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ABSTRACT

We show that short-term perturbations among massive planets in multiple

planet systemscan result in radial velocity variations of the central star which

differ substantially from velocity variations derivedassumingthe planets areexe-

cuting independent Keplerian motions. We discusstwo alternate fitting methods

which can lead to an improved dynamical description of multiple planet sys-

tems. In the first method, the osculating orbital elementsare determined via a

Levenberg-Marquardt minimization schemedriving an N-body integrator. The

secondmethod is an improved analytic model in which orbital elements such

as the periods and longitudes of periastron are allowed to vary according to a

simple model for resonant interactions betweenthe planets. Both of thesemeth-

ods can potentially determine the true massesfor the planets by eliminating the

sin i degeneracy inherent in fits that assume independent Keplerian motions. As

more radial velocity data is accumulated from stars such as GJ 876, these meth-

ods should allow for unambiguous determination of the planetary masses and

relative inclinations.

Subject headings: stars: planetary systems

1. Introduction

Several thousand nearby stars are now being surveyed for periodic radial velocity

variations which indicate the presence of extrasolar planets (Marcy, Cochran & Mayor

2000). In the past year, the pace of discovery has increased, and there are now nearly sixty

extrasolar planets known.

Recently, systems with more than one planet have been found, and four (v Andromedae,
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GJ 876, HD 83443,and HD 168443)are now known. CJ 876 (Marcy et al 2001) provides

an especially interesting case. In this system, a combined, two-Keplerian fit to the radial

velocity data (see Table 1), suggests that the star is accompanied by two planets on orbits

having a nearly commensurate 2:1 period ratio. The amplitudes of the star's radial velocity

variations suggest minimum masses of 0.56 Mjup for the inner planet, and 1.89 Mjup for

the outer planet. GJ 876, an M dwarf star with an estimated mass of 0.32 =h 0.05M o (Marcy

et al 2001), is the lowest mass star known to harbor planets.

For these orbital parameters, the mutual perturbations of the two planets in the

system are considerable. Using a Bulirsch-Stoer integrator (with a timestep accuracy of

AE/E = 1.0e- 15) we have computed radial velocity curves using the Table 1 orbital

elements given in Marcy et al (2000) as an initial condition. For co-planar Keplerian orbits,

the orbital elements Pl,_, el,_, T1,2, _1,_, and KI,_, are constant, and these, along with the

mass of the star, serve to completely determine the positions and velocities of the planets

at any time. When the interactions between the planets are non-negligible, however, the

orbital elements change continuously, and so one must also specify an initial epoch in

order to determine the motion at future times. Every starting epoch corresponds to a

different resultant three-body motion. In figure 1, we demonstrate this effect by mapping

the elements reported by Marcy et al. (2001) onto initial conditions corresponding to JD

2450106.2 (the reported time of perihelion passage for the outer planet). The red line

shows the radial velocity curve of the star which results from the superpositioa of the two

Keplerian reflex motions. The black line shows the radial velocity curve resulting from the

full three-body integration. After three orbits of the outer planet, the motion begins to

deviate noticeably from the dual-Keplerian approximation. After several years, the motions

have diverged completely.

The rest of this paper is organized as follows: in §2 we show that self-consistent radial
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velocity curves are required for systemssuch as GJ 876. In §3,we derive improved, fully

self-consistentdynamical fits to the observedradial velocitiesof the GJ 876 system. In §4,

we show how dual-Keplerian fits can be improved using an approximate analytic model for

the interactions betweentwo massiveplanets in resonantsystems. Further applications are

discussedin §5, which also servesas a conclusion.

2. Dual Keplerian vs. Self-Consistent Fits

The orbital elementsgiven in Table 1 (taken from Marcy et al. 2001) were derived

under the assumption that they are constantsof the motion. However, for a system such

as GJ 876, where the mutual planetary interactions are strong, the elementswill change

quite rapidly on observabletimescales.We can therefore regard the parameters in Table 1

as a set of osculating elements,which, given a particular starting epoch, correspondto a

uniquely determined initial condition.

