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Filtered Mass Density Function for Design Simulation of

High Speed Airbreathing Propulsion Systems

T.G. Drozda, R.M. Sheikhi and P. Givi

Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo

Buffalo, NY 14260-4400

Abstract

The objective of this research is to develop and implement new methodology for large eddy simulation

of (LES) of high-speed reacting turbulent flows. We have just completed two (2) years of Phase I of

this research. This annual report provides a brief and up-to-date summary of our activities during the

period: September 1, 2000 through August 31, 2001.

In the work within the past year, a methodology termed "velocity-scalar filtered density function"

(VSFDF) is developed and implemented for large eddy simulation (LES) of turbulent flows. In this

methodology the effects of the unresolved subgrid scales (SGS) are taken into account by considering

the joint probability density function (PDF) of all of the components of the velocity and scalar vectors.
An exact transport equation is derived for the VSFDF in which the effects of the unresolved SGS

convection, SGS velocity-scalar source, and SGS scalar-scalar source terms appear in closed form. The

remaining unclosed terms in this equation are modeled.

A system of stochastic differential equations (SDEs) which yields statistically equivalent results to the

modeled VSFDF transport equation is constructed. These SDEs are solved numerically by a Lagrangian

Monte Carlo procedure. The consistency of the proposed SDEs and the convergence of the Monte

Carlo solution are assessed by comparison with results obtained by an Eulerian LES procedure in which

the corresponding transport equations for the first two SGS moments are solved. The unclosed SGS

convection, SGS velocity-scalar source, and SGS scalar-scalar source in the Eulerian LES are replaced

by corresponding terms from VSFDF equation. The consistency of the results is then analyzed for a

case of two dimensional mixing layer.

Technical Monitor

Dr. J. Philip Drummond (Hypersonic Propulsion Branch, NASA LaRC, Mail Stop 197, Tel: 757-864-2298)

is the Technical Monitor of this Grant.

Personnel

Dr. Peyman Givi is the PI of this project. One Graduate Research Assistant (RA), Mr. Tomasz G. Drozda,

is being supported by this Grant. We also acknowledge collaborations with Professor Stephen B. Pope

(Cornell University) on various aspects of this project.



1 Introduction

The probability density function (PDF) approach has proven useful for large eddy simulation (LES) of

turbulent reacting flows. 7' 12,14,15,17,24,26-30 The formal means of conducting such LES is by consideration

of the "filtered density function" (FDF) which is essentially the filtered fine-grained PDF of the transport

quantities. In all previous contributions, the FDF of the "scalar" quantities is considered: Gao and

O'Brien, 14 Colucci et al. 24 and Rdveillon and Vervisch 26 developed a transport equation for the FDF in

constant density turbulent reacting flows. Jaberi et al. 2s extended the methodology for LES of variable

density flows by consideration of the "filtered mass density function" (FMDF), which is essentially the mass

weighted FDF. The fundamental property of the PDF methods is exhibited by the closed form nature of

the chemical source term appearing in the transport equation governing the FDF (FMDF). This property

is very important as evidenced in several applications of FDF for LES of a variety of turbulent reacting
flows.24,26-29 However, since the FDF of only the scalar quantities are considered, all of the "hydrodynamic"

effects are modeled. In all previous LES/FDF simulations, these effects have been modeled via "non-FDF"
methods.

The objective of the work conducted this year is to extend the PDF methodology to also include the SGS

velocity-scalars. This is facilitated by consideration of the joint "velocity-scalar filtered density function"

(VSFDF). With the definition of the VSFDF, the mathematical framework for its implementation in LES

is established. A transport equation is developed for the VSFDF in which the effects of SGS convection

are shown to appear in closed form. The unclosed terms in this equation are modeled in a fashion similar

to those in the Reynolds-averaged simulation (RAS) procedures. A Lagrangian Monte Carlo procedure

is developed and implemented for numerical simulation of the modeled VFDF transport equation. The

consistency of this procedure is assessed by comparing the first two moments of the VFDF with those

obtained by the Eulerian finite difference solutions of the same moments transport equations.

