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SUMMARY

Motivation

"'Once the cost of opening up the space frontier is no longer prohibitive,

we could explore some of our neighboring planetary bodies. We could

send people and equipment to Mars ... One day, we could open up

exploration throughout our solar system. Then, we could answer the

questions that people have been asking about the distant planets since

they were first discovered ... It is our destiny." - Daniel S. Goldin,

NASA Administrator (1997)

Recently, strong evidence of liquid water under the surface of Mars and a meteorite

that might contain ancient microbes have renewed interest in Mars exploration. With this

renewed interest, NASA plans to send spacecraft to Mars every opportunity

(approximately every 26 months). These future spacecraft will return higher-resolution

images, make precision landings, engage in longer-ranging surface maneuvers, and even

return Martian soil and rock samples to Earth.

Future robotic missions (such as the Mars Surveyor Program 2007 smart lander) and

any human missions to Mars will require precise entries to ensure safe landings near

science objectives and pre-deployed assets. Potential sources of water and other

interesting geographic features are often located near hazards, such as within craters or

along canyon walls. In order for more accurate landings to be made, spacecraft entering

the Martian atmosphere need to use lift to actively control the entry. This active guidance

results in much smaller landing footprints (the probabilistic area that includes nearly all

possible landing locations).
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Planning for these missions will depend heavily on Monte Carlo analysis. Monte

Carlo trajectory simulations have been used with a high degree of success in recent

planetary exploration missions. These analyses ascertain the impact of off-nominal

conditions during a flight and account for uncertainty. Uncertainties generally stem from

limitations in manufacturing tolerances, measurement capabilities, analysis accuracies,

and environmental unknowns. Thousands of off-nominal trajectories are simulated by

randomly dispersing uncertainty variables and collecting statistics on forecast variables.

The dependability of Monte Carlo forecasts, however, is limited by the accuracy and

completeness of the assumed uncertainties. This is because Monte Carlo analysis is a

forward driven problem; beginning with the input uncertainties and proceeding to the

forecasts outputs. It lacks a mechanism to affect or alter the uncertainties based on the

forecast results. If the results are unacceptable, the current practice is to use an iterative,

trial-and-error approach to reconcile discrepancies.

Therefore, an improvement to the Monte Carlo analysis is needed that will allow the

problem to be worked in reverse. In this way, the largest allowable dispersions that

achieve the required mission objectives can be determined quantitatively. This is

necessary to:

(1) speed the design process by eliminating the trial-and-error approach;

(2) assist decision-makers by providing additional insight into program risk and

uncertainty;

(3) provide system requirements that are justifiable; and

(4) remove some of the subjectivity in uncertainty extrema inherent in the current

Monte Carlo process.
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Obiectives

The proposed research includes optimizing the uncertainties in the Monte Carlo

analysis of spacecraft landing footprints. This approach is based on the assumptions that:

(1) the engineer can control dispersions of uncertainty variables by altering their

probability density (-l-3t_ extrema) and (2) that there exists a real cost to changing any

extremum from the baseline.

First, a proof-of-concept problem was used to evaluate the feasibility of the

optimization method. A simple test problem was chosen so that it could be exhaustively

examined with minimal computational expense. The problem was limited to only two

design variables to facilitate visualization of the design space.

Next, the optimization method was further demonstrated on the Mars Surveyor

Program 2001 Lander. The nominal trajectory for this problem was obtained from the

Langley Research Center (LaRC) Vehicle Analysis Branch. The purpose of this example

was to demonstrate that the methodology developed during the proof-of-concept could be

applied to solve larger, more complicated, "real-world" problems.

Methodoloev

A metamodel is used to first write polynomial expressions for the semi-major and

semi-minor axes of the landing footprint as functions of the independent uncertainty

extrema. The coefficients of the metamodel are determined by performing experiments,

where each experiment consists of performing a Monte Carlo analysis, constructing a

footprint, and recording the size of the footprint semi-major and semi-minor axes. The

metamodel is used in a constrained optimization procedure to minimize a cost-tolerance

function. Figure 5 shows the methodology flowchart.
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Design of Experinents
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StandardDcvmion

Figure 5: Methodology Flowchart.

Optimization Procedure

The following nine steps outline the optimization procedure.

1) Prepare the nominal trajectory simulation. Model the Entry, Descent, and

Landing (EDL) sequence, obtain aerodynamic and mass properties, and optimize

the trajectory.

2) Construct the Monte Carlo simulation. First, identify the uncertainties by name,

nominal value, distribution, and extrema (minimum and maximum). Second,

identify where each uncertainty will go in the POST input deck. This is done by

placing markers (e.g., ***name***) in place of values in the nominal input deck.

3) Select the number of simulations, s, from Table 13 that gives the desired

confidence interval at the desired confidence level. These confidence intervals

are only applicable to footprints that assume bivariate normal distributions of

down-range and cross-range. Table 13 is repeated here for convenience.
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Table 13: Confidence Interval Ratios for Ellipse Semi-axes.

Conf. s=2000 s--4000 s=6000 s=8000 s= 10000

90% 0.975- 1.027 0.982- 1.019 0.985- 1.015 0.987- 1.013 0.989- 1.012

95% 0.970- 1.032 0.979- 1.022 0.982- 1.018 0.985 - 1.016 0.986- 1.014

99% 0.961 - 1.042 0.972- 1.030 0.977- 1.024 0.980- 1.021 0.982- 1.019

4)

5)

6)

Run the baseline Monte Carlo analysis using the initial guesses for each

uncertainty extrema. Plot and evaluate the footprint and compare it to the target.

Run experiments to determine the ellipse surface metamodel coefficients, bi,). The

first experiment is run with all design variables (uncertainty extrema), xi, set to

zero. Experiments are also run for each design variable where every other design

variable is set to zero. Since there are n design variables and s simulations per

experiment (runs per Monte Carlo), then n+l experiments (Monte Carlo analyses)

and s(n+l) individual trajectory simulations are required.

Solve the 2-by-2 system of equations, Equation 78, for the Lagrange multipliers,

20 and 2_. The partial derivatives in the Jacobian are given by Equation 79. The

constraints, hk, are given by Equation 77. Once the solution is found, substitute

the Lagrange multipliers into Equation 74.

5

=Z-2(-w'xO) 'ea,=, 7
--] ' ,

(78)

(79)
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7)

8)

9)

rl

h k = bo,_ + _b,.k
i=l

111] 22obi,o+

,X i "--"

,IlJAob,,o + &b,,i --_wi

- R_ = 0 k = 1,2 ( 77 )

(74)

Validate the solution. Use the optimum set of extrema to run a single Monte

Carlo analysis at the solution point. Plot and evaluate the footprint and compare it

to the target.

Evaluate whether the new footprint is sufficiently close to the desired ellipse. If it

is sufficiently close, continue. If not, set the initial design variable guesses to the

optimized design variables from step (6). Repeat steps (5) through (8).

Determine if the optimized uncertainties

achievable. If they are achievable, end.

weightings, wi. Repeat steps (6) through (9).

are physically and economically

If not, reevaluate the uncertainty

1)

2)

Accomplishments

This research includes the following ten specific accomplishments.

By employing an optimization methodology, it has been shown that is possible to

control the size of the landing footprint and establish optimal tolerances for

mission uncertainties.

A simplified ellipse surface metamodel was developed, which is equivalent to a

response surface without linear or cross terms. This simplified model is enabling
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3)

4)

5)

6)

7)

8)

for realistic problems because the computational expense associated with

response surface methodology is prohibitive for problems with more than a few

uncertainties.

A cost-plus-quadratic objective function was formulated that provides a more

stable numerical problem because of the following two desirable characteristics:

(1) the cost becomes infinite as the uncertainty is reduced to zero, and (2) the

unconstrained minimum occurs when the uncertainties are set to their initial

values.

Equations were presented for three possible objective functions: the reciprocal

model, the minimum-distance model, and the cost-plus-quadratic model. These

different models allow the user to tailor the method to a particular problem.

A technique for solving a constrained optimization with many design variables

was explained. This approach included the classical methods of Lagrange

multipliers, Newton-Raphson iteration, and LU decomposition.

Five methods of constructing footprints were described in detail. Advantages and

disadvantages of each were discussed.

The bivariate normal (BVN) method of constructing a footprint ellipse was

recommended as the most general, elegant, and statistically sound method. A

procedure for constructing the ellipse and measuring the semi-major and semi-

minor axes was presented. The use of this method also allows the calculation of

confidence intervals on the predicted size of the ellipse.

A confidence interval on the size of the BVN footprint was derived, based on the

confidence interval for the sample variance. Because the confidence interval is a

function of sample size, it may be used to determine, a priori, how many

simulations must be performed to achieve a desired accuracy in the size of the

footprint.

xxiii



9)

1o)

Two random number generators were evaluated for their appropriateness in

simulating random processes. These functions were compared against each other

in a series of seven tests. A head-to-head comparison in the actual optimization

process showed that both functions produced similar results.

The Monte Carlo analysis was automated with the Monte Carlo POST (mcp)

program. This program, written in Per, orchestrates the flow of information

needed to perform Monte Carlo simulations. Mcp also has the capability to run

multiple simulations in parallel on multi-processor computers.
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CHAPTER 1

INTRODUCTION

1.1 History and Exploration of Mars

"Perhaps it is appropriate Mars was named for the Roman god of war,

because it consistently has savaged earthlings' attempts to conquer it."

- Steven Siceloff, Florida Today (2001)

Mars has intrigued man since before recorded history. In some of the earliest

writings of Mars (nearly 1600 BC), the ancient Babylonians described its red color and

the way it appeared to wander among the other stars. In fact, the origin of the word

planet is derived from Greek meaning "wanderer". The ancient Egyptians also wrote of

Mars. Their name for the planet was Har Descher, meaning "the red one". This reddish

color reminded many ancient cultures of the fire and blood of war. The Greeks,

therefore, named the planet for their god of war, Ares. The Romans followed suit and

named the planet for their god of war, Mars. [1]

In mythology, Mars (Ares) was a bloodthirsty warrior, driven by rage and a savage

love for violence. [2] He was said to have enjoyed the very noise of battle. Rushing

headlong into battle, he was followed by the twins, Phobos ("Fear") and Deimos

("Panic"). Mars was also said to have fathered Romulus and Remus, the founders of the

Rome. In (pre-Christian) Roman religion, Mars held a very prominent position, second

only to his father, Jupiter. [3] The month March was named in honor of Mars, as was the

day Tuesday. For example, the French word for Tuesday is Mardi, which is derived from

Mars. Mars is often portrayed as a warrior in full battle armor, wearing a crested helmet,



andcarryinga shieldandspear.His shieldandspearform the astronomer's symbol for

the planet, O'.

The ancient peoples, however, could only observe Mars (the planet) with the naked

eye. Galileo Galilei was the first to look upon Mars with the aid of a telescope, which he

invented in 1609. [4] His observations showed that Mars was a sphere, like Earth. In

1877 Giovanni Schiaparelli published the first modem map of the features of Mars, using

names from history and mythology. His map became famous when he described the thin

lines he observed as canali. [1] Figure 1 shows Schiaparelli's 1888 map.

_ a 1+ der_..=.+rr,t_,ie ,)e ]._ _+];_.r,ete ".'1._.,'-

_,,'er_ ;:e_ 14:'.Fie? :-an,_!e; rit_r r_3_.,_]ee_.-

oh;e, ',e÷- ?er,d,,_',tie: _.-] :oppn;zhDrlz _e ]_77-]fl_

Figure 1: Schiaparelli's Map of Mars (1888).

In 1965, the spacecraft Mariner 4 took the first close-up pictures of Mars when it flew

within 10,000 km of the surface. In 1971, Mariner 9 was the first spacecraft to orbit Mars

(or any other planet besides Earth). [5] July 20, 1976, Viking 1 landed on Mars and took

the first pictures of the Martian landscape. It was soon followed by Viking 2. Each of

the Viking missions was actually two spacecraft in one, an orbiter and a lander. The

2



Viking missionswere highly successful. However, it would be anothertwenty years

beforeanotherspacecraftsuccessfullycompleteda missionto the red planet. Between

1982and 1996,four spacecraftfailed in their attempts.[5]

On July 4, 1997,Mars Pathfinderendedthe slump and deliveredthe six-wheeled

Sojournerroversafelyto theAresVallis flood plain. In Septemberof that year,theMars

GlobalSurveyorenteredMartianorbit andbeganaerobraking(a techniqueof repeatedly

dippinginto theatmosphereto lower theorbit). The picturesbeingsentbackfrom Mars

GlobalSurveyorhave10to 100timesbetterresolutionthananypreviousimages.

Proving once again that Mars missionsare difficult, NASA lost two back-to-back

missionsin 1999,the Mars Climate Orbiterand the Mars Polar Lander. In fact, of 30

Mars missions launchedbefore 1997by the United States,the former Soviet Union,

Russia,andJapan,only 40 percenthavebeensuccessful.[6] Table 1 lists all the past

missionsto the red planet as well as thosecurrently underway.[7] This table also

indicatesthegeneralnatureof anyfailures.
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Table 1: Missions to Mars.

Mission Country Launch Comments
Marsnik 1 (1960A) USSR 10 Oct. 1960
Marsnik 2 (1960B) USSR 14 Oct. 1960
Sputnik 22 USSR 24 Oct. 1962
Mars 1 USSR 1 Nov. 1962

Sputnik 24 USSR 4 Nov. 1962
Mariner 3 USA 5 Nov. 1964
Mariner 4 USA 28 Nov. 1964
Zond 2 USSR 30 Nov. 1964

Zond 3 USSR 18 July 1965
Mariner 6 USA 25 Feb. 1969
Mariner 7 USA 27 Mar. 1969
Mars 1969A USSR 27 Mar. 1969

Mars 1969B USSR 2 Apr. 1969
Mariner 8 USA 8 May 1971
Cosmos 419 USSR 10 May 1971
Mars 2 USSR 19 May 1971
Mars 3 USSR 28 May 1971
Mariner 9 USA 30 May 1971
Mars 4 USSR 21 Jul. 1973
Mars 5 USSR 25 Jui. 1973

Mars 6 USSR 5 Aug. 1973
Mars 7 USSR 9 Aug. 1973
Viking 1 USA 20 Aug. 1975
Viking 2 USA 9 Sep. 1975
Phobos 1 USSR 7 Jul. 1988
Phobos 2 USSR 12 Jul. 1988

Mars Observer USA 25 Sep. 1992
Mars Global Surveyor USA 07 Nov. 1996
Mars 96 Russia 16 Nov. 1996
Mars Pathfinder USA 04 Dec. 1996

Nozomi (Planet-B) Japan 3 Jul. 1998
Mars Climate Orbiter USA 11 Dec. 1998
Mars Polar Lander USA 3 Jan. 1999

Deep Space 2 (DS2) USA 3 Jan. 1999
2001 Mars Odyssey USA 7 Apr. 2001

Flyby (Launch Failure)
Flyby (Launch Failure)
Flyby (Launch Failure)
Flyby (Contact Lost)
Lander (Launch Failure)
Flyby (Improper Orbit)
Mars Flyby
Mars Flyby (Contact Lost)
Lunar Flyby, Mars Test Vehicle
Mars Flyby
Mars Flyby
Orbiter (Launch Failure)
Orbiter (Launch Failure)

Flyby (Launch Failure)
Orbiter/Lander (Failed Insertion)
Orbiter/Lander (Crash)
Orbiter/Lander (Failed at 110 sec)
Mars Orbiter

Orbiter (Failed orbit insertion)
Orbiter (Failed shortly after orbit)
Lander (Crash)
Lander (Missed Mars)
Orbiter and Lander
Orbiter and Lander

Phobos Landers (Lost Contact)
Phobos Landers (Power Failure)
Orbiter (Contact Lost)
Orbiter

Orbiter/Landers (Failed Insertion)
Lander and Rover

Orbiter (Delayed Arrival)
Orbiter (Navigation Error)
Lander (Lost Contact)
Penetrators (Unknown Fate)

Orbiter (Arrival 24 Oct. 2001)

Since the Mars Pathfinder mission, NASA has instituted a policy of sending

spacecraft to Mars at every opportunity (approximately every 26 months). Following the

losses of the Mars Climate Orbiter and the Mars Polar Lander, this pace slowed and the

Mars Surveyor Program 2001 lander was cancelled. The 2001 Mars Odyssey Orbiter is

currently en route to the planet and will begin aerobraking in October 2001.
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1.2 The 4 th Rock from the Sun

"'NASA has made a startling discovery that points to the possibility that

a primitive form of microscopic life may have existed on Mars more

than three billion years ago." - Daniel S. Goldin, NASA Administrator

(1996)

So what is known of the fourth planet from our Sun? In many ways, Mars is more

like Earth than any other body in our solar system. It has mountains, volcanoes, canyons,

valleys, polar ice caps (mostly dry ice), and dry riverbeds. It has seasons, an atmosphere,

clouds, winds, and dust storms. [1]

Table 2 lists many of the physical characteristics of Mars and compares them with

Earth. [5] Mars is smaller than Earth, it has approximately one-third the gravity, and it

has two moons (Phobos: "Fear" and Deimos: "Panic"). Mars also has a very thin

atmosphere, the approximate composition of which is: carbon-dioxide, 95%; nitrogen,

3%; argon, 1.5%; and trace amounts of oxygen and water. [8] The surface pressure on

Mars is less than 1% that of Earth's atmosphere.

Table 2: Mars Physical Parameters.

Parameter Mars Earth

Mass (10 2't kg)

Volume (10 I° km 3)

Equatorial radius (km)

Polar radius (kin)

Volumetric mean radius (kin)

Eccentricity

Mean density (kg/m 3)

Surface gravity (m/s 2)

Escape velocity (kin/s)

Gravitational parameter (106 km3/s 2)

Solar irradiance (W/m 2)

Black-body temperature (K)

J2 (10 "6)

Natural satellites

0.64185 5.9736

16.318 108.321

3397 6378.1

3375 6356.8

3390 6371.0

0.00648 0.00335

3933 5515

3.69 9.78

5.03 11.19

0.04283 0.3986

589.2 1367.6

210.1 254.3

1960.45 1082.63

Phobos, Deimos Moon
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Table3 lists severalof theorbitalparametersassociatedwith Mars. [5] Mars is 50%

farther from the sun than Earth. As Earth and Mars circle the sun in their respective

elliptical orbits, their closestpoint of approach(whentheyareboth on thesamesideof

the sun) is 34.5million miles. WhenEarthand Mars areat their farthestdistance(on

oppositesidesof the sun), theyareseparatedby 247 million miles. It is interestingto

note that Earth andMars havenearly the samerotation rate(length of day) andtilt of

their axes(which is responsiblefor the seasons).The Martian yearis almosttwice as

long asEarth's.

Table 3: Mars Orbital Parameters.

Parameter

Semi-major axis (10 6 km)

Sidereal orbit period (days)
Perihelion (10 Ukm)

Aphelion (10 6 km)

Mean solar distance (AU)

Synodic period (days)

Mean orbital velocity (kin/s)

Max. orbital velocity (krrds)

Min. orbital velocity (km/s)

Orbit inclination (deg)

Orbit eccentricity

Sidereal rotation period (hrs)

Length of day (hrs)

Obliquity to orbit (de_;)

Mars Earth

227.92 149.60

686.980 365.256

206.62 147.09

249.23 152.10

1.524 1.000

779.94

24.13 29.78

26.50 30.29

21.97 29.29

1.850 0.000

0.0935 0.0167

24.6229 23.9345

24.6597 24.0000

25.19 23.45

So how would Mars appear to an explorer? An explorer standing on the surface

would surely survey a breath-taking scene. Mars has reddish-orange sand, volcanic

rocks, and an eerie sky, which has been described as butterscotch or salmon pink in color.

The surface is an exceptionally dry, cold, and desolate place. The landscapes are

magnificent; impressive cliffs, rolling sand dunes, majestic canyons, ancient impact

craters, and looming volcanoes. In fact, Mars has both the highest mountain (Olympus

Mons) and the deepest canyon (Valles Marineris) known in the solar system.

While scientists have learned much about the planet, three major questions remain

unanswered. First, why does Mars lack plate tectonics? Second, does liquid water exist



on Mars? Third, has life everexistedon Mars? The answersto thesequestionsare

fundamentallyimportant becausethey will help us understandmore about our own

planet.

1.3 Future Exploration of Mars

"Once the cost of opening up the space frontier is no longer prohibitive,

we could explore some of our neighboring planetary bodies. We could

send people and equipment to Mars ... One day, we could open up

exploration throughout our solar system. Then, we could answer the

questions that people have been asking about the distant planets since

they were first discovered ... It is our destiny." - Daniel S. Goldin,

NASA Administrator (1997)

Recently, strong evidence of liquid water under the surface of Mars and a meteorite

that might contain ancient microbes, have renewed interest in Mars exploration. NASA

has resumed an active program of robotic spacecraft exploration of Mars. Gradually

increasing mission complexity in a "stepping stone" approach, these spacecraft will

return higher-resolution images, make precision landings, engage in longer-ranging

surface maneuvers, and even return Martian soil and rock samples to Earth. [9] Planners

hope to launch a sample return mission as early as 2009 [10], though it is more likely to

be 2014.

Currently three spacecraft are scheduled for the 2003 opportunity. The first two are

identical landers, which will carry Mars Exploration Rovers to separate sites in different

regions of the planet. These rovers will be able to travel across 100 meters of rugged

surface each Martian day (sol). The landing technique will be identical to the Pathfinder

mission's direct entry. Airbags will cushion the landing following a descent on a

parachute. When the spacecraft stops bouncing, the airbags will deflate and three petals

will open up to expose the rover. [9]



The third mission planned for 2003 is a joint mission with the European Space

Agency (ESA) and the Italian space agency. Called Mars Express, this orbiter/lander

combination will explore the atmosphere and surface of Mars from a polar orbit,

searching for sub-surface water. The small lander is named "Beagle 2" after Charles

Darwin's ship.

Only one mission, the Mars Reconnaissance Orbiter, is currently scheduled for the

2005 opportunity. This orbiter will measure Martian landscapes at 20- to 30-centimeter

(8- to 12-inch) resolution. The best images currently from Mars Global Surveyor are in

the I- to 2-meter resolution range.

In 2007, NASA proposes to launch a "smart lander" with precision landing capability

and hazard avoidance technology. This lander will deliver a long-range, long-duration

rover that will pave the way for future sample-return missions. The mission is expected

to explore very promising, but difficult-to-reach, scientific sites.

NASA [9] reports that current plans call for the first sample return mission to be

launched in 2014, with the second in 2016. However, options currently under study

could move the first sample return mission to as early as 2011.

"NASA's robotic Mars exploration program has received a budgetary

boost from the Bush Administration, perhaps moving closer the day

when a human trek to the red planet becomes feasible." - Leonard

David, Space.com (2001)

These future spacecraft may provide answers to fundamental questions concerning

the presence of water and life on Mars. [5] The Mars Exploration Program's overall

science strategy is to "follow the water". The four science goals that support this strategy

are: (1) determine whether life does exist, or has ever existed, on Mars; (2) study the

current climate of Mars; (3) study the geology of Mars; and (4) prepare for human

exploration. [11 ]



So whenwill humansexploreMars? Currentlyno spaceagencyhasconcreteplans

for a mannedmissionto Mars. However,a humanmissioncould fly within thenext few

decades.It is expectedthathumanmissions,whenevertheyoccur,will be thebeginning

of apermanentpresenceon theredplanet.

"... if they decide to do so, our descendants can create a New Earth -

perhaps a New Eden - on the next world outwards from the Sun."

Arthur C. Clarke, science fiction author

Getting astronauts to the surface of Mars and returning them safely to Earth, however,

is extremely difficult. It requires the development of many key technologies. One such

technology is the development of precision landing capability. In order for more accurate

landings to be made, spacecraft entering the planet's atmosphere need to use the

atmosphere's lift and drag to guide the spacecraft towards to the intended target. This

active control of the entry and computer targeting results in much smaller landing

footprints (the probabilistic area that includes nearly all possible landing locations). [12].

This chapter introduces Mars and planetary exploration. It is in the context of this

exploration that the research of this thesis is performed. The subject of this research is

the Monte Carlo analysis of spacecraft trajectories (flight paths). In particular, this

research studies the trajectories of spacecraft entering the Martian atmosphere and

performing precision landings on its surface.

1.3.1 Thesis Organization

This thesis is organized into eleven chapters and two appendices:

Chapter 1 is the introduction. This chapter introduces planetary exploration, in a non-

technical way, by discussing the history and characteristics of Mars as well as past,

present, and planned future missions. The purpose of this chapter is to acquaint the

unfamiliar reader with the context in which Monte Carlo analyses are performed.

Chapter 2 introduces the research problem. This chapter presents the motivation for

the research, expresses research goals, establishes specific objectives for the research, and
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outlines the approach to the research. The purpose of this chapter is to introduce the

reader to a shortcoming in the current engineering practice of conducting Monte Carlo

simulations, establish a need to correct this shortcoming, and present a proposed solution.

Chapter 3 describes the current state-of-practice in Monte Carlo analyses. This

chapter discusses seven missions for which Monte Carlo simulation results have been

published: METEOR, Pathfinder, Stardust, Mars Surveyor 2001, Genesis, MUSES-C,

and Mars Ascent Vehicle. The purpose of this chapter is to provide a brief background

into how the analysis is performed, how many uncertainties are modeled, and how many

simulations are run.

Chapter 4 describes the state-of-the-art in design optimization methodologies. This

chapter discusses multi-objective function optimization, design variable screening,

unconstrained optimization, metamodeling, and probabilistic methods. The purpose of

this chapter is to provide background into optimization methodologies and discuss some

of the available techniques.

Chapter 5 reviews random number generators. This chapter discusses randomness,

how random numbers are generated, and provides tests for random number generators.

The purpose of this chapter is to answer whether the random number generator used in

this research is appropriate in this application.

Chapter 6 discusses landing footprints. This chapter explains five methods for

constructing landing footprints: the 3-sigma radius, Rayleigh, Weibull, 3-sigma down-

range and cross-range, and bivariate normal methods. The purpose of this chapter is to

examine how the footprints are constructed, what the relevant assumptions are, and what

probability is associated with landing within the footprint. This chapter also discusses

how to choose an appropriate number of simulations when using the BVN footprint

method.

Chapter 7 explains the mechanics of how trajectory simulations were performed for

this research. This chapter discusses POST, mcp, and automation scripts. The purpose of
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this chapteris to presentthe computerprogramsneededto perform a largenumberof

MonteCarlosimulations.

Chapter8 develops the mathematical procedure for solving the optimization problem.

This chapter discusses the objective function, constraints, method of Lagrange

multipliers, and Newton-Raphson iteration. The purpose of this chapter is to apply the

general techniques explained in Appendix A to this specific problem.

Chapter 9 presents the proof-of-concept problem. This chapter defines the simple

problem and shows the results. The purpose of this chapter is to validate the

methodology.

Chapter 10 presents the Mars Surveyor 2001 Lander example. This chapter describes

the mission, the simulations, and the results. The purpose of this chapter is to

demonstrate the methodology on a "real world" problem.

Chapter 11 gives the conclusions. This chapter summarizes the method, presents

lessons learned, and lists the accomplishments of this research. The purpose of this

chapter is to present the findings of this research.

Appendix A provides a review of relevant mathematics. This chapter discusses the

method of Lagrange multipliers, Newton-Raphson iterations, PLU matrix decomposition,

and Cholesky factoring. All of these techniques are used in this research. The purpose of

this chapter is to provide an explanation of these mathematical procedures.

Appendix B provides Peri source code used in the Monte Carlo POST (mcp)

program. Appendix B.I is the Perl module for mcp. Appendix B.2 is the executive

program for mcp. Appendix B.3 is the random number module.
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CHAPTER 2

RESEARCH SUMMARY

2.1 Motivation

Monte Carlo trajectory simulations have been used with a high degree of success in

recent planetary exploration missions [13, 14, 15, 16, 17, 18, 19, 20]. These Monte Carlo

analyses use a simple yet powerful method to ascertain the impact of off-nominal

conditions during a flight and account for uncertainty. These uncertainties generally stem

from limitations in manufacturing tolerances, measurement capabilities, analysis

accuracies, and environmental unknowns. Thousands of contingency (off-nominal)

trajectories are simulated by randomly dispersing uncertainty variables from their most

likely values and collecting statistics on various forecast variables (uncertain outcomes or

performance variations).

Flight dynamics personnel have used Monte Carlo analysis throughout every stage of

the design process for many planetary missions since its successful validation with the

Mars Pathfinder landing in 1998. Even in the conceptual phase, when little definition

exists, this procedure allows insight into the robustness of the design and the program

risk (the risk of not meeting mission goals and objectives). For example, a particular

Mars sample return mission, calling for an orbital rendezvous with an unguided launch

vehicle, might be determined to be too risky when the probability of achieving the

required orbit is analyzed.

Since the back-to-back failures of Mars Climate Orbiter and Mars Polar Lander in

1999, additional emphasis has been placed on managing risk and uncertainty in flight

projects, clearly establishing Monte Carlo analysis as an important step in mission
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analysis. It is likely that MonteCarlo simulationswill beusedfor all planetarymissions

in thenearfuture.

Figure 2 illustratestheuse of landing ellipses in previous work. This figure shows

the Ares Vallis region of Mars chosen for the Pathfinder landing. The large ellipse is the

100-by-200 km target ellipse, determined by science objectives and landing requirements.

Future missions, currently under design, require two orders of magnitude reductions in

footprint size. The smaller ellipses are a sequence of navigation ellipses generated by the

navigation team as the spacecraft neared entry. The shrinking of these ellipses is due to

the improved knowledge of actual entry conditions gathered from navigational updates.

Figure 2: Pathfinder Landing Ellipse.

Future robotic missions (such as the Mars Surveyor Program 2007 smart lander) and

any human missions to Mars will require precise entries to ensure safe landings near

science objectives and pre-deployed assets. Potential sources of water and other

interesting geographic features are often located near hazards, such as within craters or

along canyon walls. Astronaut crews, debilitated by long transits in microgravity and
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physicallyunableto travel far distanceson the surface, will likely need to land very close

to life-sustaining resources. These missions will depend heavily on Monte Carlo analysis

to ensure that aggressive landing footprint requirements are met. The penalty for not

achieving the desired landing accuracy in these hazardous places could be a loss of

mission or crew.

The dependability of Monte Carlo forecasts, however, is limited by the accuracy and

completeness of the assumed uncertainties (inputs). Monte Carlo analysis is a forward

driven problem; beginning with the input uncertainties and proceeding to the forecasts

(outputs). By itself, it lacks a mechanism to affect or alter the uncertainties based on the

forecast results. If the results are unacceptable (i.e., mission objectives are not met), the

current practice is to use an iterative, trial-and-error approach to reconcile the

discrepancy. This iteration involves collaboration between flight dynamics personnel and

system and subsystem experts from other fields.

The experts are first asked to provide their best estimates for the uncertainties. For a

normal (or Gaussian) distribution, these estimates are normally in the form of values for

the mean and 99.74% confidence interval (.t.3 standard deviations). For other

distributions, the extrema (minimum and maximum) and the most likely value (mode) are

often given. The flight dynamics personnel then conduct the Monte Carlo analysis and

evaluate confidence intervals in forecast attributes of the trajectory (such as the size of

the landing footprint). If the results fail to meet mission objectives, the flight dynamics

personnel again poll the experts - this time to determine if tighter tolerances are possible.

Often the only uncertainties targeted in this manner, are those identified through a One-

Variable-At-A-Time analyses as the most important drivers. The Monte Carlo process is

then repeated with new uncertainty definitions.

An improvement to the Monte Carlo analysis is needed, one that allows the problem

to be worked in reverse. A feedback mechanism is desired that would determine,

quantitatively, the largest allowable dispersions that achieve the required mission

objectives. Because multiple solutions may exist, a means of prioritizing or ranking
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feasiblealternativesis also needed. Such a quantitativefeedbackmechanismcould

potentially:

(1) speedthedesignprocessbyeliminatingthetrial-and-errorapproach;

(2) assistdecision-makersby providing additionalinsight into programrisk and

uncertainty;

(3) providetraceablesystemrequirements;and

(4) removesomeof thesubjectivityinherentin thecurrentMonteCarloprocess.

Optimization reduces design time by replacing the current iterative process.

Additionally, once the designspaceis known (i.e., mappedby a responsesurface),

additional optimizations and trade-studiesmay be performed at little computational

expense- providedthat the nominal trajectoryis unchanged.If the nominal trajectory

changes,theanalysismustberepeated.

Feedbackprovides the decision-makerwith causeand effect information. By

changingthe prioritization (weightedcost) of the designvariables,the decisionmaker

canquantitativelyevaluatetherelativecost of reducingthe uncertaintyin onesystemor

sub-systemover another. Alternativesarecomparedon equalground, since mission

goals aremet precisely(within the limitations of the Monte Carlo simulation) in each

case.

The optimum setof dispersionextrema,onceestablished,translatesimmediatelyto

systemandsub-systemrequirements.Theserequirementsmaybeestablishedearlyin the

designprocessand usedto design,compare,andtest componentsthroughoutthe life of

the program. This processestablishestheserequirementsin a fashion that is easily

documented.

Theresultsof MonteCarloanalysisaredependenton theaccuracyof theassumptions

usedin generatingthedispersions.Thesubjectiveestimationof themissionuncertainties

is typically delegatedto systemexperts. As the designmatures,and thedispersionsare

knownwith increasingaccuracy,the MonteCarlo is runagainwith improvedconfidence
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in the results. In contrast, the solution of an optimization problem does not require a

priori knowledge of the actual dispersions. Rather, the optimization problem establishes

a benchmark, with success guaranteed if-and-only-if actual dispersions are reduced below

the benchmark. The system experts, while not removed from the process, need only

evaluate a posteriori whether the actual dispersions can or cannot meet the given

requirement.

2.2 Goal.___._s

The primary goal of this research was to show that dispersion extrema in Monte Carlo

analyses could be optimized to meet mission objectives (e.g., landing footprint

constraints). Figure 3 compares landing footprints before and after optimization and

shows the desired effect of tightening the uncertainty tolerances. This concept was to be

proven using a simple two dimensional problem. Once verified, the method was to be

demonstrated on a "real world" problem. This thesis sought to "close the loop" in the

Monte Carlo process by providing a mechanism for feedback. The goals of this problem

were as follows.

Landing Footprint- Before Landing Footprint- After
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Figure 3: Example Footprint Reduction.

1) Go beyond the current state-of-practice in Monte Carlo analysis of planetary entry

trajectories. Show that is possible to control the size of the landing footprint and

establish tolerances for mission uncertainties by developing an optimization

16



2)

3)

4)

5)

6)

7)

8)

9)

methodology. In a sense, this goal is to perform the Monte Carlo analysis

backwards: beginning with a desired output and proceeding to the required inputs.

Develop a simplified metamodel that has fewer terms than a response surface. This

simplified model is required to enable solutions of typical "real world" problems.

This is because the computational expense associated with a standard response

surface is prohibitive, even for problems with more than a just a few uncertainties.

Formulate an objective function that provides for a stable numerical problem. Two

desirable objective function characteristics are: (1) the cost becomes infinite as the

uncertainty is reduced to zero, and (2) the unconstrained minimum occurs when the

uncertainties are set to their initial values.

Present several possible objective functions. Different models allow the user to

tailor the method to a particular problem.

Outline a technique for solving a constrained optimization with many design

variables. Write a numerical solver to perform this optimization.

Recommend a method of constructing a footprint ellipse that is general, elegant,

and statistically sound. Present a procedure for constructing the ellipse, measuring

the semi-major and semi-minor axes, and determining the probability of landing

within the ellipse.

Describe several methods of constructing footprints. These descriptions should

include construction techniques, assumptions, and probabilities. These methods

may create either circular or elliptical footprints. Discuss the advantages and

disadvantages of each.

Determine, a priori, how many simulations must be performed to achieve a given

accuracy in the size of the footprint.

Evaluate the appropriateness of using the "ranl" and the Peri "rand" built-in

random number generators. Compare the "randomness" of these functions against

each other and the Matlab built-in random number generator in statistical tests.
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10) Automatethe MonteCarlo processsuchthat multiple simulationsmaybe run in

parallelonmulti-processorcomputers.

2.3 Objectives

2.3.1 Proof-of-Concept

A proof-of-concept problem was used to evaluate the feasibility of the optimization

method. A very simple test problem was chosen so that it could be exhaustively

examined with minimal computational expense. The problem was limited to only two

design variables to facilitate visualization of the design space. The objectives of this

problem were as follows.

1) Successfully locate the minimum cost extrema that satisfy a 3-km landing footprint.

Evaluate the appropriateness of the metamodeling technique by comparing three

forms of the model based on the quality of their fit: the standard response surface,

the squared response surface, and the ellipse surface. Verify each solution several

times, calculate the average error (difference from the desired miss-distance), and

compare with the other solutions.

