The NOAA-NASA CZCS Reanalysis Effort

Watson W. Gregg
Laboratory for Hydrospheric Processes, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA

Margarita E. Conkright
Ocean Climate Laboratory, NOAA/National Oceanographic Data Center, Silver Spring, MD 20910, USA

John E. O'Reilly
NOAA/National Marine Fisheries Service Narragansett Laboratory, 28 Tarzwell Drive, Narragansett, RI 02882, USA

Frederick S. Patt
SAIC General Sciences Corp., Beltsville, MD, 20707, USA

Menghua Wang
University of Maryland Baltimore County, NASA/Goddard Space Flight Center, Greenbelt, MD, 20771 USA

James Yoder
Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA

Nancy Casey-McCabe
Science Systems and Applications, Inc., 5900 Princess Garden Parkway, Suite 300, Lanham, MD 20706 USA

Satellite observations of global ocean chlorophyll span > 2 decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the NOAA-
NASA CZCS Reanalysis (NCR) Effort. NCR consisted of 1) algorithm improvement (AI), where CZCS processing algorithms were improved using modernized atmospheric correction and bio-optical algorithms, and 2) blending, where in situ data were incorporated into the CZCS AI to minimize residual errors. The results indicated major improvement over the previously available CZCS archive. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.

Key words: ocean color, satellites, coastal zone color scanner, remote sensing

Introduction

NASA and the international scientific communities have established a record of nearly continuous, high quality global ocean color observations from space since 1996. The Ocean Color and Temperature Scanner (OCTS: Nov. 1996-Jun. 1997), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS: Sep. 1997-present), and the Moderate Resolution Imaging Spectrometer (MODIS: Sep. 2000-present) have provided an unprecedented view of chlorophyll dynamics on global scales using modern, sophisticated data processing methods. A predecessor sensor, the Coastal Zone Color Scanner (CZCS: Nov. 1978-Jun. 1986), utilized processing methodologies and algorithms that are outdated by modern standards. Thus, the CZCS archive is severely limited for scientific analyses of interannual and interdecadal variability. This is an issue of fundamental importance to the study of global change.

In response, NOAA and NASA established an effort to reanalyze the CZCS record by utilizing advances in algorithms that are shared by modern remote sensing missions. In this paper we describe the methods and results of this effort, called the NOAA-NASA CZCS Reanalysis (NCR).
Our methods involve the application of 1) recent algorithms to CZCS data to enhance quality and provide consistency with the modern sensors OCTS, SeaWiFS, and MODIS and 2) blending techniques\(^1\) using satellite data and the extensive in situ archives maintained by the National Oceanographic Data Center (NODC)/Ocean Climate Laboratory (OCL) to minimize bias and residual error.

Our objective is to provide a high quality blended satellite-in situ data set that will enable a consistent view of global surface ocean chlorophyll and primary production patterns in two observational time segments (1978-1986 and 1996-present) spanning 2 decades. By reconstructing the historical CZCS data set, new insights can be gained into the processes and interactions involved in producing the interannual and interdecadal chlorophyll signal.

Background

CZCS and the Modern Ocean Color Sensors

The CZCS was a demonstration mission with two objectives: 1) to establish the technological and scientific feasibility of mapping ocean phytoplankton pigment concentrations from satellites and 2) determine the improvements that must be made for successful follow-on ocean color missions. The CZCS amply demonstrated the first objective. It also clearly indicated deficiencies in its design and operations that required correction to meet the scientific objectives of a successor mission. In approximate order of priority, these deficiencies, or required improvements were

1) the need for routine, continuous global synoptic observations,

2) better methods for characterizing aerosols,

3) the need for a dedicated calibration and validation program over the lifetime of the mission,

4) methods to account for multiple scattering by aerosols and the interaction between scattering by molecules and aerosols,
5) better signal-to-noise ratios (SNR),
6) the need to produce estimates of chlorophyll, not pigment,
7) new information about chromophoric dissolved organic matter (CDOM),
8) the need to account for whitecap/foam reflectance,
9) improved pixel navigation

All of the modern global missions meet the scientific requirements for ocean color observations. They are dedicated, routine observational platforms. They contain spectral bands in the near-infrared region of the spectrum to enable improved determination of aerosol characteristics. Dedicated, high quality in situ calibration/validation activities were established before launch. Complex algorithms were developed to account for aerosol multiple scattering and interactions with molecules. Signal-to-noise ratios were improved so that all the global missions have at least 500:1 for the visible wavelengths\(^2\) instead of 200:1 for the CZCS\(^3\). All of the missions produce chlorophyll distributions as the primary geophysical product. A new spectral band was included at short wavelengths (near 410 nm) to help determine the distribution and abundance of CDOM. Whitecap/foam reflectance algorithms were developed and refined. Finally, precise navigation methods were developed pre-launch, including improved orbit determination, sensor attitude information, and geolocation algorithms.

CZCS Algorithm Deficiencies

Of course, some of the deficiencies of the CZCS data set, such as sensor design and operations activities, cannot be improved after the fact. However, recent advances in our understanding of atmospheric and oceanic optical principles that affect ocean color observations can be applied to the archive. The global CZCS data archive generally available from the NASA/Goddard Space Flight Center (GSFC)-Distributed Active Archive Center (DAAC) was produced in 1989 using algorithms
that were standard for the time\(^4\). All of the subsequent algorithm improvements are utilized in the atmospheric correction and bio-optical algorithms for the modern sensors OCTS, SeaWiFS, and MODIS, and future sensors such as the Medium Resolution Imaging Spectrometer (MERIS), Global Imager (GLI), and the Visible Infrared Imaging Radiometer Suite (VIIRS).