2 Formulation

We consider an incompressible (unit density), isothermal, turbulent reacting flow involving Ns species. For

the mathematical description of this flow, the primary transport variables are the velocity vector ui(x, t)

(i = 1, 2, 3), the pressure p(x, t), and the species' mass fractions Ca(x, t) (a = 1, 2,..., N_). The equations

which govern the transport of these variables in space (xi) and time (t) are

OUk
- o

OXk

Ou_ Oukui _ 0I) &ri,_ (lb)
O--i-+ Ozk +

__ Ouk¢_ OJ_0Ca + __ = + S,_ (4)) (lc)
Ot Oxk Oxk

¢2,... CN_] denotes thewhere Sa(x, t) denotes the chemical reaction term for species c_, and ¢ -= [¢1,

scalar array. Assuming a Newtonian flow with Fick's law of diffusion, we have:

aik = U \ Ozk + Oxi ] (2)



whereu is the kinematic viscosity and is assumed constant, and F a is the density weighted diffusion

coefficient of species a. The Schmidt number, Sc, is defined as: F _ -- S¢_.

LES involves the use of the spatial filtering 6'32

oo
(f(x, t)) : f(x', t)G(x', x)dx' (4)

oo

where function G(x', x) is a filter function, (f(x, t)) is the filtered value of the transport variable f(x, t).

Applying such a filter to the governing Eq.(la-lc) yields filtered equations

a<_k> - 0 (sa)
OXk

0<ui> 0<Uk><ui> 0(p> + 02<ui> 0_(_k, _) (55)
O----i-+ Oxk - Ozi v_ Oxk

0(¢o______>+ 0(uk)(¢_) _ r_o:(¢o) O_(_k_¢_) + (S_(¢)) (5c)
Ot Oxk OxkOxk Oxk

where the subgrid scale terms(SGS), % are in general defined as

T(ai, bj) = (aib) - (ai)(bj) (6)

and satisfy following transport equations

0T(ui, uj)
Ot

02_(u_'u_) _(uk,u_lO(uJ) _-(u_,_j)
+ GgXk -_ 0XkOXk OXk GgXk

(7)

The first unclosed term in the square bracket is dissipation and is often labeled as, eik. The next two terms

correspond to velocity-pressure scrambling and are labeled in literature as, 1-Iik.

o_(¢_, ¢_) + O(_k)_(¢_,¢_) = r_ 0_(¢_, ¢_) _(u_, _• ,o(¢_/
Ot OXk OxkOXk

- _(_k,¢B) _ \0_'0_k/] '

_ o_(uk, ¢o, ¢_) (8)
OXk
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wherethe term in squarebracketis the scalar dissipation.

OT(ui, ¢a)Ot -t- O(Uk)T(Ui' ¢a) -- ( U -t-_Fa ) 02T(ui' ¢a)Ogxk- OQXkOX k

+

Oui 0¢_

+ T(ui,S_) -
O_(_,k,_i, ¢_)

OXk

_-(_kui) o(¢.)
' Oxk

1
OzkOzk) ) J

+

(9)

where the first term in square bracket is the velocity-scalax dissipation, next term is scalar-pressure scram-

bling, and the last two terms are velocity-scalar diffusion and scalar-velocity diffusion terms. All of the

terms in square brackets are the unclosed terms that need to be modeled. Triple subgrid scale terms, T,

are generally defined as

v(ai,bj,ck) = (aibjck} - (ai)r(bj,ck) --

-{bj)r(ai, ck) - {ck)r(ai, bj) - (ai){bj)(ck) (lO)

A Velocity-Scalar Filtered Density Function

The "velocity-scalar filtered density function" (VSFDF), denoted from here on as P, is formally defined as

P(V,¢;x,t)= _ o(V,O;U(x',y),dp(x',t))V(x'-x)dx' (11)

3 N_

o(v,¢;u(_',y),¢(_',t)) = I-[5(y,-_,i(_,t))>_ 1-I 5(¢_-¢_(x,t))
i=1 ¢_=1

(12)

where 6 denotes the delta function, V, ¢ axe the velocity and scalar state vectors respectively. Term 0

represents so called "fine-grained" density a° and hence Eq.(ll) defines VSFDF as the spatially filtered

value of the fine-grained density. In other words, VSFDF represents a density in the velocity-scalar space

of the fluid around x weighted by filter G, at a time t. With the filter properties specified in Eq.(13-17),

P has all of the properties of the probability density function(PDF). _

a(_',z) =

a(_) =
a(x) >_

oG zinG(x) dx

_c¢ G(x)dx = 1
o0

a(_' - _) (13)

G(-z) i14)
0, for all x (15)

moments exist for m > 0 (16)

(17)
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Followingthe procedureof Pope,1 a VSFDF transport equationcan be derivedby consideringa time
derivativeof Eq.(11).

