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Abstract

The game-theory field of COllective INtelligence (COIN) concerns the design of computer-

based players engaged in a non-cooperative game so that as those players pursue their self-

interests, a pre-specified global goal for the collective computational system is achieved "as a

side-effect". Previous implementations of COIN algorithms have outperformed conventional

techniques by up to several orders of magnitude, on domains ranging from telecommunica-

tions control to optimization in congestion problems. Recent mathematical developments

have revealed that these previously developed algorithms were based on only two of the three

factors determining performance. Consideration of only the third factor would instead lead

to conventional optimization techniques like simulated annealing that have little to do with

non-cooperative games. In this paper we present an algorithm based on all three terms at

once. This algorithm can be viewed as a way to modify simulated annealing by recasting it

as a non-cooperative game, with each variable replaced by a player. This recasting allows

us to leverage the intelligent behavior of the individual players to substantially improve the

exploration step of the simulated annealing. Experiments are presented demonstrating that

this recasting significantly improves simulated annealing for a model of an economic process

run over an underlying small-worlds topology. Furthermore, these experiments reveal novel

small-worlds phenomena, and highlight the shortcomings of conventional mechanism design

in bounded rationality domains.

1 INTRODUCTION

There are three general types of distributed systems that are found in nature and that researchers

have translated into computational algorithms for function maximization. The first is exemplified



by Neo-Darwinian natural selection, which has been translated into genetic algorithms (GA's) [1,

7, 13, 24]. These distributed systems can be viewed as finding a maximum of a function G that

takes as argument any single one of the system's variables. (Each of those single variables is a

"genome", with G of a genome being the "fitness" of the "phenotype" induced by that genome.)

Whereas systems of this first type have a "narrow G", in the second type of distributed system,

the function G being optimized is "wide", taking the state of the entire distributed system as its

argument. In some such distributed systems it is only in the crudest sense that the individual

variables can be viewed as players in a non-cooperative game. These systems comprise the second

type, and examples include simulated annealing (SA [18, 11]) and swarm intelligence [2, 20],

inspired by spin relaxation in physics and eusocial insect colonies, respectively.

In the third type of system, G is also wide, but the value of each of the individual variables

going into G is set by a player engaged in an over-arching non-cooperative game where each player

_? is trying to maximize its associated payoff utility function gn. Roughly speaking, such collective

systems work when the utility functions of the individual variables/players are all "aligned" with

the world utility G. Under these circumstances, as the individual players pursue their self-

interests, the global goal for the full collective of maximizing G is achieved "as a side-effect".

The primary naturally-occurring instances of such collectives are economic institutions where the

players are human beings, e.g., auctions and clearing of markets. In the computational versions

of such systems the players are instead computer programs [4, 5, 6, 12, 15, 17, 19, 30, 36, 48].

The "COllective INtelligence" (COIN) framework concerns the design of such collectives in-

volving non-cooperative games. In particular, it addresses the issue of how to generate, from a

provided G, the set of utilities {g_} that have optimal signal/noise for each player _ while also

having the property that as the individual players maximize those utilities, G gets maximized

(i.e., while also being "aligned with G"). This work on design of collectives can be viewed as an

extension of mechanism design [10] beyond human economics, to include concern for the signal-

to-noise ratio in the payoff functions and off-equilibrium behavior, to allow far more freedom

in choice of the gn than exists with human players (for example to encompass computational

systems in which the issue of incentive compatibility is moot), and also to encompass arbitrary G

and arbitrary dynamics of the system. Applications of this framework on problems from routing

in telecommunication networks [37, 44, 46] to congestion problems [47] have resulted in sub-

stantial performance improvement over conventional techniques that do not consider issues like

signal-to-noise. Typically as the size of the collective grows, such improvements reach several

orders of magnitude.

Recent mathematical developments have shown that the previously developed COIN algo-

rithms for design of collectives were based on only two of the three factors determining perfor-

mance at maximizing G. Consideration of only the third factor would instead lead to conventional

wide-G systems that have little to do with non-cooperative games, like simulated annealing. Con-

sideration of all three terms at once therefore would result in an algorithm that combines the

two types of wide-G function maximization systems, those having naturally-occurring analogues

of human economics and of statistical physics, respectively.