The CZCS archive contains 8 major algorithm deficiencies when compared to modern sensors:

1) calibration,
2) navigation,
3) constant aerosol type,
4) single-scattering approximation for aerosols and no Rayleigh-aerosol interaction,
5) production of pigment rather than chlorophyll,
6) lack of whitecap/foam reflectance correction,
7) lack of correction to Rayleigh scattering due to non-standard atmospheric pressure,
8) lack of accounting for water-leaving radiance at 670 nm in high chlorophyll.

These deficiencies affect the representation of global chlorophyll and are the primary reason for differences observed between the CZCS era and modern satellite observations of chlorophyll (shown later).

Blending of CZCS and In situ Data for Analysis of Seasonal Variability

Gregg and Conkright\(^1\) combined the extensive archive of NOAA/National Oceanographic Data Center (NODC)/Ocean Climate Laboratory (OCL) chlorophyll data (>130,000 profiles) with the global CZCS archive at the GSFC-DAAC, using the blended analysis of Reynolds\(^5\) to improve the quality and accuracy of global chlorophyll seasonal climatologies. The blended analysis produced a dramatically different representation of global, regional, and seasonal chlorophyll distributions than the archived CZCS\(^1\). Generally, the CZCS appeared to underestimate chlorophyll concentrations,
globally by 8-35%. On regional and seasonal scales larger underestimates were common (20-40% and occasionally differences exceeded 100%).

While the blending approach appeared to have improved many of the deficiencies of the CZCS seasonal climatologies, vast areas of the ocean lacked in situ observations, limiting the ability of the method to correct for the deficiencies in the CZCS processing. Further improvements using the blended method require better CZCS data.

Methods

There are two main components to the NCR: 1) CZCS algorithm improvement (AI), and 2) blending with in situ data. The first component (AI) addresses the 8 major algorithm deficiencies in the global data set to produce a data set compatible with the modern processing methods used for OCTS, SeaWiFS, and MODIS. The second component (blending) improves the residual errors by utilizing the extensive coincident in situ data base maintained by NODC/OCL.

CZCS Algorithm Improvement

1) Calibration

A retrospective analysis of the CZCS record led to a revised calibration\(^6\). This revision is utilized by the reanalysis effort. Subsequent to publication of the revised calibration, a residual uncorrected temporal degradation trend in Band 4 (670 nm) was discovered\(^7\). A correction is applied to the time component of the calibration to begin at orbit 6750 instead of orbit 20000\(^8\). Also, masking for electronic overshoot is provided using methods described by Evans and Gordon\(^6\).

2) Navigation

Poor orbit and attitude information from the Nimbus-7 spacecraft often produced degraded navigation of CZCS imagery. Typically, improvement has required intensive supervised methods to adjust imagery to match coastlines. Coastlines are not always available in the imagery. As a
consequence, the global CZCS data set provided by the GSFC-DAAC only provides navigation derived from the onboard spacecraft attitude information and orbit ephemeris without additional correction.

We undertook an assessment of the CZCS navigation errors, to determine whether they were sufficiently stable to be corrected by fixed biases applied to the existing navigation. We adapted the method of island targets, originally developed for SeaWiFS, to the CZCS. In this method, the image data from multiple bands (usually two) are filtered to classify each pixel as land, water or clouds. Islands in the data are located as small groups of contiguous land pixels surrounded by water and uncontaminated by clouds. The island centroids are computed using the available navigation, and matched with reference island locations from a catalog based on the World Vector Shoreline database. The island location errors are then used to estimate and characterize the navigation errors.

The method was adapted to use CZCS Bands 1 (443 nm) and 5 (750 nm), to avoid the saturation over land commonly occurring in the middle CZCS wavelengths (520, 550, and 670 nm). A Rayleigh scattering correction was applied to Band 1, and both bands were normalized to the solar zenith angle. We processed data from two periods from the mission (February 1980 and April 1982) to perform the initial analysis of the navigation errors. The results from both periods were fairly consistent, and showed errors which were negative in latitude and positive in longitude. The results from April 1982 (Fig. 1) show a cluster of points, centered on a latitudinal error of about -4 km and about 6 km in the longitudinal direction. The width of the cluster is about +/- 2 km in each direction. There are a number of scattered points, mostly resulting from island mismatches or misclassified pixels.
We characterized these errors in terms of along-scan, along-track (orbit position), and yaw (rotation about nadir) offsets. We estimated the following corrections to navigation: 5.5 pixels along-scan, 0.046 degree (5.9 km) along-track and 0.18 degree yaw. We applied these corrections to the CZCS latitudes and longitudes, and reprocessed the data from the same periods. The results (Fig. 1) show that the typical navigation errors are now close to zero, as seen in the cluster points. The distribution of points in the cluster is essentially the same, and indicates some residual variation in the navigation errors. We have processed other periods with these corrections, and achieved similar results.