2) Provide a visualization of the design space by plotting the results of a gridsearch.

Compare the resultant surface with the simplified ellipse surface. This method is

very important because it provides a means for extending the methodology to

problems with larger numbers of design variables due to the minimal number of

function evaluations required.

3) Determine the appropriateness of approximating the range with a metamodel. The

development of the ellipse surface suggests that it may be more natural to fit the

square of the range, rather than the range itself.

2.3.2 "Real World" Example

The optimization method was demonstrated on a "real-world" problem. This problem

had a larger number of uncertainties (twenty-seven) and a more complicated EDL
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sequence.This EDL simulationincludedbotha guidancealgorithm anda lifting entry

trajectory. This problemwasmodeledafter an actualproposedflight project,the Mars

SurveyorProgram2001Lander. Theobjectivesof thisproblemwereasfollows.

1) Demonstrate that the solution procedure developed in the proof-of-concept can be

applied to "real world" problems. Choose a problem with a large number of design

variables, such that it can not be solved using a response surface metamodel.

Several iterations may be necessary.

2) Evaluate the numerical stability of the problem when using more than one

constraint. Use the method of Lagrange multipliers with substitution and compare

the solutions obtained by the different objective functions: reciprocal model,

minimum-distance model, and cost-plus-quadratic model.

3) Evaluate the appropriateness of the bivariate normal (BVN) footprint assumption.

The use of this method assumes that normal distributions are appropriate

approximations to the down-range and cross-range distributions. This is important

because the BVN method is the only method that allows the calculation of a

confidence interval.

2.4 Am3roach

Figure 4 outlines the steps taken in this research. The first step was to become

familiar with current practices and the Monte Carlo analysis. This step was completed

through hands-on experience working with the Vehicle Analysis Branch at the NASA

Langley Research Center and extended over a period of three summers.
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Step 1: Familiarization with Monte Carlo
Analyses and Current Practices.

l
Step 2: Preliminary
Literature Review

÷
Step 3: Develop Automated Process for

Performing Monte Carlo Analysis

Step 4: Develop Notional Example

(nominal trajectory and uncertainties)

Step 5: Conduct Proof-of-Concept

Experiment

I Step 7: AdditionalLiterature Review

Step 8: Obtain "Real-World" Example
(nominal trajectory and uncertainties)

Step 9: Conduct "Real-World"
Experiment

Figure 4: Research Approach.

Next, a literature review was conducted in parallel with a proof-of-concept

experiment. The proof-of-concept was designed to be simple, yet still representative of

larger problems. Because many Monte Carlo analyses would be needed, a program was

developed to automate the process.

These steps led to the thesis proposal where the results of the proof-of-concept were

presented to the thesis committee. Once the thesis topic was approved, the method was

applied to a "real world" example. Further literature review was conducted as necessary.

The problem chosen for the "real world" example was the Mars Surveyor Program

2001 Lander. The nominal trajectory for this problem was obtained from the Langley
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Research Center (LaRC) Vehicle Analysis Branch. The purpose of this example was to

demonstrate that the methodology developed during the proof-of-concept could be

applied to solve larger, more complicated, problems.

2.4.1 Solution Methodology

This research includes optimizing the uncertainties in the Monte Carlo analysis of

spacecraft landing footprints. This approach is based on the assumptions that: (1) the

engineer can control dispersions of uncertainty variables by altering their extrema (+3a

tolerances) and (2) that there exists a real cost to changing any extremum from the

baseline. It follows then, that if the uncertainty dispersions are controllable, then so are

the forecast variables. Therefore, a non-unique set of uncertainty extrema exists that

results in any desired forecast performance. Additionally, any number of feasible sets of

extrema may be ranked according to their associated costs.

A metamodel is used to first write polynomial expressions for the semi-major and

semi-minor axes of the landing footprint as functions of the independent uncertainty

extrema. In general, any forecast variable may be used in a constraint. The coefficients

of the metamodel are determined by performing experiments, where each experiment has

been chosen from a design of experiments. Each experiment consists of performing a

Monte Carlo analysis, constructing a footprint, and recording the size of the footprint.

An objective function is written for the cost as a function of the uncertainty extrema.

An optimization is then performed that minimizes the cost subject to the constraint that

the landing footprint is a specified size.

Figure 5 shows the methodology flowchart. The uncertainty design space is sampled

according to a design of experiments. A Monte Carlo analysis is performed for each of

these uncertainty definitions. Forecast variable data is collected from each of the

simulations and used to form a response statistic. The responses are regressed to create a

metamodel of the design space. The metamodel is used in a constrained optimization

procedure to minimize a cost-tolerance function. The solution of this optimization
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problem is the desiredminimum-costuncertaintysettings,which satisfy the response

constraints.

Desqgn of E.xperiments
DesignSpace

Mode

E_rema

Forecast Variable

Respome

Standard Deviation

Constraint

Figure 5: Methodology Flowchart.

Finally, one or more validation runs are performed using the optimum extrema to

ensure that the desired outcome is obtained. An example for a Mars entry trajectory

would be to determine the allowable dispersions that minimize cost while ensuring (with

a 99.5% confidence) that the spacecraft lands within 10 km of the intended landing site.
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CHAPTER 3

MONTE CARLO IN TRAJECTORY ANALYSIS

Many recent flight programs have benefited from Monte Carlo simulations. This

chapter describes the current state-of-practice in Monte Carlo analyses and discusses

seven missions for which Monte Carlo simulation results have been published. These

missions are: METEOR, Mars Pathfinder, Stardust, Mars Surveyor Program 2001,

Genesis, MUSES-C, and Mars Ascent Vehicle.

This list of missions is not intended to be all-inclusive, but rather represents a wide

cross-section of spacecraft and mission requirements. These programs, which include

landers, orbiters, and ascent vehicles, illustrate the many ways in which Monte Carlo

analyses influence the design of spacecraft. These programs further illustrate: (1) the

usefulness of the Monte Carlo technique; (2) typical values for number of simulations

and number of uncertainties; (3) typical landing ellipse (footprint) sizes; and (4) some of

the limitations of the method.

Several of the missions described here fall under the jurisdiction of NASA's

Discovery Program. Discovery is an ongoing program that is intended to offer frequent,

high quality science missions through NASA's vision of "Better, Faster, Cheaper". It

seeks to keep both performance high (by using new technologies) and expenses low (by

setting a cost cap of $299 million for an entire mission). This program represents a

dramatic departure from past missions that were very large in scope, and cost billions of

dollars. Eight Discovery Missions have been chosen to date: Near Earth Asteroid

Rendezvous (NEAR), Mars Pathfinder, Lunar Prospector, Stardust, Genesis, Comet

Nucleus Tour (CONTOUR), MErcury Surface Space ENvironment GEochemistry and

Ranging (MESSENGER), and Deep Impact. [21 ]
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3.1 METEOR (1995)

The Multiple Experiment Transporter to Earth Orbit and Return (METEOR)

spacecraft was designed to fly microgravity experiments in orbit. It was lost in 1995,

however, when the Conestoga launch vehicle, which was carrying it, failed during ascent.

The Recovery Module (RM) was to splashdown off the coast of Virginia.

A Monte Carlo analysis [17] was performed to assess the splashdown dispersion

footprint. The 6-DOF POST simulation included the 1995 Global Reference

Atmospheric Model (GRAM-95) [22] atmosphere model as well as Service Module (SM)

separation, and yo-yo release and de-spin models. Fifty-seven potential uncertainties

were identified. Over 3500 trajectories were simulated to assure a good distribution.

From a One-Variable-At-A-Time (OVAAT) sensitivity analysis, the center-of-gravity

offset from the spin axis and initial attitude and attitude rate uncertainties where shown to

produce the greatest dispersions [17].

The OVAAT results were also used to quickly assess the size of the landing ellipse.

By computing the L2 norm of the dispersions from the OVAAT results, an upper bound

on the resulting 3-sigma range from the Monte Carlo analysis of no more than 50-60 nm

was expected. The Monte Carlo analysis, in fact, showed a splashdown footprint with

axes of 43.3 nm downrange, 33.5 nm up-range, and 10.0 nm cross-range. The

unsymmetrical landing ellipse gave a 58% probability that the RM would overshoot the

nominal splashdown site. [17]

The METEOR study illustrates a fallibility of the Monte Carlo approach - the

subjectivity of the dispersion assumptions. This study predicted a larger (approximately

double) footprint than previous METEOR entry dispersion analyses that were preformed

earlier in the program [23, 24]. Desai et al. [17] attributed the difference to (1) changes

in the baseline orbital altitude, target landing site, and mass properties of the RM, (2) the

inclusion of additional uncertainties not originally considered, and (3) more conservative

estimates of Isp, solid-motor temperature, weight, initial attitude, and body rates.
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3.2 Pathfinder (19977

On July 4, 1997, the second Discovery mission, Mars Pathfinder, successfully came

to rest on the surface of Mars just 27 km from its target point. [18] The target landing

area was a 100-by-200 km ellipse in the Ares Vallis floodplain (centered at 19.24 N

latitude, 33.1 W longitude). Pathfinder, with its little Sojourner rover, captured the

imagination of the public and was an overwhelming success.

It is because of the great success of this mission that Pathfinder serves as an excellent

example of how Monte Carlo simulations are used in the design of spacecraft. The

design of the entry trajectory, along with the accurate determination of potential

trajectory dispersions, was critical to the success of the Pathfinder mission. [13] In fact,

the primary objective of the Mars Pathfinder mission was to demonstrate a unique, low-

cost, reliable system for entering the Martian atmosphere and placing a lander (along with

its science payload) safely on the surface of Mars. [13, 14] It also follows that because

Pathfinder was a technology demonstration mission, a critical legacy of the program is

the reconstruction of the entry trajectory [14] from actual flight data and its comparison

to pre-flight predictions. Indeed, these comparisons are used as evidence to validate the

Monte Carlo approach to uncertainty analysis in the design of other spacecraft. [16, 25]

Monte Carlo simulations, first developed early in the design phase, were instrumental

throughout the Pathfinder program from design, to testing, to operations, and finally to

post mission reconstruction [18, 13]. Simulations performed at the Jet Propulsion

Laboratory (JPL) used both the 3-DOF Atmospheric Entry Program (AEP) [26] and the

6-DOF Automated Dynamic Analysis of Mechanical Systems (ADAMS) [27] programs.

Simulations performed at the NASA Langley Research Center (LaRC) were run with the

Program to Optimize Simulated Trajectories (POST) [28].

Monte Carlo simulations were used to design the Entry, Descent, and Landing (EDL)

system to be more robust by accommodating a wide range of off-nominal entry

conditions. Additionally, the results of the Monte Carlo simulations directly influenced

the design of the Pathfinder Aeroshell Thermal Protection System [29] and contributed to

the validation of the parachute deployment algorithm [13]. The Monte Carlo results were
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also used in the designof flight software,and to define certain hardwaretests. [30]

Finally, MonteCarlo simulationspredictedthe sizeandorientationof the landingellipse

on theMarssurface.[18]

In the operationsphaseof the mission, the navigation team used Monte Carlo

simulations to update flight software parameters as the spacecraft approached Mars.

These parameters, based on improved estimates of the atmosphere and vehicle state

vector, modified the EDL sequence to account for the most likely atmospheric flight

conditions. Without this update capability, which improved the probability of a

successful parachute deployment, the likelihood of a successful landing would have been

adversely affected. [18]

3.3 Stardust (1999)

Stardust is the fourth NASA Discovery mission. The primary goal of Stardust is to

collect samples from the tail of the Comet Wild 2 (pronounced "Vilt Two"). Stardust is

the first U.S. space mission dedicated solely to the exploration of a comet, and the first

robotic mission designed to return extraterrestrial material from outside cis-lunar space.

In addition to comet material, Stardust will also bring back samples of interstellar dust.

Stardust will capture these particles by using a substance called "aerogel".

The Stardust spacecraft was launched on February 7, 1999, and is expected to

encounter the comet in January 2004. Not until January 2006, will Stardust return its

samples to Earth by parachuting a reentry capsule (the Sample Return Capsule, SRC).

[31] Weighing approximately 125 pounds, the SRC will land within the Utah Test and

Training Range (UTTR). [ 15]

To determine the footprint, over 3200 trajectories were simulated with 41 mission

uncertainties. [25] The size of the resulting footprint was 83.5 km in down-range by 29.2

km in cross-range (which is well within LrrrR boundaries). More importantly however,

Monte Carlo analyses of the entry also showed that capsule attitude excursions near peak

heating and drogue chute deployment were within specified limits. [25]
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The program managementwas extremely interestedin these attitude excursions

becauseof aerodynamicinstabilities found in the StardustSRC. Theseinstabilities,

which were revealedlate in the designprocess,could have necessitatedvery costly

correctivemeasures. If identified earlier,however,theseinstabilitiescould havebeen

eliminated by consideringalternativecapsuleconfigurations. This demonstrateswhy

MonteCarloanalysesshouldbeincludedearlyin theconceptualdesignphase.[25]

Desaiconcludedthat Stardust,due to the resolution of the SRC instabilities, relied

more heavily on Monte Carlo analysis than any previous mission. He also noted that this

increased dependence on Monte Carlo results for mission success places considerable

importance on the selection of appropriate uncertainties. [25]

3.4 Mars Surveyor (2001)

NASA's Mars Surveyor Program (MSP) is a series of missions designed to send two

spacecraft to Mars every opportunity (one orbiter and one lander - launched separately).

The first opportunity for the program was in 1997 when the highly successful Mars

Global Surveyor (MGS) and Pathfinder missions were launched. The next opportunity

was not so fortunate for the program. In 1998, MSP launched the ill-fated Mars Polar

Lander (MPL) and Mars Climate Orbiter (MCO) missions. Both missions failed.

The Mars Surveyor 2001 Project consisted initially of two missions, the Mars

Surveyor 2001 Orbiter and the Mars Surveyor 2001 Lander. The Orbiter was to

nominally orbit Mars for three years, with the objective of conducting a detailed

mineralogical analysis of the planet's surface and measuring the radiation environment

on orbit. The Lander was to study soil and atmospheric chemistry and radiation at the

surface. The Orbiter was also to act as a communications relay for the Lander.

Following the failures of the 1998 missions, the 2001 mission was rescoped and the

lander mission was cancelled. The orbiter, now called 2001 Mars Odyssey, is currently

en route to the red planet.

An Atmospheric Flight Team (AFT) was formed by the MSP '01 mission office in

1997 to develop: (1) aerocapture and precision landing strategies, (2) atmospheric flight
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simulationtest-beds,and (3) a broad set of potential atmospheric guidance algorithms.

Both 3- and 6-DOF Monte Carlo simulations were developed for testing and evaluating

candidate guidance algorithms for the 2001 Orbiter and Lander. [19, 32] Seven candidate

guidance algorithms were submitted for the lander, six for the orbiter. [33, 34, 35, 36, 37]

3.4.1 2001 Mars Odyssey

Launched April 7, 2001, Mars Odyssey will amve at Mars in October 2001. Once

there, the spacecraft will begin using aerobraking to shape its orbit. Aerobraking is a

fuel-saving technique that involves dipping into the Martian atmosphere many times to

slow down and lower the altitude of the apoapsis above the planet.

Odyssey's primary science mission is to map the distribution of chemical elements

and minerals that make up the Martian surface. The spacecraft will especially look for

hydrogen, most likely in the form of water ice. It will also record the radiation

environment in low Mars orbit to determine the radiation-related risk to any future human

explorers who may one day go to Mars. Odyssey is also expected to support future

missions in the Mars Exploration program by providing a communications relay. [1 l]

The forecast variables for the orbiter simulation consisted of aerobrake-exit orbital

elements: apoapse, periapse, inclination, and longitude of ascending node. These

quantities were calculated using both the actual and navigation states. Navigation states

(the position and velocity used by the guidance computer) are propagated the same as the

actual states, except that they include IMU measurement errors. These separate states are

necessary to evaluate the performance of the guidance algorithm in the presence of

imperfect navigational knowledge. [19] Powell [20] presents the evaluation of a

numerical roll reversal predictor-corrector guidance algorithm.

3.4.2 MSP '01 Lander

The MSP 2001 Lander was designed to deliver a small, advanced technology rover to

Mars. However, this mission has been cancelled due to the restructuring of NASA's

Mars Exploration Program in the wake of the Mars Climate Orbiter and Mars Polar

Lander failures. The rover was to be more capable, and able to travel farther, than
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Pathfinder'sSojournerrover. The Landerwasplannedto perform key experimentsto

assessthe radiationenvironmenton the surface. Theresultsof suchexperimentscould

influencedecisionsfor humanmissionsto Mars. Walberg[38] reportedthatexposureto

radiationmaybeoneof the keydiscriminatorsbetweenthemanydifferentMarsmission

scenarios.

Mars Surveyor 2001 would have been the first lander on another planet to use a

guidance algorithm to actively control its entry. [39] This ability to make a precision

landing allows the spacecraft to land safely within a 10-km circle (as compared to the

100-by-200 km landing zone for Mars Pathfinder). Precision landing capability is

significant because it allows placing the spacecraft (and its science instruments) closer to

interesting features while reducing landing risk. It is certainly easier to find a 10-km area

without hazardous features (craters or large rocks) than it is to find a 100-by-200 km area

with the same characteristics.

The Entry, Descent, and Landing (EDL) sequence for this mission was designed as

follows. The MSP '01 Lander enters Mars directly from its interplanetary transfer orbit

(i.e., it does not insert first into a Martian orbit). Five minutes before atmospheric entry,

the cruise stage is jettisoned. The guidance algorithm deploys a super-sonic parachute

approximately 226 seconds after entry (and at an altitude of 9- to 10-km). Ten seconds

after parachute deployment the aeroshell is released. At an altitude of 1.43 km (measured

by radar altimeter), the lander legs deploy and the powered descent begins. The

parachute and backshell are released two seconds after descent engine ignition. The

Lander touches down about 37 seconds later at a soft 2.5 rrds velocity. [40]

Striepe et al. [19] and Powell [20] give results of Monte Carlo analyses performed for

the MSP '01 Lander. These simulations included models of the gravity, planet,

atmosphere, aerodynamic data, control system, inertial measurement unit, and spacecraft

mass properties. The precision landing objective for these studies was to deploy a

parachute within 10 km of the target. The MSP '01 Lander requirements were to meet the

parachute deployment conditions (Mach number and dynamic pressure between

established limits) while arriving within 10 km of the target point.
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3.4.3 Terminal Descent Study

If even greater landing precision is needed, an actively controlled and guided terminal

phase with significant lateral maneuvering capability may be employed. Walberg and

Birge [41] studied two terminal descent scenarios: (1) a ballistic parachute and powered

gravity turn to hover conditions, followed by a powered lateral translation to the target

landing site and (2) a guided, lifting parachute descent, followed by a powered gravity

turn to the target landing site.

Walberg and Birge [41] showed that both terminal descent approaches could achieve

landings within 10 meters of the lading site. However, the guided parachute option was

expected to have better performance (due to fuel savings). This research demonstrates

that when the footprint, in this case at parachute deployment, is reduced sufficiently,

other technologies (such as a guided parachute) may be used to reduce the landing

footprint even further.

3.5 Genesis (2001)

NASA's Genesis mission, scheduled to launch in mid-2001, will orbit about the Sun-

Earth L1 libration point for two years collecting solar wind particles. Genesis is the fifth

Discovery-class mission and will be the first to return samples from trans-lunar space.

The Genesis Sample Return Capsule (SRC) Earth return trajectory was analyzed using

Monte Carlo techniques [15, 16].

The Genesis mission demonstrates how mission rules dictate landing footprint

requirements. Though the nominal EDL sequence baselines the mid-air capture of the

SRC by a helicopter, range safety rules require the SRC to land within the Utah Test and

Training Range (U'Iq"R) in the event of an air-snatch failure.

In addition to the landing footprint, the SRC attitude near peak heating and parachute

deployment were of interest. Desai and Cheatwood [ 16] used 3000 random, off-nominal

POST trajectories in the Monte Carlo analysis, which included 47 uncertainties. Though

not used for screening purposes, a OVAAT sensitivity analysis was performed. This
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sensitivity study found that the initial state vector, atmosphericdensity, and wind

uncertaintiesproducedthe greatestdispersionsin the downrangeaxis of the landing

ellipse. The 3-sigmalandingfootprint obtainedwas47.8-by-15.2km in down-rangeand

cross-range, respectively.

3.6 MUSES-C (2002)

MUSES-C is a Japanese Institute for Space and Astronautical Sciences (ISAS)

mission to a near-Earth asteroid. [42] NASA is providing technical assistance and a

small nano-rover. The solar-electric spacecraft will rendezvous with the asteroid, deploy

the nano-rover, and collect samples for return to Earth. The mission will launch in

December 2002. MUSES-C will arrive at the target asteroid, 1998 SF36, in September

2005. [43]

Desai et al. [15] give an overview of the MUSES-C mission and the Sample Return

Capsule (SRC) flight path. The spacecraft is spin stabilized and relies solely on

aerodynamic stability for attitude control during the entry. This is possible because the

center-of-gravity is located sufficiently far forward (in contrast to the Stardust and

Genesis capsules). The landing footprint for this mission is roughly 65-by-20 km and

will be somewhere in the Southern Hemisphere.

This mission demonstrates how Monte Carlo analyses can influence the design of a

vehicle. By studying the aerodynamic stability in all the flight regimes (hypersonic-

rarefied, hypersonic-transitional, hypersonic-continuum, supersonic, transonic, and

subsonic) and observing the angle-of-attack excursions during the flight-path, engineers

can make important decisions concerning attitude control systems, spin rates, and drogue

parachutes.

3.7 Mars Ascent Vehicle (2005)

Desai et al. [44] describe the flight analysis of the Mars Ascent Vehicle (MAV). This

vehicle was planned to be part the Mars Sample Return mission - originally planned as
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theMars SurveyorProject2005mission. However,this missionwascancelledandthe

first samplereturnmissionis not likely before2011.

The challengingsamplereturnmissionrequiresthe developmentand integrationof

the following components: Mars lander,Mars rover, MAV, Mars orbiter, and Earth

ReturnCapsule(ERC). The MAV is deliveredto the surface,alongwith the rover,by

the lander. After gatheringsamples,theroverplacesits cargoin the MAV. The MAV

launchesthe samplesinto Mars orbit, where they rendezvouswith the orbiter. The

orbiter transfersthe samplecontainerfrom the MAV to the ERC. Finally, the ERC

makes the long return trip back to Earth and enters the atmosphere.

The MAV design described by Desai et al. [44] was a two stage, pressure-fed, liquid

rocket. The propellants used were Monomethyl Hydrazine (MMH) and a mixture of

Nitrogen Textroxide and Nitrogen Monoxide (MON-25). The system configuration had

the second stage placed within the first stage to reduce the volumetric envelope.

To satisfy mission constraints, the MAV needed to be able to insert a 30 kg sample

canister (containing 300 g of rock and soil) into a 300-km circular orbit with a 30-degree

inclination. The allowable mass for the vehicle was only 426 kg. Because of this tight

constraint, the engineers were concerned that the MAV would have to be over-designed

to accommodate uncertainties.

Following a Monte Carlo analysis, Desai et al. [44] concluded that off-nominal

conditions during the ascent (due to uncertainties in vehicle aerodynamics and

atmospheric properties) required vehicle mass increases on the order of 10%. They

further recommended that the aerodynamic uncertainties could be reduced by improving

the fidelity of the aerodynamic model. This would require expensive wind tunnel tests

and additional CFD analyses. This design was later abandoned in favor of a higher bulk

density, solid propellant system.
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CHAPTER 4

OPTIMIZATION IN DESIGN

All optimization problems may be stated mathematically in the standard form of

Equation 1. [45] Here, xi are the design variables, f is the objective function, gj are

inequality constraints, hk are equality constraints, and xi L and xi U are lower and upper side

constraints respectively. Therefore, design optimization problems may be classified

according to how they handle the various elements of the standard form. These elements

are: (1) the objective function, (2) the design variables, and (3) the constraint functions.

considerations include the inclusion of metamodeling and uncertaintyAdditional

simulation.

given" .Y={xi} i=1,2 .... ,n

minimize: fi'_)

subject to" _" = {g j(_) < 0} j = 1, 2 ..... m

-h = {h, ff) = 0} k = 1,2 ..... e

xiL < x, <x_ i = 1,2 ..... n

(1)

This chapter describes the state-of-the-art in design optimization methodologies and

discusses the following topics: multi-objective function optimization, design variable

screening, unconstrained optimization, metamodeling, and probabilistic methods. The

purpose of this chapter is to provide background into optimization methodologies and

discuss some of the available techniques.

4.1 Multi-objective vs. Single-objective

All optimizers require a single means of determining the "goodness" of a design or

ranking a set of alternatives produced in the optimization process. Because designers are
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oftenfacedwith multiple andcompetingobjectives,theymustusemethodsto "collapse"

the multiple objectivesinto a single scalarfunction. SeveralMulti-Criteria Decision

Making (MCDM) methodsexistin the literature.[46,47,48,49, 50,51,52,53,54]

Most multi-criteria methodscanbeclassifiedin one of two groups:thosethat usea

weightedsummationof the individual criteria(anOverallEvaluationCriteria,OEC) and

thosethatusea lexicographic(or ordering)approachto rankingcriteria andalternatives.

A third method[55] combines multi-objective optimization with probabilistic methods by

using a joint probability function. The objective for this method is not a summation of

criteria, but rather the probability of satisfying all of the criteria simultaneously. [46]

By far, the most simple and common method is the use of an OEC. However, this

method suffers from the disadvantage that it requires the subjective formulation of the

criteria weights. Ignizio [56, 57] defines the lexicographic minimum as follows. The

user first ranks each criteria according to its importance. Designs are first compared

based on the highest priority criteria (or goal). If they are equal in the first objective, then

they are compared in the second objective - and so on. This method may be particularly

suited for Genetic Algorithms (GAs) using tournament selection.

In this research, the objective function is arbitrary (the emphasis being on meeting the

constraint) so that multiple criteria are not needed. The form of the proposed objective

function is a weighted cost-tolerance function, where the weights are determined from the

relative expense of reducing the associated uncertainty.

4.2 Analysis vs. Metamodel

Detailed engineering analysis codes are often very expensive to run, a shortcoming

that is only aggravated by optimization procedures that require many function

evaluations. In these cases, a "model of the model" or metamodel [58] is often used.

Metamodels [59, 60] approximate the actual codes and are orders of magnitude cheaper

to run, allowing them to be used efficiently in conjunction with optimization routines.

Once created, metamodels can be used repeatedly, avoiding the need to re-execute the

expensive analysis code. However, the cost of increased speed is accompanied by a loss
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of accuracy(which as Su and Renaud[61] point out, is especiallytrue for derivative

information). Additionally, metamodelsareoften limited in thenumberof variablesthat

may be modeled. [60] Simpson et al. [59] give a good overview of the many

metamodelingmethodsthat exist in the literature. Thesemethodsinclude, but arenot

limited to: responsesurfaceequations(RSEs),neuralnetworks,andkriging.

The RSE is the most common,well established,and easiestto usemetamodeling

technique.[59, 60, 62,63, 64,65,66, 67] MyersandMontgomery[68] explain thatthe

term "responsesurfacemodel" was taken from the statisticalliterature. Generally,this

term refersto anypolynomial-basedmodelingmethod.Most often,theunderlyingmodel

is a second-degree(quadratic)polynomialapproximationin theform given by Equation

2. This form accountsfor individual parametereffects (linear terms, bi), second-order

curvature (square terms, b,), and two-variable interactions (cross terms, bij). Giunta and

Watson [63] credit the popularity of these methods to a number of reasons, one of which

is that they, "provide a compact and explicit functional relationship between the response

and the independent variables."

n e n-I n

i=1 i=1 i=l j=i+l

Many authors have warned of the dangers of applying response surfaces to

deterministic computer codes. Because response surfaces were originally developed to

model physical experiments, the statistical determination of the polynomial coefficients

(least squares regression) assumes that the response data is contaminated with a normally

distributed random error, which has some variance and a mean of zero. [63] However,

response surface techniques have been widely applied to deterministic (repeatable)

computer experiments where there is no random error. Members of the statistical

community have, therefore, questioned both the applicability of the response surface, and

the standard statistical tests for model and parameter significance, when used with

deterministic data. [59, 69, 70, 71]

Due to the random number generation when employing Monte Carlo analyses,

regression of the data is appropriate since random error is present. This also leads to
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results that are not repeatable. This research proposes a simplified second-order

polynomial model that retains only the constant and square terms (i.e., no linear terms or

cross terms are present). It is important to note that this metamodei is being used to

approximate the expensive Monte Carlo analysis and not individual trajectory simulations

(POST runs).

4.3 Many Variables vs. Screenine

In constructing an RSE, the first step is normally to conduct a screening test. [55] A

screening test is done when the number of design variables is too large for construction of

a three-level Design of Experiments (DOE) or when the function evaluations are

prohibitively expensive. The underlying assumption of the screening test is the "sparsity

of effects" principle [72], which assumes the system response is dominated by main

effects and low-order interactions. [59] Following this principle, a two-level fractional

factorial is used that accounts for main effects only, but which examines many variables

with minimal expense. [67] One specific family of designs commonly used for this

purpose is the two level Plackett-Burman (P-B) designs. The scaled estimates from this

design and their cumulative total are typically displayed in a Pareto plot. This plot allows

the designer to quickly visualize the relative influence of each variable on the response.

[73] Design variables with the largest estimates are retained.

Another form of screening often used with Monte Carlo simulations is the One-

Variable-At-A-Time (OVAAT) analysis. With all other uncertainties set at their nominal

values, each uncertainty is varied independently to its maximum and minimum. Changes

in the forecast variables from the nominal trajectory (deltas) are recorded for each

uncertainty and displayed in a Pareto Plot. The OVAAT method of screening is used in

the proof-of-concept example.

A particular issue in response surface generation is the problem of scalability.

Simpson et al. [59] note that as the size of a problem increases, the cost of creating a

metamodel quickly begins to outweigh the costs of using the analysis code directly. A

central composite DOE, for example, requires 2"+2n+1 function evaluations to evaluate
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the l/2(n2-n)+2n+lRSEcoefficients. At 30designvariables,aCentralCompositeDesign

(CCD) would require over 1 billion (1,073,741,885)function evaluationsto evaluate

nearlyfive hundred(496) RSEcoefficients! Simpsonet al. [59] furthernote that,"often

thereductionin factorsresultingfrom screeningis still not sufficientto bringtheproblem

to amanageablesize."

This problem of scalability is particularly relevant to this thesis. Monte Carlo

simulationstypically include30 to 50 uncertainties,yetthe practicallimit for generating

a responsesurfaceis abouteight or tendesign variables. While a feasible set of 8-10

extrema may be found that minimize their cost, no information is generated for the

remaining 20-42 uncertainties, nor can any claim be made that the solution represents the

lowest cost alternative. For the methodology proposed by this research to be useful, it

must be scalable to large numbers of design variables without screening.

4.4 Constrained vs. Unconstrained Optimization

Whether called "constraints", "requirements", or "rigid goals", constraints are a

natural part of engineering problems and they originate from many sources including the

following: outside groups, management, government regulations, customers, thresholds

on performance, and even nature. [47, 62] Designs that fail to meet constraints are called

infeasible. In mathematical programming (classical optimization), constrained

optimization is performed either directly or indirectly. Indirect methods involve penalty

functions and sequential unconstrained minimization techniques (SUMT). Direct

methods include sequential linear programming (SLP), method of feasible directions, and

sequential quadratic programming (SQP). [45] In goal programming, constraints are

treated as goals with the highest level of priority (rigid goals). [47, 56, 57, 74]

In this research, the constraint is central to the problem formulation, and should be

satisfied as precisely as possible. Because indirect methods (using penalty functions) can

only approach the constraint sequentially, a direct method is desired that gives more

precise control over the constraints. Because both the objective function and the

metamodel of the constraint are analytically differentiable, the method chosen is the
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methodof Lagrangemultipliers. The unconstrainedLagrangeproblem is thensolved

veryquickly,efficiently, andpreciselyusingaNewton-Raphsoniteration.

In the eventthat it becomesimpracticalto generatea metamodel(dueto very large

numbersof designvariables)an alternatemethodis needed. In this case,a zero-order

optimizationmethod,suchasGA, couldbeused.Most applicationsof GA usea penalty

function method in handling constraintsand suffer from problems with premature

convergence.However,aniched-penaltyapproach,proposedby Deb andAgrawal [75],

avoids the use of penalty functions by exploiting the pair-wise comparison used in

tournament selection. In this method, two feasible solutions are always compared by

their objective function value. When a feasible solution is compared to an infeasible one,

the feasible solution is always chosen. Two infeasible solutions are compared based on

the extent of their constraint violation. This method was not pursued in this research, but

remains another possible solution method.

4.5 Probabilistic vs. Deterministic

While there is growing emphasis on risk and uncertainty management in design,

engineering analysis codes are exclusively deterministic in nature. A "wrapper" is

needed to evaluate the effects of uncertainty on these codes. Internet.com [76] defines a

wrapper as, "software that accompanies resources or other software for the purposes of

improving convenience, compatibility, or security." This wrapper interfaces many times

with the underlying analysis code for the purpose of collecting statistics on the

deterministic output. Generally, a histogram is used to produce a visual representation of

the probability distribution function (pdf). Alternately, an approximation of the

cumulative distribution function (cdf) may be generated. In that case, the pdf is

determined by differentiation. While histograms provide valuable information to the

designer, they are not compatible with optimization. Selected scalar values (e.g.,

parameters such as the sample mean and variance or discrete function evaluations from

either the pdf or cdf) must be returned to the optimizer.
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The most common form of uncertaintywrapper, and the most computationally

intensive,is the MonteCarlo Simulation(MCS). This techniqueutilizes a random(or

pseudo-random)number generator to randomly sample from given uncertainty

distributionsandthendeterministicallyevaluatethe analysisroutinemanytimes. Large

sample sizes, typically 1000's of cases,allow very accuratemodeling of forecast

distributionfunctions. The primaryadvantageof MCS is that the input distributionsare

sampledin parallel,makingtheprocessindependentof thenumberof input distributions.

Additionally, thereareno restrictionson thetypesof uncertaintiesor whetheror not there

arecorrelationsbetweenthem. SpencerandBraun[13] notethat,"while computationally

intensive,theMonteCarloapproachcangiveinsight into thebehaviorof systemsthatare

toocomplexto beresolvedanalytically."

Other methodsof uncertaintyanalysisare known as fast probability integration

methods. Fastprobability integrationmethodsincludethe Most ProbablePoint (MPP)

analysis,theMeanValuemethod,andthe AdvancedMeanValue(AMV) method,which

combinesa simple Mean Value methodwith the MPP analysis. Theseand other fast

probability methodsare included in the commercialsoftwarepackageFastProbability

Integration(FPI) [77], which wasdevelopedat the SouthwestResearchInstitute(SwRI).

Fast probability methodsapproximatethe desireduncertaintyresults, with a reduced

numberof function calls. Thesemethodssamplespecific points in the designspace,

which have a known probability of occurrenceaccording to a joint probability

distribution function. Sinceeachpoint in thedesignspacegeneratesa certainresponse,

the sampledresponsevaluesoccur with the sameprobability as their corresponding

uncertainties.[55]

DeLaurentisandMavris [60] definethreegeneralmethodsof uncertaintyanalysis:(1)

applyingMCS directly to the analysiscode,(2) applying MCS to a metamodelof the

analysiscode,and(3) applyingfastprobabilitymethodsdirectlyto theanalysiscode. So,

whenthedesigneris confrontedwith too largeacomputationalexpenseto utilize thefirst

method, a choice must be made to either precisely analyze the statistics of an

approximationto thecodeor approximatelyanalyzethe statisticson the precisecode. In

all threemethods,theforecastvariablesof theuncertaintyanalysisarethenmodeledwith
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a responsesurfaceequation- regardlessof whetherametamodelof theanalysiscodewas

usedto generatethestatistics.

For this research,MCS is useddirectly on the trajectorysimulation(method#1) to

producean estimateof the sizeof the landingfootprint. This responseis thenusedto

generateoneor moreresponsesurfaces.However,if theproblembecomeslargeenough

(largenumberof designvariables)andcomputationaltime is limited, a fast probability

method may be requiredto reducecomputationalexpense. In the event that a fast

probability method is used, a metamodel of the uncertainty analysis would not be

recommended since this would provide an approximation of an approximation.
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CHAPTER 5

RANDOM NUMBER GENERATORS

A Monte Carlo method has been generally defined by Knuth [78] as "any algorithm

which employs random numbers." Since random numbers are so central to the concept of

Monte Carlo methods, a brief discussion on the subject of "randomness" and "random

number generators" is in order. What is a random number? How are random numbers

generated on a computer? How can one evaluate the randomness of a sequence of

pseudorandom numbers? A much more detailed discussion on the topic can be found in

Knuth [78]. Anderson [79] also provides an excellent survey on techniques for

generating and testing random numbers.