Even with the assumption that sin/ =1 for both planets, the variety of motion

corresponding to the starting conditions given in Table 1 is very broad. For some starting

epochs, the planets are not in the 2:1 resonance, and the system experiences severe

dynamical instabilities within five years. For other starting epochs, the planets undergo

librations about the resonance, and the system is stable over timescales of at least 70 million

years (Marcy et al 2001). One can thus ask the question: are there any starting epochs for

which the osculating elements in Table 1 generate an evolution which is consistent with the

observed reflex velocity of the star?

We have computed synthetic radial velocity curves resulting from these osculating

elements using 10,000 different initial starting epochs spaced one day apart. In each case, a

uniform velocity offset was applied to the synthetic radial velocity curve in order to match
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the first radial velocity point obtained by Marcy et al (2001)with the Keck telescope(t=JD

2450602.1,v = 343.72ms-_). We then compared each synthetic curve to the remaining

53 radial velocity observations obtained at Keck, and computed a reduced X 2 statistic for

the fit. The best fit occurred for an integration corresponding to a starting epoch of JD

2450671.98. The reduced X 2 value for this fit is 17.27, and the rms scatter of the velocities

about the curve is 83 ms -_. The best fit curve, along with the observed data, is shown

in Figure 2. Given that the observational errors lie in the range 3-5 ms -1 , this degree of

scatter indicates that the best dual-Keplerian fit is a poor match to the observed velocities

when mutual planetary perturbations are taken into account.

3. A Self-consistent N-body Minimization Scheme

The experiment described above demonstrates that it is essential to include mutual

planetary perturbations when making fits to velocity observations of planetary systems

resembling GJ 876. One way to do this is to attempt a fully self-consistent fit which employs

N-body integrations to produce a synthetic reflex velocity curve for the central star. Starting

with the best dual-Keplerian fit to the Keck data, we have used a Levenberg-Marquardt

algorithm (Press et al 1992)to iterate an improvement to the osculating orbital elements

reported in Table 1. Our implementation of the algorithm examines how the X 2 value of the

fit depends on variations of all 10 orbital elements, and attempts to find a set of elements

for which the reduced X 2 fit is at a minimum. The N-body integrations were done using the

Bulirsch-Stoer integration package developed by Laughlin & Adams (1999). A preliminary

investigation of systems in which sini = 1 for both planets has shown that there are many

isolated minima within the ten-dimensional parameter space associated with every starting

epoch.

Using the Levenberg-Marquardt algorithm, we have found a self-consistent model for
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the radial velocity data which hasa reduced X 2 value of 1.93 and an rms scatter of 12.0

ms -1. This fit is shown in Figure 3, and represents a large improvement over the fit shown

in Figure 2. The osculating elements are given in Table 2. We would like to stress that this

fit was the result of a preliminary investigation, and that better fits can almost certainly be

found (even for sin i=l). The fact that the best dual-Keplerian fit of Table 1 has a similarly

low reduced X 2 value, despite diverging substantially from true three-body motion, indicates

that the present data set can be well-modeled by a variety of functions. It is likely that more

observations will be required in order to secure all 14 orbital elements (allowing for mutually

inclined planetary orbits). It seems clear, howe_,er,'that as more data are acquired, the true

masses of the planets will be revealed. The mutual perturbations between the planets will

provide additional information which overcomes the degeneracy which previously made it

impossible to determine the inclinations (and thus the true masses) of the planets.

4. Improved Analytic Approximations

The foregoing Levenberg-Marquardt minimization method is a potentially powerful

technique for determinining all of the orbital parameters of the system in a completely

self-consistent fashion. However, in the absence of a good initial model for iteration,

it is difficult to locate the global minimum for the system. As we have shown above,

the best dual-Keplerian fit provides a very reasonable starting model for the Keck data

alone. However, the best dual-Keplerian fit for the combined Keck and Lick data sets of

Marcy et al. (2001) has a much larger (22 ms -1) rms velocity scatter, and thus provides

a less attractive starting point. This has motivated us to find a better analytic model for

interacting systems which can bridge the gap between the dual-Keplerian approximation

and the full three-body motion.

