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COMPUTATION OF NONLINEAR BACKSCATTERING USING A HIGH-ORDER
NUMERICAL METHOD*

G FIBICH ©. 8 LAN 'L AN S TSYSROV ¢

Abstract. The poulineer Schridnger equation 'NLS) s the standard mode. for propagation of iutepse
laser beams i Kerr media. The NLS is derived from the nonlinear Helinholtz equation (NLH) by erspioving
he paraxial approximation and neglecting the hackscattered waves. In this study we use a fourth-order
finite~difference wethod supplemented by specia. swo-way artificia. boundary conditions (ABCs) to solve the
NLH e a boundary value probleta. Our nuaericas merhodology allows for a direcs comaparison of the NLII
and NLS models and for an accurate quancitat.ve assessiuent of the backscazzered sigual,

Key words. Kerr uiediun. wave propagation. self focusiug. fourth-order method, swo-way ABCs
Subject classification. Appliad and Numerical Mathemaatios

1. Introduction. The propagation of iutense laser beams (time-harmone elec omagneic wases) i a
bulk Kerr mediuns is usually modeled by che criticad nonlivear Schirdinger equacion (NLS) for the electric
geld atap.i-ude. Since Lghe rays bend ovard areas with higher .udex of refraction. the non.inear dependence
of the index of refracc.on on beas incensity Lhas a self-focusing effect, whereby a suficiently nrense laser
beasn becotaes narrover as it propagetes. lu particular. the NLS model predicts that when the input beaa
pover (L4 aorny) exceeds a g.ven critica. threshold N, then the beam can colapse to & point at a finite
propagation distance. For more information of seli-focusing. see e.x.. (6.9].

As “he heaws propagates it iuduces chauges in the opricel properties of <he muedivm. As a result. part of
she incoming wave is reflected back. a pheaoviaenon seferred to as backscattery. Very itte s actualy known
on backscas ering 1n non.inear self-focusing. excep: for the genera. belief thas it is ~small.” Since. bowever.
smal-1nagri-ude techanisns can have a large effect in sef-focusing 6). there is a need to accurazely quancify
-he magnitude of backscazenng and study how this phenowenon may affect “he bean propagation. Another
application whick coud greatly benefit frow better understanding of backscatiering :s recaote sensing of the
atsaosphere 12 . where the mieasured sigual is exact.y he hackscattered wave.

Ll backscartered wave is peglected i the NLS model wiieh ouly describes the forvard-propagating
wave. Casulazon of backscatteriy requires. therefore. going back to the vondnear Heliholtz equation

NLH). frosa which twe NLS is derived, The NLS is an evoluton equation with e spatial coordigate in te
digesou of propagation plas g e toe of = me.” Therelore. e copect mathenmatical [oralaou for e
XLS is che Cauchiy nizia. value) problem and as such. solving it numer.cal.y s a reatnely straightforward
computational procedare, I contiadis .netion to that. the NLH 5 elliptic u .ts nature. and a special
s tidiaensional boundary value probuem needs to be formulated and solved for this equation, which is a

wch barder rask from the scandpownt of computing. The first nnnerical s.anlat.ons based on solving a
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omidais value problens ior e NLI were recently perfonued a0 7] usag an advanced fourtieorder mestusd,
In tha® study, the design fourtheorder convergence rate of the mehod was corroborated experuaentally on a
model Luear prebiem. Subsequently. 2 series of the grid convergence tests were conducied in the noninear
reane. lnche current paper we go bevond grid-convergence argutents and show tha: the asyrptotic Liait of
“he NLH solutions obtained .u the siaulazions is the correspondiug NLS so.ution. Lhis comparison provides
stiong support tha: the calculated NLH solution is indeed the physical one. Iu Section 2.3 we obtaiu an
asviaptotic estiwate of “he mwagnitude of backscetter.uy and subsequently show .u Section 4 that it agrees
with “he ca.culated va.ues