5.1 Random Numbers

The first question to address is, "what constitutes a random number?" Intrinsically,

everyone has a concept of what a random number is. Obviously, one can not look at a

single number (5 for example) and determine if it was generated in a random process.

Therefore, any definition of randomness must be restricted to a series of numbers. Most

will agree that in a random sequence of numbers, the next number in the sequence has

nothing to do with other numbers of the sequence, but rather is determined by a random

process (i.e., each number is obtained merely by chance). We allow, however, that the

next number in the sequence has a specified probability of taking on a given value.

Anderson [79] warns, however, against assuming that random numbers are a well-

defined concept. Perhaps the best definition is given by Lehmer [80]. He writes that "a

random sequence is a vague notion embodying the idea of a sequence in which each term

is unpredictable to the uninitiated and whose digits pass a certain number of tests,
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traditional with statisticians and depending somewhat on the uses to which the sequence

is to be put."

This definition emphasizes the fact that the field of statistics is the only tool available

for evaluating randomness and alludes to the practice of performing multiple tests on

random sequences. Yet, statistics can only assist - it can not make the determination of

whether or not a sequence is random. Knuth [78] writes that, "The mathematical theory

of probability and statistics carefully avoids answering the question; it refrains from

making absolute statements, and instead expresses everything in terms of how much

probability is to be attached to statements involving random sequences of independent

events."

5.2 Random Number Generators

"Anyone who considers arithmetical methods of producing random digits

is, of course, in a state of sin"- John Von Neumann (1951)

"It may seem perverse to use a computer, that most precise and

deterministic of all machines conceived by the human mind, to produce

'random' numbers. More than perverse, it may seem to be a conceptual

impossibility. Any program, after all, will produce output that is entirely

predictable, hence not truly random." - Press et al. [81], Numerical

Recipes, (1989)

Leaving the question, "what is random?" unanswered, the question now becomes,

"how are random numbers generated on a computer?" Random number generators have

existed for over fifty years. Von Neumann [82] first suggested a "middle-square" method

for generating random numbers in 1946. The problem with random number generators,

of course, is that they are not truly random. The two quotes at the beginning of this

section attest to this fact. Knuth [78] raises the objection, "how can a sequence generated

in such a way be random, since each number is completely determined by its
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predecessor?"His answerto this conundrumis that, "the sequenceisn't random,but it

appearsto be."

Becauseof this, computeralgorithmsfor the productionof randomnumbersaresaid

to generate"pseudo-random"or "quasi-random"sequences.The word "random" is often

used for the output of truly random physical process, like the elapsed time between clicks

of a Geiger counter. Because only sequences generated by computers are discussed here,

(and because many of these methods are very good at simulating random behavior) no

distinction is made in this research.

Anderson [79] lists five common techniques for generating random numbers on a

computer:

I. Linear, Congruential Generators

2. Shift Register Generators

3. Lagged-Fibonacci Generators

4. Randomizing by Shuffling

5. Combination Generators

Of these five methods, only the first (linear, congruential generators) will be

discussed here. Discussions on the other types of generators can be found in Anderson

[79] and Knuth [78]. All these methods produce uniform deviates (random numbers that

are uniformly distributed between 0 and 1). A reliable source of uniform deviates is

essential for any Monte Carlo process. This is because other sorts of deviates (e.g.,

random numbers that have a Gaussian distribution) are usually generated by performing

appropriate operations on one or more uniform deviates.

5.3 Linear_ Congruential Generators

The Linear, Congruential Generator (LCG) was first proposed in 1948 by Lehmer.

LCGs are defined by use the recurrence relationship, Equation 3, to create a series of

integers. Dividing these integers by the largest possible integer, m, creates a real number
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between0 and 1. Theappearanceof randomnesscomesfrom theLCGsusethemodulus

(remainder)operation.

lj÷_ = mod(alj + c, m) ( 3 )

Because each integer depends on the previous integer, LCGs require an initial "seed"

value to start the sequence. This seed must be provided by some external means - often

the current system time. Using the same seed on successive runs of the random number

generator will result in the same random sequence.

Because the LCG sequence is completely defined by the constants a (multiplier), c

(increment), m (modulus), and x0 (seed), the designation LCG(a, c, m, Xo) is used to

identify the sequence. These algorithms are very common in the literature, and there

exists an extensive body of knowledge on their behavior (See [78]). Much of this

literature is on how to carefully choose the constants so that the LCG has favorable

characteristics, such as a long period (the number of integers returned before the

inevitable repetition of the sequence). Table 4 is an excerpt from a table in Numerical

Recipes [81] that shows "good" choices for LCG constants. These constants have been

carefully chosen to maximize the period of the random number generator. Rules for

these choices are given in Knuth [78].

Table 4: Constants for Linear, Congruential Generators. [81]

Multiplier(a) Increment(c) Modulus(m)
1861 49297 233280

2661 36979 175000

4081 25673 121500

3661 30809 145800

3877 29573 139968

3613 45289 214326

1366 150889 714025

8121 28411 134456

4561 51349 243000

7141 54773 259200

9301 49297 233280

4096 150889 714025
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LCGs arevery fast (becauseof their small operations count), but suffer from several

problems. Most notably, LCGs are known to show k-tuple correlation (i.e., every ka_

number generated is correlated). Points plotted in k-space show that the numbers are

restricted to a number of planes. Additionally, LCGs show less randomness in their least

significant bits than in their highest significant bits. Because of these weaknesses, LCGs

make poor candidates for use in highly dimensional Monte Carlo processes. They are

discussed here, however, because they form the basis for the random number generator

used in this research, "ran l".

5.4 The "Ranl" Random Number Generator

The random number generator used in this research is "ranl". This function is a

combination generator that uses three LCGs. These three LCGs create a random number

even more random than the original random numbers. This routine (originally written in

Fortran and translated into Perl) was taken from Numerical Recipes [81] and the LCG

constants were selected from Table 4. The three LCGs are:

LCGI = LCG(7141, 54773, 259200, x0)

LCG2 = LCG(8121,28411, 134456, x0)

LCG3 = LCG(4561, 51349, 243000, x0)

The first two LCGs are combined so that the first forms the most significant part of the

output deviate and the second forms the least significant part. The third LCG is used to

further randomize the output by shuffling an array of 97 random numbers.

On the first call to "ranl", LCGI is seeded. It is then used to seed the other two

generators and the shuffling array is populated. The third LCG produces an integer

between 1 and 97, which is used to index the pre-filled array. The selected array element

is output and then replaced with a new deviate.

According to Knuth [78], this method of shuffling (called two-sequence shuffling) was

first introduced by MacLaren and Marsaglia in 1965. [79] Its purpose is to break up the

k-tuple correlations that might exist. Combined, the period of "ranl" is practically
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infinite andit ought to haveno sequentialcorrelations.However,testing of "ranl" was

required to determine its suitability for this research.

5.5 Tests for Random Number Generators

A "good" random number generator (of uniform deviates) should posses several

qualities: serially uncorrelated sequences, long period, and uniformity. A serially

uncorrelated sequence means that any subsequence of the random numbers (particularly

k-tuples) should not be con'elated with any other subsequence. The period of a random

number generator is the number of deviates produced before the sequence (inevitably)

repeats. Ideally, the generator should not repeat at all. Practically, the repetition should

occur only after a very large number of deviates (at least larger than the number of

deviates required for the Monte Carlo process). Uniformity means that the uniform

deviates should be (understandably) uniform. This means that equal fractions of the

deviates should fall into equal sub-intervals. This presumes, of course, that the sample

size is large enough to count as a representative sample.

Many statistical tests have been developed to test for these properties. In general, all

of these tests take a sample of deviates and construct a particular statistic. Knowing the

theoretical distribution of the statistic, they compute the probability of exceeding that

particular value of the statistic. Very high (or low) probabilities are rare and suggest that

the sequence might not be random. Probabilities that are neither very high nor very low

support (but do not prove) the hypothesis that the sequence is random. Some simple tests

discussed by Knuth are: the equidistribution test, the serial test, the gap test, the poker

test, the coupon collector's test, the maximum-of-t test, and the serial correlation test.

[78]

To test the randomness of the "ranl" function, it was compared with two other

random number generators, the Perl built-in random number generator (named "rand")

and the Matlab built-in random number generator (also named "rand"). A script was

used to generate half a million (500,000) random numbers from each of the three random
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numbergeneratorsandtheresultswerewritten to a file. The randomdeviatesin this file

werethencomparedin thefollowing seventests.

5.5.1 Histo2ram Test

The simplest test to run is a visual test, rather than a statistical one. Simply plot a

histogram of the random sequences. This plot should show complete and uniform

coverage of the interval from 0 to 1.

Figure 6 shows a 100-bin histogram of the 500,000 random numbers generated with

the "ranl" function. Note that there is little variation in the number of cases in each bin.

This produces an extremely uniform (flat) distribution, which is a desired characteristic.

However, this distribution may be to___Qouniform to be considered random. Further testing

was required.

IOOC

0
0 O.i 0.2 03 0.4 0 f, 0.6 0.7 0 8 0 9 l

Figure 6: "Ranl" Histogram.

Figure 7 shows a 100-bin histogram of the 500,000 random numbers generated with

the Perl built-in "rand" function. Compare this plot with Figure 6. Note that there is

more variation in the number of cases in each bin. However, the overall uniformity is

good. Results for the Matlab "rand" function were similar.
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Figure 7: Perl "Rand" Histogram.

5.5.2 Repetition Test

The next test, the repetition test, is a quick and simple way to test for a short period -

simply search for matching numbers from within the sequence. Finding a matching

number, however, does not guarantee that the sequence repeats, but the converse is true.

Not finding a matching number does guarantee that the period is at least as long as the

sample.

No matches were found from either the "ranl" or the Matlab "rand" sequences (i.e.,

each number in these sequences was unique). The Perl "rand" function, however, was

found to repeat more than 15 times on average. This suggests that this function may have

a short period.

Further investigation showed that the reason for the repetition is that this random

number generator produces only 32,768 (2 =5) unique outputs. If a finer resolution than

2 _5were required, this random number generator would not be appropriate. However, the

sequence of these numbers did not repeat within the sample of 500,000. This was

determined by noting that the second number was never found to follow the first number

anywhere else in the sequence. This suggests that the Perl random number generator uses

probably a shuffling algorithm.
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5.5.3 2-D Scatter Plot Test

This test, the 2-D scatter plot, is designed to detect relationships between successive

random numbers (i.e., correlations in two dimensional space). The random sequences are

used to generate (x, y) pairs, which are plotted. Random number generators that fail this

test will show lattice-like patterns (LCGs are particularly bad at this test). These patterns

develop when the pairs fall into discrete planes.

Figure 8 shows a plot of adjacent pairs generated with the "ranl" function. This

scatter plot shows, as it should, a very uniform coverage of the area. More importantly,

there are no discernible patterns (or lattice networks), which would indicate a correlation

between adjacent numbers.

Figure 8: "Ranl" Scatter Plot.

Figure 9 shows a plot of random numbers generated with the Perl built-in "rand"

function. Compare this scatter plot with Figure 8. This plot also shows a very uniform

coverage of the area and no discernible patterns. Similar results were found for the

Matlab "rand" function.
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Figure 9: Perl "Rand" Scatter Plot.

All of the random number generators passed this test, indicating that no two

dimensional correlations exist. However, there is no guarantee that correlations do not

exist in higher dimensions. More complicated test (such as Knuth's spectral test [78]) are

needed to evaluate the higher dimensions.

5.5.4 Poker Test

The classic poker test (also known as the partition test) is a statistical test that uses

numbers from a random sequence to simulate five-card poker hands. The numbers of

specific hands produced (e.g., all different, one pair, two pair, three of a kind, full house,

four of a kind, and five of a kind) are compared to the card odds using a chi-square test.

[79]

The chi-square is a well known statistical test that applies to situations when

observations can fall into a finite number of categories, k. This test compares the actual

number of each discrete outcome with the theoretical expected number. To perform this

test, take a large number, n, of independent observations. Ifps is the probability that an

observation falls into category s, then nps is the expected number of observations for that
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category. Count the actual numberof observations,Ys, which actually do fall into

category s and form the statistic, V, in Equation 4.

, (r,-np,)2
,=l rip,

(4)

For large numbers of observations, the distribution of this statistic is approximately

chi-square with the number of degrees-of-freedom equal to one less than the number of

categories (k-I). Finally, determine the probability that a random number from a chi-

square distribution would be greater than V.

Knuth [78] suggests the following guidelines for interpreting the results. If V is less

than the 99-percentile value or greater than the l-percentile value, reject the sequence as

"not sufficiently random." If V lies between the 99- and 95-percentile or between the 5-

and 1-percentile values, the sequence is considered "suspect". If V lies between the 95-

and 90-percentile, or 10- and 5-percentile, the sequence is considered "almost suspect".

These guidelines may apply to any of the statistical tests.

For this research, we add a slight twist to the classic poker test. Instead of poker

hands, six-ball lottery picks were generated. The lottery game simulated was the seven-

state "big game" lottery. In this game, five numbered white balls are drawn from a pool

of 50. A sixth numbered ball, the "money ball", is drawn from a separate pool of 36

yellow balls. The probability of matching k of the five white balls, Pk, is given by

Equation 5. The variable q in Equation 5 accounts for whether or not the money ball is

also matched, where q=l if the money ball is matched and q=35 otherwise. The binomial

coefficients (also known as permutations), given by Equation 6, express the number of

ways k objects can be selected from n objects, without replacement.
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45/
1 money ball matches

_k)_5-kJ q__q_q= (5)

P'= /550 / 36 35 does not match

(4)

Table 5 lists all possible outcomes for the "big game" lottery along with published

odds of winning and prizes. The jackpot varies from drawing to drawing and is the

estimated annuitized earnings for a single winner (it was worth a particularly large $90

million on May 4, 2001). [83] These odds from Table 5 are used to determine the

expected values for the chi-square test. The "winning" numbers were arbitrarily taken

from the May 4, 2001, drawing. The white ball numbers were: 11, 24, 27, 35, and 47.

The "big money ball" was 22.

Table 5: The Big Game Lottery.

Match Odds Prize

0,1, or 2 White Balls 30:31 $0

0 White Balls & "The Big Money Ball" 1:62 $1

1 White Ball & "The Big Money Ball" 1:102 $2

2 White Balls & "The Big Money Ball" 1:538 $5
3 White Balls 1:220 $5

3 White Balls & "The Big Money Ball" 1:7705 $100
4 White Balls 1:9686 $150

4 White Balls & "The Big Money Ball" 1:339002 $5,000

5 White Balls 1:2179296 $150,000

5 White Balls & "The Big Money Ball" 1:76275360 Jackpot

Choosing lottery numbers over poker hands to simulate has a hidden advantage.

Because the results from the lottery drawings are published, a fourth set of (truly)

random numbers may be included for comparison with the other three random number

generators - actual winning numbers for 408 lottery drawings.

Because the V statistic is only approximately chi-square, Knuth [78] suggests

selecting n large enough that the expected values (np.0 for each outcome are larger than
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or equal to five. Therefore,the first 408 simulatedlottery tickets from eachrandom

numbergeneratorwerecomparedin achi-squarestatisticthatincludedonly thefirst three

outcomes. Even thoughthe expectedvaluefor matchingone white ball andthe money

ball isexactly4, it is included(violatingKnuth's thumb-rule).

The observedresultsandassociatedX2probabilitiesareshownin Table6. This table

showsresultsof simulatedlottery tickets comparedagainst the May 4, 2001 winning

numbers.Thefirst 408 ticketsarecomparedalongwith 408actuallotterydrawings.The

resultsfor the actuallottery drawingsdemonstratethat a truly randomprocesswill not

show a probability that is either too high or too low. Only the first three outcomes are

included in the chi-square statistic.

Table 6: Lottery Test (n=408).

Expected Peri Matlab

Match Value Lottery Ran I Rand Rand

0,1, or 2 White Balls 394.8 394 397 398 398

0 White Balls & "Big Money Bail" 6.6 6 3 7 4

1 White Ball & "Big Money Bail" 4.0 7 2 2 4

2 White Balls & "Big Money Ball" 0.8 0 2 0 0
3 White Balls 1.9 1 4 1 2

3 White Balls & "Big Money Bail" 0.1 0 0 0 0
4 White Balls 0.0 0 0 0 0

4 White Balls & "Big Money Ball" 0.0 0 0 0 0
5 White Balls 0.0 0 0 0 0

5W___ hite Balls & "Big Money_ Bali" 0.0 0 0 0 0

Z2 Statistic (V) 0 2.303 2.9601 1.052 1.0373

Probability, (p) 100% 31.62% 22.76% 59.10% 59.53%

A maximum of 83333 lottery tickets can be simulated with 500000 random numbers.

Again, because of Knuth's thumb-rule, only the first seven outcomes are compared (those

with expected values greater than 5). Only the three random number generators are

compared. The observed results and the associated X2 probabilities are shown in Table 7.

This table shows results of simulated lottery tickets for all 83333 simulations. Again,

these tickets are compared against the May 4, 2001 winning numbers. The first seven

outcomes are included in the chi-square statistic.

53



Table 7: Lottery Test (n=83333).

Expected Perl Matlab

Match Value Ran I Rand Rand

0,1, or 2 White Balls 80644.8 80624 80575 80583

0 White Balls & "The Big Money Ball" 1344.1 1365 1358 1364

1 White Ball & "The Big Money Ball" 817.0 774 823 844

2 White Balls & "The Big Money Ball" 154.9 161 156 158

3 White Balls 378.8 387 404 367

3 White Balls & "The Big Money Bali" 10.8 10 10 9
4 White Balls 8.6 11 7 7

4 White Balls & "The Big Money Ball" 0.2 1 0 0

5 White Balls 0.0 0 0 1

5 White Balls & "The Big Mone)__Bjall" 0.0 0 0 0

Z2 Statistic (I/) 0 3.741 2.2954 2.2682

Probability (p) 100% 71.17% 89.06% 89.35%

Following Knuth's guidelines, none of the results from either Table 6 or Table 7

would be classified as "suspect" or "almost suspect". However, the results in Table 7 for

the Perl and Matlab random number generators are very close to "almost suspect".

5.5.5 Frequency Test

The frequency test (also known as the equidistribution test) is another statistical test

based on the idea that a bad random number generator will not approximate the correct

cumulative distribution function sufficiently well. For uniform deviates, this means that

the sequence must indeed be uniformly distributed. Empirical distributions created with

each sequence of random numbers are compared to the theoretical distribution using a

Kolmogorov-Smirnov (K-S) test. [78]

Whereas the chi-square test, used in the poker test, is applicable only for discrete

outcomes, the Kolmogorov-Smirnov test applies to continuous random quantities, which

may assume infinitely many values. Given n independent observations [xl, x2.... , x,,]

taken from some continuous distribution function F(x), construct the empirical

distribution function, Fn(x). This distribution is constructed by counting the number of

observations that are less than x, and then dividing that number by the total number of
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observations.The statisticusedin this testis Kn, given by Equation 7, which measures

the maximum difference between the actual and theoretical distributions.

K. - r(x)l (7)

The distribution of the K-S statistic, Equation 8, is gives the probability that the value

of the statistic is less than some value, which is a function of the number of observations,

n. Unlike the chi-square statistic, Equation 8 is exact for all values of n.

K. n 0,_,_.,Ck)" (s)

Again, the binomial coefficients in this equation are given by Equation 6.

Unfortunately, Equation 8 is unwieldy to calculate for large values of n. Foaunately,

Knuth [78] explains that this distribution tends toward the approximation given by

Equation 9 when n becomes large. The subscript, oo, indicates an infinite (or at least very

large) sample size.

F (x) = 1 - e -2; ( 9 )

The K-S test was applied to the random sequences produced by each of the random

number generators. Since they are uniform deviates, the theoretical distribution, F(x), is

just F(x)=x. This test was applied first to subsets of the data (n=100000) and then to the

entire set (n=500000). Dividing the data into subsets like this can often indicate local

non-randomness in addition to global non-randomness. The results of this test are

presented in Table 8. The "ran 1" statistic (0.0721) indicates a nearly perfect match of the

theoretical cumulative distribution function.

Table 8: Kolmogorov-Smirnov Test.

Range
1:100000

100001:200000

200001:300000

300001:400000

400001:500000

1:500000

Ran I i Matlab Rand Perl Rand

Kj0oo0o p
0.2581 87.52%

0.3291 80.53%

0.3779 75.15%

0.2508 88.18%

0.2202 _ 90.76%

0.0721 !98.96%

glooooo

1.0689

1.2221

0.7729

0.8033

0.8340

! 0.8893

gloooooP
10.18% 1.2662

5.04% 1.0789

30.28% 0.5781

27.51% 0.8078

24.88% 1.4079

20.56% 1.0167

4.05%

9.75%

51.25%

27.12%

1.90%
Ii 12.65%
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The probability associated with "ranl" data (98.96%) is very high, which indicates

that the data matches the theoretical distribution extremely well. In-fact, the data may

match too well, since a statistic lower than 0.0721 is expected only about 1% of the time.

Using Knuth's guidelines, "ranl" would be classified as "suspect". However, only one

subset of this data, 400000-500000, would be classified as even "almost suspect".

Therefore, "ran 1" shows better local randomness than global randomness.

5.5.6 Serial Correlation Test

The serial correlation test is a very quick statistical test to perform. This test looks for

correlations between successive random numbers. The correlation coefficient, Equation

10, is calculated for the sequences U(l:n) and U(2:n,l), where U is the sequence of

random uniform deviates.

U,Ui÷ I +U_U l - _U,

C = ,=l ,=I ( I0 )

_Ui 2 - U_
1=1

Correlation coefficients, which appear frequently in statistics, range from -1 to +1. A

value of zero (or near zero) is desired since it indicates that the sequences are

uncorrelated. A value near one indicates that the sequences are linearly correlated.

Knuth [78] suggests that the serial correlation coefficient, C, should fall between the

values _:t.2o,, given by Equation 11 and Equation 12, 95% of the time.

-1

=(,-1)
(11)

(12)

The results for the serial correlation test are presented in Table 9. This table shows

satisfactory results from the serial correlation test. The expected range, given by
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Equation11andEquation12is from --0.00283to +0.00283. All of theresultsarewithin

thisrange.

Table 9: Serial Correlation Test.

Random Number Generator Correlation Coefficient

Ran 1 7.8581 e-04

Perl Rand 4.1554e-04

Matlab Rand 4.6485e-04

It is not surprising that all three random number generators passed this test. This is

because the 2-D scatter plot (6.5.3) already showed visually that there was no correlation.

The serial correlation test supports this result quantitatively.

5.5.7 Comparison of Optimized Results

The statistical tests attempted to assign probabilities to the hypothesis that the

sequences of random numbers produced by the three random number generators were

random. There are two obvious problems with this approach. First, it is already known

that the sequences are not random since they were generated by a computer following an

explicit function. Second, the results are subject to interpretation as to whether a given

probability (20% for example) is or is not sufficiently "random" for the proposed

application.

Knuth [78] writes that, "a truly random sequence will exhibit local nonrandomness;

local nonrandomness is necessary in some applications, but it is disastrous in others. We

are forced to conclude that no sequence of "random" numbers can be adequate for every

application." Press et al. [84] further explain that, "A pragmatic point of view, then, is

that randomness is in the eye of the beholder (or programmer), What is random enough

for one application may not be random enough for another."

By far, the best test of a random number generator is in the actual application that it

would be used. For this purpose, the MSP '01 optimization problem (described in

Chapter 10) was completed twice - first with the "ranl" random number generator and
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secondwith the Perl "rand" randomnumbergenerator. Table 10comparesoptimized

solutionsusingthe"ran1" andPerl"rand" randomnumbergenerators.

Table 10: Optimization Comparison, MSP '01.

Ran 1 Perl Rand Difference

xl 0.0479888 0.04720095 1.66%

x2 5.0000000 5.00001856 0.00%

x3 0.92537808 0.92664521 0.14%

x4 0.17286401 0.17297628 0.06%

x5 0.12213146 0.12235445 0.18%

x6 0.09108389 0.09118628 0.11%

x7 0.09995603 0.0996624 0.29%

xs 0.00248455 0.00248678 0.09%

x9 0.04247787 0.04266928 0.45%

xlo 0.04389342 0.04403462 0.32%

xll 0.01705527 0.01699975 0.33%

x12 0.0244741 0.02437944 0.39%

xl._ 15.5818713 15.55111435 0.20%

xl4 0.13331093 0.13171737 1.20%

x15 0.01124481 O.O1121914 0.23%

x16 0.00846536 0.00846064 0.06%

xt7 0.00825664 0.00827603 0.23%

xls 3216.05921 3212.452625 0.11%

x19 885.919342 885.9009899 0.00%

X2o 1916.18485 1921.492353 0.28%

x21 2.04263505 2.04517699 0.12%

X22 1.47950077 1.47889136 0.04%

x23 2.10088651 2.09903687 0.09%

x24 0.00041319 0.00041051 0.65%

x25 1.95192831 1.95191665 0.00%

x26 0.12015699 0.12023507 0.06%

x27 0.06969548 0.06995173 0.37%

The close agreement between these two results (less than 2% difference) indicates

that either random number generator is appropriate for use in this application. The

similar solutions also bolster confidence in the results. Note that some differences are

expected just due to the randomness of the Monte Carlo analysis.
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Basedon the results of these seven tests for randomness, we conclude that "ranl" is

sufficiently random. While some suspicion was introduced in the frequency test, the

results of the other tests support this conclusion. Particular notice is given to the

optimization results given in this section since they apply directly to this research.
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CHAPTER 6

LANDING FOOTPRINTS

Because an objective of this methodology is to control the size of a landing footprint,

it is necessary to first clearly state how to define the footprint. This last statement may at

first seem trivial, but consider that there are many ways to make such a definition. In

fact, the numbers of ways are limited only by the imagination of the designer. So which

way is best? As far as the methodology is concerned, any method is sufficient (so long as

the designer clearly states the definition). A clear statement is needed so that others may

reproduce and properly interpret the results. After all, the purpose of the footprint in the

optimization is only to provide one or more numbers that indicate the degree to which our

goals are met.

Physically, of course, the footprint is a boundary - drawn in the sand (so to speak).

The footprint is drawn such that a certain probability is associated with landing within the

boundary. This means that any proper (and complete) definition for a footprint must

contain two statements. The first statement must explain precisely how the boundary is

to be drawn. In order that others may reproduce the work, this statement must include the

precise method with which the boundary is determined from a set of data. The second

statement must provide the probability associated with the footprint. Strictly speaking,

only the method of drawing the boundary is required to employ an optimization scheme

(since this provides the number we seek). However, the statement of probability is

necessary for others to properly interpret the results. For example, a 3-km footprint with

a 1% probability is very different from a 3-km footprint with a 99% probability.

Often in the literature, only one statement or the other is made (e.g., an author may

refer to a "3-sigma" ellipse or a "99th-percentile '' ellipse). However, these practices are
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incomplete. If anellipse is 3-sigma,thenwhat is the probabilityof landingwithin the

ellipse? The answerdependson the shapeof the actualdistribution. If there is a 99%

probabilityof landingwithin theellipse,thenhow is theboundaryconstructed(or drawn)

from thedata?

In general,a footprint can takeon anyshape. The customaryshape,however,is an

ellipse. This researchtherefore,will only discussellipsesandtheir degenerateform, the

circle. Fivemethodsof drawingafootprint aredescribedalongwith their advantagesand

disadvantages.The first three produce circles. The final two produce ellipses.

6.1 3-Si2ma Radius

The first method of drawing a footprint is to create a circle with a 3-sigma radius. For

each simulation, record the latitude and longitude of the landing site and calculate the

straight-line distance (or range) to the target landing site. This range is called the miss-

distance. Next, the sample mean, It, and variance, t_2, of the miss-distance are

determined. Finally, a circle is constructed, which is centered on the target with a radius

equal to the It+3o miss-distance.

The sample mean and variance may be calculated in a running fashion, using

Equation 13 and Equation 14. This reduces storage requirements, since each xi need not

be stored. The sequence is initialized by setting cr_=0 and,ut=x;. The variance should be

updated first, since it depends on the previous mean.

cr/z =o__, (i-2) (/.t,_,-xi) a
(i-1) _ i

(13)

(i- 1) x,
/z i =/,t__ I + ( 14 )

i i

The 3-sigma method is the simplest and requires only a minimal amount of

calculation. Because only one parameter (radius) is used, only one constraint is needed in

the optimization. This simplifies the optimization and ensures the existence of a solution,

An additional advantage of this method is that it makes no assumption on the shape of the
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underlyingdistribution. This makesthe 3-sigmamethodapplicableto manysituations.

Thismethodwaschosenfor theproof-of-conceptproblem.

The primarydisadvantage of this method, however, is that the probability associated

with the footprint is unknown. The reason for this is that, while the definition of the

radius requires no assumption on the distribution of the miss-distance, the probability

depends heavily upon its shape. Additionally, since the shape of the distribution may

change as the uncertainties are reduced, the probability (even if it were known) would not

be consistent. Because of this, two footprints may not compare well. Even though they

were both 3-sigma, they might have different probabilities.

The lack of a theoretical probability seems disastrous, but it is not (as will be seen in

Section 7.6). The choice in the number of standard deviations (three) in the definition

was arbitrary, but not without some basis. It was chosen to be "far out on the tail" of the

distribution. If the distribution is normal, then _t+3a will include 99.87% of all cases.

Since the distribution is not normal, the probability will not be .9987, but it should be

fairly close (certainly greater than 50%, probably greater than 90%, and potentially

greater than 99%). For example, if the distribution is Rayleigh with scale parameter

equal to 1.2, then the la+3a probability is .9944.

Additionally, while the probability can not be predicted, it can be determined

empirically. After the radius is calculated, count the number of simulations that fall

within it and divide by the total number of cases. This simple procedure can be applied

to any of the methods as a check on the theoretical probabilities.

6.2 Raylei2h

The second method constructs a p-confidence circle by assuming that the miss-

distance follows a Rayleigh distribution, Equation 15. The probability of landing within

this circle is p (which is a user input). The Rayleigh distribution is a good choice because

it has the following special property: if X and Y are independent normal distributions

with zero means and equal variances, then Z=._ + yZ has a Rayleigh distribution. So
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the Rayleighdistribution is a naturalchoicefor rangecalculationswherethe underlying

distributionsarenormal.

t t 2
(15)

The single parameter, b, of the Rayleigh distribution is the scale parameter. The

cumulative distribution function (calf) of the Rayleigh is given by Equation 16. The

inverse of this function has the closed-form expression, Equation 17. Using Equation 17

then, it is a simple matter to determine the radius that gives a probability, p.

2]FRa,,eigh(t) = l-exp -

Fp._y,_igh(p) : b[- ln(l- p)_

(16)

(17)

The method of constructing the p-confidence circle is described as follows. For each

simulation, record the latitude and longitude of the landing site and calculate the miss-

distance. The sample mean and variance of the miss-distance are calculated in a running

fashion, using Equation 13 and Equation 14. The scale parameter, b, of the Rayleigh

distribution is found from the sample mean using Equation 18. This parameter could

equally be determined from Equation 19 and the sample variance. Finally, a circle is

constructed, which is centered on the target landing site, with radius R=F4(p) from

Equation 17.

_/Rayleigh "-- bx_- ( 18 )
2

O'Rayleig h ---_ b 2 (19)

The advantage of this method is the ease with which a footprint can be constructed to

any probability, p. Like the 3-sigma method, only one parameter (radius) is used; and

therefore, only one constraint is needed in the optimization.
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The primary limitation of this method stems directly from the fundamental

assumption that the miss-distance is Rayleigh distributed. This assumption presumes that

the down-range and cross-range distributions (from which the miss-distance is calculated)

are normal and have equal variances. It is the implied assumption of equal variances that

it the problem. The variances are only equal when the footprint is circular. Therefore,

this method is only appropriate for near circular footprints (i.e., ellipses with

eccentricities near zero).

6.3 Weibull

The third method, an extension of the Rayleigh method, constructs a p-confidence

circle by assuming that the miss-distance follows a Weibull distribution, Equation 20.

The probability of landing within this circle is p (which is a user input). This extension is

natural because the Weibull distribution is a generalization of the Rayleigh distribution.

In fact, the Rayleigh distribution is a special case of a Weibull distribution where the

shape parameter, k, is exactly two.

t'-_ V (t_']

fwo, o,,(t)=k.- -exPL-t7) ] <20)

The Weibull distribution is commonly used to describe failure time in reliability

studies, and the breaking strengths of materials in reliability and quality control tests.

Early references on the Weibull distribution include Fisher and Tippet [85] and Weibull

[86, 87]. The two parameters, b and k, of the Weibull distribution are the scale and shape

parameters, respectively.

The shape parameter makes the Weibull distribution extremely versatile. When k=l,

the Weibull takes the shape of the exponential distribution; when k=2, the Weibull takes

the shape of the Rayleigh distribution; and when k=3.25, the Weibuli closely

approximates a normal distribution. The cumulative distribution function (cdf) of the

Weibull is given by Equation 21. The inverse of this function has the closed-form

expression, Equation 22. Using Equation 22 then, it is a simple matter to determine the

radius that gives a probability, p. The mean and variance of the Weibull are given by
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Equation23andEquation24. The symbol, F, denotes the special math function, Gamma

(the continuous generalization of the factorial).

Fw_i_ . (t) = 1 - exp - t ( 21 )

Fw:,b.,,(p) = b[-In(l- p)]} ( 22 )

(23)

(24)

Unfortunately, there is no closed form solution for estimating the parameters of a

Weibull. Instead, simultaneous non-linear equations must be solved for the maximum

likelihood parameter estimates. Fortunately, one of these equations can be solved for b in

terms of k. [88] Substituting this expression, Equation 25, into the other equation results

in a single, more complicated, expression with k as the only unknown.

-I

b= -_ (25)

x;

This more complicated expression must be solved iteratively (typically using a

Newton-Raphson technique). The update for k is Equation 26, where g and g' are given

by Equation 27 and Equation 28. Once the shape parameter, k, has been found, it is

substituted back into Equation 25 to determine the scale parameter, b.

k, = k,_ I - g--; ( 26 )
g
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tl

. _x,k in(x,)
n /=1

g =-_+ _.ln(x,)-n . (27)
E#
i=l

, -n n " " 2x_ (28)
g = k 2 . 2 x in(x, , - x In(x,

An initial closed-form estimate for k is given by Law and Kelton [89] and Menon

[90]. Leemis [88] notes that this initial estimator, Equation 29, should be reasonably

close to the maximum likelihood estimator, k, and allows the algorithm to converge to the

desired accuracy in just a few iterations.

I

I Jt6 £[ln(x,)] 2 -l[Zln(x,) (29)
k° = (n-l_2 ,=, nL,=,

Finally, the designer may even check the fit of a Weibull distribution by plotting the

data on a Weibull plot. If the Weibull distribution is an appropriate model for the data,

then a plot of In(t) versus In[-In(l-F(t) )] should result in a straight line. [88]

The method of constructing the p-confidence circle is summarized as follows. For

each simulation, record the latitude and longitude of the landing site and calculate the

miss-distance. Then estimate the parameters b and k from the data using the procedure

described above. Finally, a circle is constructed, which is centered on the target landing

site, with radius R=FJ(p) from Equation 22.

Similar to the Rayleigh method, the primary advantage of this method is the ability to

construct a footprint to any probability, p. Like the previous two methods, only one

parameter (radius) is used; and therefore, only one constraint is needed in the

optimization. The extra shape parameter allows better fits in most cases than the

Rayleigh. An additional benefit of the Weibull method is the ability to assess the validity

of the assumption using a Weibull plot.
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The primary disadvantageof this methodis the iterativecalculationsinvolvedin the

parameterestimation. Thesecalculationsrequirenotabletime and effort and must be

performedafter all of the datahasbeenobtained. Also, while the Weibull distribution

avoidstherequirementof equalvariances,thedesignerstill musttakecareto ensurethat

theWeibull assumptionis acceptable.

6.4 3-Sigma Down-ran2e and Cross-range

The next method of drawing a footprint is the two parameter analogy to the 3-sigma

range. This method constructs an ellipse, which has a 3-sigma semi-major axis in the

down-range direction and a 3-sigma semi-minor axis in the cross-range direction. For

each simulation, we record the down-range and cross-range distances to the target

landing site with respect to the nominal azimuth angle. Next, determine the sample

means and variances of the ranges. Finally, construct an ellipse that is centered on the

mean landing site with a semi-major axis, a, equal to the 3a down-range and a semi-

minor axis, b, equal to the 3a cross-range. The sample mean and variance may be

calculated in a running fashion, using Equation 13 and Equation 14.