OP 0 02p O(p) OP 0
o-7+ _x_ (vkP) = r o_ko.---q + o.k ovk o¢_ [s_(¢)p] +

0

+ ;_--_k)

OViOVj £ Ozk Oxk

0¢,_0¢n Oxk

OV_O¢,_ 2£ Oxk Oxk IV, _, P
(18)

where F = P a = u, and consequently Sc c' = 1. A quick check of the above equation can be made

by integrating it according to Eq.(22) to obtain appropriate moment equations. These equations should

match with Eq.(5a-5c), and Eq.(7-9)

B Modeled VSFDF Transport Equation

A closure needs to be provided for the conditional terms on the RHS of VSFDF Eq.(18) to allow for a

solution. Haworth and Pope 2 proposed that the Generalized Langevin Model (GLM) be employed in this

task. An extension of their strategy allows us to present a combination of GLM and linear mean square

estimation (LMSE) 3,s, 25 model

O Op I p]

°¢z lV, ¢
0¢_0¢4

+r a(¢.) o(¢n) o21
Oxk Oxk 0¢,_0¢ z

L\ -

OViOCa 2r Ox_:Ozk IY,¢ P

£O(ui) O{uj) 02f 4- 2F O{ui) 0"21
Oxk Oxk OViOVj Oxk OzkOVi

1 r, 02f
O [C,j (V_ - <uj>) f] + +

0

+b-_ [C+o_(¢_ - <¢_))f] +

__ +2rO(ud 0(¢.) 021 + 2r0(¢") 021
oxk Oxk OV_O¢,_ Oxk OxkO¢,_

(19)

Above model offers full consistency with the exact equations, however, as will become more clear in the

following section, the last line can not i)e included because it violates scalar field realizability conditions.



C Stochastic System

The most convenient way of solving VSFDF equation is by the Lagrangian Monte Carlo procedure. Eulerian

Monte Carlo schemes exist, but they are shown to produce excessive artificial diffusion, which greatly

degrades LES results. 24 Lagrangian Monte Carlo scheme is based on the principle of equivalent systems. 1

This principle states that two stochastic systems with different instantaneous behaviors may produce

identical statistics and satisfy the same Fokker-Plank (PDF, FDF) equation. The following is then true: a

set of SDEs produces one, and only one, Fokker-Plank equation, while a Fokker-Plank equation can result

from many different sets of SDEs. In this light one may consider a set of stochastic differential equations

as the most precise way of describing a random process, and its Fokker-Plank analogous to a "filter" of this

random process. Lagrangian Monte Carlo scheme is provided by the following general form of a stochastic

diffusion process

dXi = DX(t)dt + BX(t)dWX(t) (20a)

dUi = DV(t)dt + BV(t)dWV(t) +

+ F *(t)dW2(t) (20bl
= D (t)dt + 8*(t)dW2(t)+
+ F_x(t)dW_(t)+ F:y(t)dWf(t) (20c)

Above set consists of a standard stochastic drift (D) and diffusion (B) terms. In addition, diffusional col_-

pling is introduced between variables by adding extra diffusion terms (F). All of the terms (D, B, F) are im-

plicitly functions of the state variables, that is, D(t) = D(X(t), V(t), _pa(t); t), B(t) = B(X(t), V(t), _b_(t); t),

F(t) = F(X(t), V(t),¢a(t);t). The W terms denote independent Wiener-L_vy processes. 16 The corre-

sponding Fokker-Planck equation is

Of* _ O (D_f*)- 0 (DVf,) _ 0 +

0 (xx , 0 xv , 0

c_ ux . g (bUU f. _ O (bgCf._ +

+

where bij = [E(t)r(t)ET(t)] ,16 _ is the diffusion matrix and F is the covariance matrix of the Wiener-L6vy
processes, W X,W v,and W ¢.