When the uia. detura is sufficently large tie NLS solution deve.ops singulari:ies a- a finite propagacion
distance see Section 2.51. Since. however. physical quantities do not become wfinite. a naturas question
5 whether the cortesponding solution of the NLH exists globadv. This fundamental question bas been
open for mwany vears. There have been .udicat.ons. “lvauph, that soutions o che NLH exis: even when
“he corresponding, NLS solut.ons bevome singuiar. bascd v both numer.cal sownon of “modiied”™ NLH
cpuaticns 1.2 4] and ou asviapotic analvsis 3], but these studdics did pot Lake inte account backscatiering
effec s, Therofore. our loug- erm goal is “o solve “he NLH for ~hose coning signals thas ead to blowup
in the NLS pude. In -he current study, however. we concentrate on -he more attainable goal of better
understanding Cn rerms of both analvsis and numerical simulations) the regime when the corresponding
solu.on of the NLS does not b.ow up. Our hope is that this understanding wili eventualy allow to solve the
NLIH for “any™ weomLnug s.gial.

2. Mathemnatical Models.

2.1. The Nonlivsear Helmboltz Equation. A “vpica. experimenta. setup (both physical and
auserica.) for the propagation of waves in Kerr media 1s shown i Figure 2.1, An incoming laser beany
“ath kuown charaetensties capinges normally on the panar aterface @ = 0 between the Locar and the

aoulincar wedia, The cleciric licld £ = Etry.. ... Lo-1- 7). Zbs governed by e noulivear Helwholiz
CquLtion
2.1 (.. ~A_E~I2E -0, kgl -¢E*7). ir,..... ZU-S)E RISV RS0

where &, is the wavenuriber. ¢ = degena, ny s the Kerp coefficent. and _ = 0. o, = ...+ 0., o, . I8

. For s

-he <zausverse Lap.acian (the diffraction term). see, e.g.. [3.3 kcity we consider from now on the
cvindricallv-svinmerr.c case where £ = Elr.c)and r= Jrf + ...+ of, .

The noulinear wediugy occupies the semi-space = > 0 (see Figure 2.1). Consequently. the NLIL (2.1)
lies 1o be suppeemented by boundary condizions at : = 0 and @ —» =x. We require that as ¢ — -~ x. L
has o left-travelinug corponents and tha the propagation is diffract.on-dominated with the field aapitude
decayiug to sero. Le. dm piex Etr ) = 0. which also weans K =k . Inother words. at large s
“fw sobuson should be a lnear superposivon of ngho-traveling waves. Suce the actual nuerica. suau.ation
s ox (Figure 2.1). the desived bebavior of the woluton as

i carried out on a tuncated domain ) <o

ol to e captured b a fas-tied arificia, boundary condition 1 ABC) at the artificial boundary

- = e Thus boundasy condi ou should guasanter a seflectionless propagauon of all the waves savely,

ovazd - = ~x. Ofen, boundars couditions desgued 1o ensuce v aaasparenes of te ouver bonodary 1o
he outgong waves ae coled odwton undary conditions 10

The savation i saore compheated o the wieslace @ = 00 whose the wial Led E0r.0) s cotaposd

of o g o ucomang e -t clug) compoucnt i, (r 01 and a uthioa s bahseatteped el =tiav el

“~
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componen: E. o r.0 e,
Lir = _Ew ‘ry - F, alr .

As such. the boundaiy conditivn ar T = U Las o wusranter the reflectionless propagation of any left-
ssavelig vave tirough che terface und at the same tupe be dable " correctly prescribe the iuconing signa..
Lap.centation of such two-way ABC was done i [7).

Fiualdy. we assuwe sypuucuy at ¢ = 0 and vamshing oo (he coctne licld as r== + . In practice. we
aunca e he dopaain at sowe large but e ry, o and require tha. E(ry,, . 2) = 0. The ustilica..on for the
e of “his approach 1o treat the “lateral” boundaries can be found in 10) and the bibliogiaphy -here.

Les us also note that i this ccudy ae do not take into accoun: < he effect of discontinuite in the index
of refraction across the inverface = = 0. Thus, we assume that L. r.0) is the incoing wave after it Las
alicady passed through the uterface e, at o — U<, We also assumme “hat eft-tiaveing i.e. backscattered)
waves are pot reflected by che luterface @ = 0 back wto -he domain = 2 0. One can expect the latrer effec
0 be staal.: ot will be mvestigated in 2 future study.