In this paper we present such a hybrid algorithm. Because of the similarity of this algo-

rithm to (certain aspects of) how human corporations are run, we call it the Computational

Corporation (CoCo) algorithm. Roughly speaking, it works by modifying the exploration step



of simulatedannealingbyhaving the new values of the variables be set by the moves of intelli-

gent players in a non-cooperative game rather than by sampling a probability distribution. Like

simulated annealing, the computational corporation algorithm is intended not to give the best

possible performance in all problem domains -- an algorithm laboriously tailored for a particular

domain will invariably perform best for that domain [45]. Rather like other algorithms related

to naturally-occurring distributed function maximizers the computational corporation algorithm

is intended as a powerful and broadly applicable "off-the-shelf" algorithm.

In other work we present experiments demonstrating that the computational corporation algo-

rithm outperforms simulated annealing by several orders of magnitudes for spin glass relaxation

and bin-packing [43]. Here we present such experiments for a simple economics model of a set

of people choosing among various potential formats for their home music-reproduction systems.

In this model the players interacted over an underlying ring-like network. The world utility was

the sum of each player _?'s "happiness" function, which depended on factors like which of rfs

neighbors picked the same format it did, _'s intrinsic preference for the format it picked, and the

price, set by the level of global demand, of any reproduction in that format. In our experiments

we compared CoCo to SA and also to a variant of a conventional COIN algorithm that is similar

to the economics/mechanism design technique of providing incentives to players that "endoge-

nize their externalities". It was found that when that network had only short-range connections,

the performance of CoCo at a certain iteration substantially exceeded that of the economics-

like COIN, verifying the sub-optimality of such conventional economics incentive schemes (world

utility equals 68 and 60, respectively, in arbitrary units, at a fixed time-step). In turn, both that

COIN and CoCo system (the two game-theory-based systems) performed substantially better

than SA (G = 44). Performances were also consistent with the spin-glass and bin-packing con-

vergence results reported in [43], namely that CoCo would reach a given level of G about two

orders of magnitude more quickly than SA.

We then modified the network by incorporating a few random long-range connections, to

produce a small-worlds-network [21, 26, 27, 28, 39]. It was found that the resultant decrease in

average inter-player distance resulted in a barely significant improvement in CoCo's performance

(3%), and none in the other algorithms, contrary to typical results in the small-worlds literature.

However if G was also changed, to reflect the total number of other players within a given

player _?'s full neighborhood (rather than just _?'s nearest neighbors), then going to a small-

worlds network improved performance substantially (10%). Note that the fact that all three

algorithms experienced this improvement to some degree suggests that a variant of the small-

worlds phenomenon generically extends beyond domains where it has previously been investigated

to maximization of high-dimensional functions defined over a network.

2 The Mathematics of Collective Intelligence

The full formalization of the COIN framework extends significantly beyond what is needed for

this paper. 1 The restricted version needed here starts with an arbitrary vector space Z whose

1That framework encompasses, for example, arbitrary dynamic redefinitions of the players (i.e., dynamic reas-

signments of how the various subsets of the variables comprising the collective are assigned to players), as well as
modification of the players' information sets (i.e., modification of inter-player communication). See [42].



elements( givethejoint stateof allthevariablesin thecollective.

Wewishto searchfor the_ thatmaximizestheprovidedworld utility G. In addition to G

we are concerned with payoff utility functions {g, }, one such function for each variable/player

_/. We use the notation _ to refer to all players other than _.

We will need to have a way to "standardize" utility functions so that the numeric value they

assign to a _ only reflects their ranking of 4 relative to certain other elements of Z. We call such

a standardization of utility U for player _/the "intelligence for y at ( with respect to U". Here

we will use intelligences that are equivalent to percentiles:

,) ---f d,,.,(¢')O[U(¢)- U(¢')], (1)

where the subscript on the (normalized) measure indicates it is restricted to 4' sharing the same

non-7/ components as _, and where the Heaviside function O is defined to equal 1 when its

argument is greater than or equal to 0, and to equal 0 otherwise. Intelligence values are always
between 0 and 1.

Our uncertainty concerning the behavior of the system is reflected in a probability distribution

over Z. Our ability to control the system consists of setting the value of some characteristic of

the collective, e.g., setting the payoff functions of the players. Indicating that value by s, our

analysis revolves around the following central equation for PiG [ s), which follows from Bayes'
theorem:

P(a l s) = / dgGP(G [ gc,s) / dggP(gc [ _'9, s)P(_'g Is), (2)

where _*g - (%_1 (4 : rtl),%, 2 (4 : _),'" ") is the vector of the intelligences of the players with

respect to their associated payoff functions, and gc - (eG(4 : _h),eG(4 : T/2),--.) is the vector of

the intelligences of the players with respect to G.