The above equations implicitly describe a set of moment transport equations. These transport equations

can be found either by applying It5 formula 16 to the SDEs and applying a filtering operation, or by

integrating the Fokker-Plank equation. In the later case the integration takes on a form

(Q(x, t)) = Q(V, ¢; x, t)f(V, ¢; x, t)dVd¢ (22)
oC O_

where Q is a random variable, (Q) is its filtered value, and f is its PDF.
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C.1 Fully Consistent System

Pope I and Gicque131 have proposed a system of stochastic differential equations (SDEs), based on the

VSFDF model in Eq.(19). A set of random variables, X, U, ¢, that correspond to the position, velocity and

scalar value respectively is introduced into a stochastic diffusion process. The unknown coefficients are

found by comparing the moments of the below set with the exact set. of moment equations, i.e. Eq.(5a-9)

dXi = Uidt + x/_dW x (23a)

[_04,) o2<u_> ]dUi = [ cgxi +u2OxkOxk +Gij(Vj-(uj)) dr+

--O<ui) x
+x/_--_-xk dW _ + X/_oedW U (23t))

r a2<¢,> ]

_O(¢a) dwx

The above set of equations contains a model for the unclosed terms in Eq.(18). It should be noted here

that the first and the last terms in Eq.(23c) violate realizability of the scalar field and are the source of

the terms appearing on the last line in Eq.(19). In particular, these terms would allow a mixture fraction,

for example, to extend beyond physical range of 0 to 1.

Computation of the Fokker-Plank 16 equation, or the PDF(in this case it is also a FDF), for the diffusion

process in equations above, yields

Of 0 (Vkf)= [O(p) 02(ui) ] Of 0 [Gij(Vj-iuj>)f]-

o [s,(¢)f] +o_<¢,,>of o [c,o_ (¢, -/,¢o>) y] -

,_ 02f ____O(uj) 02f ..._:_____.o(¢_> o2f
-_ 20XkOZk -_- X/Ulb'3 _X/ OxiOV j "_ k/l]ll]Sa _X i OZiO_)a

lJ30(_i) O(Uj) 02f 1,_ 02f 1 0(¢c,) O(¢Z) 02f +
+ 2 o_k o_k ov,ovj + 5_°_ov--9--_+ _ "Vv-s-2_'_o_k o_ o¢oo¢_

O(ui> O(¢a) 02 f (24)

+ "a4-_7-_k o_ o_o¢_

The moment transport equations resulting from integration Eq.(22) are

o<uk>
- 0

Oxk

O(ud O(uk)(ud O(p> 02 (Ui) OT(Uk, Ui)/Ul

O---i-+ Oxk - Oxi

0<¢.> 0(_k><¢.>
--+

Ot Oxk

_02(¢"> O?(uk,¢. )
OxkOxk Oxk

(25a)

(25b)

(25c)



TheSGSmomentequationsare

07(_,, us)
Ot + Oxk = 2 OxkOXk -- r(Uk,Ui) _xk

o(,_d oiuj)
+ (ul - 2_x/-5_ + u3) Ozk Oxk

+ [a_k_-(uk,_j) + ajkr(_k _) + CoeS_j] - Or(uk,_,uj)
' CgXk

, O(ud
r(uk,uj)--g_zk +

(26)

0_(¢o, ¢_)
Ot

+ o(_k)_(¢o, ¢z) = .1 a2_(¢_, ¢z) _ _(_k, ¢_) 0(¢_)
Oxk 2 OxkOxk OXk

0(¢o) 0(¢_}

Oxk Oxk

- [(c+° + c_)._(¢o,¢_)] + _(¢o,s_) + _(¢_,s_) -

o(¢.>
_(_k, ¢z)-5_k +

OXk

(27)