Like the 3-sigma range, this method is simple and requires only a minimal amount of

calculation. Because two parameters (a and b) are used, the designer is allowed more

control of the shape of the footprint. An additional advantage of this method is that it

makes no assumption on the shape of the underlying distribution. This makes the 3-

sigma down-range and cross-range method applicable to many situations. This method

was used during the experimentation process of the MSP '01 problem.

The primary disadvantage of this method is that the probability associated with the

footprint is unknown. The reason for this is that, while the definitions of a and b require

no assumptions on the distributions of the down-range and cross-range distances, the

probability depends heavily upon their shapes. Also, because the cross-range and down-

range distributions are two-sided, the ellipse is centered on the means. This has the

undesirable side-effect that the ellipse may not be centered on the target. Finally, while
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the extra parameterimprovescontrol over the shape of the ellipse, it complicates the

optimization procedure by adding an additional constraint.

6.5 Bivariate Normal

The final and most elegant method is the bivariate normal. In this method, we

construct a p-confidence ellipse by assuming that the down-range and cross-range values

follow a bivariate normal (BVN) distribution, Equation 30. The parameter, p, in this

equation is the correlation coefficient. The BVN distribution has the properties that the

conditional distribution of one variable, given the other, is normal and the contours are

ellipses. The probability of landing within the constructed ellipse is p (which is a user

input).

f(x,y) =
1

2n'trxtry _ exp ) "- ", ",

(30)

6.5.1 Constructing the Ellipse

Assuming for the moment that a BVN is constructed from two independent standard

normal distributions (X and Y), then the miss-distance, given by Equation 31, has a

Rayleigh distribution with scale parameter b=._. Using the procedure for the Rayleigh

method, a p-confidence circle could be constructed.

R=x[X 2 +y2 (31)

If a transformation existed between this space of standard normal distributions and a

space of non-standard and correlated normal distributions (defined by a covariance

matrix), then we could project the p-confidence circle into any given non-standard

normal space. The circle would take on the shape of an ellipse under the transformation,

which would be the desired p-confidence ellipse. Such a transformation does exist and it

is the Cholesky decomposition of the covariance matrix.

68



The proof of this, follows beginningwith thedesiredcovariancematrix, E, givenby

Equation32. The matrix shownis two dimensional,but theproof appliesgenerallyto k

dimensions. The function denoted by cov(x,y) is this covariance ofx and y and is defined

by Equation 33, where E(x) is the expectation (or mean) of x. Since the covariance

matrix is symmetric and positive definite, it has a Cholesky decomposition given by

Equation 34.

o'_ cov(x, y)]

cov(x, y) tr_ J ( 32 )

cov(x, y)= E(xy) - E(x)E(y)

X, = LL r

(33)

(34)

Next, take a k-dimensional space of independent standard normal distributions,

denoted Nk(0,I). Construct a k-vector of deviates from the k independent distributions,

W. Because W is Nk(0,I), the mean is E(W)=0 and the variance is Var(W)=E(WW'r)=I.

Finally, construct a new vector Z=LW by applying the transform, L (the Cholesky

decomposition of X), to W. Because a linear combination of normal distributions results

in a normal distribution, the vector Z is also normal. The mean of Z is E(Z) = E(LW).

Because the expectation is a linear operator, E(LW)=L(E(W)) = O. Similarly, the

variance is Var(Z) = Var(LW) = E(LWW'rL T) = L(E(WWT))L T = LL T = E. The vector Z

is then Nk(0,Y,). Therefore, Z belongs to a k-dimensional space of normal distributions

with the covariance matrix, _. This proves that L is the desired transformation.

Figure 10 shows a standard N2(0,I) bivariate normal space. Any vertical slice of this

function is a standard normal function, N(0,1). Any horizontal slice is a circle. The

distribution of the miss-distance (range to the origin) is a Rayleigh function with scale

parameter, b, equal to the square root of two. Figure 11 is an example of a general

N2(0,E) bivariate normal space. The data is correlated with a covariance matrix, X. Any

horizontal slice of this function is an ellipse.
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Figure 12 is a top view of Figure 10. This figure shows the circular contour lines,

which result from equal variances and uncorrelated bivariate normal data. Figure 13 is a

top view of Figure 11. This figure highlights the elliptical contour lines of the N2(0,Y_)

correlated bivariate normal. Note that the semi-major axis is rotated counter clockwise

approximately 20 degrees in this example.
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Theprocedureis asfollows. For eachsimulation,recordthedown-rangeandcross-

rangedistancesto thetargetwith respectto thenominalazimuth angle. Next, determine

the sample means and variances of the ranges. Then construct the transformation, L,

between the correlated down-range and cross-range data (assumed to be from a BVN

distribution) and a standard N2(0,I) space based on the covariance matrix of the data.

This covariance is determined from the variances and covariance of the down-range and

cross-range data. The covariance is calculated using Equation 33. The transform L is the

Cholesky decomposition of the covariance matrix (which is symmetric, positive definite).

Performing the decomposition results in Equation 35.

o'_ I 0
L= cov(x,y) 2 cov2(x,Y)

O'y 2
O*x a x

(35)

Since the range in standard normal space has a Rayleigh distribution, construct a

circle with a probability of p from the inverse of the Rayleigh cumulative distribution

function. This cdf for a scale parameter equal to the square root of two is shown in

Equation 36. This circle is mapped to an ellipse in real space by applying the transform,

L. Either Equation 37 or Equation 38 can be used for this purpose, where x and y are

coordinates in real space and x' and y' are coordinates in standard normal space. The

transformed circle (now an ellipse - centered on the mean down-range and cross-range

and potentially rotated by an angle theta) encloses (100p)% of all landings.

P£,',,,_o_d_) (P)= 4- 2In(1- p) ( 36 )

(37)

Ix yl=[x ' y'lLr+L/z, ¢t,] (38)

The dashed line in Figure 14 is an example of a 99.5% BVN footprint ellipse for 2000

simulations. This ellipse is approximately 3-by-2 km. Note that nine simulations lie

outside the BVN footprint (10 misses would be expected).
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Figure 14: Example BVN Footprint.

6.5.2 Measuring the Size of the Axes

Once the p-confidence ellipse has been constructed, the size of the semi-major axis, a,

and semi-minor axis, b, need to be determined. This determination is complicated by the

fact that, under the transformation, the ellipse may be rotated by an angle, 0. Fortunately

however, the semi-axes may be easily identified since they are the only vectors that retain

the property of orthogonality under the transform, L.

To find 0, Take the orthogonal vectors [rcos0 rsin0] and [-rsin0 rcos0] and apply the

transform L (or alternately post-multiply by LT, which is equivalent). Next, take the dot

product of the transformed vectors u and v, given by Equation 39 and Equation 40, and

set the result, Equation 41, to zero. Substituting the trigonometric identities, Equation 42

and Equation 43, Equation 41 is solved for the unknown angle, 0. The result is shown in

Equation 44.
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u=[rcosO rsin0l I-_1 _2] r

v  r ,oOrco 0( :

(39)

(4O)

(/'_2-g, + Z_2-/-_,)c°s0sin 0 + (Lll_2 + L21L2, Xc°s2 0- sin 2 0) =0 ( 41 )

/ J .

cosO sin 0 = --'sin(W) ( 42 )
2

cos z O- sin 0 = cos(20)

_ - 2(L_,_z + L2zL:, )

tan(Z0)- (/12: _ g, + _2 - L:2,)

(43)

(44)

The procedure for determining the size of the ellipse is as follows. Determine the

transform, L (Equation 35), using the procedure from the previous section. Solve for 0

using Equation 44. Equation 39 and Equation 40 then give the vectors for the semi-axes,

where r is the radius of the desired p-confidence Rayleigh circle (from Equation 36). The

size of the semi-major axis, a, is the norm of the larger vector, Equation 45. The size of

the semi-minor axis, b, is the norm of the smaller vector, Equation 46.

o=ma <lul:,lv:) (45)

b=min( lul2, vl2) (46)

6.5.3 Confidence Interval for the Axes

An added and very important benefit of the BVN assumption is that it also allows the

calculation of confidence intervals on the size of the ellipse axes. These confidence

intervals depend on the number of simulations and therefore answer the question, "how

many Monte Carlo simulations are necessary?" Of course, this answer will depend on

the confidence level and the allowable error.

Assuming the angle 0 is zero, the transformation, L, (given by Equation 35) reduces

to multiplying by the respective down-range or cross-range standard deviation. This is
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not a bad assumptionsincea well-chosenreferenceazimuthanglewill result in a zero

rotation angle. In this case,thesemi-majoraxis (of thep-confidence ellipse) is given by

Equation 47, where x is either the down-range or cross-range, such that ax > ay.

a = F_r,,,_h(4i)(p)O" _ ( 47 )

Because the inverse of the Rayleigh cdf is exact, the only error in determining the size

of the semi-major axis comes from the error in estimating the standard deviation. From

Equation 47, note that the confidence in the standard deviation (or variance) is projected

directly to the semi-major ellipse. Because the distributions are assumed normal, the

confidence interval on the variances may be calculated using well-known statistical

results.

Equation 48 shows the confidence interval for a sample variance, where A and B are

given by Equation 49 and Equation 50. [91] Here n is the number of simulations, s2 is the

sample variance, and a is tail-end probability (l-p). Applying Equation 47, the resulting

confidence interval on the semi-major axis is Equation 51, where t_ denotes the size of

the axis determined using the sample variance, s 2. Similar equations can be written for

the semi-minor ellipse. Note that the confidence interval on the semi-major axis is

independent of the probability, p, of the ellipse.

(!1 - 1)s _ < tr: ___(n - l)s 2 (48)
B A

A=F_I (2) (49)

B = F_ (1-_) ( 50 )
•'in -I

_<a< (51)

Values for the divisors A and B were determined for values of n ranging from 2000 to

10000 for the confidence levels 90%, 95%, and 99%. These values are shown in Table

11 and Table 12. Table 11 provides calculated values of the divisor, A, for various
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combinationsof confidencelevelandnumbersof simulations. A is defined by Equation

49.

Table 11: Divisor for Confidence Interval for 0 2 (A).

Confidence n=2000 n--4000 n=6000 n=8000 n=10000

90% 1896.1 3853.0 5820.0 7792.1 9767.5

95% 1877.0 3825.6 5786.2 7753.0 9723.7

99% 1839.9 3772.4 5720.6 7677.0 9638.5

Table 12 provides calculated values of the divisor, B, for various combinations of

confidence level and numbers of simulations. B is defined by Equation 50.

Table 12: Divisor for Confidence Interval for 02 (B).

Confidence n=2000 n=4000 n=6000 n=8000 n=10000

90% 2104.1 4147.2 6180.3 8208.2 10233

95% 2124.8 4176.2 6215.6 8248.8 10278

99% 2165.6 4233.1 6284.9 8328.6 10367

Table 13 shows the BVN footprint confidence interval for the ratio of actual over

calculated semi-major axis. Various combinations of confidence level and numbers of

simulations are shown. Note that this table is independent of the probability, p,

associated with the footprint. Note also that the error in the size of the ellipse is reduced

by either accepting a lower confidence or increasing the number of simulations.

Table 13: Confidence Interval Ratios for Ellipse Semi-axes.

Conf. n=2000 n=4000 n=6000 n=8000 n=10000

90% 0.975 - 1.027 0.982 - 1.019 0.985 - 1.015 0.987 - 1.013 0.989 - 1.012

95% 0.970 - 1.032 0.979 - 1.022 0.982 - 1.018 0.985 - 1.016 0.986 - 1.014

99% 0.961 - 1.042 0.972 - 1.030 0.977 - 1.024 0.980 - 1.021 0.982 - 1.019

Figure 15 is constructed from the data in Table 13. It shows the footprint error as a

function of number of simulations for four common confidence levels: 90%, 95%, 98%,

and 99%. This figure may be used a priori to determine the number of simulations

required to achieve acceptable errors with the prescribed confidence level.
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Figure 15: BVN Footprint Error vs. Number of Simulations.

6.5.4 Determinina the Empirical Probability

To determine the experimental probability of landing within an ellipse, the number of

cases landing outside the ellipse must be counted. A similar approach to the BVN

transform is used to easily count these cases. Equation 52 shows the transformation from

a unit circle to a general ellipse with semi-axes a and b rotated by angle 0. The inverse

transform Equation 53, therefore, transforms the general ellipse back to a unit circle.

Each down-range and cross-range pair may be transformed under Equation 53. Once

transformed, the distance is measured to the origin of the unit circle space. Any point

with a miss-distance greater than unity lies outside the ellipse. The number of cases

outside the ellipse are counted and divided by the number of simulations to produce the

probability.
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acosO
T=

-bsinO asinO 1bcosO

T-l= a

lsin0lc°s0Ja

(52)

(53)

This is a simple procedure to determine the empirical probability associated with any

general ellipse. The procedure is not restricted to BVN ellipses. It may be applied to any

ellipse determined by any procedure.

6.5.5 Summary

A footprint is constructed which assumes the landing data (down-range and cross-

range) can be represented by a bivariate normal distribution function, given by Equation

30. This footprint has an arbitrary probability, p (i.e., the confidence associated with the

ellipse is a user defined value). Typical values ofp are higher than 0.99 (0.995 was used

in this research). The procedure for creating, measuring, and determining the error of a

BVN footprint is summarized as follows:

1) Generate down-range and cross-range data based on target landing site and

nominal azimuth angle. Alternately, latitude and longitude may be used

directly. In this case, however, the size of the ellipse will be expressed in

degrees (which is not a very useful unit of measure for distance).

2) Calculate sample statistics (mean and variance) for down-range, cross-range,

and the product of down-range and cross-range. The mean of this product is

used in calculating the covariance between down-range and cross-range. The

covariance is given by Equation 33.

3) Form the transformation matrix, L, by the Cholesky decomposition of the

covariance matrix. The lower-triangular matrix L is a function of the sample

statistics, given by Equation 35.
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4)

5)

6)

7)

8)

Determine the footprint ellipse parameters. Find the rotation angle, 0, from the

transformation matrix using Equation 44. This angle is needed for measuring

the size of the semi-major axis, a, and the semi-minor axis, b. These parameters

are given by Equation 45 and Equation 46, where the vectors u and v are

defined in Equation 39 and Equation 40. The radius, r, in these equations is a

function of the desired probability, p. This radius is determined from the

inverse of the Rayleigh cumulative distribution function Equation 36.

Construct a p-confidence circle in standard bivariate normal space by generating

points along a circle of radius, r. This is the same radius determined in the

previous step. The number of points generated depends on the desired

resolution of the ellipse. Generally, 360 points are sufficient to produce a

smooth curve.

Transform the p-confidence circle points to the correlated bivariate normal

space. This transformation is accomplished through multiplication by the

transformation matrix, L, and then translating the means. Either Equation 37 or

Equation 70 is used, depending on whether the points were generated by

columns or rows.

Plot the footprint. The ellipse is superimposed over a scatter plot of the down-

range and cross-range pairs. This ellipse should encompass approximately

(100p)% of the simulations.

To measure the empirical probability, first translate the down-range cross-range

pairs by subtracting the mean down-range and cross-range. Then construct the

inverse transform matrix, T 1, from Equation 53. Using this transformation,

transform all of the translated down-range and cross-range pairs to a space

where the ellipse boundary becomes a unit circle. Measure the range from the

origin to each point. Any point with a range greater than unity lies outside the

ellipse.
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9) Check the error bounds on the ellipse by determining the confidence intervals

given by Equation 51. This interval depends on the number of simulations, n,

and the confidence interval divisors, A and B. The divisors can be calculated

from Equation 49 and Equation 50 for a given number of simulations and

desired tail-end probability, t_. Alternately, A and B can be taken from Table 11

and Table 12 for common values of n and u.

While this procedure seems complicated, it is easily implemented by following the

given equations. One advantage of this method is that the probability at every point on

the ellipse is constant (i.e., the ellipse is a horizontal slice of the distribution surface).

Practically, this means that a miss outside the ellipse in the down-range axis is no more

likely than one in the cross-range axis. Additionally, correlated data may be used without

difficulty and the confidence of the ellipse is easily specified. Finally, the assumed

distribution makes it possible to predict the error in the size of the ellipse to any desired

confidence. This allows the user to determine the number of simulations necessary.

The primary disadvantage of this method is the assumption of normally distributed

down-range and cross-range. However, this assumption is very good and the method has

been used very successfully. Additionally, It is important to remember that the

confidence interval is also dependent on this assumption. Therefore, the error estimates

are only as appropriate as the assumption of normality.

6.6 Comparisons

This section compares the different footprint methods on two sets of data; First, the

proof-of-concept baseline data and second, the proof-of-concept solution. The proof-of-

concept problem is described in Chapter 9. The desired confidence for all of the methods

is 99.5%. Of course, the 3-sigma method is not able to target a specific confidence level.

However, the combined +3a probability of two independent normal distributions is

.99742 (or 99.48%). Therefore, the 3-sigma circle is expected to have a similar

probability. For each of the methods (3-sigma, Rayleigh, Weibull, and BVN) a footprint
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ellipse was constructedand an empirical probability was determinedby counting the

simulationsthatlandedoutsidetheellipse.

Figure 16 is a histogramshowingthe Weibull approximationof miss-distancefrom

the proof-of-conceptbaselineMonte Carlo analysis. The super-imposedWeibull curve

fits very well with the data. This showsthe usefulnessthe very versatiledistribution

functionfor modelingrangedata.
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Figure 16: Weibull Approximation, Proof-of-Concept Baseline.

Figure 17 is a Weibull plot of the miss-distance data shown in Figure 16. A plot of

data from a Weibull distribution will fall in a straight line with a slope determined by the

shape factor and an intercept determined by the scale factor. This plot shows that a

Weibull distribution is a good approximation to this data.
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Figure 17: Weibull Plot, Proof-of-Concept Baseline.

Table 14 shows statistics ( mean, variance, and probability) calculated from the proof-

of-concept baseline Monte Carlo (prior to optimization). Compare these statistics with

those predicted by the best-fitting Rayleigh and Weibull functions. Note that the scale

parameter, b, for the Rayleigh distribution is calculated from the sample mean and

variance• Therefore, the mean is exact for the Rayleigh. Note also that the shape

parameter, k, equals two for the Rayleigh, by definition. The Rayleigh and Weibull

approximations were also used to predict the probability of the 3-sigma range. These

predictions are given by the parameter F(R3_) in Table 14.

Table 14: Statistics, Proof-of-Concept (Baseline).

Parameter Sample Rayleigh Weibull
mean 3.2394 3.2394 3.2361

variance 2.6449 2.8673 2.6596

F(R3o) 0.9950 0.9928 0.9949

b - 3.6553 3.6536

k - 2.0000 2.0831

Table 15 lists footprint sizes and probabilities for the proof-of-concept baseline

Monte Carlo (prior to optimization). Note that a=b=r (i.e., the semi-axes are equal) for

the methods that produce circular footprints. The data in this table is plotted in Figure 18.
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Table 15: Footprint, Proof-of-Concept (Baseline).

Parameter 3c Rayleigh Weibull BVN

a 8.1183 8.4137 8.1348 8.5835

b 8.1183 8.4137 8.1348 8.0644

eccentricity 0.0000 0.0000 0.0000 0.3425
Area 207.05 222.39 207.89 217.46

p-predicted 9 0.9950 0.9950 0.9950

p-sample 0.9950 0.9970 0.9950 0.9980

Figure 18 compares several of the different methods. Four methods (3-sigma radius,

Rayleigh, Weibull, and BVN) were used to generate footprints for the proof-of-concept

baseline. This figure shows excellent agreement between all four footprints.
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Figure 18: Footprint Comparisons, Proof-of-Concept Baseline.

Figure 19 is a histogram showing the Weibull approximation of miss-distance from

the solution to the proof-of-concept problem. Compare this plot with Figure 16. The

super-imposed Weibull curve again fits very well with the data. Note that most of the

miss-distances are now less than the target 3 km.
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Figure 19: Weibull Approximation, Proof-of-Concept Solution.

Figure 20 is a Weibull plot of the miss-distance data shown in Figure 19. This plot

shows that a Weibull distribution is a good approximation to this data.
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Figure 20: Weibull Plot, Proof-of-Concept Solution.
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Table 16 shows statistics from the proof-of-concept optimized solution and compares

these with the Rayleigh and Weibull assumptions. Compare this table with Table 14.

Table 16: Statistics, Proof-of-Concept (Solution).

Parameter Sample Rayleigh Weibull
mean 1.1296 1.1296 1.1299

variance 0.3682 0.3487 0.3674

F(R3a) 0.9944 0.9953 0.9940

b - 1.2747 1.2741

k - 2.0000 1.9431

Table 17 lists footprint sizes and probabilities for the proof-of-concept optimized

solution. To determine empirical probabilities more accurately, 5000 simulations were

performed (rather than the 1000 for the baseline). Compare this table with Table 15.

Table 17: Footprint, Proof-of-Concept (Solution).

Parameter 3t_ Rayleigh Weibull BVN

a 2.9500 2.9341 3.0053 3.3402

b 2.9500 2.9341 3.0053 2.5034

eccentricity 0.0000 0.0000 0.0000 0.6620
Area 27.34 27.05 28.37 26.27

p-predicted '_ 0.9950 0.9950 0.9950

p-sample 0.9944 0.9942 0.9946 0.9958

Figure 21 is a footprint ellipse for the solution to the proof-of-concept problem. The

footprint shown assumes a bivariate normal (BVN) distribution of latitude and longitude.

Also shown for reference is the 3-kin target radius. This plot shows that the footprint has

a non-zero eccentricity, but covers nearly the same area as the circle. This means that

while the two ellipses appear very different, they both contain approximately the same

percentage of landings.
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Figure 21: BVN Footprint, Proof-of-Concept Solution.

In summary, four of the methods were demonstrated on two sets of data. The first

data set was 1000 latitude-longitude pairs from the proof-of-concept baseline. The

second data set was 5000 latitude-longitude pairs from the proof-of-concept solution. All

four methods compared very well. The BVN method is recommended, however, because

of the ability to calculate a confidence interval.
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CHAPTER 7

TRAJECTORY SIMULATION

Chapter 3 described the current state-of-practice in Monte Carlo analyses and Chapter

6 discussed landing footprints. The purpose of these chapters was to provide a brief

background to Monte Carlo trajectory simulation and to examine how footprints are

constructed, respectively. This chapter explains the mechanics of how trajectory analyses

are performed and automated to perform a large number of Monte Carlo simulations.

Three computer codes are described: the Program to Optimize Simulated Trajectories

(POST), Monte Carlo POST (mcp), and a simple automation script (or "wrapper").

7.1 POST

The basic trajectory analysis module used in this research is POST [28]. Martin

Marietta (now Lockheed Martin) and the NASA Langley Research Center developed

POST in 1970 as a Space Shuttle trajectory optimization program. This code is

continually updated and has been widely used in industry to solve many ascent, entry,

and orbital transfer problems. POST is available in two versions, a 3-Degree of Freedom

(3-DOF) version that integrates the translational equations of motion, and a 6-DOF

version that simultaneously integrates the translational and rotational equations of

motion. The numerical integration within the atmosphere is typically performed using a

fourth order Runge-Kutta method, though other options are available. The 3-DOF

version of POST is used exclusively in this research. The smaller time-step requirement

of the 6-DOF simulation requires significantly more computer time, making 3-DOF a

better candidate for optimization.
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To run POST, an input deck is first created that specifies the vehicle and central

attracting body characteristics as well as a sequence of events (or phases) that will occur

along the vehicle's flight path. Aerodynamic and atmospheric properties are typically

supplied by interpolating external tables. Guidance algorithms may be supplied by the

user, compiled, and linked with the source code.

There were no such specialized modules used in the proof-of-concept. However, a

specialized POST executable was used in the Mars Surveyor Program (MSP) 2001

example. This executable included custom routines for the aerodynamics, gravity model,

atmospheric properties, and guidance. These models are discussed in Chapter 10.

In the POST input deck, the user also defines independent variables (design

variables), dependent variables (constraints), and an objective function for numerical

optimization. Numerical optimization is typically used when designing the nominal

trajectory to find the independent variables that result in the lowest propellant

requirements subject to any mission constraints. Two numerical optimizers are available,

a projected gradient optimizer and a Non-linear Programming SOLver (NPSOL). For the

proof-of-concept problem, the nominal trajectory was optimized using NPSOL to

determine the controls necessary to ensure a soft touchdown. When simulating off-

nominal trajectories, POST is run in a non-optimizing mode by specifying a maximum

number of iterations equal to negative one (maxitr = -1).

POST generates several output files that provide the user with information concerning

the vehicle's trajectory and optimization process. One of these output files, 'profilb', is a

binary listing of user specified vehicle and flight path characteristics at a user specified

frequency (typically every second). For example, this output file may be used to extract

conditions at the time of landing such as geodetic latitude and longitude.

7.2 Monte Carlo POST

Figure 22 sketches the general Monte Carlo trajectory analysis and defines some of

the terms used. Mavris and Bandte [55] explain that, "A Monte Carlo Simulation is

effectively a random number generator that selects values for each random variable with
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a frequencyproportional to the shapeof the correspondingprobability distribution."

Uncertainty dispersions are generatedfrom random deviates of the appropriate

distribution. The rangeof thesedispersionsis definedby the extrema(minimum and

maximum). A contingency(or off-nominal)trajectoryis simulateddeterministicallywith

theserandomdispersionsand the valuesof forecastvariablesare recorded. This is

repeatedmanytimes(typically 1000to 10000times). Eachsuchsimulationrequiresthe

generationof a POSTinput deck, the integrationof theequationof motions(by running

POST),and thecollectionof all theforecastresults. The resultsaregenerallypresented

graphicallyashistogramsof the forecastvariables. Another common representation of

the results is a scatter plot of longitude and latitude, which is used to define the landing

footprint.
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Figure 22: Monte Carlo Process.

Because POST is deterministic, a "wrapper" is needed to evaluate the effects of

uncertainty on the nominal trajectory. The wrapper interfaces with POST many times for

the purpose of collecting statistics on forecast variables. A Monte Carlo wrapper was

written for this research in the Practical Extraction and Reporting Language (Perl) [92].

Perl was chosen because the computer language's powerful regular expressions make it

particularly suited for parsing and modifying text files (a handy trait for a wrapper). Perl

is an interpreted language and therefore, does not require compilation.
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Called"Monte CarloPOST"(or just "mcp") the wrapperautomatestheMonteCarlo

processby performinga varietyof specific tasks. Figure 23 illustratesthe automated

tasks performed by the mcp program. In this figure, "sim" is a wildcard for the

simulationname.Thecompletesourcecodefor mcpis includedin AppendixB.
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Figure 23: Information Flow, "mcp" Program.

Mcp is a general program that applies to any Monte Carlo problem (i.e., no problem-

specific information is contained within the mcp program). All of the problem-specific

information is defined in two files: a template POST deck (sim.tpl) and a Monte Carlo

input file (sim.mci). This characteristic of the code is important because it allows for the

automation of the Monte Carlo process. Altering an input deck is a simple matter

compared to altering the code each time.

First, mcp parses uncertainty and forecast variable definitions from the Monte Carlo

input file. The "sim.mci" input file contains all of the unique information needed to

completely define the Monte Carlo analysis - aside from the nominal trajectory, which is

contained within "sim.tpl". Also defined within this input file are any calculated

variables (input or output variables that are calculated from other variables) and any
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specialinstructions(e.g.,specialMatlabinstructionsthattheuserdesiresto includein the

automaticMatlabfile).

The uncertaintiesare defined by name, shape(distribution), nominal value, and

extrema(minimumandmaximum). Fourdistributionsarepossible: uniform,normal(or

Gaussian),triangular, and discrete. In the caseof a normal distribution, the nominal

value is the meanandtheextremaarethe3-sigmavalues(la_-3o)by convention.This is

done becausethe normal distribution hasno finite minimum or maximum. For the

triangulardistribution, thenominalvalueis themode(mostlikely value)andtheextrema

are the actualminimum and maximumvalues,which neednot besymmetricaboutthe

mode. For the uniform and discretedistributions,the nominal valuecan be anywhere

within theinterval formedby theextrema.

Forecastvariablesaredefinedby name,POSToutput variablename,and the event

(or phase)numberat which it is desired. The valuefor the forecastvariableis takenat

thebeginningof thespecifiedevent. Anynumberof forecastvariablesmaybedefined.

Next, mcp generatesrandomnumbers(dispersions)for eachof theuncertainties.All

of the randomnumbersneededfor theMonteCarloprocessareactuallygeneratedbefore

anytrajectoriesaresimulatedandstoredin afile. In this way,this file canbere-usedin a

subsequentanalysisto compareor validateresultsin a repeatablemanner. If anexisting

file is specified,mcp will usetherandomnumbersin that file ratherthancreatinga new

one.

Figure24showsa histogramof a uniform deviate. Only a randomnumbergenerator

for auniform deviateis needed.All otherdeviatesaregeneratedasa function of oneor

moreuniform deviates.

Figure25showsa histogramof a normal(orGaussian)deviate. Thesenumberswere

generatedusingthe"K-R" routine. The interval0 to 1containsthemeanplusandminus

3 times the standarddeviation. Of course,0.26% of the random numbersgenerated

shouldbeoutsideof this interval.
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The basis for generating deviates of different distributions can be done very simply if

the inverse of the cumulative distribution function is known. In the case of the normal

distribution, the inverse of the cdf is not known analytically. Therefore, normal random

numbers are generated using the "K-R" [93] routine, which is based on probability

mixing. [94, 95, 96] The Kinderman-Ramage (K-R) algorithm mixes a triangular

distribution (from the sum of two uniform distributions) with the appropriate distribution

needed to make the resulting mixture standard normal. The triangle acceptance-rejection

technique as described by Marsaglia [97, 98] is used for this purpose. The tail algorithm

of Marsaglia [99] as modified by Ahrens and Dieter [94] is used to generate the tails of

the distribution (values greater than _+2.21603a). [93]
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Figure 24: Uniform Deviate.
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Figure 25: Normal (Gaussian) Deviate.

Figure 26 shows a histogram of a triangular deviate. The interval is from 0 to 1 and

the mode can be specified anywhere within the range. Unlike the normal distribution, no

numbers are generated outside the interval. Triangular distributions are simulated by

inverse transformation. This method first generates a random number from a uniform

distribution and then uses the inverse transformation of the cumulative distribution

function to arrive at the desired random number.
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Figure 26: Triangular Deviate.
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Figure27 showsahistogramof adiscretedeviate. This deviatedivides theuniform

deviate into an equalnumberof sub-intervals(which can be specified). A function

discretizesa uniform deviate such that any number falling within a sub-intervalis

returnedastheupperboundof thatsub-interval.
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Figure 27: Discrete Uniform Deviate.

Either of two random number generators may be used. For the proof-of-concept

problem, the Perl built-in "rand" number generator was used. For the MSP '01 example,

the function "ranl" was used. Both functions are initialized by a seed value, which is

taken from the system clock each time the code executes. These random number

generators are tested and compared in Chapter 5.

After the random dispersions are generated, unique POST input decks (t0.inp and

tl.inp) are created from a template ("sim.tpr'). Placeholders (or markers) - such as

***name*** - are placed in the template to indicate where each of the uncertainties is to

be inserted. This template is easily created from the input deck used to design the

nominal trajectory. As a check, a nominal trajectory is constructed from the template

using the nominal uncertainty values. Run at the beginning of each Monte Carlo process,

this trajectory can be compared to the actual nominal to ensure that all markers are being

replaced properly.

94



The next step is to run the trajectorysimulations. In orderto speedup the process,

the Perl "fork" commandis used. This commandallows the parent mcp processto

launcha child process. By doing this, mcp is ableto replicateitself (a userspecified

numberof times), creatingandrunningmultiple POSTdeckssimultaneously.As each

child processfinishes,a newoneis launchedin its place. This strategytakesmaximum

advantageof multiprocessorparallelmachinesto significantlyreducethetime requiredto

completethenecessaryruns. Eachprocessorcanbeexecutinga simulationindependent

of theotherprocessors.

Next, mcp extractsthe forecastvariablesfrom the POSTbinaryprofilb files (t0.pro

and tl.pro) and records them in a binary data file (sim.dat). Binary files are used so that

information can be transferred without loss of precision. As each value is extracted from

the ".pro" files, its influence is added to a running calculation of the sample statistics

(minimum, maximum, mean, and variance). These statistics are recorded in a text output

file ("sim.out").

When all of the Monte Carlo processes are complete, the results stored in "sim.dat"

are written to another binary file in Matlab ".mat" format, which is used to save and

retrieve Matlab workspaces. This ".mat" file allows the forecast data to be imported

directly into Matlab without any loss of precision.

Finally, a Matlab "m-file" ("sim.m") is automatically generated that loads the

"sim.mat" file and displays the results of each forecast variable in a frequency histogram.

The latitude and longitude of the touchdown point from each simulated trajectory may

also be displayed in a scatter plot, creating a visualization of the landing footprint.

7.3 Automation

Because many experiments must be performed (where each experiment is a complete

Monte Carlo analyses), an additional wrapper is needed. This wrapper is a very simple

Perl script that automates the process of generating mcp input files, running the Monte

Carlo simulations, and creating footprints.
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In the samefashionthat mcpcreatesa POSTdeck from a template("sim.tpr'); the

new wrapper searches for and replaces markers - such as ***XI*** - in a template mcp

input file ("sim.gst"). Where mcp replaced uncertainty values with random dispersions,

this wrapper replaces the defined uncertainty extrema with desired values. Forecast

variable statistics from each Monte Carlo are extracted from the mcp output file

("sim.out") and used to calculate the size of the footprint. The calculated size of the

footprint is written to yet another text output file ("gs.out").

This wrapper, originally written for one purpose, was modified to perform two other

tasks. The original purpose was to automatically conduct the gridsearch for the proof-of-

concept. The other two tasks were to conduct Design of Experiments (DOE) runs

specified in an input file and to automatically perform the experiments needed for

determining the ellipse surface coefficients.

Because it could take days to compete all the required cases, the wrapper is executed

from the Unix prompt using the "nohup" command. This command allows the user to

logout without terminating the process. When all the Monte Carlo processes are

complete, the script sends an email to inform the user. This emaii not only informs the

user that the data is available in the output file, it also includes the start and stop times of

the process.
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CHAFFER 8

MATHEMATICAL PROBLEM FORMULATION

The largest possible uncertainty extrema are sought that would produce a landing

footprint of a given size - while minimizing the cost. The mathematical formulation of

this problem begins by expressing the optimization in standard form:

Given a set of Monte Carlo mission uncertainties (specified by mean or

mode, maximum, minimum, and distribution type), find the extrema

( __3tr limits) that minimize the cost (that is the cost to the program

associated with reducing the uncertainties), subject to the two

constraints: (1) that the length of the semi-major axis of the footprint

ellipse is equal to a specified value; and (2) that the length of the semi-

minor axis of the footprint ellipse is equal to a specified value.

The problem in this form is a constrained optimization. In this case, the optimization

is a minimization and there are two equality constraints. Note that the design variables

are the uncertainty extrema (+3a limits); the objective function is cost; and the

constraints have to do with the size of the landing ellipse (footprint).

Constrained optimization problems are difficult to solve directly, so a series of

mathematical steps is used to reduce the problem to one that can be solved easily. In

each step, the problem is made easier, but also more complicated in some way. Figure 28

outlines the steps taken in solving the constrained optimization.
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Figure 28: Optimization Methodology

First, the method of Lagrange multipliers is used to convert the constrained

optimization problem to an unconstrained optimization. The penalty for this

simplification is the addition of more unknown variables (the Lagrange multipliers).

Next, calculus is used to find the optimum solution to the unconstrained problem. For

this step, the method of Lagrange is solved with substitution by setting the partial

derivative of the objective function equal to a linear combination of the partial derivatives

of the constraint functions. This step converts the unconstrained optimization problem

into a system of non-linear equations. The complication being that now there is a system

of equations instead of just one.

Next, Newton's method (also referred to as a Newton-Raphson iteration) is used to

approximate the non-linear system of equations with a system of linear equations.

Because this is only an approximation, we are required to repeat this step iteratively until

the solution is found. Additionally, initial guesses are required to jump-start the

sequence.
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Finally, the systemof linear equations,is solved using LU decomposition. The

solution of the linear algebraproblem is usedto updatethe guessfrom the previous

iteration of Newton'smethod. Newton'smethodis repeatedwith the new guessuntil a

stoppingacriterion is reached.Whenthis iterationconverges,thedesiredsolutionto the

original constrainedoptimizationproblemhasbeenfound.