3) Constant aerosol type, representing essentially a marine aerosol

Pre-specification of a constant aerosol type is one of the major deficiencies in the CZCS global data set10,11. However, it was a necessary deficiency because variable aerosol types could only be derived using intensive supervised methods12. We have developed an unsupervised method to derive aerosol characteristics using standard meteorological techniques. In our method, aerosol characteristics [defined by the aerosol reflectance ratio at 550 and 670 nm, or \(\varepsilon(550,670) \)] are determined at every location in a CZCS scene where clear water conditions12 are valid. Then the Successive Correction Method13 (SCM) is used to extrapolate and interpolate \(\varepsilon(550,670) \) values where the clear water method is invalid. CZCS data were assembled for each day of the mission life, and the SCM was applied for each day. This produced a daily global grid of \(\varepsilon(550,670) \) values for the duration of the CZCS record with a resolution of about 20 km.

4) Single-scattering approximations for aerosols and no Rayleigh-aerosol interaction

Another serious deficiency in the global CZCS data set was the lack of a method for deriving multiple scattering aerosol reflectances and Rayleigh-aerosol interaction14,15. In the CZCS AI, we address this deficiency by utilizing \(\varepsilon(550,670) \) derived from CZCS imagery and modified the
SeaWiFS aerosol scattering tables16. This translation then provides us a complete spectral distribution of aerosol reflectance at the SeaWiFS bands, which are then merely interpolated to the CZCS wavelengths, similar to methods used for OCTS17.

5) Production of pigment rather than chlorophyll

Previous CZCS processing yielded estimates of total pigment concentration (chlorophyll plus degradation products such as phaeopigments) as an index of the biomass of phytoplankton in surface waters. SeaWiFS and other modern ocean color missions generate estimates of chlorophyll, as it is a better index of the living component of phytoplankton and is therefore more useful for subsequent carbon uptake and primary production analyses. In our CZCS reanalysis we estimated chlorophyll concentration by using the Ocean Chlorophyll three-band CZCS bio-optical algorithm (OC3C). OC3C was empirically derived from the same extensive global in situ radiance-chlorophyll data set used to derive the operational SeaWiFS Ocean Chlorophyll four-band algorithm (OC4)18. The equation for OC3C is

\[
\log C = 0.362 - 4.066R + 5.125R^2 - 2.645R^3 - 0.597R^4 \quad (1)
\]

where \(C\) is the derived chlorophyll concentration (mg m\(^{-3}\)), and \(R\) is the maximum reflectance ratio between \(R_1\) and \(R_2\)

\[
R_1 = \frac{[L_w]_N(443)/F_o(443)}{[L_w]_N(550)/F_o(550)} \quad (2)
\]

\[
R_2 = \frac{[L_w]_N(520)/F_o(520)}{[L_w]_N(550)/F_o(550)} \quad (3)
\]

\([L_w]_N(\lambda)\) represents the normalized water-leaving radiance and \(F_o(\lambda)\) is the extraterrestrial irradiance corrected for Earth-sun distance.

The equation for the SeaWiFS operational algorithm OC418 is
\[
\log C = 0.366 - 3.067R + 1.930R^2 + 0.649R^3 - 1.532R^4
\]

(4)

where \(R \) is now the maximum of \(R_1, R_2, \) and \(R_3 \), which represent the SeaWiFS band ratios 443/555nm, 490/555nm, and 510/555nm, respectively. Both OC3C and OC4 are maximum band-ratio algorithms (MBR) that take advantage of the shift of the maximum of \(R \) toward higher wavelengths as chlorophyll concentration increases19. Thus, MBR chlorophyll algorithms have the potential to maintain the highest possible SNR over the very wide range of chlorophyll concentrations present in the global ocean. The high functional similarity between OC3C and OC4 (Fig. 2) and the fact that both were derived from a common data set ensures the comparability between CZCS and SeaWiFS chlorophyll estimates.

6) Lack of whitecap/foam reflectance correction

Wind-induced foam reflectance can impact the recovery of water-leaving radiances from ocean color sensors. All modern sensors provide a correction for foam reflectance, based on wind speed approximations. Accounting for whitecaps is now possible for the CZCS era with NOAA/National Center for Environmental Prediction (NCEP) reanalysis products (Table 1). We mimic the methods for SeaWiFS20.

\[
F = 6.497 \times 10^{-7} W^{3.52}
\]

(5)

where \(W \) is the wind speed (m s\(^{-1}\)) and \(F \) is the foam reflectance (dimensionless). As with SeaWiFS, \(W \) is not allowed to exceed 8 m s\(^{-1}\) to reduce the overestimates of foam reflectance at high wind speeds20.

It has also recently been demonstrated that foam exhibits spectral dependence21,22. This effect has been incorporated into the operational SeaWiFS processing20 (Version 3) and is included in our CZCS reanalysis similarly

\[
\alpha(\lambda) = 0.92 + 0.93\lambda - 2.15\lambda^2 + 0.78\lambda^3
\]

(6)
where λ is wavelength in μm, and $\alpha(\lambda)$ is a factor to account for the spectral dependence. Combining these effects we may derive the foam radiance $L_t(\lambda)$ used in our CZCS reanalysis

$$L_t(\lambda) = 0.4 F \alpha(\lambda) t_d(\theta_o, \theta, \lambda) \cos \theta_0 F_o(\lambda) D$$

(7)

where D is the Earth-sun distance correction, θ_0 is the solar zenith angle, and T is the diffuse transmittance of the atmosphere

$$t_d(\theta_o, \theta, \lambda) = \exp \{-[0.5t_r(\lambda)+t_o(\lambda)][1/\cos \theta_o + 1/\cos \theta]\}$$

(8)

and t_r and t_o are the Rayleigh and ozone optical thicknesses for CZCS bands6 and θ is the sensor zenith angle.