Note that %, (_ : 7) = 1 means that player _ is fully rational at _, in that its move maximizes

its payoff, given the moves of the players. So a Nash equilibrium is a point ¢ where %, (_ : r/) = 1

for all players 7/.2 On the other hand, a _ at which all components of e'G = 1 is a local maximum

of G (or more precisely, a critical point of the G(_) surface).

If we can choose s so that the third conditional probability in the integrand is peaked around

vectors gg all of whose components are close to 1, then we have likely induced large (payoff

function) intelligences. If we can also have the second term be peaked about _'c equal to _'9, then

e'c will also be large. Finally, if the first term in the integrand is peaked about high G when e*a

is large, then our choice of s will likely result in high G, as desired.

Intuitively, the requirement that payoff functions have high "signal-to-noise" (an issue not

considered in conventional work in mechanism design) arises in the third term. It is in the second

term that the requirement that the payoff functions be "aligned with G" arises. Previously

2Consideration of points (: at which not all intelligences equal 1 provides the basis for a model-independent
formalization of bounded rationality game theory, a formalization that contains variants of many of the theorems
of conventional full-rationality game theory. See [41].



developedCOINalgorithmsconcentratedon thesetwoterms. In contrast,non-game-theory
functionmaximizationtechniqueslikesimulatedannealinginsteadaddresshowto haveterm1
havethedesiredform.Theydothisbytryingtoensurethatthelocalmaximathattheunderlying
systemsettlesonhavehighG.

It is the simultaneous concern for all three of the terms in Eq. 2 that underlies the CoCo

algorithm. To present that algorithm we must first review some COIN results on how to simul-

taneously set terms 2 and 3 to have the desired form.

Our desired form for the second term in Eq. 2 is assured if the collective be factored, which

means that _*gequals _'c exactly for all _. In game-theory language, the Nash equilibria of a fac-

tored collective are local maxima of G. In addition to this desirable equilibrium behavior, factored

collectives also automatically provide appropriate off-equilibrium incentives to the players.

As a trivial example, any "team game" in which all the payoff functions equal G is factored [9,

25]. However team games often have very poor forms for term 3 in Eq. 2, forms which get

progressively worse as the size of the collective grows. This is because for such payoff functions

each player _/will usually confront a very poor "signal-to-noise" ratio in trying to discern how its

actions affect its payoff g, = G, since so many other player's actions also affect G and therefore

dilute T/'s effect on its own payoff function.

Previous COIN algorithms were based on varying the payoff functions {gv} to optimize the

signal/noise ratio reflected in the third term, subject to the requirement that the system be

factored. To understand how those algorithms work, given a measure d#(_), define the opacity

at _ of utility U as

 v(c: ,j,s)- f 1¢)
IU(C)-

- u(¢-,, ¢:¢,)1'
(3)

where J is defined in terms of the underlying probability distributions. 3

The denominator absolute value in the integrand in Eq. 3 reflects how sensitive U(() is to changing

(,. In contrast, the numerator absolute value reflects how sensitive U(() is to changing _-_. So

the smaller the opacity of a payoff function g,, the more gn(_) depends only on the move of

player _/, i.e., the better the associated signal-to-noise ratio for _/. Intuitively then, lower opacity

should mean it is easier for 7/to achieve a large value of its intelligence.

To formally establish this, we use the same measure d# to define opacity as the one that defined

intelligence. Under this choice expected opacity bounds how close to 1 expected intelligence can

be [42]:

E(eu(_ : 77) I s) < 1 - K, where

K _< E(12v(( : _/,s) [ s).

3Writing it out in full, Y(4' I 4) = J(4_, 4' [ 4"_, s)/P(4_ [ _-_, s), with

(4)

J(4,,4' 14;,s) =
P(4u 14"v,s)P(4_ ] 4,,s)#(4_)

+
2



So low expected opacity of utility gu is a necessary condition for the third term in Eq. 2 to have

the desired form for player y. While low opacity is not, formally speaking, a sufficient condition

for E(ev(_ : r]) I s) to be close to 1, in practice the bounds in Eq. 4 are usually tight.