8.1 Constraints

8.1.1 Constraint Function

Because the bulk of the effort is invested in determining the value of the constraint,

rather than the objective function, the constraint is central to the problem. In general, the

constraints could be any mission requirements that may be deduced from forecast

distributions of the Monte Carlo process. However, this research will focus on a very

common mission requirement - the size of the landing footprint.

The greatest difficulty with the constraints is that they involve the size of the

footprint, which can only be found by running a Monte Carlo analysis. These Monte

Carlo analyses require hours of computer time and are, therefore, too expensive to run

within a numerical optimization method (particularly one that uses gradients). As a

result, a metamodel is created by running a set of experiments and fitting the results to a

polynomial model. Two metamodei approaches are described, the response surface and

the ellipse surface (so named because its contour lines are elliptical).

8.1.2 Determining Range

A very common constraint in entry trajectories is one on the size of the semi-axes

(downrange and cross-range) of the footprint. Depending on the problem, either two axes

(ellipse) or one axis (circle) may be used to construct the footprint. When only one axis

is used, the miss-distance is calculated from each simulated landing site to the target.

When two axes are used, this range must be further broken-down into down-range and

cross-range components by taking the dot product with a unit vector in the direction of

the nominal azimuth angle.
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To determinethe miss-distance,the geodeticlatitude (L) and longitude(0) of the

touchdownpoint arecomparedwith the nominallandingpoint and a rangebetweenthe

two is calculated. Equation54 shows the calculations involved. The latitude and

longitudeof the landingpoint arefirst convertedto x, y, z coordinates in the Geocentric

Equatorial (GCE) reference frame assuming an oblate ellipsoid with a polar radius of rp

and an equatorial radius of re. [100] The Euclidean (straight-line) distance, R, is then

calculated to the nominal landing point.

r, cos(L)cos(O)
e_sin2(L)

r, cos(L)sin(O)
_l-e2 sin2(L)

r'(l-e2) sin(L)

41-¢ 2sin 2(L)

R 2 2 2

(54)

Because the range calculation involves taking the square root, this choice of metric

causes some difficulty in fitting a response surface, as will be shown later. Because the

range is also non-negative (_>0), forecast distributions of range are single sided and non-

symmetrical, as shown in Figure 29. This means that a normal distribution (which is two

sided and symmetrical) may not be a good approximation.

Figure 29 shows a histogram plot of miss-distance from the nominal proof-of-concept

Monte Carlo analysis (i.e., the analysis performed using the initial guesses for the

uncertainty extrema). The superimposed line is a Rayleigh distribution with the same

mean as the sample data. This plot shows a significant number of landings outside the 3-

km target. This serves as the baseline for the proof-of-concept.
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Figure 29: Miss-distance, Proof-of-Concept Baseline.

8.1.3 Response Surface

The most common metamodeling approach in aerospace applications is Response

Surface Methodology (RSM) [55, 59, 60, 62, 64, 65]. Simpson et al. [59] suggest that

optimization is the principle driver for this, noting that aerospace design applications

typically involve computationally intensive analysis and optimization routines.

RSM is based on a statistical approach to rapidly construct empirical metamodels that

allow the modeling of a complex system with a simplified equation. [62, 66, 67] RSM

typically employs CCD designs from the experimental design literature. [67] These

designs efficiently sample the design space. The specific DOE chosen will dictate the

number of simulation runs required. The number of runs depends on the number of

design variables, the number of levels considered, and the number of interactions

modeled. Experiments are then performed at each of the sample points specified in the

DOE matrix. The resulting system response data is used to construct a polynomial

approximation of the analysis code through a least-squares regression of the data. [65]

The CCD is a five-level fractional factorial design that combines a two-level full

factorial with a "star" pattern. [67, 101] Fractional factorial designs reduce the required

number of cases by neglecting higher order effects (typically third order or higher). [62]
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The star pattern is comprised of center points and axial points. For center points, all the

factors are at the midrange value. For axial points, one factor is set at its outer value (+a)

while all other values are set at their midrange. A face-centered design evaluates each

variable at only three levels by setting alpha equal to exactly one. Figure 30 is a three-

dimensional representation of the sample points from a face-centered central composite

design. We see that no fewer than 15 samples must be taken even when the

dimensionality of the problem is limited to only three design variables. In general, the

CCD requires a minimum of 2"+2n+1 experiments. As the number of design variables

increases, the required number of sample points very quickly increases beyond

reasonable limits. Multiple center points are necessary to measure random error in the

Monte Carlo process. The use of a random number generator in the analysis leads to

non-repeatable results for simulations using the same design variable settings.

1 ¸" //

Figure 30: Central Composite Design of Experiments

After running the prescribed cases and collecting the response data, a multivariate

regression is performed to estimate the coefficients in the RSE. Generally, the exact

relationships between the design variables and the observed responses are either too

complex or unknown. [62] Therefore, a simplified empirical model is used to

approximate these relationships. Equation 2 shows the empirical model widely used in

RSM.

This equation is second order with respect to the design variables (quadratic) and

includes two variable interactions. For the two-variable case, six coefficients are

determined. In general, l/2(n2-n)+2n+l coefficients are needed. For example, a problem

with 27 design variables would require 406 coefficients. If a CCD design of experiments

is used to determine these coefficients, 134217783 experiments (Monte Carlo analyses)
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wouldbe required. At 2000simulatedtrajectoriesperexperiment,thatwould amountto

over2.68x10I1simulations(POSTruns). Evenatfour secondspersimulation,that would

takeover34,000years!

8.1.4 Ellipse Surface

Because response surface metamodeling is not feasible for large design problems, a

different approach is needed. The new approach, referred to as an "ellipse surface", is a

simplification of the more general response surface. This approach is specific to the

problem proposed in this research. In this problem, the contour lines of the miss-distance

are expected to be elliptical. If we assume that the contour lines ar___gelliptical then we

need only determine the relationship between the semi-major axes and the constant value

of the response along the contour line (range). The derivation of this relationship reveals

much about the general problem and so it is included here.

Figure 31 provides a visual representation of the metamodel surface for a two-

dimensional problem. Similar surfaces in higher dimensions are not able to represented

graphically. For this reason, the proof-of-concept problem was restricted to two

dimensions.

R

X2

XI

Figure 31: Metamodei Surface Plot.

To determine the relationship between the miss-distance (range) and the size of the

elliptical contour lines, results from the best response surface fit of the gridsearch were

used. Points from several contour lines were fit with the equation of the ellipse. From
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this equation,the semi-majoraxes(a andb) were determined. These values were then

plotted against the range. The plot showed a nearly linear trend.

Assuming that the semi-major axes are linear with the range, a particular polynomial

form is derived. Beginning with the equation for an ellipse, Equation 55, substitute linear

expressions for the semi-major axes to arrive at Equation 56. The linear assumptions are

a = ciR and b = c2R.

X 2 X 2
_1 -t- 2 _
a2 _--1 (55)

2
X? X 2

+ -I (56)
(c,R)

Multiplying both sides by the square of the range (R), results in Equation 57.

X 2
x___:+ _: = R:

2
C? C 2

(57)

Finally, generalize for n-variables and add a constant term to account for uncertainty

sources not included in the model. This produces Equation 58. The standard RSE,

Equation 2, is repeated below for convenience.

y2 =bo +'_ x: (58)
/---_C2
i=l i

n n n-I n

=bo+gb:, +gb,,x,=+Z gb,:,x, (2)
i=1 i=1 i=1 j=i+l

Comparing these two equations, note that they are identical in form if the linear terms

(bi) and the two-variable interaction terms (bij) are neglected from the response surface.

Note also that the square of the range appears as the response instead of the range itself.

We postulate that the square of the range is a more natural response.

Because Equation 58 includes no two-variable interactions, each coefficient may be

determined uniquely by setting all other design variables to zero. Therefore, a

"minimum-point" design of experiments may be constructed by evaluating the design
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spaceat the origin and eachpoint whereall designvariablesareset to zero with the

exceptionof one, which is set at its baselinevalue. The metamodelcoefficientsare

determinedbyEquation59andEquation60.

bo = R 2, x_=0, i = l...n (59)

(xO) , x,=o,j=l...,,  6o)

A minimum-point design is one in which the number of design points is exactly equal

to the number of coefficients to be fit in the model. [102, 103, 104] These designs

require the absolute minimum number of experiments to estimate the model coefficients.

[64] This property makes the ellipse surface suitable for large problems (40-50 design

variables) since only n+l Monte Carlo analyses must be performed.

Therefore, the ellipse surface is chosen for the metamodel. The equality constraint,

hk, is written as Equation 61, where Rk may be the target size of either the radius (for a

circular footprint) or one of the semi-axes (for an elliptical footprint).

r/

h, =bo.,+Ee,.,x =0 (61)
i=1

8.2 Objective

8.2.1 Objective function

The objective function in this analysis is in many respects arbitrary. This is because

its purpose is only to determine the "best" set of design variables from those that are

feasible (since many combinations could meet the footprint requirement). The only

requirement for this function is that it must somehow measure the "size" or "cost" of

changing an uncertainty from its initial value. From the point of view of a decision

maker, the "best" alternative (among feasible candidates) is typically the lowest cost.

Therefore, a "cost-tolerance" function is proposed. Three models are discussed: the

reciprocal model, the minimum-distance model, and the cost-plus-quadratic model.
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8.2.2 Reciprocal Model

Discussing the use of quantitative manufacturing knowledge in design and the

abstraction of empirical data, Dong [105] states that, "one important abstraction is the

relation between design accuracy and production cost." The cost-tolerance models,

shown in Table 18, are examples of such relations that have been used by Dong and

others in the design and automated manufacturing of mechanical parts. These relations

express the production cost, c, as a function of the tolerance, 8, and are based on

empirical data from common production processes such as drilling, milling, grinding, and

casting. Any of these models may be used as the objective function in the optimization

process.

Table 18: Cost Tolerance Models. [105]

Model Reference FolTfl

Exponential

Reciprocal squared

Reciprocal powers (RP)

RP and exponential hybrid

Reciprocal model

Modified exponential
Discrete

Combined RP and exponential

Linear and exponential

Cubic polynomial

4 th order polynomial

5 tn order polynomial

Speckhart [106] c(_)=

Spotts [ 107] c(8)=

Sutherland and Roth [ 108] c(8)=

Michael and Siddall [109] c(8)=

Chase and Greenwood [ 110] c(_)=

Dong and Soom [ 111 ]

Lee and Woo [112]

Dong and Hu [113]

Dong and Hu [113] c(8)=

Dong and Hu [113] c(8)=

Dong and Hu [113] c(8)=

Dong and Hu [113] c(8)=

ao e-al8

ao82

ao_ -ale -a28

ao_51

c(6)= aoe'al(&a2)+a3

C(6k)= _, (k=l,2 ..... n)

c(8)= ao+alSa2+a3e "a46

a0+a 18-+-a2ea38

_ai8 i (i=1,2,3)

Eai6 i (i=1,2 ..... 4)

Eai8 i (i= 1,2 ..... 5)

When a more detailed definition exists in the later stages of design, actual cost-

tolerance data may exist. When less is known in the earlier stages of design, a simple

expression is needed. Any of the models in Table 18 may be used - with the exception of

the discrete model, which is not differentiable. A summation of reciprocals is proposed,

Equation 62.
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n xO

f =_w, -_ (61)
i=l Xi

Figure 32 shows contour lines of the reciprocal cost-tolerance model for a two

dimensional problem with equally weighted design variables. This model was used as

the objective function in the proof-of-concept problem. As either of the uncertainties is

reduced to zero, the cost increases quickly to infinity. The cost is also scaled so that it

has a value of unity at the initial guesses (when x i = x°).

,m9-10

D8-9

**7-8
116-7

115-6

04-5
03-4

112-3

111-2

0.225 0.175 0.125 0.075

Burn Time Accuracy (s)

Pointing

Accuracy
(deg)

Figure 32: Reciprocal Model Contours.

Advantages of this function include both its simplicity and the stern penalty it levies

to reducing any uncertainty to exactly zero. As is the case in nature, the cost goes to

infinity as the uncertainty is reduced to zero. Likewise, if all tolerances are allowed to go

to infinity, the cost approaches zero. Mathematically, these characteristics prevent non-

physical solutions outside the design space (e.g., negative variances). Each term in the

summation is weighted and normalized by its initial value. These weights allow the

favoring of an inexpensive tolerance over an expensive one and need not necessarily sum

to unity.

The primary disadvantage of the reciprocal model is that the minimum of the function

(unconstrained) is infinity. Therefore, if some of the uncertainties have a negligible

influence on the constraints (i.e., they have small metamodel coefficients - b values),
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thenthe optimizerwill drive their valuesto infinity. This is becausethe costfunctionis

essentiallyunconstrainedwith respectto thoseuncertainties. The result is that these

uncertaintiescanbesetunreasonablyhigh (to thepoint that thetrajectoryis significantly

differentfrom thenominalandcrashes).

Figure 33 showsthe reciprocalcost-tolerancefunction. Note that the function has

beenscaledto a valueof unity at the initial guess(tolerance=l). Note alsothat in the

absenceof an activeconstraint,the minimum solution is positive infinity. Becauseof

this,caremustbe takento ensurethateachdesignvariablehasa significanteffecton the

footprint size(eitherdown-rangeorcross-range).

Cost

0 0.5 1 1.5 2 2.5 3

Tolerance

Figure 33: Reciprocal Cost-Tolerance Function.

8.2.3 Minimum-Distance Model

An alternative to the cost-tolerance model is the minimum-distance model. This

model minimizes the size of the change from the initial values (i.e., the Euclidean

distance is minimized). This model might be particularly appropriate in the later stages

of design when _ change to the design could be expensive. This function is the sum of

the squares of the difference between the uncertainty and its initial value, as shown in

Equation 63. Again, The weights allow the favoring of an inexpensive uncertainty over

an expensive one and need not necessarily sum to unity.
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_ +
t=1

The primary advantage of this method is that the unconstrained minimum of the

function occurs at the initial values. This means that as the metamodel coefficients (b's)

go to zero, the uncertainties go to their initial values. This ensures that the solution

remains close to initial guesses and only small changes in the trajectory are made.

The disadvantage of this method is that the function does not go to infinity as the

uncertainties are reduced to zero. This means that physically impossible negative

solutions are mathematically possible. Additionally, unlike the reciprocal model, there is

no "incentive" to relax any tolerance. When using this method, the initial guesses should

be very good and conservative (allowing for some tightening of uncertainties).

Figure 34 shows the minimum-distance function. This function has also been scaled

to unity at the initial guesses. This is also the function minimum, so that in the absence

of an active constraint, the parameter remains unchanged. Note, however, that the

function continues below zero. This means that negative (non-valid) solutions are

possible. This function is most applicable in the later stages of design when only minor

changes are needed (or desired).
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4
COSt
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Figure 34: Minimum-Distance Cost-Tolerance Function.
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8.2.4 Cost-Plus-Quadratic Model

The final method seeks to combine the advantages of the reciprocal and minimum-

distance models, while avoiding their disadvantages. This function, called the "cost-plus-

quadratic" function, is a linear combination of the reciprocal function and a quadratic

function, shown in Equation 64. Both terms of the function are scaled by the initial

values such that they are unity when equal to the initial values.

fc_ = w, /ff_-:2--i+(l-/ff (64)
i=1 Xi

The parameter 13allows the function to take on any shape between the reciprocal and

the quadratic. We choose 13 such that the minimum of the function occurs at the initial

values. To do this, solve for the minimum of Equation 64 by taking the partial derivative,

Equation 65, and setting it equal to zero. Then substitute the initial values, x, = x °,

shown in Equation 66. Finally, solving for 13, the result is shown in Equation 67.

oy,.__ - g_°x::+2(1-_ x,
w, 7

(65)

- +20- , =0 (66)

2
fl=- (67)

3

The cost-plus-quadratic function, Equation 68, incorporates the best of both worlds

since it increases to infinity as the uncertainty is reduced to zero and the minimum occurs

at the initial value. Using this function, negative solutions are not possible, and if any of

the uncertainties have small or zero metamodel coefficients then there will be little or no

change from the initial value.
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fzx°
L0

3Lx?JJ
(68)

This last statement is significant because when using the reciprocal function, the

designer must know which uncertainties are important and which are not to avoid divide

by zero errors. When using the minimum-distance model or the cost-plus-quadratic

model, however, _ uncertainty can be included without worry of a divide-by-zero (even

if that uncertainty has no effect on the size of the footprint). Al__.._!lof the design variables

may be retained in the optimization. Those variables with zero coefficients (b's) simply

remain un-changed from their initial values.

Figure 35 shows the cost-plus-quadratic (cpq) function. This function combines the

desirable characteristics of the reciprocal model and the minimum-distance function.

Once again, the function is scaled such that its value is unity at the initial guess. Like the

minimum-distance function, the minimum of the cpq function occurs at the initial

guesses. This prevents the solution from degenerating in the absence of active

constraints. Like the reciprocal model, the function goes to infinity as the uncertainty is

reduced to zero. This prevents the possibility of negative solutions. The only

disadvantage of using this function is that, like the minimum-distance model, there is no

"incentive" to relax any tolerance. Therefore, the cost-plus-quadratic model is chosen for

the objective function.

Cos! 324 _ _

i

0 0.5 1 1.5 2 2.5 3

Tolerance

Figure 35: Cost-Plus-Quadratic Cost-Tolerance Function.
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8.3 Optimization Problem

Now that the constraint and objective have been chosen, write the optimization

problem in standard form, Equation 69. The design variables, x;, are the uncertainty

extrema (+3a values). The objective function is the cost-plus-quadratic function, which

has been normalized by the initial values, x °. Each uncertainty is also weighted with a

relative cost value, wi. The constraints are the ellipse surface metamodels of the semi-

major and semi-minor footprint axes. The metamodel coefficients, bi, are determined by

Y={x i : 3o'i} i=1,2 ..... n

12xo !Fxl=l
minimize" j_)= _,=_w_[ 3 x, + 3 Lx° J l ( 69 )

hi, =bo, , +__,b,,,x_-R2=O k=l,2
i=1

experimentation.

given :

subject to :

Because both the constraint (in the form of the metamodel) and the objective function

are simple polynomials, the derivatives may be determined analytically. In fact, as many

derivatives as needed are available. This derivative information can be exploited in the

optimization process by using the method of Lagrange multipliers and a Newton-

Raphson iteration to solve the constrained optimization. This technique is very efficient,

easily programmed, and precisely satisfies the constraints.

8.4 Method of Laeran_,e Multioliers

The method of Lagrange multipliers is a well-known technique for solving

optimization problems with equality constraints. This technique allows classic methods

of solving unconstrained optimization problems to be used in constrained optimization

problems. The trick is to augment the original objective function with the product of the

constraints and unknown constants, _., known as Lagrange multipliers. The augmented

objective function (Lagrangian) is written as Equation 70.
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Next, usethe methodof Lagrangemultipliers with substitutionby writing Equation

71. This equationenforcestangencyof the objective function and constraints at the

solution point. This equation equates the partial derivative of the objective function (with

respect to the n design variables only) with the partial derivatives of the second term in

the Lagrangian.

aL_q _ ah0 _ o_
= Ao-_+/q _ i=1,2 ..... n

(71)

Then solve Equation 71 for the design variables, xi, as functions of the Lagrange

multipliers, _.k. Substituting the partial derivatives of the terms in Equation 70 into

Equation 71, produces Equation 72. Multiplying both sides of Equation 72 by x_,

rearranging, and dividing by two, gives Equation 73. Equation 73 is solved for xi,

resulting in Equation 74.

-3 ' 7 x'=2x'(_b"°+_b"') (72)

I Fll:/_ wixol =x3 ,,_b ° +,_b,.,--w,l--6-13 L_,J
(73)

Xl' _ l fll
J

(74)

Equation 74 was developed specifically for the cost-plus-quadratic objective

function. Similar expressions may be derived for the reciprocal model (Equation 75) and

the minimum cost model (Equation 76). These expressions are included here because the
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choice to use a particular objective function is dependentupon the specific problem

(althoughthecost-plus-quadraticmethodisrecommendedfor mostcases).

X i

1

t_2w,xO '

2ob,. o + )qb,.i
(75)

o

-- W iX_

x, = 2ob,_, + &bi. __ w,
(76)

Finally, we substitute Equation 74 into the constraint functions, Equation 61, to yield

Equation 77. Equation 77 is a 2-by-2 system of non-linear equations, which is a function

of only the two Lagrange multipliers 2o and 21. Once the Lagrange multipliers are

known, they are substituted back into Equation 74 to find the optimal design variables.

n

h k = b0.k + £ b,.k
i=1 ,will

2obi.,, + &b,., --_ Lx, d

-R_=0 k=l,2 (77)

8.5 Newton-Raphson Iteration

Newton-Raphson iteration is a numerical technique that reduces a system of

simultaneous non-linear equations to a system of simultaneous linear equations. This

method expands each of the non-linear equations in a Taylor's series. The higher order

terms (those with higher than first derivatives) are neglected. In the case of the solution

to the method of Lagrange multipliers with substitution, this approximation leads to the

linear system of equations (written in matrix form), Equation 78.
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(78)

Taking the partial derivative of the Equation 77 with respect to the Lagrange

multipliers results in Equation 79. This equation is used to construct the entries of the 2-

by-2 Jacobian matrix in Equation 78.

5

It 'wr!'21t_'az,=__-2(-w,_;)__b,.o+.kt,,.,3 'Lx;j (79)

Equation 79 was developed specifically for the cost-plus-quadratic objective

function. Similar expressions may be derived for the reciprocal model (Equation 80) and

the minimum cost model (Equation 81).

_ 2 5

o_2,°%k i=,--'_(-w,x,4 o ).{{2(20b,. ° + )n b,., )}_b, db,., ( 80 )

_I___L= " o 2 -3Z- 2(-w,x,){(,_b,o+,_b,.,-w,)}b,,_,, _8, )
daj I'=[

This system of linear equations, Equation 78, is solved using the efficient PLU

decomposition method. The Lagrange multipliers are updated and the process is repeated

iteratively until the method converges to a solution. Because Newton's method has

quadratic convergence, typically only a few iterations are required.

115



CHAPTER 9

PROOF-OF-CONCEPT (2D PROBLEM)

9.1 Problem Statement

A proof-of-concept is performed for a simple ballistic entry terminating in by a soft

(powered) landing on Mars. The simple test problem was chosen so that it could be

exhaustively examined with minimal computational expense. This entry includes no lift,

no winds, no parachutes, and no guidance. Because the attracting body in this problem is

Mars, the following inputs to POST must be modified: 1) size of the oblate reference

ellipsoid, 2) planet rotational rate, 3) gravitational constant, 4) gravity harmonics, 5)

atmospheric model, 6) and wind model. Tables of density, pressure, and temperature are

used to simulate Mars' atmosphere. Table 19 shows the remaining Mars specific

constants used in this example. Table 19 provides POST input parameters specific to

Mars. These parameters are used in the attracting body (planet) and gravitational models.

A spherical gravity well is assumed (i.e., all gravity harmonics of higher order than J2 are

assumed zero). System International (SI) units are used throughout.

Table 19: Mars Constants, POST Input.

Input Name Value Units
Gravitational constant 4.2828e+13 m3/s _

Equatorial radius 3393.9 km
Polar radius 3376.8 km

Mean radius 3397.2 km

Planet rotation rate 7.0882e-05 rad/sec
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This exampleis designedto represent(very loosely) theentry, descent,andlanding

(EDL) of a Mars expeditioncrew usinga reusableMars Transfer Vehicle (MTV). The

crew separates from an interplanetary transfer vehicle in a 300-km circular orbit and

descends for a landing at the planet's equator, where a habitat, supplies, and an In-Situ

Resource Utilization (ISRU) propellant factory await their arrival. It is assumed that

mission requirements dictate a landing within 3 km of the surface assets. Therefore, the

primary objective is to successfully locate the minimum cost extrema that satisfy a 3-km

landing footprint with 99.87% confidence.

Figure 36 illustrates the simple EDL sequence of the proof-of-concept. Following a

de-orbit burn, the vehicle descends ballistically through the atmosphere until reaching a

nominal altitude of 38.3 kin. From there, the vehicle performs a powered descent to the

surface.

De_rt_t _m
"J"

Atmospheric mt_faoe at
128 3 km al_ rude

,, ,_,..., I:bw_red des_zt'tt tnitialu:_lat
v/.- _,, 38359 m altal_de

_ ,,\,

Figure 36: EDL Sequence, Proof-of-Concept.

A previously performed trajectory optimization has determined the nominal controls

that minimize the propellant requirements. The trajectory begins in a circular 300-kin
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orbit aboutMarsat zero degreeinclination. The EDL beginswith a 108.9secondde-

orbit burn, which imparts 1823.8 m/s of ideal velocity change (AV). The vehicle

descends through atmospheric interface (defined at an altitude of 128.3 km) and at 38.3

km above the reference ellipsoid the descent engines are fired at 100% throttle. The

terminal descent bum nominally occurs 505.9 seconds after de-orbit initiation. The MTV

continues to decelerate under thrust until a soft vertical landing is accomplished at

T+573.1 seconds. The total ideal AV for the descent is 3999.6 rn/s.

It is supposed that experts have been consulted to arrive at baseline uncertainty

definitions. Twelve uncertainties are identified. Table 20 lists these uncertainties along

with their mode and dispersion extrema values. All of the uncertainties are assumed to

follow normal or Gaussian probability distributions.

Table 20 describes the mission uncertainties used in the proof-of-concept problem.

Only three uncertainties (yaw, pitch, and burn-time extrema) were optimized. All other

uncertainties were present in the Monte Carlo analysis, but considered uncontrollable.

This table is in the form required for "mcp" input.

Table 20: Mission Uncertainties, Proof-of-Concept.

Uncertainty Mode 30 Extrema Distribution Description

burn_time 108.888099 + 0.25 sec normal

power__alt 38359.1014 +5/-0 m normal

gross_wt 1.10E+06 + 100 kg normal

Isp 453.6 ___0.5 sec normal

density 1 _+0.5 % normal

pressure 1 +__0.5 % normal

temperature 1 + 0.5 % normal

thrust_vac 6.40E+05 + 10 N normal

yaw 270 + 0.5 deg normal

pitch 0 + 0.5 deg normal

drag 1.2 + 0.5 % normal

shutdown 0.25 + 0.25 m normal

de-orbit burn time (sec)

power-on altitude (m)

gross weight (kg)

specific impulse (sec)

density multiplier

pressure multiplier

temperature multiplier

vacuum thrust (N)

initial yaw (deg)

initial pitch (deg)

drag coefficient

engine shutdown alt. (m)
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9.2 Results

9.2.1 Screenin2

The proof-of-concept is limited to only two design variables to facilitate visualization

of the design space. Because of this, a One-Variable-At-A-Time (OVAAT) screening is

performed to determine the two variables that have the largest impact on the landing

footprint. Each of the twelve uncertainty variables is set independently at its respective

maximum (+3a) and minimum (-3a) value. Deltas between the nominal and

contingency trajectories are collected and presented in a Pareto chart. The results of the

OVAAT analysis show that the three uncertainty variables that generate the largest deltas

in range are pitch, yaw, and burn-time. Because pitch and yaw may be treated as a single

uncertainty (pointing accuracy), the two design variables chosen are the dispersion

extrema for pointing accuracy and bum-time.

9.2.2 Sample Size Determination

The next step was to determine the sample size for use in the Monte Carlo analysis.

This determination involves a trade-off between accuracy and the time required to

complete a large gridsearch. Obviously, the larger the sample size the better the accuracy

of parameter estimates and the larger the computational expense. It is common practice

to run 2000 to 5000 cases per Monte Carlo analysis.

Since many Monte Carlo analyses (221) would be needed for a reference grid search,

a low sample size was desired. The arbitrary size of the grid search was chosen as a

compromise between the conflicting goals of maximizing the resolution and minimizing

the computational time. A baseline sample size of 1000 function evaluations was decided

upon. Based upon this number and an average speed of 1500 to 1800 POST runs per

hour, the expected time to complete a 221-point gridsearch was approximately 5-6 days.

This average speed is applicable to a dual-processor SGI Octane Workstation and

depends on system usage. An effort was made to conduct the majority of the runs at

night and on weekends to minimize the impact on other users.
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9.2.3 Gridsearch

Once a sample size was determined, a gridsearch was initiated to provide a

visualization of the design space. The results from the gridsearch are also used in

assessing the fit of the metamodels. For practical problems, a gridsearch is not conducted

because of the computational expense involved.

The gridsearch was performed in two stages consisting of a 121-point gridsearch and

a 100-point gridsearch. Combined, these two searches involved 221 Monte Carlo

analyses and 221,000 contingency (off-nominal) trajectory simulations and required

123.1 hours (or 5.1 days) to complete. The average speed achieved on a dual-processor

Rl2000 SGI Octane workstation with 640 MB of RAM (running five simulations at a

time in parallel) was 1795 POST simulations per hour.

The contour plot of the gridsearch data, Figure 37, shows the concentric elliptical

contour lines expected. Figure 37 shows constant radius contour lines constructed from

the gridsearch data. Note that the contours resemble one quadrant of concentric ellipses.

This observation forms the motivation for the elliptical approximation of the design

space. Note also the nearly equal spacing between contours along the axes. This

observation leads to the assumption that the size of the ellipses is related linearly to the

value of the contour line. Finally, note the irregularity (or roughness) of the lines caused

by the random behavior (non-repeatability) of the Monte Carlo process. Quite a bit of

variation or irregularity can be seen due to the non-repeatability of the Monte Carlo

analysis. The inner edges of the surface plot (where one dispersion is zero) are nearly

linear. The outer edges (where one dispersion is at its maximum) show a parabolic

curvature. These observations will become important in choosing the form of the

metamodel to use.
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Figure 37: Contour Plot, Gridsearch.

9.2.4 Design of Experiments

A 14-point face-centered Central Composite Design (CCD) for two variables with six

center points is used for this problem. For the two-variable case, there are four comer

points and four face-centered star points. Because the design is face centered, the design

variables are evaluated at only three levels. Most computer analyses are deterministic

and therefore do not require the evaluation of multiple center points. When running

Monte Carlo analyses, however, multiple center points are necessary to evaluate the

experimental error. This Design of Experiments (DOE) is used for generating a

Response Surface Equation (RSE). Experiments were determined using a commercial

software package (JMP). Table 21 lists the CCD design with the resultant range values.

Table 21 is the face-centered central composite design of experiments for the proof-of-

concept. Each experiment consists of running a 1000 simulation Monte Carlo analysis

with the uncertainty extrema indicated. The Ix+3o range (R) is recorded for each

experiment. Note that six multiple center points result in six different ranges from 3.99

121



km to 4.32 km. This is due to the randomnessinherentin the Monte Carlo process.

Wherepossiblerange valueswere takendirectly from the gridsearchresults so that

additionalMonte Carlo analyseswerenot necessary.Only five additionalcenterpoints

were evaluated. Had all fourteenMonte Carlo analysesbeenperformed,nearly eight

hourswouldhavebeenexpectedfor completion.

Table 21: Design of Experiments Table, Proof-of-Concept.

Experiment Pointing Accuracy Burn Time Accuracy 3-sigma Range
(xl) (x2) (R)

1 0 0 0.59518

2 0 0.25 2.24288

3 0.5 0 7.86088

4 0.5 0.25 8.22863

5 0 0.125 1.13872

6 0.5 0.125 7.89053

7 0.25 0 4.10832

8 0.25 0.25 4.58441

9 0.25 0.125 4.31660

10 0.25 0.125 4.18025

11 0.25 0.125 4.24036

12 0.25 0.125 4.02583

13 0.25 0.125 3.98749

14 0.25 0.125 4.17729

9.2.5 Metamodel Generation

Once the DOE table is completed, the next step is to generate the response surface. A

least-squares regression of the 14 responses in Table 21 is used to determine the six

coefficients in Equation 2. A commercial statistical software package, JMP, was used for

this purpose. Once the RSE is calculated, the validity of the model must be assessed.

Several indicators are used to assess the fit of the response surface: 1) visual comparison

with the gridsearch results; 2) numerical computation of the Root Mean Squared (RMS)

residual and the R-square parameter; 3) plotting the gridsearch results against the

predicted values; and 4) observing the residual plot. Equation 2, is repeated below for

convenience.
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Three response surface methods are generated for comparison. The first is a standard

quadratic RSE (designated by "response surface"). The second is a simplified

polynomial designed to produce elliptical contour lines (the "ellipse surface"). Three

points uniquely determine the ellipse surface and so no regression is required. The first

three experiments in Table 21 are used for this purpose. The third method, called the

"squared surface", is another standard RSE, but fit to the square of the range (R 2) instead

of the range (R). This method was inspired by the occurrence of R 2 in the derivation of

the ellipse surface, Equation 57. All three methods are also compared with a "best"

curve-fit, which is a regression of all 226 data points resulting from the gridsearch and

the five additional center point evaluations. These "best" fits bring the total number of

different response surface methods up to six. The coefficients determined for each of the

six metamodel methods are shown in Table 22. The linear and cross term coefficients for

the ellipse methods are zero by design.

Table 22: Curve Fit Coefficients, Proof-of-Concept.

Method bo bl b2 bll b22 b12

Response Surface

Best Response Surface

Ellipse Surface

Best Ellipse Surface

Squared Surface

Best Squared Surface

0.6583 11.639 2.6220 5.9521 13.040 -10.240

0.3080 12.875 3.6961 6.2729 8.6015 -12.424

0.5952 0.0000 0.0000 244.79 70.965 0.0000

0.1852 0.0000 0.0000 255.71 71.289 0.0000

0.6822 5.0958 -11.647 234.10 115.23 9.9243

0.1914 0.8331 -1.3821 257.16 81.968 -12.616

The Root Mean Square (RMS) residual is calculated for each of the six methods

based on the entire 226-point data set. The RMS measures how closely the model fits the

data points, the lower the RMS the better the fit. The sum of the squares of the residuals

and the sum of the mean error are used to calculate R-square (also based on all 226

points). R-square measures the percentage of the variation from the mean assignable to

the model. The remaining percentage is attributed to a random error with zero mean. An

R-square of unity indicates a perfect model fit. Table 23 compares the RMS and R-
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squarescoresof the six responsesurfaces. Table 23 comparestwo goodness-of-fit

indicators(RMS and R-square)for the six metamodelmethods. The "best" methods,

which useall 226 gridsearchexperimentsin the regression,areprovidedfor illustration

only. Theresponsesurfacemethodshowsthepoorestresults.

Table 23: Goodness of Fit Parameters, Proof-of-Concept.

Method

Response Surface

Best Response Surface

Ellipse Surface

Best Ellipse Surface

Squared Surface

Best Squared Surface

Experiments RMS R-square
14 0.23837 0.98645

226 0.15104 0.99534

3 0.14209 0.99551

226 0.09819 0.99804

14 0.13638 0.99597

226 0.09592 0.99813

Residual plots show the error (residual) as a function of the response. Ideally under

the assumption that the only error is from random error, there should be no discernable

pattern to the residuals. However, residual plots from all six response surfaces show

distinctive patterns. Figure 38 and Figure 39 show a prediction profile for the response

surface and ellipse surface respectively. Figure 38 plots the actual range determined from

the gridsearch against the predicted values from the response surface metamodel. The

response surface is a very general metamodel which has been applied to many situations.

Ideally, these points would all fall along the x=y line. The degree to which these points

differ from the x=y line indicates the fit (and appropriateness) of the model. While the

results of this plot appear optimistic, much better results will be shown for other

metamodels.
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Figure 38: Prediction Profile, Response Surface.
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Figure 39 plots the actual range determined from the gridsearch against the predicted

values from the ellipse surface metamodel. This figure is compared with Figure 38 for

the response surface. While this model is much less general than the response surface,

and requires restrictive assumptions about the shape of the design space, the fit is shown

to be much improved.
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Figure 39: Prediction Profile, Ellipse Surface.
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9.2.6 Numerical Optimization

The next step is to solve the constrained optimization problem. A Newton-Raphson

iteration is used to solve the optimization problem given by Equation 82 and Equation 83.