Ot + Ozk - 2 o_ozk _(_k,u_j _ _(_k,¢o)--g_ +

o(_d o,:¢_>+
+ (.1- _- _ + ._,/v_)o_ o_

Or(uk,u,, ¢_)
+ [a_k_(_k,¢_) - e_o_(_,, ¢.)] + _(_, &l -

Oxk

(2s)

A comparison of above set to the corresponding exact moment equations reveals that the fully consistent

stochastic system can be achieved if the coefficients in the SDE's Eq.(30a-30c) are set as follows:

vl =u2=Ua=ua=uS_,a .... =2F (29)

A fully consistent stochastic systems becomes:

dXi = Uidt + v_dW_"

dU_ = [ o(p) o_(,,d ]-_ + 2r_0xk0xk + Gij (Vj - (uj)) dt +

_¢o : [2ro_<+o>c_o_(¢o-<+°>)+so(c)/ dt +
OxkOxk

(30a)

(30b)

(3o_)



The Fokker-Planck equation is:

of o o2f O(p) of
+ -_-;_(vd)=r--+ +0--[ OxkOxk Oxk 0_

+ ro(ud0(uj) o_f +2r°(ud 02f _
Ozk Oxk 0¼0Vj Oxk OzkOVi

1 02f

o [aij (vj - (uj)) f] + -_Co_s ov, ovj +ov_
0

and the corresponding moment equations obtained by integration Eq.(22) are

O(uk) _ 0
Oxk

__.9 I-

Ot Oxk Oxi OxkOxk Oxk

__ Or(uk, ¢_)0(¢_) + 0(_k)(¢_) _ r °_(¢_) + (s_ (¢))
Ot Oxk OxkOXk Oxk

(31)

(32a)

(32b)

(32c)

Or(ui, us)
Ot

o(_j) , o(_do(_k)_(_,_j) = ro2_(_,_j) _(_k,_) _(_, +
+ Oxk OxkOxk Oxk uJI--_xk

Or(uk, ui, uj)
+ [C;_kr(uk,us) + C;Sk_(uk,U,) + Coed,S]- Ozk

(33)

o_(¢_, ¢_)
Ot

÷ 0(_k)_(¢_,¢_) = r _(_k,¢o) _(_k ¢_)
Oxk OxkOz_ Oxk ' Oxk

0r(uk,¢_,¢_)
[(6¢_ +c_)_(¢_,¢_)] +_(¢_,s_)+_(¢z,s_)-

OXk

(34)

O_(_i, ¢_)
i)t ÷ GqXk OXkOqXk ' GqXk _ "_-

Or(uk, ui, ¢_)
+ [a_(_, ¢o) - c,o_(_, ¢_)] + _(_,, so) -

OXk

(35)

where the terms in square brackets provide closure to the corresponding unclosed terms in the exact

Eq.(5a-5c), and Eq.(7-9).

C.2 VSFDF System for Consistency Assessment

The stochastic system of SDEs presented in previous section is fully consistent with exact filtered equations

and capable of simulating convection and reaction terms in a fully closed form. We have showed this



mathematicallyin prior sections,however,it is necessaryto alsoshowthat numerically,sucha system
indeedproducesresultscomparablewith, mostcommonlyused,Eulerianfinite differenceschemes.This
taskis accomplishedby solvinga somewhatsimplerand realizablesystemof SDEs

dXi = Uidt + v_dW x

dvi = r_ °@) °_(_i) /L oxi + 2roxkozk + Gij (Yj - (uj))
..1

+ v__w_ + ,/-dgo_wy

d¢a = -C¢ w(¢a - (¢a))dt

dt +

(36a)

(36b)

(36c)

Above system employs a fully consistent hydrodynamic system and LMSE 3 model for scalar mixing.