7) Lack of correction to Rayleigh scattering due to non-standard atmospheric pressure

Rayleigh scattering can be affected by the amount of molecular constituents in the atmosphere, which can be parameterized in terms of atmospheric sea level pressure. This correction is routinely applied to the SeaWiFS operational products. Although the CZCS is minimally affected by the sea level pressure23,24 because of low SNR, we include it here for consistency and because retrospective pressure data are now available from NOAA/NCEP (Table 1). We use CZCS multiple scattering Rayleigh tables24.

8) Lack of accounting for water-leaving radiance at 670 nm in high chlorophyll.

After two years of SeaWiFS operations, it was discovered that where large chlorophyll concentrations existed, substantial radiance in the near-infrared bands (765 nm and 865 nm) left the water, violating the assumption of zero water-leaving radiance. Siegel et al.25 provided an iterative correction method to estimate the water-leaving radiance at these bands and also at 670 nm for those who desired alternate atmospheric correction methods. The 670 nm method is directly applicable to the CZCS and is applied in our reanalysis. Unlike SeaWiFS, however, the so-called NIR-correction does not change the characterization of the aerosols in our CZCS reanalysis, just the amount.
Aerosol characterization is derived independently from clear waters areas and was not affected by water-leaving radiance at 670 nm.

An overview of the algorithm improvement components is shown in Fig. 3, along with the algorithms used in the operational SeaWiFS processing, to illustrate the similarity. There remain two exceptions to the processing: 1) SeaWiFS corrects for ocean surface roughness effects due to sea surface wind, and 2) SeaWiFS provides a correction to sun glint outside a masking area where the glint is heaviest. The surface roughness effects are only important at very large solar zenith angles (> 65°), and in our analysis only CZCS data with angles less than this limit are retained. Second, independent analyses of SeaWiFS data without applying the sun glint correction method have indicated no effect at the space and time scales used here.

Blending Satellite and In situ Data

After improvement of CZCS data, it can be blended with in situ data from the NODC/OCL chlorophyll archive. The blended analysis involves two components: 1) in situ data insertion, and 2) modification of satellite data field to conform to the in situ data values while retaining its spatial variability. A correction for interannual variability is included in the NCR.

Previously Gregg and Conkright defined four chlorophyll biomass domains to prevent unrealistic cross-regional influences resulting from blending. In the CZCS AI, these domain definitions have changed. They are now 0.35 mg m⁻³ to distinguish low chlorophyll domains from high, 0.15 mg m⁻³ for equatorial upwelling, and 0.4 mg m⁻³ for the Amazon River outflow.

Given that the CZCS data set has undergone modernization with respect to algorithm improvements as described above, we approach the blending of in situ data slightly differently than with the DAAC global data set. We assume that CZCS data are most accurate where chlorophyll concentrations are low and least accurate at high concentrations. This assumption is driven by the
fact that at low chlorophyll concentrations the radiance received at the satellite is high, producing high signal and avoiding digitization error. This is especially true for the CZCS, which had much smaller SNR than modern sensors. Conversely, we assume that in situ data are most accurate at high chlorophyll due to difficulties associated with determining accurate values at low concentrations. With these assumptions, we excluded all in situ values $< 0.05 \text{ mg m}^{-3}$ from the blended analysis.

The NCR utilizes new contributions to the NODC/OCL chlorophyll archive that were not present in the previous blending effort. We also applied more rigorous quality control procedures for the blending. Specifically, data from the Surveillance Trans-Oceanique du Pacifique (SURTROPAC) program were removed because of reduced quality. Also, other outliers in the North Central Pacific gyre were eliminated, along with tropical Atlantic data in 1979.

We evaluate the results of the NCR by comparing with the 1989 CZCS data set available from the GSFC-DAAC (called the DAAC CZCS), where pigment has been converted to chlorophyll using O'Reilly et al. The NCR is also compared with a SeaWiFS seasonal climatology from launch (Sep. 1997) to Oct. 2000. These comparisons are used to indicate an overall qualitative performance, emphasizing the similarities and differences of global distributions of chlorophyll. Quantitative evaluations involve root-mean-square (RMS) comparisons of the NCR with in situ data, an analysis of average error to determine bias, and a comparison of the RMS difference between the NCR and the blended analysis.

Results and Discussion

Comparisons Between CZCS AI/NCR and SeaWiFS

Comparison of the CZCS AI and NCR chlorophyll with SeaWiFS indicates a large degree of consistency (Figs. 4-5). Seasons are defined according to the Northern Hemisphere convention:
winter (Jan.-Mar.), spring (Apr.-Jun.), summer (Jul.-Sep.), and autumn (Oct.-Dec.). Sizes, shapes, and magnitudes of the mid-ocean gyres exhibit remarkable similarity. This is especially noticeable when compared to the DAAC CZCS pigment data converted to chlorophyll. The mid-ocean gyres are particularly noteworthy -- the DAAC CZCS gyres are vastly expanded relative to the CZCS reanalysis and SeaWiFS. These results suggest that the differences between the DAAC CZCS and SeaWiFS are mostly due to algorithm differences and not to natural variability. The CZCS AI exhibits correspondence especially in the broad gyres. It is this level of correspondence that strongly indicates consistency between the algorithms and the SeaWiFS algorithms.