In general it is not possible for a collective both to be factored and to have zero opacity for

all of its players. However consider difference utilities, which are of the form

U(() = G(_) - r(f(_)) (5)

where F(f) is independent _,. Any difference utility is factored [42]. In addition, under usually

benign approximations, E(gtu I s) is minimized over the set of difference utilities by choosing

r(/(¢)) = E(G I ;_,,s), (6)

up to an overall additive constant. We call the resultant difference utility the Aristocrat utility

(AU), loosely reflecting the fact that it measures the difference between a player's actual action

and the average action.

If possible, we would like each player _ to use the associated AU as its payoff function to ensure

good from for both terms 2 and 3 in Eq. 2. This is not always feasible however. The problem is

that to evaluate the expectation value defining its AU each player needs to evaluate the current

probabilities of each of its potential moves. However if the player then changes its payoff function

to be the associated AU it will in general substantially change its ensuing behavior. (The player

now wants to choose moves that maximize a different function from the one it was maximizing

before.) In other words, it will change the probabilities of its moves, which means that its new

payoff function is in fact not the AU for its actual (new) probabilities.

There are ways around this self-consistency problem, but in practice it is often easier to bypass

the entire issue, by giving each _ a payoff function that does not depend on the probabilities of

77's own moves. One such payoff function is the Wonderful Life Utility (WLU). The WLU for

player 7] is parameterized by a pre-fixed clamping element CL_ chosen from among _'s possible
moves:

WLU,_ =_ G(¢) - G(_, CL,_) . (7)

WLU is factored no matter what the choice of clamping element. Fhrthermore, while not match-

ing the low opacity of AU, WLU usually has far better opacity than does a team game.

In many circumstances one can loosely interpret a particular choice of clamping element for

player _7as equivalent to a "null" move for player 77, equivalent to removing that player from

the system. (Hence the name of this payoff function -- cf. the Frank Capra movie.) For such

a clamping element assigning the associated WLU to q? as its payoff function is closely related

to the economics technique of "endogenizing a player's externalities" [10]. However it is usually

the case that using WLU with a clamping element that is as close as possible to the expected

move defining AU results in far lower opacity than does clamping to the null move. Accordingly,

use of such an alternative WLU almost always results in far better values of G than does the

"endogenizing" WLU.

Typically, COINs in which the payoff functions are WLU or AU not only far outperform

team games, but also conventional function maximization techniques like simulated annealing.

6



Howevernotethat evenif thepayofffunctionsin theCOINresultin thecollective'shavingevery
componentof thevector_'Gassuredlyequal1-- thebestterms2 and 3 we could hope for --

nothing in Eq. 2 precludes a poor value for G(¢). This is because having all those intelligences

equal 1 only means that the collective is at a local maximum of G, not a global one.

This potential shortcoming is reflected in the first term in Eq. 2, a term that does not directly

depend on the choice of the players' payoff functions. Crudely speaking, what that term reflects

is the propensity of the system to get stuck in a local maximum. Accordingly, one can use many

of the conventional exploration/exploitation function maximization techniques like simulated

annealing to induce a good form for that term. In this hybrid, at each iteration, the exploration

step is determined by the moves chosen by the players, rather than by using one of the random

sampling schemes that are traditionally employed. The exploitation step though is the same as

in the traditional formulation of the algorithm. In this way all three terms of Eq. 2 will have a

desired form, and the induced G should be large.

In its concern for all three terms this algorithm bears many similarities to well-run modern

human corporations, with G the "bottom line" of the entire corporation, the players r/ iden-

tified with the employees of the corporation, and the associated gn given by the employees'

performance-based compensation packages. For example, for a "factored corporation", each em-

ployee's compensation package contains incentives designed such that the better the bottom line

of the corporation, the greater the employee's compensation. In addition, if the compensation

packages are "low opacity", the employees will have a relatively easy time discerning the rela-

tionship between their behavior and their compensation. Finally, the centralized exploitation

process in CoCo is similar to the centralized decision-making of upper management that tries to

determine whether to abandon or stick with a particular set of behaviors by the employees. It is

due to these similarities that we call this algorithm the computational corporation algorithm.

3 Details of the CoCo algorithm

In the version of simulated annealing explored here, at the beginning of the exploration step of

each time-step t, every player r/changed its move from the one it settled on at the end of the

preceding time-step, _,,e-1, with probability .25. That 25% probability was uniformly allotted

across all moves that differed from _,t-_. Then in the exploitation step, G was evaluated for the

new point and compared to G(_,,t-1). If the new point had a higher G, it became the final point

of the current time-step, _n,t- Otherwise _,,_ was chosen to be either the new point or _,t-1,

according to a temperature-parameterized Boltzmann distribution based on the two associated

G values.