The Fokker-Plank16(PDF) equation for this system is

of
-- +
Ot

0 02f O(p) Of
(vkf) = r oxkox---W,_+ oxk ovk +

[,O(ui) O(uj> 02f 02f+ + 2F O(ui)
Ozk Ox_ OViOVj Oxk OxkOVi

1 O2f
o [a_j(t5 - (_j))f] + _Co_5_jov_oyjov_
0

--+

(37)

and the corresponding moment equations obtained by integration Eq.(22) are

o(_k)
Oxk

Oiui) Oiuk) (ui)
--+

Ot Oxk

--+
Ot Oxk

- 0

_ O(p) + r °2(ud Or(uk,ui)
Oxi OxkOxk Oxk

- r02(¢_) O_(u_,¢o)
OxkOxk Oxk

(38a)

(38b)

(38c)

Or(u. u_)
Ot

O(Uk)T(U_,Uj) C3(t_j) . O(Ui)- r 02r'ui'uj" r(uk ui) r(uk,
+ Oxk OxkOxk ' Oxk uj)

+ [a_kr(uk,u_) + Cjkr(uk,ui) + Cod_j] - O_(uk, u. uj)
Oxk

4-

(39)

0_(¢_,¢_)
Ot + O(u_)r(¢_,¢z) = rO%(¢_,¢z) r(u_, ' '°(¢4) r(u_,_z_-O-_-z_+Oz_ Ox_Ox_ _P_)

[2r0{¢o) 0(¢z) ] O_(u_,¢o,_z)

(4o)
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oT(ui, e_)
Ot + Oxk OxkOxk= _t_k,_. _ _(_k,¢o)-0G-k +

+ [a_(_k, ¢_) - caocoT(u_,¢_)] - 0xk
(41)

Above set of equations will be solved using a finite difference scheme and the solution will be assessed for

consistency with a solution from a Lagrangian Monte Carlo solver.

D Rotta's Closure and Model Constants

The GLM and LMSE have provided a stochastic closure for the LES system. However, we have not

mentioned a proper form of Gij tensor, nor the values of the closure coefficients. Pope 1'19 has derived an

appropriate form of Gij and suggested some guidelines for values of the closure coefficients.

Gij = -co + -_Co (_ij (42)

(_. k 3/2
where co = _, e = _-_L-L ' k = ½T (uk, uk), and AL is the LES filter size.

The resulting closure for SGS velocity is equivalent to that of Rotta, 19

= [a,kr(_k, uj) + %kr(_k, u_)+ C0_3] =

= -w(1 + 3C0) [r(ui, uj)- 2kSij] -2eSij (43)

for the SGS scalar we have,

Oxk '

and for SGS velocity-scalar we have,

= _ 2r0*A_0A_I

k &k ' o_k / + r O_kOzk / a_ko_ / / ] =

3 "_ (_ti, Ca)= [a_(_, ¢_) - Go_(_, ¢_)] = -_ (½+ ¢,o + G)

The closure constants as proposed by Pope 19 are

(44)

{45)

Co = 2.1 C'_ = 1.0 C¢ = 1.0 (46)

E Numerical Procedure

The solution of the VSFDF equation (Eqn. 18) provides all of the statistical information about velocity-

scalar field. The most convenient way of solving this equation is by a Lagrangian Monte Carlo procedure.

In the Lagrangian description, the FDF is represented by an ensemble of statistically identical Monte Carlo

particles. These particles, in general, do not represent actual fluid particles, but rather serve as carriers

of information about flow statistics. In a limited range of time scales, however, Monte Carlo particles do

provide a direct model of fluid particle behavior. 1

11



Theinformationcarriedby theparticlesis updatedthrougha temporalintegrationof the SDE'sEq.(36a-
36c).Thesimplestwayof performingthis stochasticsimulationis via the Eulerapproximation1°'21'22

X_ '+' = X_ + (D_:)" At + (BX) " (At) '/_ (C) '_ (47a)

Un+l --- U_ + (DY) n At + (BU) n (At) 1/2 (¢u)"

+ (Fi_X)n (At),/2 (_jx)n (47b)

{)n+l : I_:: + (De)nAt + (BCp)n(At) I/2 (_)n

(47c)

where D, B, and F are all functions of the state variables at a time step n, and _'s are independent

standardized Gaussian random variables. Higher order numerical schemes, such as Runge-Kutta, are

also available for stochastic differential equations, 1°,21,22 but caution is advised when selecting one for a

Monte-Carlo simulation of LES. If the diffusion terms, B and F, strongly depend on the state variables, the

numerical scheme may alter the solution in a way inconsistent with the true nature of undiscretized set of

SDEs.16 Numerical scheme must be consistent with It5 and Stratonovich calculus, and Euler approximation
satisfies this condition.