There are substantial differences between the NCR seasonal climatologies and SeaWiFS, such as the northern high latitudes in autumn and near New Zealand in spring. But the overall correspondence suggests these differences may be due to natural variability, and not algorithms, which is the purpose of this effort.

A quantitative understanding of the effects of the NCR can be obtained by observing the RMS differences between the CZCS AI data and co-located, coincident in situ values. The results are consistent among seasons. The DAAC CZCS typically produced RMS differences of about 120%, compared with 60% for NCR (Table 2). This represents an average improvement of about 49%. Maximum differences for any of the 12 oceanographic basins are reduced dramatically (Table 2). Overall, these results indicate the level at which CZCS AI data have been improved relative to the NODC/OCL in situ archive.

Another RMS intercomparison involves determining the difference between the CZCS blended and the unblended fields (the AI in the case of the reanalyzed CZCS, and the DAAC CZCS archive in the case of the previous version). This analysis provides an index of the departure of the blended fields from the original satellite fields, and indicates how closely the two fields agree. A small RMS
difference indicates that the blended analysis made relatively minor adjustments to the original satellite field, and suggests agreement. A large RMS indicates that the original satellite field deviates greatly from the in situ data, and suggests poor quality of the original satellite field. This analysis is different from the satellite-in situ comparison because it evaluates the spatial effect of blending and produces a large-scale assessment, rather than the spatially aliased, although rigorous, point-by-point satellite-in situ comparison.

The RMS blended/unblended comparison indicates that the CZCS AI is a major improvement over the DAAC CZCS (Table 3). The previous DAAC CZCS blend represented a 70-81% change over the unblended CZCS data, compared to 20-26% for the CZCS AI. This strongly suggests that blending the CZCS AI does not produce large deviations from the unblended, and that it is a higher quality, more accurate representation of global ocean chlorophyll than the DAAC CZCS. The moderate adjustments produced by blending the CZCS AI with in situ chlorophyll yield an overall improved final product, which is the NCR.

The CZCS AI also appears to generate very reasonable estimates of normalized water-leaving radiance. According to Gordon et al.12 and Evans and Gordon6, the mode of the $[L_w(520)]_N$ and $[L_w(550)]_N$ wavelengths should be near 0.498 and 0.30 mW m$^{-2}$ cm$^{-1}$ sr$^{-1}$, respectively. These observations were based on in situ sampling. Analysis of the modes for the entire CZCS AI archive indicate excellent agreement, with a mean mode of 0.498 and 0.294, for $[L_w]_N(520)$ and $[L_w]_N(550)$, respectively (Fig. 6). There was no discernible temporal trend.

\textit{Residual Problems with CZCS}

We have applied improved algorithms to the CZCS archive to produce a global chlorophyll data set that is compatible with modern ocean color sensor data. However, there are still residual problems with the CZCS based on its design and operation that present obstacles to producing a
seamless time series. These are primarily 1) poor sampling, 2) lack of bands in the NIR to enable improved identification of aerosol characteristics, and 3) poor SNR. Our methods here have done much to alleviate the problems with aerosol identification and SNR, but sampling remains a problem that is insurmountable through algorithm improvement or processing methodologies.

1.0 Poor Sampling by the CZCS.

As a demonstration mission, the CZCS was only operated sporadically, producing sampling alias. OCTS, SeaWiFS, MODIS and future global ocean color sensors are operational missions that routinely collect data globally. Some small sampling aliases may occur in these missions from inadequate solar irradiance occurring in local winter in the high latitudes. But the sparse sampling by the CZCS in local winter was so severe that, for example, there were very few observations in January in the North Atlantic above 40° latitude. Consequently the winter seasonal mean was over-represented by February and especially March observations. This sampling bias affects the comparison with SeaWiFS seasonal means, which do not contain a similar bias. Therefore, CZCS observations in the North Pacific and North Atlantic basins north of 40° in winter and autumn, and in the Antarctic south of 40° in spring and summer, should be viewed with caution, despite the improvements in the NCR from upgrade of algorithms and blending. Comparisons with other mission data in these seasons are unrepresentative on large scales, even if utilizing co-located data only.

2.0 Lack of Bands in the NIR to Enable Unequivocal Identification of Aerosol Characteristics

All modern ocean color missions contain bands in the NIR, typically at 765 and 865 nm, to distinguish aerosol characteristics. Except at high chlorophyll concentrations, water is completely absorbing at these wavelengths and thus an unequivocal identification of scattering aerosols is possible. (Absorbing aerosols are difficult to identify using only information at these NIR bands).
The CZCS had quantitative ocean-viewing bands only at 443, 520, 550, and 670 nm, all of which are affected by chlorophyll. However, at low chlorophyll concentrations, \([L_m(520)]_N, [L_m(550)]_N, [L_m(670)]_N\) are known\(^6\). Our method for deriving aerosol characteristics takes advantage of the knowledge in these so-called clear-water areas, and extrapolates to areas with high chlorophyll using standard methods developed for meteorology and applied to oceanographic problems\(^29\), called the SCM or also known as objective analysis. The success of this methodology to reproduce the spatial variability of aerosols depends upon the number of observations over clear water. Occasionally individual CZCS scenes (operating segments usually composed of 2 minutes of observation time), contained no valid ocean pixels other than high chlorophyll. For example, some scenes were mostly over land and contained only a small fraction of high chlorophyll coastal areas. For this reason, we aggregate \(e(550,670)\) over a day, so that there is the possibility of a preceding or succeeding scene, or even a scene from a different orbit, that can provide a clear water \(e(550,670)\) determination that is close enough to the high chlorophyll pixels to be valid. Of course, it is impossible for the SCM to detect aerosol fronts that are located entirely within high chlorophyll. But if there are just a few clear water pixels within the high chlorophyll regions and under the new aerosol type, the SCM can resolve the front. Considering that the dynamics of ocean chlorophyll domains and aerosols are vastly different, it would seem an unlikely possibility that some detection of aerosol fronts cannot be made, although it probably occurs occasionally.