In the CoCo variant of simulated annealing, the exploitation step was unchanged while the

exploration step was modified to incorporate a COIN. Rather than have each player _7 pick

an exploration move according to the simulated annealing distribution h(_v), that move was

h(_)¢(_) where the distribution c(_) was generated by
picked by sampling the distribution _¢, h((,')c(t_')'

a reinforcement learning (RL) algorithm [8, 33, 46, 47] using a COIN-based utility function g,.

The RL algorithm used was perhaps the simplest one possible. Each player r/would maintain a

running average of the reward it has received for each of its possible moves. (Those averages were



formedby exponentiallyweightingmovesaccordingto howlongagotheyweretaken.)Those
averageswerethenusedto specifya Boltzmanndistribution(parameterizedby anassociated
"learningtemperature")overthepossiblemoves.That distributionwassampledto decide_'s
nextmove.In theseexperiments,to formtheinitial averages,for thefirst 100time-steps,the
movesforall playerswerechosencompletelyat randomratherthanviaRL,andtheassociated
rewardsrecordedbyeachof theplayers.

TheAU versionof CoCowasbasedon the veryroughapproximationthat eachplayer
hada uniformprobabilitydistributionoverits possiblemoves.Togetherwithourchoiceof an
extremelycrudeRL algorithm(andtheresultantneedto dedicatetime-stepsto a "thrashing"
trainingperiodin whichG does not improve), these approximations constituted a significant

handicap for AU CoCo.

4 Experimental Results

Small world networks are rings in which a few random long-range links are added. They have

been studied in variety of domains, including immunology, communication networks, social sci-

ences, neuro physiology and information exchange [21, 23, 26, 27, 28, 38, 39]. It has been found

that despite the fact that there are relatively few long-range links in such networks, those links

drastically reduce the average smallest number of links connecting any two nodes. Accordingly,

addition of those few links results in information propagating across such networks far more

quickly.

We wished to investigate whether the increased information speed accompanying those few

extra links would improve the performance of a function-maximizer run on a function defined

over the network, one whose maximization required coordination of the states across the entire

network. In particular, we were interested in this issue when the function was an economic

model, so that speeding up the function-maximization translated into more quickly settling into

a desirable global economic state.

The model we decided to investigate was one of coordination of choice of music-reproduction

format across the players/nodes. More precisely, each player _7on the network was given a choice

of four objects, and the player's move was to choose three of those. The motivation was that

would buy music-reproduction systems for those three formats only. Accordingly, 0 would only

buy music in those three formats. This led to a reduction in the global price for those three

formats, due to economies of scale in reproduction, which meant that all players using those

formats saw a lower price. In addition, 7/was only able to exchange music in the three formats

it had chosen with its neighbors lying _< d links away. Finally, _ had an intrinsic preference

for each of the four formats, due to factors like their audio fidelity characteristics. These three

effects combined to set each player _'s "happiness" for a global configuration of all players' format

choices. In turn, G was the sum over all players of their happiness':

i=1 \j=l kEneighj

where IVy and Na are the numbers of formats and players, respectively; neighj is the set of

neighbors for player j (a maximum distance d away from player j); prefj,i is the preference



of player j for format i, and was set randomly (to between 0 and 1) for each successive run;

_)j,i = 1 if player j has accepted format i and 0 otherwise; and wi,j,k = 1 if an player (j) and

its neighbor (k) have accepted (and can therefore trade) the same format i, and 0 otherwise.

The first parenthesis reflects the global popularity of a format in the network, while the second

accounts for the popularity of a format in the local market (neighborhood) and individual player's

preferences.

We compared simulated annealing, the computational corporation algorithm, and a simplified

version of the standard economics approach of "endogenizing one's externalities". For CoCo,

there were three variants: The first used team game utilities (CoCo -TG), the second used

AU utilities with probabilities fixed to .25 for each of the four allowed moves (CoCo-AU), and

the third was a Wonderful Life Utility with clamping parameter (1, 1, 1, 1) i.e., clamping was

to the nominally illegal action of choosing all formats (CoCo-WLU). The last choice was the

"endogenizing"-like approach of WLU with a clamping parameter of (0, 0, 0, 0), i.e., of choosing no

formats at all (CoCo-Econ). For this last choice each player used a utility function of the marginal

contribution of that player to the global utility: that player computes the difference between the

world utility and the world utility when it abstains from participating in the exchange.
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Figure 1: Small worlds network with 100 players (neighborhood size = 1): (a) Short range (left);

and (b) Long range connections.