This iterative method is very efficient and the solution is quickly found to very small

tolerances within only a few iterations (less than 50). Equal weights are used in the

reciprocal cost function for the two design variables (wj=w2--0.5).

given: _= {fl,},

_ = {x, = 3o', }, i=1,2 ..... n

minimize" flY)= _ w,( X° ) (82)

,o, tx, J
n n n-I n

subject to: h=b 0 + _.,b,x, + _.b,,x 2 + _., _._box, x j -R 2 =0
i=l i=1 i=1 j=i+l

•'2 -I

Z x¢-R:(or) h = b0 + = 0
i=1 i

w, + +E ,x,+Eb,,x2+E -R2 83
,:1 t, x, ) ,:, ,:, ,:, j:,+,

As an independent check on the Newton-Raphson solver, an expected optimum is

determined graphically. Since the response surfaces are algebraic equations, we can

solve for the value of one design variable along the desired (3-km) contour line as a

function of the other. We then plot the cost function along this contour line to show the

region of the minimum cost solution. This plot, Figure 40, shows that the expected

optimum for the best squared surface is near [0.157, 0.19]. This method (best squared

surface) was chosen because it had the highest R-square value and lowest RMS. Figure

40 is a busy plot, which illustrates the effect of altering the uncertainty weightings in the

cost-tolerance model. The left hand vertical axis plots the target 3-km contour line. This

line plots the set of feasible solutions (i.e., combinations of x# and x2 which meet the 3-

km constraint). The other vertical axis plots the value of the objective function (cost) for

two settings of the weights. The first of these curves is for an equal 50/50 weighting of
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the two designvariables. The secondis for an unequal80/20weightingwherethe first

variable, pointing accuracy,is determined to be more expensive. Matching the

minimums in these two curves with the contour line constraint, shows that the

constrainedoptimum has indeedchangedto favor the reductionof the lessexpensive

variable,burn time accuracy,andtherelaxationof themoreexpensivevariable,pointing

accuracy. Note also that the new solution resultsin a higher minimum cost.The best

squaredsurfacewas usedfor this examplebecauseit has the bestRMS and R-square

values.Figure40alsodemonstrateshow thesolutionchangeswith differentweighting.
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Figure 40: Effect of Weighting Values.
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The actual solution points are listed in Table 24 along with the value of the relative

cost function for each method. Table 24 compares the optimized solutions for the six

metamodel methods along with the cost value at the solution. The optimum for the best

squared surface is indeed very close to [0.157, 0.19], which provides confidence in the

solution technique.
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Table 24: Optimized Solutions, Proof-of-Concept.

Method xl x2 Cost

Response Surface

Best Response Surface

Ellipse Surface

Best Ellipse Surface

Squared Surface

Best Squared Surface

0.14748 0.15694 2.49160

0.15281 0.17503 2.35019

0.15567 0.18668 2.27561

0.15627 0.18987 2.25810

0.15586 0.17745 2.30837

0.15758 0.18903 2.24780

9.2.7 Verification and Comparison of Solutions

Finally, the solutions are verified by running Monte Carlo simulations with the

optimum extrema determined by each of the methods and measuring the size of the 3-

sigma footprint. The actual footprint is compared to the 3-km footprint predicted by each

of the metamodels. Because of the non-repeatability of Monte Carlo analyses, the

solutions are compared based on multiple verification runs. Each solution was verified

three times and the average error calculated in terms of deviations from the 3-kin

constraint. Table 25 lists the three trials for each of the six response surface methods and

their average errors. Table 25 shows the average relative error from three validation runs

at the optimized solution points. Results differ between trials because of the randomness

in the Monte Carlo analysis. The response surface methods show unacceptably high

errors. This data is also shown graphically in Figure 41.

Table 25: Solution Validation Runs, Proof-of-Concept.

Method lStR 2ndR 3rdR Avg. error

2.71744 2.66109 2.68581 10.40%

2.83469 2.88586 2.82236 5.08%

3.07690 2.99880 3.00663 0.94%

2.90168 2.99235 2.94513 1.79%

2.87892 2.97629 2.93933 2.28%

2.86201 3.00088 2.88020 2.87%

Response Surface

Best Response Surface

Ellipse Surface

Best Ellipse Surface

Squared Surface

Best Squared Surface
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Figure 41 comparesthe solutions generated from the different metamodels. Three

verification Monte Carlo analyses were conducted at each of the predicted solution

points. Since each model predicted a footprint of exactly 3 kin, a relative error was

generated using the actual footprint range from the verifications. The response surface

showed unacceptably large errors (nearly 10%) while the ellipse surface consistently

showed the lowest error in each trial. Additionally, the ellipse surface error was less than

3% in all cases. This is fortunate since the ellipse surface is the easiest to generate

(requires the fewest number of sample points).
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Figure 41: Metamodei Prediction Error, Proof-of-Concept.
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Figure 42 compares the proof-of-conceptsolutions found using the different

metamodels. The solution points are plotted against the contour lines from the

gridsearch. Note that three of the solutions are closely grouped, two more of the

solutions are closely grouped, and one solution is far removed from the others.
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Figure 42: Metamodel Solutions, Proof-of-Concept.

The two response surface methods, which were the only methods to not fit R 2, show

unacceptable errors. Comparison of this method with the squared surface indicate a

factor of four decrease in average error associated with fitting R 2. It is interesting to note

that the 3-point ellipse method showed the lowest average error of the six methods for

this problem. A plot of all six solution points shows that three of the methods (ones with

the best fits in terms of R-squared values) are grouped closely with an average error of

about 2%. Two other methods (the squared response surface and the best response

surface) are grouped closely with a larger average error of around 4%. The standard

response surface solution stands alone from the other five with an error of over 10%.
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The proof-of-concepthas shown generally that an acceptablemetamodelof the

designspacecanbe constructed.This problemfurther showedthat the ellipse surface

metamodel,specifically, producesa sufficient modelof the designspace. In fact, the

ellipse surfaceprovided a better approximationthan the more complicatedresponse

surface,in this example. With the applicability of the ellipse surfaceassumptions

justified by the excellent results,this methodmay now be appliedwith confidenceto

largerproblemswith moredesignvariables.This is significant since,of the metamodei

methodscompared,only theellipsesurfacerequiresfew enoughsamplepointsto feasibly

solveproblemswith morethanjust a few uncertainties.This point will bedemonstrated

in Chapter10on a "real world" probleminvolving 27 designvariables. This problem

(becauseof its size) cannot besolvedin a reasonabletime using a standardresponse

surface.
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CHAPTER 10

"REAL WORLD" EXAMPLE

The validity of the proposed methodology was demonstrated by the proof-of-concept

example. However, an additional "real world" example was necessary to demonstrate the

implementation of the method on a more complex problem. For this example, it was

important to use a problem for which Monte Carlo analyses had been performed and

documented. Preferably, this problem would include a lifting entry and a guidance

algorithm. The reason for this was to demonstrate the method on a difficult problem that

might contain non-linear relationships and correlations between uncertainties.

Additionally, a problem with more than twenty uncertainties was sought so that the

method could be demonstrated on a problem that was too large to be practically solved by

other means (e.g., gridsearch or response surface).

The problem chosen for the example was the Mars Surveyor Program (MSP) 2001

Lander. An Atmospheric Flight Team (AFT) was formed by the MSP '01 program office

with the task of developing aerocapture and precision landing test-bed simulations and

candidate guidance algorithms. The AFT was composed primarily of personnel from the

Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Langley Research Center

(LaRC), and Lockheed-Martin Astronautics (LMA). Both 3- and 6-DOF flight

simulations were developed. Several papers were published on the results of this study.

[19, 201

10.1 MSP2001 Lander

Had the program not been cancelled, Mars Surveyor 2001 would have been the first

lander on another planet to use a guidance algorithm to actively control its entry. [39]
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This ability to makea precisionlandingwould haveallowedthespacecraftto landsafely

within a 10-kmcircle (an order of magnitudeimprovementover the 100-by-200km

landingzonefor MarsPathfinder).

Autonomouscontrol of the vehicle'satmosphericflight path is requiredfor precision

landings.Trajectorycorrectionsareperformedbyorientingthevehicle'slift vectorin the

appropriate directions. An atmosphericguidance algorithm receives navigational

information from on-boardsensors,determinesthe required trajectorycorrection,and

commandsthecontrolsystemto orientthevehicleto theproperattitude.

Calspace[40] describes the Entry, Descent, and Landing (EDL) sequence for this

mission as follows. The MSP '01 Lander enters Mars directly from its interplanetary

transfer orbit (i.e., it does not insert first into a Martian orbit). Five minutes before

atmospheric entry, the cruise stage is jettisoned.

At entry into the Martian atmosphere, the lander is housed within a 2.65 meter

diameter 70 degree sphere-cone aeroshell similar to the Viking configuration. The entry

vehicle uses aeromaneuvering to deliver the lander to an acceptable parachute

deployment condition. The guidance algorithm deploys a super-sonic, 13 meter diameter,

ballistic, disk-gap-band parachute approximately 226 seconds after entry (and at an

altitude of 9- to 10-km). Ten seconds after parachute deployment the aeroshell is

released. The parachute decelerates the lander to approximately 80 m/s.

At a radar altimeter altitude of 1.43 kin, the lander legs deploy and the powered

descent begins. The parachute and backshell are released two seconds after descent

engine ignition. The Lander touches down about 37 seconds later at a soft 2.5 m/s

velocity. Figure 43 shows an artist's rendering of the lander and rover on the surface of

Mars.
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Figure 43: MSP 2001 Lander.

10.2 Monte Carlo Simulation

Several detailed computer models are needed to construct the simulation. These

models include: gravitational attraction, central attracting body (planet), atmospheric

properties, vehicle aerodynamics, inertial measurement unit (IMU), guidance, and mass

properties. Several of these models are discussed here.

10.2.1 Guidance/IMU

The guidance algorithm used in this problem was based on the Apollo Earth entry

algorithm. Carman et al. [33] describe the modifications made for Mars entry and present

Monte Carlo results for the MSP '01 Lander. This algorithm was compiled and linked

with the POST source code.

POST also included an IMU mode. The most important input for this model is the

initial position and velocity knowledge error. Actual and navigation state estimates for
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theentrywereprovidedby theprojectoffice. This entrystate(at areference3522.2-km

radius)hada meaninertial flight pathangleof-14.5 deg(with a maximum variationof

_+0.23deg),an inertial velocity of 6973m/s (±29m/s), andan azimuthangleof 101.56

deg(:,.,_.09deg).

10.2.2 Gravity/planet model

The Mars gravitational model is based on one used in the Artificial Satellite Analysis

Program (ASAP) [ 114]. The model is a 50-by-50 gravity field that uses zonal, sectorial,

and tesseral harmonic terms to determine the acceleration due to gravity. Zonal

harmonics depend only on the mass distribution that is symmetric about the north-south

axis of the planet (they do not depend on longitude). In contrast, sectorial harmonics

depend only on longitude. However, tesseral harmonics are a function of both latitude

and longitude. Even numbered harmonics are symmetric about the planet's equatorial

plane, whereas odd numbered harmonics are not symmetric. [100] AFT members from

LaRC added this gravity model to POST as a FORTRAN subroutine.

The planet model used was an oblate spheroid given by the constants in Table 19,

which is repeated here for convenience. The mean planet radius is used to calculate

orbital altitudes (apoapsis and periapsis).

Table 19: Mars Constants, POST Input.

Input Name Value Units
J2 0.0019586

Gravitational constant 4.2828e+13 m3/s 2

Equatorial radius 3393.9 km
Polar radius 3376.8 km

Mean radius 3397.2 km

Planet rotation rate 7.0882e-05 rad/sec
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10.2.3 Atmospheric model

The Mars atmospheric model was provided by the Mars Global Reference

Atmosphere Model (Mars-GRAM) version 3.7, which is included as FORTRAN

subroutines in POST. Mars-GRAM [ll5] provides temperature, density, pressure, and

wind velocity as well as random perturbations to density. This data is a function of the

spacecraft location (latitude, longitude, and altitude) and the Julian date.

Curve fits of "climate factors" were used to interpolate the effects of dust in the

atmosphere. These curve fits are a function of the parameter Tau and better emulate the

expected atmospheric conditions based on Global Circulation Models (GCM) data.

Table 26 shows the climate factor curve fits (taken from Table 5 in [19]). Additional

controls of the Mars-GRAM atmosphere include the update distance between calls to the

program, the fl0.7-cm solar flux value, and the seed value for the density perturbations.

Table 26: Climate Factor Curve Fits. [19]

Climate Factor Constant Equation

Surface (CF0)

5 km (CF5)

15 km (CF15)

30 km (CF30)

50 km (CF50)

75 km (CF75)

Surface Pressure (CFp)

= 1.01290

= 0.95753

= 0.94510

= 0.90674

= 0.79403

= 0.85103

= 0.56121

- 0.0077011 * Tau

+ 0.0314560 * Tau

+ 0.0638120 * Tau

+ 0.1024100 * Tau

+ 0.0795230 * Tau

+ 0.0074796 * Tau

+ 0.2065100 * Tau

136



10.2.4 Aerodynamics

The vehicle aerodynamic properties are supplied by a FORTRAN subroutine in

POST. This routine smoothly interpolates between discrete solutions in a database. This

database contains both free-molecular solutions (based on a velocity of 6975 m/s), for the

rarefied region of the atmosphere, and Computational Fluid Dynamic (CFD) solutions,

for the continuum regime. A bridging function [116] is used in the transitional region

between rarefied and continuum regimes.

The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) [117,

118, 119] generated fifty-two CFD solutions at thirteen points along the trajectory.

Extensive validations of LAURA solutions have been made against Viking data, wind

tunnel tests, and Mars Pathfinder mission results. [120] LAURA was also used for the

Mars Pathfinder [ 121 ], Mars Microprobe [ 116], and Stardust [122] missions.

10.2.5 Mission Uncertainties

Where possible, the mission uncertainties were chosen to conform to those used by

Striepe et al. [19] (Table 4 in the reference). Two additional uncertainties were added,

the time of entry (Julian date) and the maximum bank rate. The addition of these

variables intentionally stressed the problem such that the baseline footprint would be

much larger than the 10-kin target. This was necessary to provide an academic example

that required improvement over the baseline. Table 27 describes the mission

uncertainties used in the Mars Surveyor Program 2001 lander problem. Normal, uniform,

discrete, and triangular distributions were all used. This table is in the form required for

"mcp" input.
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Table 27: Mission Uncertainties, MSP '01.

Uncertainty Mode 3a Extrema Distr. Description

mg_seed 0 1 to 29999 discrete

atm_fiag 0 1 to 1 discrete

Jdate 2452308.5 +/- 0.5 days uniform

update_dist 0.5 +4.5/-0 km uniform

Bank 0 +/- 5 deg normal

max_rate 20 +/- 1% normal

max_accel 1.78 +/- 0.178 deg/s 2 normal

Trim 0 +/- 2 deg normal

ca_kn 0 +/- 0.10 normal

cn_kn 0 +/- 0.10 normal

ca_M 10 0 +/- 0.03 normal

cn_M 10 0 +/- 0.05 normal

ca_M5 0 +/- 0.10 normal

cn_M5 0 +/- 0.08 normal

fit_path -14.5 +/- 0.23 deg normal

velocity 6973 +/- 29 m/s normal

azimuth 101.56 +/- 0.09 deg normal

latitude 18.1505349 +/- 0.01 deg normal

longitude 250.338677 +/- 0.01 deg normal
radius 3522200 +/- 0 m normal

Xcg 0.7155 +/- 0.01 m normal

x_error 0 +/- 5266.7 m normal

y_error 0 +/- 5266.7 m normal

z_error 0 +/- 5266.7 m normal

u_error 0 +/- 2.033 rn/s normal

v_error 0 +/- 2.033 m/s normal

w_error 0 +/- 2.033 m/s normal

imu_seed 0 1 to 29999 discrete

Tau 1 +/- 0.7 triangle

Angle 0 +/- 1.5708 rad uniform

cg_offset 0.017 +/- 0.005 m normal

Mass 523 +/- 2 k_ normal

Mars GRAM pert. seed

0=unperturbed l=perturbed

Julian date of entry

MG dist. between calls (km)

initial bank angle (deg)

max bank rate (deg/s)

max bank accel (deg/s 2)

trim alpha incr. (deg)

axial force incr. Kn>.l (%)

normal force incr. Kn>. 1 (%)

axial force incr. M>10 (%)

normal force incr. M>10 (%)

axial force incr. M<5 (%)

normal force incr. M<5 (%)

flight path angle (deg)

entry velocity (m/s)

entry azimuth (deg)

initial latitude (deg)

initial longitude (deg)

initial radius (m)

axial c.g. location (m)

IMU knowledge error (m)

IMU knowledge error (m)

IMU knowledge error (m)

IMU knowledge error (m/s)

IMU knowledge error (m/s)

IMU knowledge error (m/s)
IMU seed

climate factor

c.g. clocking angle (rad)

normal c.g. location (m)

initial mass (k_)

Twenty-seven design variables were optimized. Five variables from Table 27 were

not optimized: the Mars-GRAM seed, the atmospheric perturbation flag, the Mars-

GRAM update distance, the initial radius, and the IMU seed. The initial radius was not

varied because the initial state was defined at that altitude as the atmospheric interface.
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The seed values,updatedistance,and perturbationflag are necessaryto control the

internal randomperturbationsprovidedby the atmosphereandIMU models. It is not

possibleto "optimize" theseuncertaintiesin the samesenseas the other uncertainties.

Their effect is accountedfor in theconstanttermof themetamodel.

10.3 Baseline Monte Carlo Results

Figure 44 is a plot of the parachute deployment conditions for the nominal MSP 'Ol

Monte Carlo results. The overlaid box indicates representative Mach number and

dynamic pressure limits on parachute deployment. Note that only a small percentage of

the simulations result in parachute deployment beyond the target limits. It is important

for the optimization of the landing footprint to not result in a larger percentage of

simulations deploying the parachute outside of the limits.
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Figure 44: Parachute Deployment, MSP '01 Baseline.

Figure 45 plots the baseline landing footprint for the MSP '01 problem. All of the

footprints in this chapter were produced using the bivariate normal (BVN) footprint

method for a 99.5% probability. The small overlaid circle in Figure 45 is the target 10-

km miss-distance. The footprint ellipse (approximately l18-by-4 km) is much larger
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than that reported by Striepe et al. [19]. This is due to the added uncertainties,

particularly the arrival Julian date, which creates large variations in atmospheric density.

A 10-by-l.41 km target ellipse was used in the optimization process to reduce this

footprint such that greater than 99.5% of the simulated landings will miss the nominal

target by fewer than 10 kin. Note that for the baseline the down-range dispersions are

significantly greater than those in the cross-range direction, resulting in a very highly

eccentric ellipse. This is the reason for the 1.41-km semi-minor axis target. Solutions at

target values greater than this were not possible because of interrelations between the two

constraints. While it is always possible to meet a single constraint, this is a disadvantage

of using multiple constraints. Note also that the footprint ellipse is not centered on the

nominal landing site.

Figure 46 shows the same footprint as Figure 45 only in the down-range and cross-

range coordinate system. This system is more convenient to use than latitude-longitude

since the ellipse is generated in the desired units, kin. Both down-range and cross-range

are measured from the nominal landing site. The nominal azimuth angle is needed to

properly orient the system axes such that the down-range and cross-range have the usual

meanings. This is also necessary to ensure that the 3-sigma down-range and cross-range

footprint closely approximates the BVN ellipse axes. If the azimuth angle is chosen

properly, the footprint will not be rotated by any angle in this coordinate system. A close

examination of both figures show that the BVN footprint method produces the same

ellipse in both coordinate systems. This shows that the BVN method is appropriate for

use regardless of whether the data is con'elated.
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Figure 47 shows the empirical miss-distance cumulative distribution function for the

baseline MSP '01 problem. Note that approximately 80% of the simulations missed the

target landing site by more than the allowable 10 km. This formed the motivation for the

MSP '01 optimization problem. It was desired to find the minimum-cost solution that

results in fewer than 0.5% of the simulations missing the target. The cost-plus-quadratic

objective function, with equal weightings for all uncertainties, was used.
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10.4 Optimized Solution

Table 28 shows the progression of the design variables through two iterations of the

optimization process. These iterations were required to bring the footprint sufficiently

close to the target. The fact that it required two iterations demonstrates that (1) multiple

iterations may be required to account for non-linearities and uncertainty correlations, and

(2) that the iterations converge quickly.

Table 28" Uncertainty Extrema, MSP '01.

Name Initial Values Units I st Iteration 2 "a Iteration

xl jdate 0.5 days 0.07241208 0.0479888

x2 bank 5 deg 5 5
x3 maxrate 1 % 0.92793034 0.92537808

x4 max_accel 0.178 g's 0.17297628 0.17286401

x5 trim 2 deg 0.13692035 0.12213146

x6 ca_kn 0.1 0.09118567 0.09108389

xz cn_kn 0.1 0.1 0.09995603

xs ca_M 10 0.03 0.00271375 0.00248455

x9 cn_M 10 0.05 0.04274252 0.04247787

xlo ca_M5 0.1 0.0447418 0.04389342

xll cn_M5 0.08 0.01766993 0.01705527

x12 fit_path 0.23 deg 0.02613341 0.0244741

xj._ velocity 29 m/s 15.7618974 15.5818713

x14 azimuth 0.09 deg 0.13061347 0.13331093

xls latitude 0.01 deg 0.01119022 0.01124481

xl6 longitude 0.01 deg 0.00848979 0.00846536

x17 xcg 0.01 m 0.00828815 0.00825664

xls x_error 5266.7 m 3251.20079 3216.05921

xs9 yerror 5266.7 m 933.951039 885.919342

x2o z_error 5266.7 m 1964.79807 1916.18485

x21 u_error 2.033 rn/s 2.04675043 2.04263505

x22 v_error 2.033 m/s 1.48836239 1.47950077

x23 w_error 2.033 rn/s 2.09662743 2.10088651

x24 cg_offset 0.005 m 0.00045295 0.00041319

x25 mass 2 kg 1.95191636 1.95192831

x26 tau 0.7 0.12637274 0.12015699

x27 angle 1.570795 rad 0.06995173 0.06969548

f cost 1.00000 4.20878 4.54064
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Table29comparestheBVN footprint ellipsesin eachiteration. Thedesiredfootprint

sizewasa 10-kmsemi-majoraxis,a, by 1.41-km semi-minor axis, b. The small angles,

0, indicate that the nominal azimuth angle was appropriately chosen to define the down-

range and cross-range directions. The empirical probability, Pe, shows that the BVN

assumption very closely predicted the desired 0.995 probability. The target probability,

Pt, is the empirical percentage of simulated landings that fell within the target circle.

Table 29:

Parameter

BVN Footprint Comparisons, MSP '01.

Baseline 1st Iteration 2nd Iteration

a (km) 117.86 12.47 10.28

b (km) 3.67 1.36 1.36

0 (deg) 0.0025 0.0037 0.0011

Pe .9945 .9955 .9960

pt .1724 .9925 .9985

Table 30 shows the computational time required to run the experiments for generating

the metamodel coefficients. Each set of experiments included 56,000 (28*2000)

simulated trajectories. The I st and 2nd iteration experiments where run on an SGI Origin

2000 Deskside server with eight R10000 processors (VAB17). Ten simulations at a time

were run in parallel for approximately 50 hours.

The experiments used for the Perl "rand" random number generator comparison

(presented in Chapter 5) where run on an SGI Origin 2000 Rackmount server with

sixteen R12000 processors (VAB03). Sixteen simulations at a time where run in parallel,

requiring only 51A hours for completion.

Table 30: Computational Times, MSP '01.

Machine Processors RAM Time

(hrs:min:sec)

Speed (sims/hr)

1St Iteration VAB17 8 (180 MHz) 2048M 49:56:10 1121.43

2 "0 Iteration VABI7 8 (180 MHz) 2048M 52:51:53 1059.31

Perl "rand" VAB03 16 (400 MHz) 6016M 5:34:54 10032.85
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10.4.1 I st Iteration Results

First, ellipse surface metamodel coefficients were determined using the initial values

of the uncertainties. These coefficients are shown in Table 31, where bl is the coefficient

associated with the semi-major axis of the footprint ellipse and b2 is the coefficient

associated with the semi-minor axis of the ellipse. The constant coefficient for the semi-

major axis was b1°=5.46078. The constant coefficient for the semi-minor axis was

b2°=0.0107546.

Table 31: Metamodei Coefficients, MSP '01 1 _t Iteration.

Name Initial Values Units bl b2

xl jdate 0.5 days 1.22836E+03 1.11526E-01

x2 bank 5 deg 0.00000E+O0 0.00000E+00

x, max_rate 1 % 2.35353E-01 0.00000E+00

x4 max_accel 0.178 g's 2.66302E+00 1.37638E-02

x5 trim 2 deg 7.29601E+02 8.25109E-01

x6 ca_kn 0.1 2.98396E+01 2.33682E-03

x7 cn_kn 0. l 0.00000E+O0 0.00000E+00

x8 ca_Ml0 0.03 1.40361E+06 2.61342E+02

x9 cn_M10 0.05 2.29073E+02 3.93089E+00

xlo ca_M5 0. l 9.52389E+02 1.29390E+00

x11 cn_M5 0.08 1.34883E+04 6.32736E+01

x12 flt_path 0.23 deg 1.20401E+04 1.56307E+00

xt3 velocity 29 m/s 5.82058E-03 4.15855E-06

x14 azimuth 0.09 deg 5.45351E-01 7.23506E+01

x j5 latitude 0.01 deg 0.00000E+O0 2.47673E+03

x16 longitude 0.01 deg 6.09220E+03 1.46814E+02

xt7 xcg 0.01 m 7.09383E+03 1.58738E+01
xl8 x_error 5266.7 m 1.12905E-07 3.01172E-09

x19 y_error 5266.7 m 6.02554E-06 1.01381E-08

x2o zerror 5266.7 m 6.42669E-07 2.47658E-08

x21 u_error 2.033 m/s 0.00000E+00 4.18945E-03

x22 v_error 2.033 m/s 3.55481E-01 4.59155E-03

x23 w_error 2.033 m/s 1.41527E-02 3.15644E-02

x24 cg_offset 0.005 m 5.03599E+07 5.44338E+04

x25 mass 2 kg 1.77141E-02 0.00000E+O0

x26 tau 0.7 3.22735E+02 1.40048E-01

x27 an_;le 1.570795 tad 4.30772E+03 1.36806E+01
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Table 32 showsa usefulnormalizationof the metamodelcoefficients,x_°b_°5. The

units of this coefficient are range, and it represents the contribution to the semi-major or

semi-minor axis due to the uncertainty being set at its full initial value. This coefficient

can be used to rank the "importance" of each uncertainty - though care should be

exercised in interpreting the results since they are dependant on the assumed initial

values. This table shows that the top five contributors to the semi-major axis are: c.g.

clocking angle (X27), trim angle-of-attack (xs), axial aerodynamic coefficient at Mach 10

(xs), c.g. lateral offset (X24), and initial flight path angle (xl2).

Table 32: Uncertainty Ranking, MSP '01 I a Iteration.

Name xi ° Units xi°bl °5 xi°b2 0"5

x27 angle 1.570795 rad 103.09639 5.80995

x5 trim 2 deg 54.02224 1.81671
x8 ca_M10 0.03 35.54221 0.48498

x24 cg_offset 0.005 m 35.48237 1.16655

xt2 fit_path 0.23 deg 25.23728 0.28755

xl jdate 0.5 days 17.52400 0.16698

x19 y_error 5266.7 m 12.92815 0.53029

x26 tau 0.7 12.57538 0.26196

x/1 cn_M5 0.08 9.29113 0.63636

x2o z_error 5266.7 m 4.22214 0.82883

xlo caM5 0. l 3.08608 0.11375

xs3 velocity 29 m/s 2.21249 0.05914

xls xerror 5266.7 m 1.76969 0.28903

X22 v_error 2.033 m/s 1.21212 0.13776

xlz xcg 0.01 m 0.84225 0.03984

xt6 longitude 0.01 deg 0.78053 0.12117

x9 cn_M 10 0.05 0.75676 0.09913

x6 ca_kn 0.1 0.54626 0.00483

x3 maxrate 1 % 0.48513 0.00000

x4 max_accel 0.178 g's 0.29047 0.02088

x25 mass 2 kg 0.26619 0.00000

x23 w_error 2.033 m/s 0.24186 0.36119

x14 azimuth 0.09 deg 0.06646 0.76553

x2 bank 5 deg 0.00000 0.00000

xz cn_kn 0.1 0.00000 0.00000

x15 latitude 0.01 deg 0.00000 0.49767

x2t uerror 2.033 m/s 0.00000 0.13159
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Figure 48 plots the parachute deployment conditions for the optimized MSP '01

solution Monte Carlo results. This plot is compared with Figure 44 for the nominal case.

Note that a similarly few number of simulations resulted in deployments outside the

Mach number and dynamic pressure limits. The optimized solution would not be valid

(meaningful) if this were not so. It is interesting to note that in contrast to the nominal

case, none of the solution simulations showed parachute deployments near the upper

Mach number limit.
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Figure 48: Parachute Deployment, MSP '01 Solution.

Figure 49 plots the solution landing footprint for the MSP '01 problem. Figure 50

shows the same footprint as Figure 49, only in the down-range and cross-range

coordinate system. Again, the overlaid circle is the 10-km target miss-distance. The

footprint has been significantly reduced, but too large a percentage of simulations remain

outside the target miss-distance. Another iteration of the procedure must be performed to

correct this.

Note that the down-range dispersions have been reduced by a greater percentage than

those in cross-range, resulting in a less eccentric ellipse. Ideally, the ellipse would

perfectly match the target circle (i.e., an ellipse with zero eccentricity). Again, the 1.41-

km semi-minor axis was chosen to minimize the eccentricity of the ellipse as much as

possible.
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Note alsothat thefootprint ellipse is still not centeredon the nominal landingsite.

This is due to a difference between the nominal and off-nominal trajectories.

Specifically,thenominaltrajectorysettheMars-GRAMatmosphericperturbationflag to

zero (indicating no perturbationsin the atmosphericproperties),whereasall the other

simulationsdid not. The differencein the meantrajectory,comparedto the nominal

trajectory,is thereforetheatmosphericperturbations.
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To correct the discrepancy between the nominal landing site and the mean landing

site, the Monte Carlo inputs were changed such that the Mars-GRAM atmospheric

perturbation flag was set to one (instead of zero) for the nominal trajectory. The

atmospheric perturbation seed used for the nominal was still zero. In this way, the

random perturbations for the nominal cases were consistent and repeatable. This had the

effect of moving the nominal landing site much closer to the mean. Figure 51 shows the

footprint for this case along with the target 10-km circle centered on the nominal landing.

The effect has been to center the ellipse in the target circle, but the ellipse is still too big.

Figure 52 shows the same footprint as Figure 51, only in the down-range and cross-range

coordinate system.
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10.4.2 2 nd Iteration Results

Next, a second iteration of the procedure was performed. The solution from the 1st

iteration was taken as the new initial values and new metamodel coefficients were

determined. These coefficients are shown in Table 33, where bj is the coefficient

associated with the semi-major axis of the footprint ellipse and b2 is the coefficient

associated with the semi-minor axis of the ellipse. The constant coefficient for the semi-

major axis was bl°= 5.45200. The constant coefficient for the semi-minor axis was b2°=

0.0102429.

Table 33: Metamodel Coefficients, MSP '01 2 nd Iteration.

Name Initial Values Units bl b2

xt jdate 0.072412 days 1.56308E+04 8.04970E-02

x2 bank 5 deg 0.00000E+O0 0.00000E+00

x, max_rate 0.92793 % 3.24334E-01 5.58387E-05

x4 max_accel 0.172976 g's 2.21636E+00 1.46765E-02

x5 trim 0.13692 deg 7.35684E+02 9.30055E-01

x6 ca kn 0.091186 1.36626E+01 5.0228 IE-02

x7 cnkn 0.1 4.4829 IE+O0 2.48580E-02

x8 ca_M10 0.002714 1.38524E+06 2.85912E+02

x9 cn_M10 0.042743 3.51012E+02 2.84401E+00

xw ca_M5 0.044742 9.96201E+02 1.57644E+00

xzi cn_M5 0.01767 1.22760E+04 1.22829E+02

xl2 fitpath 0.026133 deg 1.07202E+04 2.48020E+00

x1._ velocity 15.7619 m/s 4.75793E-03 5.48438E-06

x j4 azimuth 0.130613 deg 0.00000E+00 7.24657E+01

x15 latitude 0.01119 deg 0.00000E+00 2.40550E+03

x16 longitude 0.00849 deg 4.32994E+03 1.70791E+02

xl7 xcg 0.008288 m 5.64354E+03 9.09556E+00

xls x_error 3251.201 m 1.10658E-07 3.18669E-09

xl9 y_error 933.951 m 6.63671E-06 9.74834E-09

x2o z_error 1964.798 m 7.21126E-07 2.51656E-08

x2_ u_error 2.04675 m/s 5.52909E-02 4.10298E-03

X22 v_error 1.488362 m/s 2.81780E-01 4.44303E-03

x2._ w_error 2.096627 m/s 7.78217E-03 3.35029E-02

x24 cg__offset 0.000453 m 5.21438E+07 5.77545E+04

xz_ mass 1.951916 kg 0.00000E+00 1.00209E-04

x26 tau 0.126373 3.44542E+02 2.11515E-01

x27 anl_le 0.069952 rad 7.61865E+01 3.51608E-02
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Table 34 ranksthe "importance"of eachuncertaintyat the seconditeration- though

againcareshouldbeexercisedin interpretingtheresultssincetheyaredependanton the

assumedinitial values. Whencomparingthesevalueswith thosein Table 32, notethat

the most importantuncertaintieshavechangedslightly. This tableshowsthat now the

top five contributorsto thesemi-majoraxisare:Juliandate(xl), trim angle-of-attack(xs),

c.g. lateraloffset (x24),axial aerodynamiccoefficientat Mach 10 (xs), andinitial flight

pathangle(xt2).

Table 34: Uncertainty Ranking, MSP '01 2 nd Iteration.

Name xi ° Units xi°b l °5 xi°b205

xl jdate 0.072412 days 9.05319 0.02054

x5 trim 0.13692 deg 3.71376 0.13205

x24 cg_offset 0.000453 m 3.27078 0.10885

xs ca_M10 0.002714 3.19398 0.04589

x12 fit_path 0.026133 deg 2.70581 0.04116

x19 y_error 933.951 m 2.40603 0.09221

x26 tau 0.126373 2.34571 0.05812

xll cn_M5 0.01767 1.95777 0.19583

X2o z_error 1964.798 m 1.66849 0.31169

Xlo ca_M5 0.044742 1.41217 0.05618

xl._ velocity 15.7619 m/s 1.08722 0.03691

xj8 x_error 3251.201 m 1.08152 0.18353

x9 cn_Ml0 0.042743 0.80079 0.07208

x22 v_error 1.488362 m/s 0.79007 0.09921

xl7 xcg 0.008288 m 0.62263 0.02500

x27 angle 0.069952 rad 0.61057 0.01312

x16 longitude 0.00849 deg 0.55865 O. 11095

x_ max_rate 0.92793 % 0.52846 0.00693

x21 u_error 2.04675 rn/s 0.48127 0.13110

x6 ca_kn 0.091186 0.33705 0.02044

x4 max_accei 0.172976 g's 0.25752 0.02096

x7 cn_kn 0.1 0.21173 0.01577

X23 w_error 2.096627 m/s 0.18496 0.38376

x2 bank 5 deg 0.00000 0.00000

x14 azimuth 0.130613 deg 0.00000 1.11187

xl5 latitude 0.01119 deg 0.00000 0.54883

x25 mass 1.951916 k_; 0.00000 0.01954

Figure 53 plots the parachute deployment conditions for the second iteration results.

This plot is compared with Figure 44 for the nominal case and Figure 48 for the first
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iteration results. Note that againa similarly few numberof simulations resultedin

deploymentsoutsidethe Mach numberanddynamicpressurelimits. This is important

becauseit showsthat the optimizationdid not adverselyaffect the guidancesystem's

ability to execute a successfulparachutedeployment. In fact, fewer parachute

deploymentsareinitiatedat theupperMachnumberlimit.
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Figure 53: Parachute Deployment, MSP '01 2 "d Iteration.

Figure 54 plots the solution landing footprint for the second iteration results.

Compare this plot with Figure 45 and Figure 51. Figure 55 shows the same footprint as

Figure 54, only in the down-range and cross-range coordinate system. Again, the

overlaid circle is the 10-km target miss-distance. The footprint now has been reduced to

an approximately 10-kin semi-major axis. No further iterations are required. Note that

only three of the 2000 simulated landings fall outside the target circle.
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Figure 56 shows the empirical miss-distance cumulative distribution function for the

second iteration results. This plot is compared to Figure 47 for the nominal case. Note

that nearly all of the simulations missed the target landing site by less than the allowable

l0 kin. This is precisely the desired result.
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10.4.3 Cost Trade

The final step of the methodology is to evaluate the optimum answer. In this

example, Table 28 shows that several uncertainties have been reduced by an order-of-

magnitude. These uncertainties are: Julian date (xl), trim angle-of-attack (xs), axial

aerodynamic coefficient at Mach l0 (xs), initial flight path angle (x12), c.g. lateral offset

(x24), and c.g. clocking angle (X27). Comparison with Table 32 and Table 34 show that

these variables were the ones identified as the most important. Again, the reason for such
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tight tolerances was that the problem was intentionally stressed by adding the Julian date

uncertainty. Therefore these results are academic and are not representative of the MSP

'01 spacecraft or the guidance algorithm.