To understand the sensitivity of the CZCS AI to the aerosol detection methodology, we pre-specified \(e(520,670)\) and \(e(550,670)\) to a fixed value of 1.0, representing a marine aerosol as in the DAAC CZCS. We applied our methodology otherwise identical to the CZCS AI, including multiple scattering aerosols. The global differences in spring and autumn were only 5.9% and 4.9%, respectively, compared to AI with variable \(e\). The differences were only 2.5% and 3.3%,
respectively for spring and autumn, between the blended results. These results illustrate the
correction ability of the blended analysis. The fixed ε experiment produced lower estimates of
chlorophyll than the NCR, which is consistent with the algorithm behavior and with the
observations of underestimates in the DAAC CZCS¹.

A further analysis involved identifying the percentage of pixels in scenes where clear water
ε(550,670) were available (derived ε), as opposed to those underlying ε(550,670) extrapolated from
SCM. These results indicate often very high percentages of derived ε, especially in mid-latitudes
(between -50 and 40 latitudes) (Fig. 7). Reduced percentages of derived ε are observed in the
northern high latitudes, but even here, despite the massive spring bloom of high chlorophyll, there
are still >30% of the chlorophyll pixels underlying derived ε values from low chlorophyll (clear
water) regions. The Antarctic indicates generally good derived ε coverage.

3.0 Poor Signal-to-Noise Ratios (SNR)
The CZCS SNR's, at about 200:1, are much smaller than modern sensors, with 500:1 or better now
common³. This limits the dynamic range of chlorophyll the CZCS is able to detect, but more
importantly may affect the quality of the derived products. We minimize these effects by excluding
all pixels where the water-leaving radiance diffusely transmitted to the satellite \[t_L_w(\lambda),\] where λ =
443, 520 and 550] is less than 2 digital counts. This assures sufficient signal in the data to exceed
the noise level. Additionally, the binning of ε(550,670) to a 20-km grid involves averaging and thus
reduces the sensitivity of the results to the low SNR.

Summary and Conclusions
The CZCS global ocean chlorophyll archive was revised using compatible atmospheric correction
and bio-optical algorithms with modern generation ocean color sensors, such as OCTS, SeaWiFS,
and MODIS. The revision involved two components, 1) algorithm improvement (AI), where CZCS
processing algorithms were improved to take advantage of recent advances in atmospheric correction and bio-optical algorithms, and 2) blending, where in situ data were incorporated into the final product to provide improvement of residual errors. The combination of the two components is referred to as the NOAA-NASA CZCS Reanalysis (NCR) Effort. The results of the NCR are compared to in situ data and indicate major improvement from the previously available CZCS archive maintained by the NASA/GSFC-DAAC. Comparisons with in situ data indicate a 49% improvement. Blending with in situ data produced only a 23% adjustment to the CZCS AI field, compared to a 76% percent adjustment required for the DAAC CZCS. This represented a 69% improvement. Frequency distributions of normalized water-leaving radiances at 520 and 550 nm were in very close agreement with expected. Finally, observations of global spatial and seasonal patterns indicated remarkable correspondence with SeaWiFS, suggesting data set compatibility.

This revision can permit a quantitative comparison of the trends in global ocean chlorophyll from 1979-1986, when the CZCS sensor was active, to the present, beginning in 1996 with OCTS, SeaWiFS, and MODIS. The overall spatial and seasonal similarity of the data records of CZCS and SeaWiFS strongly suggests that differences are due to natural variability, although some residual effects due to CZCS sensor design or sampling may still exist. We believe that this reanalysis of the CZCS archives can enable identification of interannual and interdecadal change. NCR reanalyzed CZCS data are available through the GSFC-DAAC (authors’ note: the data will be made available upon acceptance of this paper to assure consistency between the paper and the data sets).

Acknowledgements. We thank the NASA/GSFC-DAAC for the Level-3 SeaWiFS data, the Level-1A CZCS data, and the Level-3 CZCS archive data (in particular James Acker), and the contributors of in situ data to the NOAA/NODC archives. We also thank D. Antoine for revised decay function for CZCS Band 4. H.R. Gordon and R.H. Evans are acknowledged for years of analysis and
characterization of the CZCS, and whose work was fundamental to this revision. We also acknowledge the efforts of G.C. Feldman, W.E. Esaias, and C.R. McClain in the original global processing of the CZCS archive. This work was supported by NOAA's Climate and Global Change Program, NOAA/NASA Enhanced Data Sets Element, Grant No. NOAA/RO#97-444/146-76-05 (WWG and MEC), the NASA Pathfinder Data Set Research Program (MEC, WWG, JEO, and JAY), and NASA SIMBIOS Grant NAS5-00203 (MHW).

References

7. R.H. Evans, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 33149, Fla. (personal communication, May 1999).

Table 1. Input data sets required for atmospheric correction of CZCS data for compatibility with modern ocean color sensors. TOMS is the Total Ozone Mapping Spectrometer and CDC is the Climate Diagnostics Center, where the NCEP reanalyses are held and distributed.