We begin with a dual-Keplerian model using Jacobi coordinates. In this model, the
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inner planet moveson an orbit about the star and the outer planet moveson an orbit

around the center of mass of the inner two bodies. We then make the assumption that

the two planets are undergoing librations about the 2:1 mean motion resonance. Marcy et

al. (2001) have found that systems locked in this resonance can be stable on timescales

of at least 70 million years, while other systems tend to be unstable. In our improved

analytic model, the semi-major axes a of the two planets undergo sinusoidal oscillations

about the exact resonant value in antiphase to each other. The period P_, amplitude A,

and initial phase of these oscillations are treated as model parameters, in addition to the

mean semi-major axis 52 of the outer planet. The average mean motions 51 and _2 of the

two planets are related by the condition that the rate of change of the resonance critical

argument is zero at exact resonance. Hence

_,_ - 2_,= + 2(_2 - _) = 0 (1)

where 7rl and r2 are the longitudes of periastron of each planet. The average semi-major

axes of the planets are related to their average mean motions by

Fa(mo+,,,,1]"a,- k

5,= IV(too+ +m,)]" (2)

where too, rnx and m2 are the masses of the star, the inner and outer planets respectively.

At a time t, the semi-major axes are given by

al "-- 5a[1 + A1 cosnr_(t- toff)]

a2 = 5211 - A2cosnres(t- tofr)] (3)

where nr_ = 2r/Pres and toff determines the initial phase of the resonant oscillations. In

addition, conservation of energy requires that

(' m0mla2 )A2 = A z \ (too + rn---_)--m251 (4)
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The initial mean anomaly M2(0) of the outer planet is treated as a model parameter,

and the initial mean anomaly of the inner planet MI(0) is then given by the critical

argument for the resonance

Or = M1 - 2_/2 + 2(zz - 7r2) (5)

where a = 0 at t = tog. At time t, the mean anomaly of body i is given by

M, = Mi(0)+ nidt (6)
ff

The integrals are straightforward to evaluate since for each planet a, and hence n, is an

analytic function of time.

In this system, the mutual planetary perturbations are sufficiently strong that the

longitudes of periastron will precess rapidly. We model this by allowing each periastron

longitude to vary linearly with time, where the rates of change of the two angles represent

additional free parameters. In principle, these parameters, and the resonance libration

period Pres, can be used to test the accuracy of the analytic model by comparing the

precession rates with those from a full N-body integration. The orbits of the planets are

assumed to be coplanar in our model, but the inclination i of this plane to the line of sight

is included as a parameter.

We used the analytic model to generate synthetic radial velocities for the central

star and compared these with the observations from the Keck and Lick telescopes given

in Marcy et al. (2001). We initially generated a randomized population of sets of model

parameters and then used a genetic algorithm to evolve promising sets towards an improved

description of the system. At each generation, the genetic algorithm evaluates the degree of

fit for each parameter set, and cross breeds the best members of the population to produce

a new generation.

Figure 4 shows a model fit generated by the genetic algorithm for the Keck data alone.
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This fit has a rms scatter of 8.1 ms-1, which is comparableto the best dual-Keplerian fit

or the preliminary fit obtained by the Levenberg-Marquardt N-body technique. Figure 5

showsa model fit for the combinedKeck and Lick data set. The rms scatter in this caseis

11.9ms-1, which representsa substantial improvement on the best dual-Keplerian model

in Table 1. The apocentric orbital elementsfor the fits generated by the analytic model are

given in Table 3. We again stressthat other solutions with low rms scatter are likely to

exist, and theseorbital parameters,while being suggestive,do not necessarily represent the

true dynamics of the system.

5. Discussion

The most important benefit of self-consistentdynamical fitting techniques for

multi-planet systems is the ability to break the sin i degeneracy and determine the true

masses of the extrasolar planets. The true masses can occasionally be found in cases where

the planet transits the parent star (e.g. Charbonneau et al 2000, Henry et al 2000), but

such cases are unusual, and will be confined largely to planets with short periods. The

foregoing techniques can in principle be applied to any system containing more than one

planet, given a sufficient baseline of observation. Fischer et al 2000 have shown that roughly

half of the planetary systems uncovered in the Lick Radial survey show evidence of a

second companion. Thus we expect that numerous additional multi-planet systems will be

forthcoming. Systems having massive short-period planets are especially amenable to this

technique. As a specific example, an N-body integration of the Upsilon Andromedae system

indicates that the planetary interactions are already producing observable deviations from

the multiple Keplerian fit.