A trade study was conducted to demonstrate how uncertainty weightings can be used.

For this study, it was assumed that the initial flight path optimum value of ±.0245 deg

was too restrictive (i.e., not feasible with available technology). It was also assumed that

error in arrival Julian date was overestimated and therefore, could be reduced further at

little or no expense. To correct these observations, the weighting values for these

uncertainties were altered and the optimization was performed again to find a new set of

optimum extrema. The new optimization utilized the same metamodel coefficients as the

1st iteration, given in Table 31.

Table 35 shows the results of this trade study. The w/=l, w12=1 column shows the

results for equal weightings, where every uncertainty is given a weighting of unity, and

then normalized by the sum of weightings. These are the 1 st iteration results from Table

28. The next column shows the results when the Julian date (xl) is weighted at wl---0.001

and the initial flight path angle (x12) is weighted at wl2=1000 (all other variables are

weighted at wi=l). Likewise, the final column shows w_--0.0001 and wle=lO0000. In all

cases, the weighting values were then normalized by the sum of the weightings.

156



Table 35: Cost Trade, MSP '01.

Name Init. Val. Units wl=l wt=O.O01 w1=O.O0001

w12=1 w12=lO00 w12=100000

xl jdate 0.5 days 0.07241208 .00237708 0.00011599

x2 bank 5 deg 5 5 5

x3 max_rate 1 % 0.92793034 0.49727147 0.11759256

x4 max_accel 0.178 g's 0.17297628 0.11661445 0.02943623

x5 trim 2 deg 0.13692035 0.04488996 0.01016648
x6 ca_kn 0.1 0.09118567 0.04634969 0.01086605

x7 cn_kn O. 1 O. 1 O. 1 O. 1

x, ca_MlO 0.03 0.00271375 0.00089012 0.0002016

x9 cn_M 10 0.05 0.04274252 0.01896985 0.00437281

xw ca_M5 O. 1 0.0447418 0.01511467 0.00342698

xll cn_M5 0.08 0.01766993 0.00580565 0.00131492

x12 fit_path 0.23 deg 0.02613341 0.08431065 0.08839497

x13 velocity 29 m/s 15.7618974 5.46601654 1.24066563

xj4 azimuth 0.09 deg 0.13061347 0.14482724 0.04139751

xts latitude 0.01 deg 0.01119022 0.01171344 0.02717202

xt6 longitude 0.01 deg 0.00848979 0.00371906 0.00085673

x17 xcg 0.01 m 0.00828815 0.00354243 0.0081436

xls x_error 5266.7 m 3251.20079 1151.09535 261.48801

x19 y_error 5266.7 m 933.951039 306.661309 69.454904

x2o z_error 5266,7 m 1964.79807 646.68233 146.45724

x2j u_error 2.033 m/s 2.04675043 2.05121972 2.08011816

X22 v_error 2.033 m/s 1.48836239 0.56947963 O.12989547

x2._ w_error 2.033 m/s 2.09662743 1.48349171 0.38002743

x24 cg_offset 0.005 m 0.00045295 0.00014852 0.00003364

x2._ mass 2 kg 1.95191636 1.36474 0.35046497

X26 tau 0.7 0.12637274 0.04151624 0.00940313

x27 ansle 1.570795 rad 0.06995173 0.02291612 0.0518975

f cost 1.00000 4.20878 18.17441 204.49926

This table shows how the uncertainty in Julian date is reduced by several orders-of-

magnitude, due to the smaller weighting, while the uncertainty in flight path angle is

increased more than a factor of four, due to the larger weighting. Most all of the other

variables have been reduced somewhat to correct for the higher flight path angle

uncertainty.

The maximum feasible value for any uncertainty can be found by substituting zero for

each of the other uncertainties in the metamodei. Equation 84 shows this calculation,
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whereR 2 is the square of the desired semi-axis of the footprint. The final flight path

value of 0.08839, shown in Table 35, is very close to the maximum possible value,

0.08861.

(84)

For comparative purposes, the cost value shown is for a reciprocal model with equal

weighting. That is to say that the cost value shown is not the same as the objective

function which was minimized. This cost shows a dramatic increase in cost necessary to

relax the uncertainty in initial flight path angle.

In summary, this chapter presented the Mars Surveyor 2001 Lander example,

describing the mission, the simulations, and the results. The purpose of this chapter, to

demonstrate the methodology on a "real world" problem, was completed successfully.

Conclusions, lessons learned, and accomplishments of this research are presented in the

next chapter, Chapter 11.
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CHAPTER I 1

COMMENTS AND CONCLUSIONS

11.1 Methodology Summary

An approach to optimize the uncertainties in the Monte Carlo analysis of spacecraft

landing footprints has been developed. This approach is based on the following

assumptions: (1) the engineer can control dispersions of uncertainty variables by altering

their probability density (+3a extrema) and (2) there exists a real cost to changing any

extremum from the baseline. It follows then, that if the uncertainty dispersions are

controllable, then so are the forecast variables. Therefore, a non-unique set of uncertainty

extrema exists that results in any desired forecast performance. Additionally, any number

of feasible sets of extrema may be ranked according to their associated costs.

A metamodel is used to first write expressions for the semi-major and semi-minor

axes of the landing footprint as functions of the independent uncertainty extrema. In

general, any forecast variable may be used in a constraint. The metamodel, called an

"ellipse surface" because it has elliptical contour lines, is a simplified response surface

that has no linear or cross terms. The coefficients of the metamodel are determined by

performing an (n+l) minimum-point design of experiments, where each experiment

consists of performing a Monte Carlo analysis and constructing a footprint.

A cost-tolerance objective function is written for the cost as a function of the

uncertainty extrema. The recommended function, the "cost-plus-quadratic" function, is a

linear combination of a reciprocal cost model and a quadratic function. Other possible

functions are the reciprocal cost-tolerance model and the minimum Euclidean distance

model.
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Next, anoptimization is performed that minimizes the cost subject to the constraint

that the landing footprint is a specified size. Finally, one or more validation runs are

performed using the optimum extrema to ensure that the desired outcome is obtained.

Optimization Procedure

Prepare the nominal trajectory simulation. Much of the manual time involved in

Monte Carlo analyses is spent preparing the nominal trajectory. This is because

each event in the Entry, Descent, and Landing (EDL) sequence must be modeled,

aerodynamic and mass properties must be obtained, and the trajectory must be

optimized. Typically, an optimization is performed to maximize performance

(e.g., minimize weight) subject to a variety of mission constraints.

2) Construct the Monte Carlo simulation. Complete a table similar to Table 27.

This table provides most of the required mcp input (sim.mci). First, identify the

uncertainties by name, nominal value, distribution, and extrema. The nominal

values for the uncertainties are taken from the nominal trajectory. The

distribution and extrema for each uncertainty must be specified by some means

(typically by experts). Second, identify where each uncertainty will go in the

POST input deck. This is done by placing markers (e.g., ***name***) in place of

values in the nominal input deck. This modified POST deck is the template,

(sim.tpl), which is used to construct the random trajectories. Care must be taken

to match the uncertainty and marker names.

3) Determine the number of simulations to run. Select the number of simulations, s,

from Table 13 or Figure 15 that gives the desired confidence interval at the

desired confidence level. For example, if an error of +2% is desired (with a

confidence of 90%), 3554 simulations should be run. Likewise, if the same error

were required, but with a 95% confidence, 5030 simulations would be

appropriate. For a 99% confidence, 8642 simulations are required. These

confidence intervals are only applicable to bivariate normal (BVN) footprints.
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4) Run the baseline Monte Carlo analysis using the initial guesses for each

uncertainty extrema. Plot and evaluate the footprint and compare it to the target.

The footprint may be constructed using any of the methods described in Chapter

6. However, the BVN method is recommended. If the mean or nominal landing

sites are not near the target, the nominal inputs (nominal POST deck) must be

adjusted.

5) Decide upon the cost model. If actual cost information is not known, then the

cost-plus-quadratic model is recommended because of its better numerical

characteristics. The weightings of the individual uncertainties must also be

determined. More expensive uncertainties should be weighted greater than less

expensive ones.

6) Run experiments to determine the ellipse surface coefficients. If there are

uncertainties present that are not design variables (i.e., will not be optimized),

then the first experiment is run with each design variable set at zero. In other

words, a Monte Carlo analysis is run where only those uncertainties that are no___At

design variables are varied. The results from this experiment determine the

constant terms, bo.k, in the metamodel as shown in Equation 59. Experiments are

also run for each design variable. For these experiments, every design variable is

set to zero except for one, which is set to its initial guess value. The results from

these experiments determine the quadratic terms, bi.k, in the model as shown in

Equation 60.

bo=R 2, xi=0, i=l...n (59)

2

bi= (R/,°)b°)'[x xj=0, j=l...n, jgi (60)

This is the most computationally time-consuming step in the process. Since there

are n design variables (uncertainties) and s simulations per experiment (runs per

Monte Carlo), then n+l experiments (Monte Carlo analyses) and s(n+l)

simulations are required. For example, 27 design variables require 28
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experiments. At 2000 runs each,this amountsto 56,000randomlygenerated

trajectories.Evenat 4 secondspersimulation,thatrequires62hoursof computer

time.

7) Solvethe 2-by-2systemof equations,Equation78, for theLagrangemultipliers.

Initial guessesare requiredfor the Lagrangemultipliers. Theseinitial guesses

need to be somewhatclose to the solution, so some experimentingmay be

required. Oncethe solution is found, substitutethe Lagrangemultipliers into

Equation74. The resulting design variables are the optimum extrema.

oqh0

d2o

1 W o

iwill
&b,.. + &b,., --_ kx, j

(78)

(74)

8) Validate the solution. Use the optimum extrema to run a single Monte Carlo

analysis at the solution point. If desired, several trials may be made at the same

point and the results averaged. Plot and evaluate the footprint and compare it to

the target. The footprint may be constructed using any of the methods described

in Chapter 6. However, the BVN method is recommended.

9) Evaluate whether the new footprint is sufficiently close to the desired ellipse. If it

is sufficiently close, continue. If not, set the initial design variable guesses to the

optimized design variables from step (7). Repeat steps (6) through (9). If the

problem does not converge within a few of these iterations, stop and evaluate the

reason why.

10)Evaluate whether the solution is feasible. In other words, determine if the

optimized uncertainties are physically and economically achievable. If they are
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achievable,end. If not, reevaluatethe uncertaintyweightings. Increasethe

weight of uncertaintiesthat were determinedto be too restrictive. Repeatsteps

(7) through(10). Thesechanges may be evaluated very quickly so long as step

(6) does not need to be repeated.

11.2 Objectives

All the objectives established in Chapter 2 were completed successfully. The purpose

of the proof-of-concept was to show that the methodology would work. The purpose of

the "real world" problem was to demonstrate the method at a realistic scale. Both of

these tasks were accomplished successfully. The following specific observations were

made pertaining to each of these two problems.

11.2.1 Proof-of-Concept

1) The proof-of-concept successfully located the minimum cost extrema that satisfied

the 3-km landing footprint. The appropriateness of the metamodeling technique

was evaluated by comparing three forms of the model based on the quality of their

fits. The standard response surface was deemed unacceptable due to an R-square

value less than .99 and an average error greater than 3%. The remaining models

(the ellipse surface and the squared response surface) were determined appropriate.

Plots of the design space support the solutions found using the Newton-Raphson

iteration.

2) A gridsearch was used to provide a visualization of the design space. The resultant

surface was very closely approximated with the simplified ellipse surface method.

This method is very important because it provides a means for efficiently scaling

the methodology to problems with larger numbers of design variables due to the

minimal number of function evaluations required.

3) It appears more appropriate to fit the square of the range, rather than the range

itself. The two response surface methods, which did not fit R 2, were shown to have
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unacceptableerrors. Comparisonsbetweenthe methodsindicatea factor of four

decreasein averageerrorassociatedwith fitting R2.

11.2.2

1)

MSP '01 Example

The Mars Surveyor 2001 Lander example demonstrated that the developed

solution procedure could be applied to "real world" problems. The solution was

found in only two iterations of the methodology. It is very important to note that

with 27 design variables, this problem could not have been practically solved

using a response surface metamodel.

2) The cost-plus-quadratic function, in conjunction with the method of Lagrange

multipliers with substitution, showed better numerical stability than the other two

objective functions. When attempted, the direct solution of the method of

Lagrange multipliers diverged for a problem with two constraints. The reciprocal

cost-tolerance model led to diverging solutions also when some of the uncertainty

coefficients were found to be small. The minimum-distance model led to

negative solutions.

3) The BVN footprint method was shown to lead to empirical probabilities very

close to the theoretical probabilities. This supports the hypothesis that normal

distributions are appropriate approximations to the down-range and cross-range

distributions (even in case of guided, lifting trajectories). This is important

because the BVN method is the only method that allows the calculation of a

confidence interval, and therefore, a determination of the required number of

simulations.

11.3 Comments

This research has been an academic exercise aimed at demonstrating a methodology

for finding the minimum-cost set of extrema that satisfy the footprint requirements. It is

obvious that when using this methodology in actual problems, the optimum set of

extrema is only as good as the assumed cost function (though the solution will always be
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a feasibleset,if oneexists). Accuratelypredictingthecost,therefore,is a key factor in

obtaining meaningfulresults. Unfortunately,cost is typically very difficult to predict

earlyin thedesignprocess.As a result, the engineer may be faced with certain situations

that require slight modifications to the procedure described above. Some of these

situations are discussed here.

11.3.1 Determining Metamodel Coefficients

When determining the metamodel coefficients, a minimum-point design of

experiments was used, where each coefficient was determined uniquely from a specific

experiment. The value of the design variable for these experiments was chosen

arbitrarily to be the initial values of the uncertainties. However, any non-zero value, xi,

may be used, as shown in Equation 85. The initial value was chosen because it is the

current best estimate of the solution.

b _ (R2-bo)
x_ , x_ =0, j=l...n, j_i (85)

If computer resources are not limited, two or more experiments may be used to

approximate the slope of the design space (using forward or central differencing). If

more experiments are run, the designer may also add the linear response surface terms to

the ellipse surface metamodel.

11.3.2 Uncertainty Correlations

The ellipse surface metamodel is necessarily a very simple model, which assumes

that there are no correlations between design variables. This simplification is necessary

to limit the number of coefficients needed and reduce the computational time. If there are

only small correlations between variables, then this surface is a good approximation to

the actual design space. Multiple iterations of the method will account for small

differences between the actual and approximate surfaces (this was demonstrated in the

"real world" example).

If the correlations are large, but known, then the design variables may be replaced

with a set of uncorrelated variables through a transformation (similar to the BVN
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transformationin Chapter6). If thecorrelationsarelarge,but notknown,thenastandard

responsesurfacemay be usedin placeof the simpleellipse surface. In this case,the

numberof designvariablesmayneedto bereducedthroughascreeningprocess.

11.3.3 Variable Screenine

Determining the importance of each uncertainty is useful both in understanding the

problem, and in screening design variables when necessary. The "importance" of

different uncertainties (in terms of variability of the range) can be determined by

comparing their metamodel coefficients. In general, variables with smaller coefficients

are less important than those with larger ones. Mathematically, the value of bi is related

to the slope of the linear edge of the metamodel surface and represents the change in the

response (range squared) per unit change in the square of the design variable. The units

of bi are range squared divided by the units of the uncertainty squared. Because the units

are different for each design variable, they are not easily compared.

It is more useful to compare the coefficient, x,°._-,, which has units of just range.

However, this coefficient is influenced by the presumed size of the uncertainty extrema,

since it represents the change in range due to a full-scale change in the uncertainty. For

example, entry flight path angle may be very important in determining the size of the

footprint, but if it is allowed to vary only -+0.01 degrees, it may have less effect than

another uncertainty, which is allowed to vary _+100%. Therefore, bi and x°._, only

provide an indication of "importance", and not an absolute measure.

11.3.4 Fixed Budget Solution

This research was conducted around the premise that what was desired was the

minimum-cost uncertainties that would meet a prescribed footprint size. An equally valid

problem would be a search for the smallest footprint available for a fixed budget. In this

case, the objective and constraints are switched as shown in Equation 86. The designer
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may still use the same metamodel and cost-tolerance relations.

departure from the presented methodology.

This would be a small

i=1,2 ..... n

=0

(86)

11.3.5 Discrete Cost Function

If actual cost data is known, it is likely to be discontinuous. A discrete cost function,

however, requires a different optimization method. This is because the method of

Lagrange multipliers presented in this thesis requires continuous functions. A zero-order

method, such as genetic algorithm or simulated annealing, is recommended. The same

metamodel may be used for the constraints.

11.3.6 Side Constraints

If the engineer knows that an uncertainty should be between certain limits, then

placing side constraints on each design variable is an effective method for preventing

unreasonably small or large solutions. However, if any inequality constraints are desired

(e.g., side constraints on each design variable) another optimization method must be used.

This is because the method of Lagrange multipliers applies only to equality constraints.

The same metamodel and objective function may be used in conjunction with any

optimization method without changing the general methodology.

11.3.7 Shifting the Cost Axis

Another method for limiting the decrease of a particular uncertainty, is to use a cost-

tolerance model that goes to infinity at some positive limit, x ti''. This simulates a

tolerance for which there is a non-zero practical lower limit. This can also be

accomplished simply by using a change of variables (given by Equation 87) and solving

for x,'.
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= x, - xl'm ( s7 )

The designer must remember, when using this option, that the design variable must be

set to x/i" (rather than zero) when determining the other metamodel coefficients.

Likewise, the range must be divided by (x ° -xl im)2when determining the associated

metamodel coefficient, as shown in Equation 88.

_
t,, x,--0,j=l...n,  88)

11.3.8 Fixing a Variable

If the designer wishes to fix an uncertainty at a particular value, then the best

approach is to generate a new set of metamodel coefficients, fixing the particular

uncertainty at the desired value. This will have the effect of increasing the constant term,

bo, and reducing the number of design variables by one. If, however, the square root of

the new b0 exceeds the desired range squared, then the problem is infeasible at that

uncertainty limit. This is because the range can not be reduced below the square root of

bo, as shown in Equation 59.

b0=R 2, x,=0, i=l...n (59)

Generating new coefficients, however, requires additional computer time, which may

be expensive. A "quick-and-dirty" solution is to mathematically add the contribution of

the desired uncertainty to the constant term, b0, and keep the remaining coefficients.

This is shown in Equation 89, where b 0 is the new constant term.

bo = bo +b,x 2 (89)

The validity of this approach is dependant upon the validity of the original

assumption of independent variables. The engineer must understand in this case that the

coefficients are being used somewhat outside their original intended purpose. Remember

that when the coefficients are determined, only the design variables are set to zero (i.e.,

the uncertainties which are not optimized are allowed to vary).
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11.3.90ver-shoot_ Under-shoot

It is often the case that the variables that result in over-shoot (positive) down-range

miss-distances are different from those that result in undershoot (negative) miss-

distances. This can lead to asymmetric footprints. In this case, the down-range data may

be divided into positive and negative data sets. These data sets may be used in a problem

with three constraints: positive semi-major axis, negative semi-major axis, and semi-

minor axis. The means of constructing the footprint must likewise account for different

sizes in positive and negative down-range.

1)

2)

3)

11.4 Research Accomplishments

This research achieved the following ten specific accomplishments.

This research accomplished its primary goal - to go beyond the capabilities of

current Monte Carlo analysis of planetary entry trajectories. By employing an

optimization methodology, this research has shown that is possible to control the

size of the landing footprint and establish tolerances for mission uncertainties. In

a sense, the Monte Carlo analysis has been performed backwards: beginning with

a desired output and proceeding to the required inputs. Although the emphasis in

this research was landing footprints, any Monte Carlo forecast variable might be

controlled through a constraint in the same way.

A simplified metamodel was developed, the "'ellipse surface", that scales well.

This metamodel is equivalent to a response surface without linear or cross terms

(i.e., only the constant and squared terms are present). This simplified model

enables solutions of typical "real world" problems. This is because the

computational expense associated with a standard response surface is prohibitive,

even for problems with more than a just a few uncertainties.

An objective function was formulated that had better properties than both the

reciprocal cost-tolerance model and the minimum Euclidean distance model. The

"cost-plus-quadratic" model provides a more stable numerical problem because of
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4)

5)

6)

7)

two desirable characteristics: (1) the cost becomes infinite as the uncertainty is

reduced to zero, and (2) the unconstrained minimum occurs when the

uncertainties are set to their initial values.

Equations were presented for three possible objective functions: the reciprocal

model, the minimum-distance model, and the cost-plus-quadratic model. These

different models allow the user to tailor the method to a particular problem.

Following the procedure outlined in Chapter 8, many more functions are possible.

For instance, any of the twelve cost-tolerance models listed in Chapter 8 may be

used.

A technique for solving a constrained optimization with many design variables

was explained. This technique is outlined in detail in Chapter 8 with supporting

information in Appendix A. The classical methods of Lagrange multipliers,

Newton-Raphson iteration, and LU decomposition were all applied to solve this

problem. A numerical solver was written in C ÷÷ to perform this optimization.

Five methods of constructing footprints were described in detail. These

descriptions included construction techniques, assumptions, and probabilities.

Three methods created circular footprints: the 3-sigma range, Rayleigh, and

Weibull methods. Two methods generated elliptical footprints: the 3-sigma

down-range and cross-range, and the bivariate normal (BVN) methods. Any

probability may be specified for the Rayleigh, Weibull, and BVN methods.

Advantages and disadvantages of each were discussed.

The BVN method of constructing a footprint ellipse was recommended. This

method is the most general, elegant, and statistically sound method, requiring only

that the down-range and cross-range distributions be normally distributed. A

transform, based on the covariance matrix of the data, is used to project a circle of

a given probability from a standard, uncorrelated, bivariate normal space to the

actual, correlated, BVN space. A procedure for constructing the ellipse and

measuring the semi-major and semi-minor axes was presented. The use of this
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8)

9)

10)

method also allows the calculation of confidence intervals on the predicted size of

the ellipse.

A confidence interval on the size of the BVN footprint was derived. This

confidence interval for the semi-major axis and semi-minor axes of the ellipse is

based on the confidence interval for the sample variance of a normal distribution

and is independent of the ellipse probability. Because the confidence interval is a

function of the number of sample points, it may be used to determine, a priori,

how many simulations must be performed to achieve a given accuracy in the size

of the footprint.

The "'ran 1" and the Perl built-in "rand" random number generators were evaluated

for their appropriateness in modeling random processes. These functions were

compared against each other and the Matlab built-in random number generator in

seven tests. Some of these tests were graphical and some were statistical.

Possible weaknesses were found in both functions. However, a head-to-head

comparison in the actual optimization process (the most demanding and telling of

all the tests) showed that both functions produced similar results.

The Monte Carlo process was automated with the "mcp" (Monte Carlo POST)

program. This program, written in Perl, orchestrates the flow of information

needed to perform Monte Carlo simulations. All the problem specific information

is contained within two files: an input file, which defines the uncertainties and

forecast variables; and a template POST input deck, which defines how the

uncertainties are inserted into the simulation. Mcp also has the capability to run

multiple simulations in parallel on multi-processor computers.
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APPENDIX A

MATHEMATICS REVIEW

A.1. Method of La2ran2e Multipliers

The method of Lagrange multipliers is a well-known technique, devised by the

eighteenth-century French mathematician Joseph Louis Lagrange, for solving

optimization problems with equality constraints. [123] This technique allows classic

methods of solving unconstrained optimization problems to be used in constrained

optimization problems. The trick is to augment the original objective function with the

product of the constraints and unknown constants, X, known as Lagrange multipliers.

The minimum of this augmented objective function, Equation 90, satisfies the constraints

exactly while minimizing the original objective function. Equation 90 is often referred to

as the Lagrangian function in texts. [45] This technique eliminates the ,_ constraints, but

at the price of adding _ new unknowns.

f

k=l

The Lagrange multipliers are not just arbitrary constants, however, they have some

physical meaning. Rao [124] shows that the value of the multipliers (at the solution

point) is the marginal change in the objective function with respect to the constraint. In

other words, _. is the change in objective function that would accompany a relaxation of

the constraint. Therefore, X indicates how tightly the constraint is binding at the optimum

point.
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A.I.1 Direct Solution

Rao [124] shows that a necessary condition for a function, fix), subject to the

constraints hk(x)=O, k=l.. g, to have a relative minimum at a point x* is that the first

partial derivatives of the Lagrangian with respect to each of its arguments must be zero.

This means that we can solve the original optimization problem by minimizing the

Lagrangian in the normal way (we solve for a zero gradient). An n+g system of

equations is formed by taking the partial derivative of the augmented objective function

with respect to each of the n design variables and _ Lagrange multipliers. We set each of

these partial derivatives to zero and solve them as a system of simultaneous non-linear

equations. Note that the partial derivative of the Lagrangian with respect to any of the

Lagrange multipliers is the value of the corresponding constraint itself. This ensures that

each of the constraints will be satisfied when the solution is found.

This method does not guarantee, however, that a minimum will be found. In fact, the

requirement for a zero gradient is satisfied by any critical point. For the solution to be a

minimum, the Hessian (matrix of second partial derivatives) must be positive definite.

[45] Even this only guarantees a relative minimum and not a global one. A Newton-

Raphson iteration is used to solve this system of simultaneous equations.

The advantage of this solution method is that it can be applied generally to any cost

function and set of equality constraints for which the derivatives are known. The

disadvantage is that instabilities can occur in the numerical solution of these equations

(by Newton's method), which lead to divergence. Often, very good initial guesses are

required.

A.I.2 Solution with Substitution

A slightly different formulation of the problem can be obtained using substitution.

Enforcing the tangency of the objective and constraint functions at the solution point, we

set the partial derivative (with respect to the n design variables only) of the objective

function equal to the partial derivative of the second term in the Lagrangian. This is

shown in Equation 91.
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3f ' Ohk
_----=Y,2,--:---- i=1,2 ..... n (91)
Ox, Ox,

Each of these n equations is then solved for expressions that relate the design

variables to the Lagrange multipliers. This is easily done when the equations are a

function of only one design variable (independent of the other design variables). For

instance, if the Lagrangian is given by Equation 92, then equating the partial derivatives

yields Equation 93. This equation is easily solved for x; to give Equation 94.

7f .x)= w.=-.+2 a. + -.:
i=1 Xi

(92)

- w,x° xf = 2x,(,,tob,o + ,_b_, ) ( 93 )

1

{}--- W i X_0

x, = "&--_,o+ _b,, ( 94 )

Now that equations have been written for each of the design variables as a function of

the Lagrange multipliers, substitute these expressions into the k constraint functions.

Since the constraint functions must all equal zero, this now forms a system of g

simultaneous, non-linear equations. As with the direct solution described above, this

system of equations is solved numerically using a Newton-Raphson iteration.

The advantage of this formulation, over the direct solution, is a smaller and more

stable system of equations. Amazingly, the size of the system is limited only by the

number of constraints (no matter how many design variables are present). The

disadvantage is that the objective function must be chosen carefully so that the equations

can be solved easily for xi. Three possible objective functions that meet this restriction

are the reciprocal model, the minimum-distance model, and the cost-plus-quadratic

model.

In summary, the method of Lagrange multipliers reduces an optimization problem

with constraints to one that is unconstrained (and therefore much easier to solve). This
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methodis only applicable,however,to equalityconstraints.Thesolution to this problem

maybe madeeither directly or aftera substitutionthat reducesthe sizeof the systemto

thenumberof constraints.

A.2. Newton-Raphson Method

The Newton-Raphson method (often called just Newton's method) is a well-known

iterative method for solving root-finding problems in one dimension. This method is

easily extended, however, to multiple dimensions and is therefore applicable to the

solution of simultaneous non-linear equations. This method solves a system of non-linear

equations by expanding each of the equations using a Taylor's series. The higher order

terms (those with higher than first derivatives) are neglected, which introduces an error

term.

The neglected error term is of order (AX) 2. Its neglect leads to a system of linear

equations. Its existence, however, demands that the solution be repeated until AX is very

small. Geometrically, this method is equivalent to approximating the intersection of

multiple surfaces with the intersection of their tangent planes.

Beginning with an initial guess, X °, the solution proceeds iteratively by updating the

guesses, X°+AX. The Taylor's series expansion (about the initial guess) is shown in

Equation 95.

--o " [ Of -o )_Xi order{(AX ): } (95)°+ i(x)+Z +
i=lL "_i _l

Because the current guess, X °, is known at the beginning of each iteration, the only

unknown in Equation 95 is the update AX. Written in matrix form, the partial derivative

terms from the n equations become an n-by-n matrix, J. This matrix of partial derivatives

is known as the Jacobian, Equation 96. The system of equations given by Equation 95

becomes Equation 97. The X ° subscripts indicate that the Jacobian and the right-hand

side of Equation 97 are functions of the current guess.
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of,
OX, _X 2 OX.

o3f2 Of2 o3f2
..,

OX, OX 2 OX_
.. • •.. ."

,.•

OX, OX 2 OX.

( 96 )

J o O7 (97)

A.2.1 Direct Solution

In the case of the direct solution to the method of Lagrange multipliers (described in

5.1.1), a non-linear system of equations is derived from the partial derivatives of the

Lagrangian with respect to its arguments. The vector of these partial derivatives is the

gradient of the Lagrangian, Equation 98, which is given the symbol, V}'.

OX,

 x-7

of
OX,

(98)

The partial derivatives of these equations (needed in the Taylor's series expansion)

are the second partial derivatives of the Lagrangian with respect to its arguments• This

creates an (n+O by (n+O matrix of second partial derivatives known as the Hessian,

Equation 99, which takes the place of the Jacobian in Equation 97. Remember that the

vector X, in this case, includes both the n design variables and _ Lagrange multipliers.

Substituting, Equation 97 becomes Equation 100.
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n_ _-"

,.°
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ax2ax, _x_ ax2ax°
• .. •

ax.ax, ax.ax_ ax_

(99)

H _oAJT"=-Vf_o ( 100 )

This system of linear equations is solved using the efficient PLU decomposition

method. The variables are updated and the process is repeated iteratively until the

method converges to the solution. Because Newton's method has quadratic convergence,

typically only a few iterations are required.

A.2.2 Solution with Substitution

In the case of the solution to the method of Lagrange multipliers with substitution

(described in 5.1.2), a system of non-linear equations is derived from the constraint

functions. The partial derivatives of these equations (needed in the Taylor's series

expansion) are just the partial derivatives of the constraints with respect to the Lagrange

multipliers. Remember that the vector X, in this case, includes only the £ Lagrange

Substituting, Equation 97 becomesmultipliers. This creates an t by t Jacobian matrix.

Equation 101.

j&Z = ( I01 )

This system of linear equations is solved using the efficient PLU decomposition

method. The variables are updated and the process is repeated iteratively until the

method converges to the solution. Because Newton's method has quadratic convergence,

typically only a few iterations are required.

In summary, Newton's method is a numerical technique that reduces a system of

simultaneous non-linear equations to a system of simultaneous linear equations (which
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aremucheasierto solve). This simplification, however,requiresan iterative solution

procedure.

A.3. PLU Matrix Decomposition

PLU decomposition (or just LU decomposition) is a numerical technique for solving

the system of simultaneous linear equations given by Equation 102. Here A is an n-by-n

matrix and x and b are n-vectors. This technique is similar to the well-known Gaussian

elimination, but with an important distinction. The data vector, b, does not need to be

known while performing operations on the matrix A.

Ax=b (102)

Ralston and Rabinowitz [125] describe the LU technique as equivalent to dividing the

Gaussian elimination algorithm into two distinct processes. The first process is the

triangular decomposition of A (splitting the matrix into two triangular matrices), which is

independent of b. The second process is a combination of forward- and back-substitution

to get the solution x. This means that once the first process is complete, we can solve

Equation 102 for any right-hand side b. The procedure is as follows.

Write the matrix A as a product of two matrices LU, where L is lower triangular (zero

elements above the diagonal) and U is upper triangular (zero elements below the

diagonal). This is done because the solution of a triangular set of equations is quite

trivial. Once the decomposition of A is known, solve the linear set Equation 103 in two

steps. First, solve for the vector y such that Ly=b, Equation 104. Then use the result to

solve Ux=y, Equation 105 for x. Substituting Equation 103, Equation 104, and Equation

105 into Equation 102, Equation 106 shows that this process is indeed the same as

solving Equation 102. The first step, Ly=b, is solved by forward substitution and the

second step, Ux=y, is solved by back-substitution.
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A = LU ( 103 )

Ly=b (104)

Ux= y (105)

(A)x=(LU)x= L(Ux)= L(y):b (106)

LU decomposition is performed "in-place" by Crout's Algorithm, which is described

in Numerical Recipes [81]. "In place" means that the corresponding Lij or U 0 can be

stored in the location that Aij used to occupy. This reduces memory requirements and is

possible because each A 0 is used only once and never again. The diagonal elements of L

are neither calculated nor stored (because they are always unity by design). The elements

of the L and U matrix are calculated using Equation 107 and Equation 108.

i-I

k=l

( 107 )

L,j: A,j- L,_U_/
k=l

(lO8)

The order in which these equations are solved, however, is important. Crout's

method fills in the matrix by columns from left to right, and within each column from top

to bottom. Partial pivoting (the selection of the largest element in a column to reduce

round-off error) is essential for the stability of Crout's method. The P in PLU is a

permutation matrix. This is an identity matrix which has had columns interchanged. Pre-

multiplying by P has the same effect as performing the row interchanges necessary for

partial pivoting.

In summary, the LU decomposition is an efficient algorithm for solving the system

given by Equation 102. The efficiency comes from the forward- and back-substitution

used in the solution. The advantage over Gaussian elimination is that the data vector b

does not need to be known during the decomposition of A. This means that the

decomposition can be performed once and then used many times with different data

vectors.
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A.4. Cholesky Matrix Decomposition

Cholesky decomposition is closely related to LU decomposition. If the matrix A

happens to be both symmetric and positive-definite, then it has a special decomposition,

Equation 109, called the Cholesky decomposition (sometimes referred to as "taking the

square root" of a matrix). In this decomposition, the upper triangular matrix, U, is

actually the transpose of the lower triangular matrix, L. Symmetric means that Ao=Aji for

all i andj. Positive-definite means that A has all positive eigenvalues.

A = LL r ( 109 )

A Fortran routine for performing the Cholesky decomposition is given by Press et al.

[81]. The updating formulas (analogous to Equation 107 and Equation 108) are given by

Equation ll0 and Equation Ill. These of these formulas guarantees that the matrix

remains positive definite and nonsingular during the decomposition, even in the presence

of finite round-off.

I

L,,= A,,--EL_k
k=l

Lj, =-_, A o- = L,kLjk

(110)

(111)

When you can use it, Cholesky decomposition is about a factor of two faster than LU

decomposition for solving the linear system, Equation 102. This is in part due to the

symmetric nature of the problem, which requires calculating only one of the triangular

matrices. Another advantage of this method is that Cholesky decomposition is extremely

stable and does not require pivoting. In fact, the success or failure of the Cholesky

decomposition routine is an efficient way to test whether or not a symmetric matrix is

positive-definite.
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APPENDIX B

SOURCE CODE

B.1. "mcp" Perl Module

package MCPost;

....................................

Get the Outputs from the PRO File

....................................

sub read_pro(

my($i, Sj, $n, Sm, names);

my %mco= %main::mco;

my phases= main::phases;

my normals= main::normals;

my specials= main::specials;

my Spro file= _[0];

...............................

Open the .pro

................................

open PRO,"<$pro file" or die "Can't open Spro file ->

Read header and title

........................

for($i=0;$i<12;++$i}{

get_char(PRO, 8);

}

..................................

Read number of print variables

..................................

m= get_int(PRO, l);

Sm= m[0];

return if $m==0;

...............................

Discard the next two char'8

...............................

get_char(PRO, 8);

get_char(PRO, 8);

................................

Read names of print variables

................................

for($i=0;$i<$m;++$i)(

push names, get_char(PRO, 8};

$itime= $i if $names[$i]=~/^time {4)$/;

)

................................

Get the numbers n at a time

................................