<table>
<thead>
<tr>
<th>Ancillary Atmospheric Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Wind speed</td>
</tr>
<tr>
<td>Surface pressure</td>
</tr>
<tr>
<td>Ozone</td>
</tr>
</tbody>
</table>

Table 2. Global root-mean-square (RMS) differences between the CZCS Algorithm Improvement (AI) and the NODC/OCL in situ archive, expressed as percent, compared to the DAAC CZCS. Below the global data in parentheses are the minimum and maximum observed in each of the 12 major oceanographic basins.

<table>
<thead>
<tr>
<th></th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAAC CZCS</td>
<td>104.7</td>
<td>111.0</td>
<td>151.9</td>
<td>105.7</td>
</tr>
<tr>
<td></td>
<td>(48.5-251.3)</td>
<td>(44.3-352.1)</td>
<td>(53.9-289.2)</td>
<td>(39.1-205.1)</td>
</tr>
<tr>
<td>CZCS AI</td>
<td>56.5</td>
<td>53.7</td>
<td>73.3</td>
<td>57.7</td>
</tr>
<tr>
<td></td>
<td>(39.3-92.0)</td>
<td>(41.0-73.7)</td>
<td>(41.8-133.8)</td>
<td>(42.0-81.2)</td>
</tr>
<tr>
<td>Percent Improvement</td>
<td>46.0</td>
<td>51.6</td>
<td>51.7</td>
<td>45.4</td>
</tr>
</tbody>
</table>

Table 3. Global root-mean-square (RMS) differences between the reanalyzed CZCS Algorithm Improvement (AI) and the blended NCR, expressed as percent, compared to the DAAC CZCS and
its blended version. Below the global data in parentheses are the minimum and maximum observed
in each of the 12 major oceanographic basins.

<table>
<thead>
<tr>
<th></th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAAC CZCS</td>
<td>71.1</td>
<td>81.3</td>
<td>73.3</td>
<td>69.8</td>
</tr>
<tr>
<td></td>
<td>(23.7-102.3)</td>
<td>(38.6-119.4)</td>
<td>(23.1-195.9)</td>
<td>(13.3-108.5)</td>
</tr>
<tr>
<td>CZCS AI</td>
<td>26.2</td>
<td>22.2</td>
<td>24.1</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>(14.6-39.4)</td>
<td>(6.3-31.6)</td>
<td>(0.9-49.8)</td>
<td>(13.8-38.0)</td>
</tr>
<tr>
<td>Percent Improvement</td>
<td>63.2</td>
<td>72.7</td>
<td>67.1</td>
<td>71.2</td>
</tr>
</tbody>
</table>

Figure Captions

Figure 1. Navigational offsets in latitude and longitude in the original CZCS archive (top), and the
effects of application of a bias adjustment used in the CZCS AI (bottom).

Figure 2. Comparison of the SeaWiFS OC4 Maximum Band Ratio algorithm used in the Version 3
processing and its OC3C analog used in the CZCS AI. The major differences occur at high
chlorophyll concentrations, but all values > 25 mg m$^{-3}$ were discarded in the AI, minimizing these
differences.

Figure 3. Comparison of methodologies used in the NOAA-NASA CZCS reanalysis (NCR) and
the methods used in the SeaWiFS operational processing, Version 3.

Figure 4. Global seasonal climatologies of the DAAC CZCS (top left), new reanalyzed CZCS
without blending (top right), the blended-reanalyzed CZCS (NCR; bottom left), and SeaWiFS
(bottom right) for spring defined for the Northern Hemisphere (April-June).

Figure 5. As in Figure 2 for autumn (October-December).
Figure 6. Representative histograms of normalized water-leaving radiances at 520 nm and 550 nm, \([L_w]_N(520)\) and \([L_w]_N(550)\), derived from all observations for the seasons and years indicated. The mean mode was 0.498 and 0.294 mW cm\(^{-2}\) \(\mu\)m\(^{-1}\) sr\(^{-1}\), respectively for \([L_w]_N(520)\) and \([L_w]_N(550)\), which is very close to the expected 0.498, and 0.30 mW cm\(^{-2}\) \(\mu\)m\(^{-1}\) sr\(^{-1}\). The solid vertical line indicates the location of the expected mode.

Figure 7. Percentage of pixels in scenes where epsilons were derived from clear water observations, as opposed to those obtained from extrapolation with SCM. Observations were from the entire archive for spring and autumn.
Chlorophyll Algorithms:
OC4 (SeaWiFS) and OC3C (CZCS)