Figure 1 shows the performance at time step 200 for two variants of an underlying ring of

100 players with 6 non-nearest-neighbor links superimposed. In the first variant all the extra

links were of length 2, positioned randomly. In the second extra links were purely random,

giving us a small-world network. All but team game CoCo algorithms significantly outperform

simulated annealing. Among those, AU CoCo and "accept-all" CoCo (WLU) also outperform

the economics based approach. Also note that simulated annealing did not benefit from the

existence of long range connections. However, both the different CoCo algorithms, and the

economics-based algorithm showed modest improvements (3%) in the presence of the long range

connections, showing that these algorithms used the new information more efficiently than did

simulated annealing.

This experiment demonstrated that the existence of long range connections alone is not suf-

ficient for the system to exhibit significant "small worlds" phenomena, and attain higher per-



formance.In particular,themodelusedabovedid not accountfor the "localneighborhood"
(alsoknownaspathlengths[27])whichdeterminesthedistanceoverwhicha playercanmake
a trade. Our secondsetof experimentsincorporatedthis conceptby modifyingG to reflect

the total number of other players within a given player 7/'s full neighborhood (rather than just

_/'s nearest neighbors). Figure 2 shows the performance of CoCo and SA in this new problem.

Once again, the WLU and AU-based CoCo outperformed the economics-based CoCo, and all

three outperformed SA. Also, notice that in this case, the presence of the long-range connections

provided a marked improvement in the performance of all the algorithms (10%).
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Figure 2: Small worlds network with 100 players (neighborhood size = 3): (a) Short range (left);

and (b) Long range connections.

Figure 3 compares the convergence properties of CoCo WLU, CoCo-Econ and SA. The WLU-

based algorithm converged to high G very rapidly, while CoCo-Econ did so more slowly. Simu-

lated annealing, on the other hand, provided very poor G at t = 200. Projecting the convergence

rate of SA linearly 4 provided over two orders of magnitude slower convergence than WLU-based

algorithms to good values of G. Also note the clear difference in the quality of the exploration

step between CoCo and SA: the exploration step of both CoCo algorithms improves dramatically

over time due to the players learning "where to explore". SA on the other hand has minimal

improvement over the exploration space, which explains its slow convergence to good G.

5 Conclusions

There are three general types of parallel systems found in nature that can be viewed as engaging

in maximization of a function G. These are exemplified by neo-Darwinian natural selection

(for G that take any single one of the elements of the parallel system as an argument), spin

glass relaxation (for G that take the entire system as argument), and clearing of markets in

economics relaxation (for G that take the entire system as argument and in which the overall

parallel system can be viewed as a non-cooperative game). All three types of systems have been

translated into computational algorithms, exemplified by genetic algorithms, simulated annealing,

4This favors SA since in practice its convergence rate slows down.
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Figure 3: Small worlds network with 100 players (neighborhood size = 3).

and computational markets, respectively.

The Collective Intelligence framework can be viewed as an extension of conventional economics-

based systems of the third type, to reflect signal-to-noise issues and greater freedom in modifying

the individual players than exist in economies of human beings. It has traditionally been applied

only to systems of the third type. Recent mathematical advances in that framework have shown

that those traditional COIN algorithms only account for two of the three factors determining

performance. The third factor can be accounted for by integrating the COIN with a technique

of the second type, like simulated annealing. Intuitively, such an integrated system, which we

call a computational corporation, can be viewed as conventional simulated annealing modified by

having the value of each variable in the exploration step of the SA be set by a (computer-based)

player in an associated non-cooperative game. Doing this allows the leveraging of the intelligence

of such players to improve the exploration, and thereby improve the performance.

We present experiments demonstrating that the computational corporation algorithm out-

performs simulated annealing by two order of magnitude for a model of an economic process run

over an underlying small-worlds topology. Furthermore, these experiments reveal novel small-

worlds phenomena, and highlight the shortcomings of conventional mechanism design in bounded

rationality domains.

Acknowledgements: The authors thank Michael New for helpful comments.
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