4.2. Puraxial Approxicnation uud the Noulincar Schrodiuger Equation. Lt ry be the imtial

aidth of “he anpugug bean. We fiss: atroduce the dusensiomloss quantites r.o C.amd o as
v S 2 =1 02120 :
2.2 f=—., f==—— ., E=c""terikp) wlr.si

ro 2L 11

where Ly = byrs 3s he dffruction length, Thew. by dropping the cides we obtaiy
2.3 = Al i = =4 .

wheow [ = Llrgka & 1 as (he nonparariably parraeier

Tl stanedard decosation of the NLS s basad ou the assumuption that the enve.ope o s slowly ariny,.
In thaa” case. one can neglect the cercon the righe-hand side of (2.3) [Le.. apply “be paracial approrimation]
an obtain the ponlinea: Schradinges equation
2.4 . A e =v

The NLS (2,40 is supplemwnted b the utial condit.on «t o =0

e )= r;‘;l.',;':‘ b ST I



Submequen . it geeds to be ieegated by a4~ -narcluug agonitho, vhere the direction of propagac.on -
jhass “he rode of taue. We reenipliasize that backscattering effects are not taken into accownt by the NLS (2.4).
Ludeed. once (2.4) o5 soved, the overall sowtion, according to 12,21, is he s.owly varving awplitude o tinies
“he furward propagat g oscillatory component o,

2.3. Preliminary Analysis of Backscattering. To the best of our knowledge. no wccurate
quant:tative analysis of backscattering in noulinrar sef-focusing has ever been performed. although there is a
geuera. beef tha the mwagitude of the backscattered signal is stuall. Ln his section we preseut a prelininary
wsvEaptotic study of backscatteing, To do that. we consider a suose general ausa.z for E than [2.2) which
i componicd of buth furvard-propagacg, and backward- propagating waves, Lo,

P31 E = lerdig)~t % [.{lr. S T - .

where A and I are s.owv-varviug eavelopes, Substitution in the NLH (2,11 vields

{.1 e Ve S W TR e lf‘”".l] P [u.. 2ikyB. A B N Bq'-'-'uj =0.
Changiry to “he nondinensional varab.es (2.2) g (after diopping “he tildes)

ey {f"-t “id. v dods Aot -"'-B:"A] + [f‘u.. <iB A DA /"'-m—'-'u] =,
Lot us average “be st equat.on over oue fast oscLation. For exawple. using lav.or expausion. we obtaiu

G Ve : .
—[ U.:d;a—_,/ [Bizi+ (=B 51— ...d = B(:)[1+O0Uf)) .
= Ay g = —afis

Swd.arly.

y sez/ied . . -xf*'4 3
é/ P f",.{,“;,]‘_i'] {,-l.’ ~I.{ ;""*:}.{,lli"...“",’{
=1° -3f% ) -7/' -f4 4

7
-

Ly _ogh.
L

Consaquent v, we obain the following equat.on o e backscattered wave

2.5 /-'U“ +il. % A_” s Ve pitn - j-’,' ' u(;,i %
=%
*ll‘,ﬂ
P :_,ﬁl fcd) [-',‘ «r A A A+{4+ =i o4 Ut"{]

Lot as v ernpon the comniot assumpton that backscattenny is siaall. e D % A Since [ 1. equation

261 fon I can be appogimaced with - he near Schiidinger equation

iB.+3_B+|A”B = [°F. J [ =0

liax

whese
= AL lid, ~A_ A+ (4 -"'.1]
2 L
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s B 00k above analves suggesis it
20 B/A=0if*)

i the quadiat.c scaing lew ‘27) can be coufinmed udependentls. then ot will provide & convinciug

Justificaton for the assmuption hat backscattering is indeed stial.. Hence. in our sisaulations we expect to

see that

tershd)t “C|E - A
4]

2.5 =()‘/2).
The nuraerical resuls of Section 4 do corroborate these expectations.
The above analysis also shows -hat