The statistical information transported by Monte Carlo particles and evolving according to the SDE's

is evaluated by considering a "finite area", for 2D, and "finite volume", for 3D, centered at a LES grid

point. The area/volume is characterized by a length A E. Statistics are computed based on an "ensemble"

of approximately NE particles residing inside it at a given time. This type of "ensemble" approach is

necessary as the probability of finding a single, or multiple for that. matter, Monte Carlo particle(s) at a

given LES grid point is zero} s Fig.1 illustrates this concept. An alternative to the ensemble averaging is a

method proposed by Pope. 1 This method uses least-squares continuous cubic splines with continuous first

and second derivatives. It must be used when the number of Monte Carlo particles is too small to allow for
smooth resolution of the first and second derivatives from the stochastic solver. Because the statistics are

computed based on ensemble of Monte Carlo particles statistical errors are introduced into the simulation.

Ideally, for reliable Eulerian statistics and minimum numerical dispersion, it is desired to minimize the

size of ensemble domain while maximizing the number of Monte Carlo particles in it. Consequently tim
statistics would tend to their exact LES value.

1 y, U[n) --_ (ui> (48)
NE _ NE--_o_

n6AE AE--_ 0

1

nE A E A E-+ 0

(49)

where subscript E indicates a statistical value obtained from the ensemble centered around the LES grid

point. This procedure is termed "point estimator", because it ignores the ensemble average variations of

the statistical value within the ensemble domain and uses the ensemble averaged value at the LES grid

point only.

Solution of the Lagrangian stochastic system, as it is presented in Eq.(36a-36c), is not possible because

SDE's contain filtered terms that can not be computed by the stochastic solver. To remedy this problem

a finite difference LES code is developed and coupled with the stochastic solver. This combination yields

a finite difference-stochastic hybrid LES solver.
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Figure 1: Concept of ensemble averaging. Shown are three different ensemble domains:

I(AE = 0.5A, NE ,_ 10), 2(A E ----A, NE _, 40), 3(A E = 2.0A, NE _ 160). Black squares indicate LES grid

points, while small circles are Monte Carlo particles.

The filtered pressure field, velocity-scalar field and turbulent kinetic energy field appearing in Eqn. 36a-

36c, are needed by the stochastic solver to advance the system in time. These quantities are computed via

the finite-difference LES solver by a method based on the "compact parameter" finite difference scheme

of Carpenter. This is a variant of the Mac Cormack scheme in which fourth-order compact differences

are used to approximate the spatial derivatives, and second-order symmetric predictor-corrector sequence

is employed for time discretization. All of the finite difference operations are conducted on a fixed and

equally spaced grid points. The transfer of information from the LES grid points to the Lagrangian

particles is accomplished via interpolation. A second-order interpolation scheme is used. The transfer

of information from the Lagrangian particles to the finite difference solver is accomplished via ensemble

averaging described earlier in this section. This procedure is shown schematically in Fig.2.

As can be seen in Table 2 a certain "redundancy" results from using a finite difference-stochastic hybrid

LES solver. This is actually very useful as it allows for constant monitoring of the accuracy of tile simulated

results. This "redundancy" will also be used to show that the Lagrangian Monte Carlo solver is consistent

with its finite difference counterpart.
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VSFDF
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Difference
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(¢o)

r(ui, uj)
_(_,i,¢_)
_(¢_, ¢_)

Particle

solver

variables

Xi

Ui

Xi

Ui
_c_

Particle

statistics used

by the F.D solver

_'(_,i,uj), _'(_,i,¢°)

_-(¢o,Ce)
_-(ui,u¢,uk)
r (ui, u3, ¢_)
_(_,, ¢_, Ca)

F.D. variables Redundant

used by quantities

particle solver

(tti),

Oxk ' OxkOxk

(¢,_)

(ui), a__
axi

Oxk _ OxkOxk

(¢o)

(ui),(¢o)

_'(ui,_,j)
_-(_,i,¢_)
'-(¢o,Ce)

Table 1: VSFDF Solution Procedure. VSFDF1 refers to actual production model, while VSFDF1 Consis-

tency refers to the code used to demonstrate consistency with the finite difference LES solver.