$!\n";

gets 8 characters at a time

because of Fortran's char*8

must put integers in an array

even though there is only one

these are char*8 also

index of "time"
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while (i){

n= get int(PRO, l); have to put in array

Sn= n[0]; why is this different than m?

last if $n<$m; ran out of numbers

$nuln= $n/$m; POST prints this many times

d= get_double(PRO,$n); here are the numbers we want

for($j=0;$j<$num;++$j)(

get all the numbers

foreach $outvar (names){

$outvar= ~ tr/ //d;

Spro{$outvar)= shift d;

)

check for phase change/ get normals

if($pro{tdurp)==0){

$phase= shift phases;

foreach Sname (normals){

Srec= $mco{$name};

if($rec->(critr) == $phase){

Srec->{record}= $pro{$rec->{outvar}J;

)

)

)

check for specials

foreach Sname (specials){

$rec= $mco{$name};

if( Smco{time}== $pro{ $rec->{critr} } ){

$rec->{record}= $pro{$rec->{$outvar)};

)

)

)

)

If last phase not found take final values

...........................................

foreach $phase (phases){

foreach Sname (normals){

$rec= $mco{$name};

if($rec->{critr} == Sphase){

$rec->{record}= $pro{$rec->{outvar});

)

)

}

Get the Outputs from the PRO File
....................................

sub write_dat(

my %mco= %main::mco;

my ocalcs= main::ocalcs;

my outputs= main::outputs;

my $seed= _(0];

my $dat= _[I];

open(DAT,'>>$dat") or die "Can't open DAT, stopped';

$data= pack('i',$seed);

$calc_output= join ' ', ocalcs;

foreach $output (outputs){

if( $calc output=~ m/( ^] )$output( I$)/ ){

Sexpr= Smco($output}->{expr);

Svalue= eval $expr;

)

else{

$value= $mco($output}->{record);

)

if ($value eq "')(
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warn qq[WARNING: "$output" not found.., deleting from liSt\hi;

}
else{

$data.= pack('d',$value);

push founds, $output;

)

)

syswrite DAT,$data, 4+64_founds;

main::outputs= founds;

close{DAT);

Reads n characters

characters are 1 byte long

.............................

sub get_char{

my $chars;

my Strash;

my Sin= __0];

my $n= _[I];

sysread Sin, Strash, 4;

sysread Sin, $chars, Sn;

sysread fin, $trash, 4;

return $chars;

my characters

unwanted garbage

input file handle

4 garbage bytes

here are the good bytes

4 more garbage bytes

Reads n integers

integers are 4 bytes long

.............................

sub get_int{

my integers;

my $trash;

my $buffer;

my Sin= _[0];

my $n= _[I];

sysread Sin, Strash, 4;

sysread Sin, $buffer, 4"$n;

sysread Sin, Strash, 4;

integers= unpack "iSn',$buffer;

return integers;

}

my integers (an array)

unwanted garbage

temporary storage

input file handle

4 garbage bytes

here are the good bytes

4 more garbage bytes

Reads n doubles (real*8's)

doubles are 8 bytes long

.............................

sub get_double{

my doubles;

my Strash;

my $buffer;

my Sin= _[0];

my $n= _[I];

sysread Sin, Strash, 4;

sysread Sin, Sbuffer, 8"$n;

sysread Sin, Strash, 4;

doubles= unpack "dSn',$buffer;

return doubles;

}

my doubles (an array)

unwanted garbage

temporary storage

input flie handle

4 garbage bytes

here are the good bytes

4 more garbage bytes

Definitions for use in regular expressions

.............................................

sub definitions{

Defines a number

Sa_number= q{

(?x) allow whitespace & cor_nents
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);

{?:\d+ one or more digits

\.? might have a dot (.)

\d* zero or more digits

(?:e[+-]?)? could be exponential

\d* zero or more digits

I (or)

\. a leading dot

\d+ one or more digits

(?:e[+-])? could be exponential

\d _) zero or more digits

Defines Dispersion Sourcess (Input variables +/-x )

....................................................

Smain::a_dispersion= q{

(?xi) WS & comments, case insensitive

\b(\w+)kb a word ($I= name)

\s.(?:=>l:l,l\s÷)\s" => or , or : or ws

(}.$a_number.q{) a valid number ($2= nominal)

\s*k+ks*/ks*-ks* +/-

(}.$a_number.q{) a valid number ($3= 3-sigma)

ks*

\(?(%\.?l\w+\.?)\)? % or word ($4= units)

\s*(?:=>l:l,l\s+)is* => or , or : or ws

(uniform I uniform or

triangle I triangle or

triangular] triangular or

normal I normal or

gauss\an) gauss\an ($5= distribution)

is*\;?ks" optional semi-colon

];
..........................................

Defines Dispersions (special case: +x/-y )

...........................................

Smain::a_special_dispersion= q{

(?xi) ws & con_nents, case insensitive

\b(kw+)kb a word

\s,(?:=>l:l,lks+)ks* :> or , or : or ws

().$a_number.q() a valid number

\s*k+ks* +

().$a_number.q() a valid number

\s*/ks* /

\s*-ks*

().$a_number.q{) a valid number

is*

\(?(%\.?Ikw+\.?)\)? % or word

\s*(?:=>l:l,l\s+)ks ° => or , or : or ws

(uniform I uniform or

triangle I triangle or

triangular I triangular or

normal I normal or

gauss\an) gauss\an

\s*k;?ks* optional semi-colon

);

Defines Output Variables ( begining of phase x)

................................................

$main::an outvar= q{

(?xi)

$I= name)

$2= nominal)

$3= +3-sigma)

$4= -3-sigma)

$5= units)

($6= distribution)

ws & con_nents, case insensitive

\b(kw+)kb a word ($i= name)

\s*(?:=>l:l,lks+)is* :> or , or : or ws

\b(kw+)ib a word ($2= POST variable)

\s*(?:lat)ks* or at

ks*phase\s* phase

(\d÷) a number ($3= phase number)

\s*(?::>i:I,l\s÷)\s" => or , or : or ws
\(?(%\.?liw+\.?)?\)? % or word (optional) ($4= units)
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\s*\;?\s* optional semi-colon

(?:[/]/?\s*(\S.*\S)}? optional cormnent

};
.............................................

Defines Special Output Variables ( time x)

.............................................

Smain::a special_outvar= q{

(?xi)

\b(kw+)\b

\s'(?:=>f:(,I\s+)\s*
\b(\w+)\b

\s*(?:lat)\s*

\s*timeks*

\b(kw+)kb

\s'(?:=>{:{,{\s*l\s*
\(?(%\.?Ikw+\.?)?\)?

\s*i;?is*

(?:[/]/?\s*{\S.*\S))?

};
............................................

Defines Calculated Variables (Eval)

............................................

$main::a calculated var= q{

(?x)

\b(\w+}kb

\s*=\s*

(?!>)

(.+)

\s*k;ks*

\(?(%\.?l\w+\.?)?\)?
ks*

(?:[/]/?\S*(\S.*\S))?

};
............................................

Defines an Include File Input

............................................

Smain::an_include input= q{

(?xi)

\*

ks*include\s*

\,?

([\w\l]+)

(.\w+)?

\'?

\s*(?:=>l:I,Iks+)ks*

\s*Iks*

I?:..l:l-ltol
\s*(\d+)Ss*

\s*\;?\s*

(?:[/]/?\S*(\S.*\S})? optional cormment

);
............................................

Defines an Input Marker (*** whatever ***)

............................................

Smain::a marker= q{

(?x) allow ws & cormnents

\*{2,3} **, ***

\s*Sb(kw+)SbSs* a word

\*(2,3} **, ***

);
............................................

Defines an Include File Marker

............................................

Smain::an_include= q(

(?xi)

($5= description)

ws & cor_nents, case insensitive

($i= name)

($2= POST variable)

($3= special variable)

($4= units)

($5= description)

($I= name)

($2= cormnands)

($3= units)

($4= description)

a word

=> or , or : or ws

a word

or at

time

a word

=> or , or : or ws

% or word (optional)

optional semi-colon

optional comment

allow ws & con_nents

a word

(not a =>)

stuff

mandatory semi-colon!

% or word (optional)

optional comment

ws & cormnents, case insensitive

include

optional '

file stuff ($i= name)

optional extension ($2= ext)

optional '

=> or , or : or ws

1

.. , : , - , or to

a number ($3= max)

optional semi-colon

($4= description)

($I: name)

ws & comments, case insensitive

\* *
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};

\s'include\s* include

\*(2,3]\s* "*, ***

\'? optional '

([\w\/.]+) file stuff

\'? optional '

\s*\*(2,3} **, "*"

Defines an Event

............................................

Smain::an_event= q{

(?xi)

($I= name)

ws & conm_ents, case insensitive

);

\n(?!c) not a comment

\s*event\s'=\s* event =

(\d+) a number

\s*,

(Sl= phase)

Determine distance from Reference Lat, Long

......................................................

sub distance(

my($1at,Slong,$1atref,$1ongref,Sae,$be)= _;

ae= equatorial radius

be= polar radius

my(Se,$il,$jl,$kl,Si2,Sj2,Sk2,Sd);

my $rpd= 3.141592654/180.0;

Slat*= Srpd;

$1ong*: $rpd;

Slatref'= $rpd;

$1ongref*= Srpd;

Se= sqrt(l-(Sbe/$ae)**2);

$ii= abs($ae/sqrt(l-$e**2*sin($1atref)**2))*cos($1atref)*cos(Slongref);

Sjl= abs($ae/sqrt(l-$e*°2*sin($1atref)**2))*cos(Slatref)*sin($1ongref);

$kl= abs(Sae*(l-$e**2)/sqrt(l-$e**2*sin($1atref)**2))*sin($1atref);

$i2= abs(Sae/sqrt(l-Se**2*sin(Slat)**2))*cos(Slat)*cos($1ong);

$j2= abs{$ae/sqrt(l-$e**2*sin($1at)**2))*cos(Slat)*sin($1ong);

$k2= abs($ae*(l-Se**2)/sqrt(l-$e**2*sin(Slat)**2))*sin(Slat);

Sd= sqrt((Si2-$il)**2+($j2-$jl)**2÷(Sk2-Skl)**2);

return $d;

)

i;

! /usr/sbin/perl

use MCPost;

use RandDist;

stand();

"mcp" Executive

Default Files

......................................

Ssim= SARGV[0];

$post= "../post';

$tpl= "Ssim.tpl';

$rnd= "Ssim.rnd";

$oat= "$sim.oat';

$rrn= "$sim.rrn';

Sour= "$sim.out';

$dat= "$sim.dat';

$mat= "$sim.mat';

$n_nf= "$sim.m';

template file (POST .inp w/ markers)

random seed file

one-at-a-time seed file

rerun seed file

output file

temporary output data file

matlab .mat file (binary data)

matlab .m file {plot definitions)
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Defaults

$nseg= i0;

$nruns= 800;

$nominal= 0;

$monte= I;

$ovat=0;

$rerun=0;

number of parallel processes

number of montecarlo runs

MCPost::definitions();

Process Monte-Carlo Input File (.mci)

.....................................

$matlab= 0;

$perl= 0;

open(MCI,'<$sim.mci

while(<MCI>)(

next if m/^

($post =$I,

$tpl =$i if m/set\s+template\s*(\S*\.tpl)/i;

Srnd =$i if m/set\s+seeds\s*(\S*\.rnd)/i;

$oat =$i if m/setks+ovat\s*(\S*k.oat)/i;

$rrn =$I if m/set\s+rerunks*(kS*\.rrn)/i;

Sout =$I if m/set\s+output\s*(\S*\.out)/i;

$dat =$I if m/setks+data\s*(kS*\.dat)/i;

$mat =$I if m/set\s+matks'(lS*k.mat)/i;

Sr_nf =$I if m/setis+mfile\s*(\S*\.m)/i;

") or die "Can't open MCI, stopped'; monte carlo input

ks,(\\\/) (?!!)\/?/; next if a conTnent

print "$postkn') if m/(?:k!Isetks+post)ks*(kS*postkS*)/i;

if m/setks+nsegks*(\S*)/i;$nseg =$I

$nruns =$I if m/set\s+nruns\s*(\S*)/i;

Smatlab=l, next if m/<matlab>/i;

Smatlab=0, next if ( $matlab and m/<kkmatlab>/i );

$mattext.= $_, next if Smatlab;

Sperl=l, next if m/<perl>/i;

$perl=0, next if ( $perl and m/<\\perl>/i );

Sperltext.= $_, next if $perl;

if(m/$an_outvar/) {

$name= {);

$mco{$i}= Sname;

Sname->(outvar}= $2;

$name->{critr}= $3;

$name->{units}= $4;

$name->{corm_ent}= $5;

push normals, $i;

push outputs, $i;

}
if(m/$a_special_outvar/)(

$name= {);

$mco{$i}= $name;

$name->{outvar} = $2;

$name->{critr}= $3;

Sname->{units}= $4;

Sname->(cor_nent)= $5;

push specials, $i;

push outputs, $i;

}
if(m/$a_calculated_var/){

$name= (};
$mco{$i}= $name;

$name->{expr)= $2;

$name->{units}= $3;

$name->{con=nent}= $4;

push calcs, $I;

matlab start

matlab stop

save matlab text

perl start

perl stop

save perl text
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if(m/$a dispersion/){

$name= {);

$mci{$I}: $name;

$name->{nominal}= $2;

5name->(actual)= 52;

5name->(units}= $4;

5name->{distr)= $5;

if($name->{units) eq '%'){

Sname->{high}= $2"(i÷$3/i00);

Sname->(1ow)= 52"(i-53/i00);

}

else(

Sname->{hish}= $2+$3;

$name->{low}= $2-$3;

)
)

if(m/$a special_dispersion�){

5name=();
Smci{$1}= Sname;

5name->{nominal)= $2;

Sname->{actual}= $2;

Sname->{units)= 55;

$name->(distr}= 56;

if(Sname->(units} eq '%')(

)

else{

Sname->{high)= $2"(1+$3/100);

Sname->{low}= $2"(I-$4/100);

$name->{high)= $2÷53;

Sname->{low}= $2-$4;

)

}

if(m/San_include_input/){

Sname: (};

Smcf($1.$2}= $name;

$name->{file)= $i;

Sname->{ext)= $2;

$name->{max)= $3;

Sname->(cor_nent)= $4;

push includes, $i.$2;

]

}

close (MCI) ;

Determine if Calculated variable is input or output
......................................................

CALC: foreach $calcvar (calcs){

Sexpr= Smco($calcvar)->(expr};

foreach 5outvar (normals, specials)(

if($expr =- m/$outvar/){

push ocalcs, $calcvar;

push outputs, $calcvar;

foreach $name (keys %mco){

Sreplacement= '$mco('.$name.'J(record)';

Sexpr =~ s/$name/$1$replacementS2/g;

}

Smco($calcvar}->{expr}=$expr;

next CALC;

)

)

push icalcs, $calcvar;

Redirect STDOUT & STDERR

.............................................

'cat $sim.mci 5tpl • $out';

open(STDERR,'>>$out') or die "Can't open OUT, stopped';

select STDERR;

open output
make it STDOUT too
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Slurp the template POST deck

.............................................

open(TPL,'<$tpl') or die "Can't open TPL, stopped';

undef $/;

Spost_deck= <TPL>;

close(TPL);

$/= "\n';

open template

change line seperator

slurp the whole thing!

close template

reset line seperator

Check to see if any markers aren't found

or any inputs aren't used

.............................................

markers= $post_deck =- m/$a_markerl$an_include/g;

$inputs= join ' ', keys %mci, keys %mcf, icalcs;

foreach $marker (markers){

next if $marker eq "';

warn qq[DANGER!: "$marker" not found in input\n]

if $inputs!~ m/(^l )$marker( l$)/;

)
$markers= join ' ', markers;

foreach $input (keys %mci, keys %mcf, icalcs){

warn qq[WARNING: "$input" input not used\n]

if Smarkers!~ m/(^l )$input( iS}/;

)

get all markers

Get the Phases

................................

phases= $post_deck =~ m/San_event/g; get all phases

Create Seed file

................................

($nominal= i, $monte=0) if SARGV[I] eq "nominal";

($ovat= I, $monte=0) if $ARGV[I] eq "ovat";

($rerun= i, Smonte=0) if $ARGV[I) eq "rerun';

print "$nominalkt$monte\t$ovat\t$rerun\n';

$nruns= 0 if $nominal;

(monte_seeds(), $seed_file= Srnd) if ($monte or $nominal);

(ovat_seeds(), $seed_file= Soar) if $ovat;

(rerun_seeds(), $seed_file= Srrn) if $rerun ;

Open SEED file (.rnd/.rrn/.oat)

................................

open(SEEDS,'<$seed_file'} or die "Can't open SEEDS, stopped";

sysread SEEDS, Sbuffer, 4"3;

i= unpack('i3',$buffer);

$1ength= i[0];

$n= i[l];

Sm= i[2];

sysread SEEDS, Sstar_D, $1ength;

Process control: launches & maintains nseg processes

.......................................................

$i= i; intialize counters

$count= I; intialize counters

open(DAT,'>$dat') or die "Can't open DAT, stopped";

Run nominal case

..................................

sysread(SEEDS, $buffer, 4+8"$m) or die;

ntunbers= unpack('id$m",$buffer);

$seed= shift numbers;

read numbers from SEEDS

put the numbers in this array

the seed number is first
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foreach Shame (keys %mci)(

Smci($name}{actual}= shift numbers;

}

run_post();

store the rest

PROCESS: while(l){

array

Get actual values from SEEDS file

..................................

sysread{SEEDS, Sbuffer, 4+8"$m) or next PROCESS;

numbers= unpack('idSm',$buffer);

Sseed= shift numbers;

foreach Shame (keys %mci){

Smci{$name}{actual}= shift numbers;

]

read numbers from SEEDS

put the numbers in this

the seed number is first

store the rest

FORK : (

if($pid= fork){

...............................

parent

child pid is available in $pid

...............................

$iproc{$pid}= $i;

{++$i,++$count, redo PROCESS) if $count<$nseg;

)

elsif(defined $pid){

child

run__post();

exit 0;

}

elsif($! =~ /No more process/){

.......................

recoverable fork error

........................

sleep I; sleep one second

redo FORK; try the fork again

]

else{

non-recoverable error

......................

die "Can't fork: 5!';

)

}

continue{

$pid= wait;

last PROCESS if Spid==-l;

$i= $iproc{$pid) if $iproc{$pid);

delete $iproc{$pid};

)

close(SEEDS);

Read Outputs from the DAT File

....................................

print "reading DAT file...\n';

open(DAT,'-$dat') or die "Can't open DAT, stopped';

Sarray_size= 0;

RUN: while(ll{

sysread(DAT, Sbuffer, 4) or last RUN;

seeds= unpack "i', Sbuffer;

÷+$array size;

Sn=$array size;

push runs, seeds[0];

foreach $output (outputs){
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Svalue)/$n;

)

)

close (DAT) ;

sysread(DAT, $buffer, 8) or last RUN;

doubles= unpack "d', Sbuffer;

Svalue= doubles[0];

push $output, Svalue;

if ($n==l) {

Smean{$output}= Svalue;

$variance{$output)= 0;

Smax{$output}= Svalue;

Smin_$output}= Svalue;

Snom{$output)= Svalue;

}

elsif($n>l){

$variance{$output)*= ($n-2)/($n-l);

$variance{$output}+=(Smean{$output]-$value)*($mean{$output)-

$mean($output)*= ($n-l.0)/$n;

Smean($output}+= (l.0/$n)* Svalue;

if ($value > Smax{Soutput} ){ Smax{$output)= Svalue; )

if ($value < Smin{Soutput} ){ Smin{$output}= $value; }

Write out statistics

................................

if(Smonte or $nominal){

print "Name\tNom\tMin\tMax\tMean\tVariance\n";

print STDERR "Name\tNom\tMin\tMax\tMean\tVariance\n';

foreach $output (outputs){

print "$outputkt';

print "$nom($output)\t';

print "$min($output)it';

print "$max{$output)_t';

print "$mean{$output}\t';

print "$variance{Soutput}kn";

print

print

print

print

print

print

STDERR "$outputkt';

STDERR "$nom{$output)\t';

STDERR "$min{$output}kt';

STDERR "$max{$output}\t';

STDERR "$mean{$output}\t';

STDERR "$variance{Soutput}\n';

Write the data to .mat

..............................

print "writing MATLAB file...kn";

open(MAT,'>$mat") or die 'Can't open MAT, stopped";

chop($header= "Created by pmat in MATLAB 5.0 MAT-File format: '

Show_many= 124 - length($header);

Spad= ' ' x Show many;

Sheader .= Spad;

$cc= 256;

syswrite( MAT, Sheader, 124) or die;

syswrite( MAT, pack( 's', $cc), 2) or die;

syswrite( MAT, "MI', 2) or die;

.'date');

pad with space to 124

copy write symbol?

padded header

cc (must have)

Mathworks Inc.

push outputs, "runs';

foreach Sname (outputs){

Determine name length

................................

Snarae=- tr/ //d;

Sname_length= length Sname;

chop all spaces first

get name length
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if($name_length>31}(

Shame= substr($name,0,31);

Sname_length= 31;

}

max name length is 31

Name padded to fit into x8 bytes

....................................

SWITCH: (

Sname_bytes= 32, last SWITCH if Sname_length>16;

$name_bytes= 16, last SWITCH if Sname_length>8;

Sname_bytes= 8, last SWITCH if Sname_length>4;

Sname_bytes= 4;

}

Matrix dimensions

.....................

Srows= $array_size;

$columns= I;

Sdata_bytes= Srows'$columns'8;

Srecord_size= $data_bytes +Sname bytes;

Srecord_size+= 48 if Sname_bytes>4;

Srecord size+= 44 if Sname_bytes==4;

only one colurm_

data is 8 byte doubles

this n_zny + ...

12 ints • 4 bytes= 48

ii ints * 4 bytes= 44

Apparently random sequence of i0 numbers (must have}

.......................................................

numbers= split • ", "14 $record_size 6 8 6 0 5 8 Srows $columns';

foreach $i (numbers)(

syswrite( MAT, pack('i',$i), 32) or die; first I0 integers

)

Write name length to OUT file (special case if name length <= 4)

...................................................................

if(Shame_bytes==4){

syswrite( MAT, pack('s',$name length), 16) or die; name length

syswrite{ MAT, pack('s',l), 16) or die; flag

}

else{

syswrite( MAT, pack('i',l), 32) or die;

syswrite[ MAT, pack('i',$name length), 32) or die;

}

flag

name length

Write name to OUT file (must pad with zero bytes)

....................................................

Show_many= $name_bytes - Shame_length;

Spad= "\0" x (Show_many);

syswrite( MAT, Sname, Sname length) or die;

(syswrite( MAT, Spad, Show many} or die) if Show_many;

the name

the padding

Write OUT 9 and length of data in bytes

...........................................

syswrite( MAT, pack('i',9), 32) or die;

syswritel MAT, pack('i',$data_bytes), 32) or die;

9 means doubles

the data bytes

Finally write the matrix by columns (assumed only one column)

................................................................

for($i=O;$i<$rows*$colun_s;++$i){

syswrite{ MAT, pack('d',Sname[$i]), 64) or die;

)

Save Input variable names in "ivars"
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Sdata= '';

$maxlen= 0;

strings= keys %mci;

foreach Sstring (strings){

Smaxlen= length $string if length Sstring > $maxlen;

)

for($i=0;$i<$maxlen;++$i){

foreach $string (strings){

$data.= "\0";

$data.= substr $string, $i, 1 if $i<length Sstring;

$data.= ' ' if $i_=length $string;

}

)

Determine name length

................................

$name= "ivars';

$name_length= length $name;

if($name length>31){

$name= substr($name, 0,31);

$name length= 31;

)

get name length

max name length is 31

Name padded to fit into x8 bytes
...................................

SWITCH: {

Sname bytes= 32, last SWITCH if $name_length>16;

Sname bytes= 16, last SWITCH if $name_length>8;

$name_bytes= 8, last SWITCH if $name_length>4;

Sname_bytes= 4;

)

Matrix dimensions

....................................

$rows= strings;

$columns= Smaxlen;

$data_bytes= $rows*$columns*2;

$record size= $data bytes;

if($data_bytes%8){

$data_Dad= (8-$data bytes%8);

print "padding Sdata_pad\n';

$record_size+= Sdata_pad;

}

$record_size+= Sname_bytes + 48 if Sname bytes>4;

$record_size+= $name_bytes ÷ 44 if $name_bytes==4;

12 ints * 4 bytes = 48

ii ints * 4 bytes = 44

Apparently random sequence of numbers (must have)
....................................................

numbers= split " ", '14 $record size 6 8 4 0 5 8 $rows $columns';

foreach $i (numbers){

syswrite( MAT, pack('i',$i), 32) or die;

)

Write name length to MAT file (special case if name length <= 4)

...................................................................

if($name_bytes==4){

syswrite( MAT, pack('s',$name length), 16) or die;

syswrite( MAT, pack('s',l), 16) or die;

)

else{

syswrite( MAT, pack('i',l), 32) or die;

syswrite( MAT, pack('i',$name_length), 32) or die;

}

name length

flag

flag

name length
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Write name to MAT file (must pad with zero bytes)

....................................................

Show_many= $name_bytes - Sname_length;

Spad= "\0" x (Show many);

syswrite( MAT, Sname, Sname_length) or die;

(syswrite( MAT, $pad, Show many) or die) if Show many;

the name

the padding

Write MAT 4 and length of data in bytes

...........................................

syswrite( MAT, pack('\',4), 32) or die;

syswrite( MAT, pack('i',$data bytes), 32) or die;

Finally write the matrix by columns (assumed only one column)

...............................................................

syswrite( MAT, Sdata, Sdata_bytes) or die;

if (defined $data_pad ){syswrite( MAT, "\0" x Sdata__pad, $data_pad ) or die);

Write the .m file

................................

print "writing .m file...\n';

open(MMF,'>$mmf') or die "Can't open MMF, stopped';

print MMF "load Ssim\n';

$i=0;

foreach $output (outputs){

++$i;

print MMF "\nfigure($i)kn';

print MMF "hist($output,20)\n';

if($mco{$output}{coranent) eq "')(

print MMF "title(k'Histogramk')\;\n';

)

else{

print MMF 'title(k'Histogram - Smco{$output}{cor_nent)h')k;\n';

)

if($mco($output){units) eq ''){

print MMF 'xlabel(k'$outputk')\;\n';

)

else{

print MMF "xlabel(\'$output ($mco{$output}{units})k')k;kn';

)

print MMF 'ylabel('number of cases')k;\n';

print MMF "gridkn';

)

print MMF "$mattextkn';

close(MMF);

................. ***** subroutines ***** ...............................

Run a POST deck

sub run_post{

$new_deck= Spost_deck;

$tempdir= 'ter_D'.$seed;

'mkdir $tempdir' unless -e $ten_pdir;

chdir $tempdir;

'rm "' if -e "profilb';

$inp= "TSseed.inp';

$out= "TSseed.out";

Spro= "profilb';

open(INP,'>$inp')

or die "Can't open INP, stopped';

$new deck =_

s/$a_marker/$mci($1}{actual)/g;

print INP "$new_deck';

close(INP);

'$post < $inp > $out';

unique name for temp dir

make a ter_Dorary directory

change to that directory

remove .pro if it exists

temp INP file name

temp OUT file name

tenkD PRO file name

open INP

or die

in the template,

replace all markers

write whole thing at once

close it

run POST
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MCPost::read_pro($pro);

'rm *' unless $seed:=0;

chdir "..';

MCPost::write dat($seed,$dat);

'rm -r $tempdir' unless Sseed==0;

print "run $seed\n';

read PRO file

clean-up

get out of temp dir

append outputs to DAT file

clean-up

Create Monte Carlo Random Seed File (.rnd)

...........................................

sub monte_seeds{

chop($stamp= 'date');

$1ength= length $stamp;

$n= $nruns;

$m= keys %mci;

open(RND,'>$rnd") or die *Can't open RND, stopped';

syswrite RND, pack('i',$1ength), 4;

syswrite RND, pack('i',$n), 4;

syswrite RND, pack('i',$m), 4;

syswrite RND, $stamp, $1ength;

for($i=0;$i<=$n;++$i){

undef dp_values;

foreach Sname Ikeys %mci){

$input= $mci($name};

if($i=:0)(

push dp_values, $input->{nominal};

}

elsif($input->{distr)=- m/(normal[gaussian)/i)(

Svalue= $input->{low}+($input->(high}-Sinput->{low))

*RandDist::normal();

push dp values, $value;

)

elsif($input->{distr}=~ m/(triangle]triangular)/i){

Sx_bar=($input->{nominal}-$input->{low})

/($input->{high}-$input->_low}_;

$value= $input->{low}+($input->{high}-$input->{low))

*RandDist::triangular($x_bar);

push dp_values, $value;

)

else[

Svalue= $input->{low)+($input->{high)-$input->{low})

"rand();

push dp_values, Svalue;

}
)
syswrite RND, pack('id$m',$i, dp values), 4+ 8"$m;

)
close(RND);

Create OVAT Seed File (.oat)

...........................................

sub ovat_seeds{

chop($stamp= 'date');

$1ength= length Sstamp;

Sm= keys %mci;

$n= 2"$m;

open(RND,'>$oat') or die "Can't open RND, stopped';

syswrite RND, pack('i',$1ength), 4;

syswrite RND, pack('i',$n), 4;

syswrite RND, pack('i',$m), 4;

syswrite RND, $stamp, $1ength;

nominal case

$i:0;

under dp_values;

foreach Sname (keys %mci){
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$input= $mci{$name);

push dp_values, $input-_{nominal};

)

syswrite RND, pack('idSm',$i, dp_values), 4+ 8"$m;

high cases

foreach $invar (keys %mci){

++$i;

print "$i\t$invar\n';

undef dp_values;

foreach Sname Ikeys %mci){

$input= $mci{$name};

if($name eq $invar){

push dp values, $input->{high);

}

else{

push dp values, $input->{nominal};

}

}

syswrite RND, pack('idSm',$i, dp_values), 4+ 8"$m;

}

low cases

$i=0;

foreach $invar (keys %mci){

--$i;

undef dp_values;

foreach Sname (keys %mci)(

$input= Smci{$name);

if($name eq $invar){

push dp values, $input->{low);

}

else{

push dp_values, $input->{nominal};

}

}

syswrite RND, pack('id$m",$i, dp_values), 4+ 8"$m;

}

close(RND);

Create Rerun Seed File (.rrn) from (.rnd} and rerun

......................................................

sub rerunseeds{

open(IN,'<$rnd') or die "Can't open ;LND, stopped';

open(RND,'>$rrn _) or die "Can't open RND, stopped';

sysread IN, Sbuffer, 4"3;

i= unpack('i3',$buffer);

$1ength= i[0];

Sn= ill);

Sm= i[2];

sysread IN, $stamp, $1ength;

sysread IN, Sbuffer, 4+ 8"$m;

Ssize= rerun;

syswrite RND, pack('i',$1ength), 4;

syswrite RND, pack('i',$size), 4;

syswrite RND, pack('i',$m), 4;

syswrite RND, Sstamp, $1ength;

syswrite RND, Sbuffer, 4+ 8"$m;

for{$i=l;$i<=$n;*+$i){

sysread IN, Sbuffer, 4+ 8"$m;

numbers= unpack('idSm',$buffer);

$seed= shift numbers;

foreach Srun (rerun){

syswrite{ FRqD, Sbuffer, 44 8"$m) if Srun==$seed;

}

}

close (IN)
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close (RND) ;

}

B.3. "RandDist" Perl Module

package RandDist ;

Sseed=time () ;

...................................................................

Uniform random number generator (0,1)

For the sake of cormnonality in calling

...................................................................

sub uniform{

return ranl($seed);

)

...................................................................

Discrete random number generator (0 :1 :1 / Smax)

Coded by: David Way 8/26/00

...................................................................

sub discrete{

my $max: _[0] ;

my $d= uniform( ) *$max;

return (($d%Smax)/$max or i);

)

Triangular random number generator for interval (0,I)

Coded by: David Way 8/25/00

...................................................................

sub triangle{

my Sx_bar= _[0];

my Sy= uniform();

return ($y<=$x_bar)?sqrt{$y*$x_bar):l-sqrt((l-$y)*(l-$x_bar));

)

Normal random number generator for interval (0,i)

This routine follows the article by kinderman and rarnage
"Computer Generation of Normal Random Variables" in the

Journal of the American Statisitical Association

Volume 71, number 356, pp.893-896.

Coded in Perl by: David Way 7/22/99

Includes subroutines:

triangular center, accept reject, and gen tail

sub normal {
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my Su = uniform();

my Sxi= 2.216035867166471;

my $x;

my const = (

.884070402298758, const[0]

.911312780288703, const[l]

.958720824790463, const[2]

.973310954173898, const[3]

.479727404222441, const[4]

-.630834801921960,

.755591531667601,

.034240503750111,

const[5]

const[6]

const[7]

1.105473661022070,

.872834976671790,

.049264496373128,

const[8]

const[9]

const[10

-.595507138015940, const[10]

.805577924423817, const[ll]

.053377549506886, const[12]

);

SWITCH:{

if ($u _ const[0]) (

$x = triangular_center($u);

last SWITCH;

}

if ($u >= const[0] && $u < const[l] ) {

$x = accept_reject(

const[4],

const[ll],

const[121,

const[13],

);

last SWITCH;

)

if ($u _= const[l] && $u < const[2] _ {

$x = accept_reject(

const[4],

const[8],

const[9],

const[10],

I;

last SWITCH;

}

if ($u _= const[2] && $u < const[3] ) (

Sx = accept re3ect(

$xi,

const[5],

const[6],

const[7],

);

last SWITCH;

)

if ($u >= const[3]){

$x = gen tail($u);

last SWITCH;

}

return {$x+3)/6; transforms interval to (0,i)
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Generates the triangular center (a multiple of the sum

of two uniform distributions).

sub triangular_center{

my $u= _[0];

my Sv= uniform();

my $const= 1.131131635444180;

return Sxi*($const*$u+$v-l);

Acceptance-Rejection techniques on subintervals of (-xi,xi)

for the difference between the standard normal density and

the triangular density.

sub accept_reject{

my ($A,$B,$C,$D) = _;

my Spi= 3.141592;

my $const= .180025191068563;

my( $v, $w, Sz, $min, Smax, St, Sf);

LOOP:(

Sv= unifol-m();

$w= uniform();

$z: Sv- Sw;

Smin= ($v<$w)?$v:$w;

$max= ($v>$w)?$v:Sw;

St = SA + $B* Smin;

last LOOP if {$max <= $C);

Sf= exp(-O.5*$t**2)/sqrt(2*$pi)-$const'($xi-abs($t));

last LOOP if $D*abs($z)<=$f;

redo LOOP;

return ($z<0)?$t:-l*$t;

Generates the tail (for deviates larger than in absolute

value than xi) using the tail algorithm of Marsaglia as

modified by Ahrens and Dieter.

sub gen_tail(

my Su= shift(_);

my $const= .986655477086949;

my (Sv, Sw, St);

LOOP:{

Sv= uniform();

$w= uniform();

St= 0.5*$xi**2-1og($w);

redo LOOP if ($t'$v'*2 > 0.5"$xi*'2);

)

return ($u<$const)?sqrt(2*$t):-l*sqrt(2*$t);

}

}

DOUBLE PRECISION FUNCTION RANl(idum)

...............................................................
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this is a double precision random number generator taken

from "Numerical Recipes", pp. 196-97; it is based on three linear

congruential generators; the values of m, s, and c for these

generators are taken from the table on p. 198; VAX overflow occurs

at approximately 10e38 or 10e-38; the values for m, a, and c are

taken from the case where overflow occurs at 2e30 so we are well

within the range for which these values can be used; this routine

is called RAN1 and is a portable uni£orm random number generator

Coded in Perl by: David Way

$ixl= 0;

Six2= 0;

$ix3= 0;

Siff= 0;

staticr= 0 x 97;

sub ranl(

my $idum= $_[0];

my($ml,$m2,$m3,$ial,$ia2,$ia3,$icl,$ic2,$ic3);

{Sm1=259200,$ial=7141,$icl=54773);

($m2=134456,$ia2=8121,$ic2=28411);

($nO=243000,$ia3=4561,$ic3=51349);

my Srml = 1.0/$mi;

my Srm2 = 1.0/$m2;

if (($idum<0) or ($iff==0)}{

$iff = I;

$ixl = ($icl-$idum)%$ml;

$ixl = ($ial*$ixl÷$icl}%$ml;

$i×2 = ($ixl)%$m2;

$ixl = ($ial*$lxl÷$icl)%$ml;

$ix3 = ($ixl)%$m3;

for ($3=0; $j<97; ÷+$j){

$ixl = ($ial*$ixl÷$icl}%Sml;

$ix2 = ($ia2"$ix2+$ic2}%$m2;

Sstaticr[$3] = ($ixl + $ix2*$rm2)*Srml;

]

$idum = I;

}

$ixl = ($ial*$ixl+$icl)%$ml;

$ix2 = ($ia2*$ix2+$ic2)%Sm2;

$ix3 = ($ia3*$ix3÷$ic3)%Sm3;

$j = (97*$ix3)/$m3;

my Srandl = Sstaticr[Sj];

Sstaticr[Sj] = ($ixl + $ix2,$rm2)*Srml;

return Srandl;

}

i;
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