3 roo 212, =172
;L!E -,-.r‘;l.',;)

e Ll ]
|4 |- 3¢ E

Theiefore. he amplaude of tie NLH soluon was bave O0f*) Lpples wihi the waveeagl 77k, due 10
buckscutterwy on top of the sowly vany g wpatode of the forvard-propagatig wave. NLH saaulaz.ons
suggesting, that ~lus indeed nay be the case have been reported in (7] (s also Figure 1.2 in Section 1). -
is o cear. hovever, co what excent he ripples observed in 17 are a numesical antifac due o placing the
far-field artitic.al boundary too close to the nowinear sel-foc g zone, Nuienical study conducred [7]
did. in fact. uvolve “he analysis of bow the location of -he far-tield artificial boundary affecs the so.ution:
placing this boundary further and further away caused the reduction in the ripples’ wagnitude but pever
al.owed to elizuinate thew compietely. This may sti.l imply. though. that the boundary was no: “sufficien:ly
far” awar. Therefore. no definite conclusion as <o the presence of <he O(f?) apples in he NXLH soluzions
can be wade at thus tine and s question requires a subsequent thorouglh study,

2.4. Mdonparaxiality and backscattering. 1Le rradizonal way of introducuy che paraxal
approxiation 1s reported w Section 220 where the righit-hand side of cquaton (2.3) s omitted and the
NLS s desoved The e carelul analdvass of Seciion 2.3 shows. boveves. that tey approcimations a.
fact. b amade v hen the NLH s approx.ciated vatl the NLS: Neglectiag A, (the paraodal appsoximaton
in e narrov seuse. e as Capplies o the forwasd-propagatiog was es) and ueglecting B (backsca ering).
We cecel. thar previous stadies [1.5] suggested that noppacaxiality of the right-traveing waves (e, 4. in
“he sense of Section 2.31 arrests “he collapse of the NLS solutions, but these studies did nor rake into aceoir
hackscatterwy effects. Having said tha. we still gote that the separac.on nto nosiparaxial and backscatterug
effecs. which is based on the ansatz 12,51, is somevhas artifical. siuce the problem w nonsear. Therefore,

whwen we copapare the NLH and NLS solut.ons. 2t is not precisely clear which part of the dufference couses from
notpasaxial effects for the right-traveling waves. and which one from backscatvenng. A notable creeption is,

hwuwever, i s = 0. where the difference vetween NLH and NLS solutions s solely due to hackscaitering.

2.5. Critical NLS. I 5 well znown that so.ctions of the NLS (240 can becope saagu.ar when either
a L 1) > 2 the superonitical NLS. or when o D 1) = 2. e erttical NLS (D s the space: dugension.
Howover, whereas au supeseatcal collupse goulacan v dogugaces oves ddliac ion oew the saug oty i

e orieal colapse gondacen s aad diliac on we aliwos. balogeed pear e sigolan s Coisequent]y - the



sdigaanty foraation is bughly sas.tive to staall perasbations in the cntical case. but much, Jess s is the
SURTCTINICAL Case,

T pliysical case that corresponds to the propagation of Laser beaas in bulk Kerr media is <he ersical
. as D — Jand 7 — L ilowever. in oider to seduce the complexaty of the computas.ons, below we consider
“he critical case D = 2and 0 = 2. Thus. the NLH for £ = E(r.:1 aud <he NLS for ¢+ = ¢+'r. 2). which are
solved nutierically w this study ae

20N E..«E.,.+kjtl «¢|[EYE=0.
and
210 Qe s+ e =0,

Iespectively,

3. Numerical Methods. Tie NLII 2.9 s solved usig fourth-order fuice differences. The choice
of & higher-order method is motivated prnarily byt necessity to resove a small-scale phenomenon
backscattesmg) at the background of the forvard propagatiug waves, The NLS (2.10) is also sulved by
& fourth-order schewe: it 1s natura. to expect that this will leave .ess oo for potential purely numerical
discrepancies between the two techuiques aud as such. w.ll allow for a mwre accuraze comparison. Besides,
it 1s weneraly known that algher-order meshiods provide for a bester resolution of waves.