Maximum Band Ratio

Chl a (mg m$^{-2}$)
CZCS AI/SeaWiFS Algorithm Compatibility

<table>
<thead>
<tr>
<th>CZCS AI</th>
<th>SeaWiFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>SeaWiFS Project</td>
</tr>
<tr>
<td>Evans & Gordon 1994</td>
<td>retrospective reanalysis</td>
</tr>
<tr>
<td>retrospective reanalysis</td>
<td></td>
</tr>
<tr>
<td>Navigation</td>
<td>Island target method</td>
</tr>
<tr>
<td>Island target method</td>
<td>Patt et al. (1997)</td>
</tr>
<tr>
<td>Rayleigh Scattering</td>
<td>Exact multiple scattering</td>
</tr>
<tr>
<td>pressure-corrected</td>
<td>pressure-corrected</td>
</tr>
<tr>
<td>L_w(NIR)</td>
<td>Corrected at 765, 865 nm</td>
</tr>
<tr>
<td>Corrected at 670 nm</td>
<td>Siegel et al. (2000)</td>
</tr>
<tr>
<td>Characterized in clear water using 550 and 670 nm Objectively analyzed in high chlorophyll</td>
<td>Characterized using NIR bands 765 and 865 nm</td>
</tr>
<tr>
<td>Aerosol Type</td>
<td>SeaWiFS</td>
</tr>
<tr>
<td>SeaWiFS</td>
<td>Multiple scattering/</td>
</tr>
<tr>
<td>Multiple scattering/</td>
<td>Rayleigh-aerosol Tables</td>
</tr>
<tr>
<td>Gordon and Wang (1994)</td>
<td>modified for CZCS</td>
</tr>
<tr>
<td>Foam Correction</td>
<td>Wind-dependent spectral correction</td>
</tr>
<tr>
<td>Wind-dependent spectral correction</td>
<td>Wang 2000; Frouin et al. (1996)</td>
</tr>
<tr>
<td>Bio-optical Algorithm</td>
<td>Maximum band ratio</td>
</tr>
<tr>
<td>Maximum band ratio</td>
<td>OC4</td>
</tr>
<tr>
<td>O'Reilly et al. (2000)</td>
<td>O'Reilly et al. (2000)</td>
</tr>
</tbody>
</table>
The CZCS global ocean chlorophyll archive was revised using compatible atmospheric correction and bio-optical algorithms with modern generation ocean color sensors, such as OCTS, SeaWiFS, and MODIS. The revision involved two components, 1) algorithm improvement (AI), where CZCS processing algorithms were improved to take advantage of recent advances in atmospheric correction and bio-optical algorithms, and 2) blending, where in situ data were incorporated into the final product to provide improvement of residual errors. The combination of the two components is referred to as the NOAA-NASA CZCS Reanalysis (NCR) Effort. The results of the NCR are compared to in situ data and indicate major improvement from the previously available CZCS archive maintained by the NASA/GSFC-DAAC. Comparisons with in situ data indicate a 49% improvement. Blending with in situ data indicate a 23% adjustment to the CZCS AI field, compared to a 76% percent adjustment required for the DAAC CZCS. This represented a 69% improvement. Frequency distributions of normalized water-leaving radiances at 520 and 550 nm were in very close agreement with expected. Finally, observations of global spatial and seasonal patterns indicated remarkable correspondence with SeaWiFS, suggesting data set compatibility.

This revision can permit a quantitative comparison of the trends in global ocean chlorophyll from 1979-1986, when the CZCS sensor was active, to the present, beginning in 1996 with OCTS, SeaWiFS, and MODIS. The overall spatial and seasonal similarity of the data records of CZCS and SeaWiFS strongly suggests that differences are due to natural variability, although some residual effects due to CZCS sensor design or sampling may still exist. We believe that this reanalysis of the CZCS archives can enable identification of interannual and interdecadal change. NCR reanalyzed CZCS data are available through the GSFC-DAAC.
Popular Summary: The NOAA-NASA CZCS Reanalysis Effort
Watson W. Gregg, Margarita E. Conkright, Jay E. O'Reilly, Frederick S. Patt, Menghua Wang, James Yoder, Nancy Casey-McCabe
Submitted to Applied Optics 2001

NASA and the international scientific communities have established a record of nearly continuous, high quality global ocean color observations from space since 1996. The Ocean Color and Temperature Scanner (OCTS: Nov. 1996-Jun. 1997), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS: Sep. 1997-present), and the Moderate Resolution Imaging Spectrometer (MODIS: Sep. 2000-present) have provided an unprecedented view of chlorophyll dynamics on global scales using modern, sophisticated data processing methods. A predecessor sensor, the Coastal Zone Color Scanner (CZCS: Nov. 1978-Jun. 1986), utilized processing methodologies and algorithms that are outdated by modern standards. Thus, the CZCS archive is severely limited for scientific analyses of interannual and interdecadal variability. This is an issue of fundamental importance to the study of global change.

In response, NOAA and NASA established an effort to reanalyze the CZCS record by utilizing advances in algorithms that are shared by modern remote sensing missions. In this paper we describe the methods and results of this effort, called the NOAA-NASA CZCS Reanalysis (NCR). Our methods involve the application of 1) recent algorithms to CZCS data to enhance quality and provide consistency with the modern sensors OCTS, SeaWiFS, and MODIS and 2) blending techniques1 using satellite data and the extensive in situ archives maintained by the National Oceanographic Data Center (NODC)/Ocean Climate Laboratory (OCL) to minimize bias and residual error.

Our objective is to provide a high quality blended satellite-in situ data set that will enable a consistent view of global surface ocean chlorophyll and primary production patterns in two observational time segments (1978-1986 and 1996-present) spanning 2 decades. By reconstructing the historical CZCS data set, new insights can be gained into the processes and interactions involved in producing the interannual and interdecadal chlorophyll signal.
Science Priorities: The NOAA-NASA CZCS Reanalysis Effort
Watson W. Gregg, Margarita E. Conkright, Jay E. O'Reilly, Frederick S. Patt, Menghua Wang,
James Yoder, Nancy Casey-McCabe
Submitted to Applied Optics 2001

Priority#2 Seasonal to Interannual Climate Prediction
Priority#6 Algorithm/sensor development