Wolszczan (1994) has used a roughly similar analysis to the one described here to

determine the true masses and inclinations of the planets orbiting pulsar PSR B1257+12.
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However, in that case,a superposition of Keplerian fits provides a very good approximation

to the observed reflex velocity of the pulsar. This stands in marked contrast to casessuch

as GJ 876, wherethe planetary interactions arean integral component of the overall motion

of the star, and an analysisbasedon small perturbations to Keplerian motions may not

necessarilysucceed.

There are several avenuesfor immediate additional improvement of the dynamical

description of the emerging multi-planet exosolarsystems. For caseswhere the radial

velocity data is inadequateto cleanlydelineatethe planetary massesand orbital parameters,

numerical integrations can reveal dynamical insta_biiitieswhich can eliminate large portions

of parameter space from consideration. The semi-analytic model of §4 can also be

substantially improved through inclusion of realistic expressionsfor the secular evolution of

the orbital elements(seee.g. Dermott & Murray 1999).

We envision a four-stage procedure for determining the dynamical characteristics of

multiple-planet systemsin general. (1) As outlined by Butler et al 1996,periodograms (e.g.

Lomb, 1976; Scargle 1982)can first be usedto determine the fundamental periods within

the system. (2) The radial velocity data can then be fit with fixed Keplerian ellipses (e.g.

Butler et al 1999). (3) Thesemultiple-Keplerian fits can then be further refined by versions

of the semi-analytic schemedescribedin §4.,and then (4) given a final self-consistentpolish

using the Levenberg-Marquardt schemedriving full N-body integrations.
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Figure Captions

Fig. 1.-- Synthetic radial velocity variations for GJ 876 assuminga superposition of 2 fixed

Keplerian motions for planets with elementsgiven in Table 1 (red line), and an N-body

integration using the sameelements(black line).

Fig. 2.-- Synthetic radial velocity variations producedby an N-body integration using the

osculating elementsfrom Table 1 (Keck fit) and a best fit epochof JD 2450671.98.

Fig. 3.-- Synthetic radial velocity variations fora_fitderived usingthe Levenberg-Marquardt

procedure described in §3,using the Keck radial velocities.

Fig. 4.-- Synthetic radial velocity variations for a fit usingthe semi-analytic model described

in §4, using the Keck radial velocities (solid circles).

Fig. 5.-- Synthetic radial velocity variations for afit usingthe semi-analytic model described

in §4, using the combined Keck (solid circles) & Lick (open circles) radial velocities.
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Parameter Inner Outer Inner Outer

(Keck) (Keck & Lick)

Period (day) 30.1 61.0 30.12 61.02

K (ms -l) 81 211 81 210

Eccentricity 0.11 0.29 0.27 0.10

w (deg) 328 329 330 333

Periastron Time (JD) 2450031.4 2450106.2

Table 1: Best-fit dual-Keplerian elements for GJ876 (from Marcy et al. 2001)
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Parameter Inner Outer

Period (day) 30.13 61.58

K (ms -1) 80.9 203.6

Eccentricity 0.226 0.025

w (deg) 156 70

Mean anomaly (deg) 277 31

a (AU) 0.1297 0.2092

Epoch (JD) 2450602.0931

Table 2: Osculating elements derived by Levenberg-Marquardt N-body integra-

tion scheme.



- 16-

Parameter Inner Outer

(Keck)

Inner Outer

(Keck & Lick)

Mass (Mj) 0.740 6.73 1.927 5.81

a (AU) 0.1302 0.2077 0.1298 0.2082

Eccentricity 0.429 0.240 0.229 0.006

w (deg) 207 179 204 97

Mean anomaly (deg) 186 301 136 354

Epoch (JD) 2449995.0 2449990.0

sin/ 3.34 3.14

Table 3: Osculating apocentric elements derived by the analytic model plus genetic

algorithm scheme.
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