3.1. Numerical Integration of the NLH. Our nuinerica, methiod for solving the NLII s delineated in
(7): Lere we only vatie its key eements, We use a conventional fourth-order central-difference discretizazion
of the Laplaccan: (u so dowg the steacil is five-node wide in both roand : directions. As “he equation is
aorlinear. we lmplenien: a uessed iteration schetie, Ou the ower loop. we freez: the nowinearty. ie.,
consider e coflicient £4 of (2.1) a5 a given funcion of roaud :. which is actuady obtained by taking
E* fiom the previous iteration. Lhis wav we arrive at a .inear egquaton with variabe coeflicients. Lhe
aroer is also solved by rerarions ou the auier loop of the uested scheme. Hepe, we leave <he ennre varving
past of he cquaion. which s propoctiona, w e on he lowes sevel. wnd ou e upper wevel meed o tuves
ouly the cous amt-cocllicien ancas Helbolie vperatos A — kgl Forwallys. our weiaton scheue sesciubles
he fixed-pogt approach hovever. no rigorous copvergence theos s avalable ve and the cousergence
has to bee assoseend experinentally. The advantage of asing “hese nested tecations 15 that firs . the pethod
everr aally peduces 1o the jepeated soluon of one and the same linear constant codfficien equation driven
by differens source sepas. As explained below, this can be done efficently on -he discrete leve,, Second, the
radiation boundars cond.tions and the twiomnay ABCs are muost convenient <o set on the upper tae level of
he teration scheme ageady for the linear constant-coetficient operator.

Torsofve the dnear-cons aut coefficent Helaboltz equation (discrete connterpar of AL+ k3L = g, where
g is the right-hand side generated on cbe previous steration) we first separate the varab.es by implemening
“he discrete Fourer trausfori b the trensverse divection r: the boundary conditions are syiamesry a2 r =10
and zao Dicclder ar ¢ = . Bles vields a collec.on of fousthrorder one-diiens.ona. tinice-d.ference
equetions porameerizec by che dual Fourer varabe: each of the Latter needs to be solved independently.
Lhe mwo-wav and vadiazion ABCs a7 @ =0 and = 2, respec.velv, ape set u the Fourer space as wel.,
b separaely for each of the aloresuentioned oue-disuensional equations. T is doue by first idenfviug
e Lucaslv-adependent eyes-modes Sor the botaogemeous veesion of cach ouc-dusensiond equation. L

ogaportent o uote ea cven hough the ongiaed ddfenuad cquation s ol die seeond ogdes ve we



g ite fourtheordes appookisuat.on and as suchi, each hotaogearous discsete one-diaensioual oquaton
as four luwarly independent soutions.  One pair of the latter approximates “he genuine modes of the
different.a. quat.on. those way be ether tavelug or evanescent waves depending on the value of the
dual Fourier variable. The other pair is a pure nuinerica. artifact. these waves are always evanescent. hus
heir presence imiplies that every discrete equation requires “wo more boundary conditions compared to the
original difevential equation. The radiation boundary conditions are coustructed by requiring that on the
left boundary @ = Oculy the left-traveling and/or left-decaviug (evanescent | waves be present in the souution,
and o che rght boundary = = 5., only the nght-:raveligg and /or nght-evanescent waves be present in the
solu ot The selection s vendered by v so-cacled one-woy discrens Helbioltz cgpations . which age e lncar
hovaogeueous telations that defiue (e span of all approprste modes for each bougdary. The two-way ABC
hat a.so prescribes the lucowing signal at & = 0 15 constructed on the basis of the corresponding sadiazion
bounday condition by substi-uting the sght--raseling incoming wave it the one-was -2 o-the-lef: Heliholtz
equation and as such creating “he inhomogeneiry of a particular form, see 7). Sizple considerations based
ot the Loear superposic.on princip.e aud unmqueness guarantee “hat the resw.ting nonhotiogeneous relation
will correcty specdy he meotng signal a2 @ — 0 and still epsure the reflectionless propagas.on of all the
outgoiug (e Jef--travelug) waves “luough : = 0 tomvard s = =x.

