection Materials and Systems Branch
Schematic of Reaction Cured Glass

INITIAL OXIDATION OF BORON SILICIDE

1 TO 1 1/2 HOURS
1000° TO 1400°C IN AIR

REACTION AND FUSION OF COMPONENTS

FINAL COMPOSITE

- TETRABORON SILICIDE
- BOROSILICATE GLASS
- HIGH SILICA BOROSILICATE GLASS
- PORES

Thermal Protection Materials and Systems Branch
Reaction Cured Glass (RCG) Coating

- High Emittance $\varepsilon > 0.8$
- 0.38 mm thick
- Compatible with silica tiles
 - no devitrification
 - match tiles CTE
- RCG coating sits on top of tile surface
 - particle size too large to infiltrate
- Dense coating
 - initial moisture barrier
- Poor impact resistance.
Toughened Uni-Piece Fibrous Insulation (TUF1)

- High Emittance $\epsilon > 0.8$
- 2.5 mm thick
- Compatible with tile
 - no devitrification
- Porous coating
- Material penetrates into the tile
 - smaller particle size
- Significantly improved impact resistance
- MoSi_2 act as emissivity agent
 - also increases CTE so it matches that of AETB tiles.
Microstructure of TUFI System

- TUFI is applied as three separate coats.
- Results in a graded coating system that is denser near the surface.
- Two scales of porosity
 - regions that appear deficient in glass
 - denser regions also have a smaller scale porosity
Comparison of Impact Resistance
RCG vs TUF

SHUTTLE TECHNOLOGY, 1978
RCG

CURRENT TECHNOLOGY
TUF

DAMAGE RESISTANCE AS A FUNCTION OF AREAL WEIGHT
IMPACT = 1.8 \times 10^2 \text{ ft-lb}

RELATIVE DAMAGE RESISTANCE

AREAL WEIGHT, \text{ lb/ft}^2

Thermal Protection Materials and Systems Branch
Shuttle Flight Testing of LI-900/RCG vs AETB-8/TUFI in BaseHeatshield

TUFI/AETB-8 Tiles
Undamaged After Three Flights

Thermal Protection Materials and Systems Branch
Objective of Microstructural Investigation

- At the time RCG and TUFI were developed, analytical techniques were not available to accurately investigate the reaction mechanisms.
 - Particularly difficult to analyze for Boron.
- Future improvements in tile coatings will require fundamental understandings of these mechanisms.
- Long term consistency in current coatings will also rely on a better understanding of the current process.
 - i.e. if material vendors change, how do slight differences in starting powders affect the final coating?
Automated X-ray Spectral Image Analysis (AXSIA)

- How do you comprehensively survey the chemistry of a large area of a microstructure?

- Point analyses can be subjective—where to take them from and how many.

- 2D distributions of chemical phases are needed but simple mapping alone is not the answer. Mapping has potential artifacts and requires fore-knowledge.

'Phase images' are needed—a spectrum from each phase and an image describing where in the microstructure it's found.
Automated X-ray Spectral Image Analysis (AXSIA)

- Start off with a spectral image—a complete x-ray spectrum from each pixel in a 2D array, sampling the microstructural region of interest (hundreds of microns on a side (SEM) to nanometers on a side (TEM))

- Perform a complete statistical analysis (information extraction) on every spectrum in the spectrum image using the AXSIA software. **Analysis time** on a spectrum image with over 16,000 spectra is only **about a minute**.

- The result is a spectrum from each phase in the microstructure and an image describing that phase’s location in the microstructure: 16000 spectra are reduced to a handful with no loss of chemical information

- Licensed AXSIA to Thermo NORAN, Inc., a U. S. corporation
Evidence of dissolution and reprecipitation of SiB$_x$ and MoSi$_x$ particles.
STEM Images of TUFI Showing Distribution of Small Particles Near Surface
Comparison of Dark and Bright Field STEM Images

Pt layer left from ion milling

Fe, Cu

MoSi$_2$

Mo$_5$Si$_3$

B Rich Region

2 μm

0.5 μm

Thermal Protection Materials and Systems Branch
High Resolution Bright Field Image of MoSi$_2$ Particles

- Evidence of crystalline surface layer on MoSi$_2$ particles.
Elemental Mapping of TUF1 Coating Using AXSIA

Bright Field

Boron Image

SiB_x

Oxygen Image

MoSi_2 + B

Mo_5Si_3 w/o B

Silicon Image

Thermal Protection Materials and Systems Branch
Elemental Mapping of TUFI Coating Using AXSIA
Summary

- Automated X-ray Spectral Image Analysis shows excellent potential for use in understanding the reactions that occur in tile coatings.
- Images reveal that the reaction mechanisms in TUFI, and presumably RCG, are complex.
- Evidence of dissolution and reprecipitation of MoSi₂.
- Evidence of Fe and Cu solubility in Mo₅Si₃.
- Appears to be some solubility of B in MoSi₂ but not in Mo₅Si₃.
Future Work

- Systematic use elemental mapping to investigate the evolution of RCG and TUF during firing.
- Investigate the influence of SiBx on the coatings
 - SiBx vs SiB?
 - Different vendors
- How trace impurities affect coating formation
- Look for evidence of reactions at the fiber coating interface
- Look at interface between fibers
- Investigate changes in tile microstructure during use.
- Improved our understanding of the reaction mechanisms that occur in tile coatings in order to develop improved coatings for future applications.