As concerns “he comaputational complexity of the resulting agorithu. if we introduce the grid dinensions
N, and N then the cost of both the direct and inverse FET wild be O(N N lu N, 0. The cost of solviug
cach of the N\ one-ditensional systems wild be Luear with respect <o .\ . ludeed. in the course of iterazions
cach of these svs ews needs 1o be solved wany tiaes for different right-hand sides. Cousequent.y. the sparse
LU decotaposizion can be perfiosued only once alwad of tine, aud the cost of each backward substitution is
lmear Alrogethes. the copaplexey of ciud iteracon bs s2. OGN N dn N, ).

3.2. Numerical Integration of the NLS. The NLS 12.10) s discretized iy the r direction using
standard fourth-onder centra. differences. It is incegrated in = with a four-stage Runge-Kutta mehod starting
with the inuial daca L, (r.01. The boundary condition at the remote latera. boundary 1 — ry,,. is ze10
Derichies. as in the case of the NLIL

4. Computational Results. [ accordance with the discuss.on of Sect.on 2 we have desigued a set of
augwrica eXperiuents amed at aclievauy two objectives: (I Validate the computational algorizho of (7 for
solving the NLH -hrough a comparison with nunwer.cal sanulations of tie NLS model. and (11) corroborate
Dt backse atiesng, cllects cap.aged by tie NLH model scace quadraticaly with the noparaxiality pasaeter
[ as suggested by the agalssis of Sections 2.5 2.4 Regard.ug te st objective. leo us note hat previousls
at have “ested “he punierical algosthi of (7] o the nonlinear regime using grid comvergence. but never
compazed .t with any other aigorthi for computing he propagation of waves in Kerr viedia. As coucerns
Do seond objective, ot amounts 1o he accurate numesical computation of backscatering in non.inear self-
foctsing, and we are caprently unawaie of any previous technigque with sidar capabulities,

T be able to conéue: au accurate compasson of the nuterical predictons obtaed with the NLIL and
NLS wuodel (equations (2,91 and 12.10), respectively . we have chiosen a regime with the input puwe; bow
critical. for which the soution of the NLS does not deve.op singularities, We take ky = % and « = 0.04. which
cossesponds o TA% of te aitical power N see T 1] The incoming beaw profice is £, (r.01 = =" 700
caei that the beagy widtl ry i gauel less chat r,. 1o allow for the vanztion of the pouparaxial.ty
peraeer f o= LKy we vary e e widtl e, wiide keepiny, e wovenuiuber kg amd the quantcy kyye
bot cotiao.s e Liae oual cndcal powes anchanged.

I Figae 4.0 we show  he oueuns amphiode profies for e NLH aad NLS aumcnca, su.stions:
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b 4l Oneias amplitudes of the solutione to NLIt-IF(, 2|, and NLS; (¢ Gt ) Sz pin ted e 2Lpy.

Figure 4 Ulettr correspouds “o f = 1/3 and Figure 4.1iright) correspouds to f = 1/16. We pot the
vates of the compused solution o the axis of sviumetsy ¢ = 0 because tlus is the ost incerestauy, Jocation
w the dowas where (he geunuely ponlwear phegomens take place, A clear wanilestation of Lo inear
self-focusng 1s the “bump.” oi peak. on he solut.on cuives in Figure 1L whioss value 1s Aagher than tha of
“he neviug vave Eg 0.0,

It s easr cooser that S both £ — 1/Rand £ — 1/16 *he NLH 2ned NLA curves ‘n Figure L1 are close 1o
one another. As the NLS is o well-established model that has regular so.utions for subericieal initial powers,
we copc.ude that our nusaerical algorithi for solving the NLILT| [that starts the teration process with the
iuitia. guess L = 0 wdewd converges to <he comrect solut.on.

We also notce that the disceepancy between the NLH and NLS curves on Fagure 4.1 0eft) is larger
“has tha® ou Figure 4.1 rght). This behavior s expected acrording w the analys.s of Section 2.3. because
he discrepanc between the 1o curves s due o nopparexiality and backscatterug. Il particular. these
saaudations suggest that che NLS 1s ndeed the assuptotic it of the NLH as [ = 0. Perhaps the mos:
apparent wanfestotion of “e preseace of beckscatteryg . the solut.on of the NLH 15 that <he coiputed
vasue of the total ceciaw beld ot o = O diffors [rosa bar of e cosang wave. as oe can cleasly see
Froure 4.2 where we zoow ws on the two curves obraned for f = 1/% The szal. npples . the NLH solution
gy a0 e e gdenee of backscatiepig, (s Section 2.3).

Neat. ae quancify the backscatterug efieer by computing a sees of solution paits (NLS and NLHy for

coditonal vasues of £0 10 Figure L3006l ) we shuom b aserishs on he log-log scae the quantin

il ey TR ] kE) e oo

A formuwa (2%, whew E s the computed soluton of tie NLH and o0 s the so.ution to the NLS tha-
sutisties the auitia. condition 10.0) = 1 for f = 1716, 1/12. 1710, and 1/%. Lhe soidd line on Figure 4.307)
het it caosely the cogpured daca s 0TS 147 Lhis esseptially corpobopates that <he jnaguitude of
vackscattesing idevd scales quadsaticady vl the soupasaxial.ty poraueer foas predicted u Section 2.3
abitd Jugt by discussod i Section 2.4,

Lo us also aote that o cvabua e e quagaits (40 we do gon seady goed wsolve te NLS . bocause te



Nor sermnelily pers-wter ts° B

105
N3
L}
1 1
5
1
i
-
¢
0 (A} 02 23
Normez 80 prRDagEon ¢ sk s

b A2 Zowresic wn Fuogare {100 wns the arvn of the vanliear s feforusiny peak.

iitia. profide at o — 0 s given. To compare the actual computed solutions of the NLIL and NLS. we plot on
Figure 4£.30right ) the quanticy

1.2 il'kf,'r.‘,'u‘ I|L"J $) = el '.'ni

i f o= 1/sand [ o= 1716 (siue salues as on Foyaee 40 as a fune .on of e norcial.aed propagaon
distance for o 2 00 Alhough the curves on Figue L3tright ' are oscidlatory, we still see that that the
difference besween “he solutions of the NLH and NLS deceases for all = with the decrease of f.

2e-2

<

Ay

001 ‘
{ N':1;8

f=1/16

2306 013 % 1
f z 2LDF

Fic 15 Lol e quanisy goen by forla (0 ) ar w foueiion of [owmperad o e iayeivy scde widls the wppivzona von

0 e solid L ) Wight. [he defferenar {20 aetueeen the two solutiwrs as o fune on ol gy Jor f = sand f < . |h

5. Couclusious. Wo Luve compaied paencalls e socutions (o the somageas SeluBdinger squa i

ot gombincas Helwboliz eguaton. bo dof wluch el he propagation of Cae-basonie clectiomagicte



waves L Rerr teda The NLIE was soemd usng o ten fourthender sethod suppemented be che twoewa
artificial oundazy coneditions thas guarantes the proper belanior of the waves as they enter and leave the
colputational dorsain. As “he NLS bs cons.dered an estabuished model, he sgieeent of the NLH and NLS
siaulations prevides a good justifica.on that the NLH agorithm indeed converges w the correct phvsical
solut.on. Ou che other hand, the NLH s & wore compiehensive mode. that, unike the NLS. “akes uto
acesa the phenowenon of nonlwiear bucksca ering, As such, we avpbute the spiak discrepancies <hat do
exst between the NLH and NLS solut.on to noupwraxial and backscattenuy effects, By analveing several
cowputational varans “hat correspond to differen cwues of the nonparaxiality puramecer f we have been
uble: vy cotioioute hat the mwagade of e backseariered wave adoed seales quadio scaly wich this
pavauw er. accopdiay, o the theogeucal predicious. To dw bese of ous Kuow ledge, tas is die Lest studs eveyp

that alows fonr an accarate quancita e estimation of backhscasenig o nomliwar sef-focusing.
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