3 Results

A Flow Simulated

Consistency simulations of the Lagrangian Monte Carlo solver were conducted for a 2D temporally de-

veloping mixing layer. A 2D simulation is sufficient to establish consistency and is chosen to preserve
14



computationalresources.
Thetemporalmixing layerconsistsof two parallel streams traveling in opposite directions with the same

speeds. Hyperbolic tangent functions are used to initialize both stream-wise velocity and scalar distribu-

tions profiles, while a form of exponential function is used to initialize the cross-stream velocity profile.

The simulations are conducted for 0 _< x < L, and -L/2 <_ y <_ L/2, where x,y denote stream-wise and

cross-stream directions, and the length L is specified such that L = 2rrNr/aus, where Nr is the number

of successive vortex pairings and aus is the wavelength of the most unstable linear mode corresponding to

the mean stream-wise velocity profile at initial time. 4 The formation of large scale structures is facilitated

by introducing small harmonic, phase-shifted, disturbances containing subharmonics of the most unstable

mode into the stream-wise and cross-stream velocity profiles. This results in formation of two successive

vortex pairings. For more detailed description of this "forcing" mechanism reader is referred to Ref. 4

The flow variables are normalized by the half initial vorticity thickness, Lr -- 6_2-_-,and half the velocity

difference across the layer, Ur = -_- (Sv Io - AU and (ul } is the Reynolds averaged value of filtered
la(_,_)/ayl,,,o_'

stream-wise velocity )

B Numerical Specifications

All of the simulations are performed on the equally spaced finite difference grid, such that Ax = Ay = A.

The LES resolution used was 32x41 grid points. The choice for resolution was guided by the proper ratio

of the resolved to total Reynolds stresses. 23 In general for LES, this ratio should be approximately 80%.

The Reynolds number used for the simulations was, Re = _ = 50. A constant LES top-hat filter of size
V

A L ---- 2A centered around a grid point is used such that,

No

a(x'- x) = 1-[ (s0)
i=l

O(x - = ,Ix - > (51)

where No is the number of dimensions.

The Monte Carlo particles are initially distributed according to the uniform PDF scaled to fit the domain.

All of these particles have equal "weight" in the solution. It is required that the particle distribution

be approximately uniform to minimize the ensemble average bias and interpolating errors. The perk)die

boundary condition in stream-wise direction ensures that the particles leaving the domain are introduced

at the opposite boundary with the same compositional values. The cross-stream direction has a free-slip

boundary condition such that leaving particles are "mirror-reflected" back into the domain. The particle

density is determined by counting the Monte Carlo particles residing inside the ensemble domain of size

AE × AE(×AE). The effects of average particle density (NE) and ensemble domain size (AE) on the LES

solution will be assessed to ensure consistency and statistical accuracy of the VSFDF simulations.

The results will be analyzed both instantaneously, by visually comparing the finite difference and stochastic

LES results at a specific time, and statistically, by Reynolds averaging the results at a specific time. In

the case of a temporally developing shear layer the Reynolds average statistics are constructed by spatially

averaging over the homogeneous direction and are denoted by an overbar.
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C Consistency and Convergence Assessments

To show that the VSFDF formulation in consistent and that the Monte-Carlo simulation converges we

will compare results obtained via VSFDF and LES-FD. This approach is valid because the accuracy and

reliability of the finite-difference LES procedures is well established and consequently will provide a good

means of assessing the quality of the Monte-Carlo simulation of the VSFDF. The comparison will consist

of statistical and instantaneous values of all of the variables computed by the hybrid solver. No attempt

is made to determine the appropriate values of the model coefficients, rather the values suggested in the

literature are adopted (See section D).

Fig. 3 shows the distribution of the Monte-Carlo particles within r_he computational domain. Assuring

that this distribution is uniform allows us to discount any differences between LES-FD and VSFDF as

resulting form interpolation bias. The influence of the average particle density, NE, on the first and second

moments is shown in Figs. 4-12. It can be observed that NE does not significantly influence the first nor

the second moments. The differences displayed on these figures seem visually comparable to those due

to changing random number generator seed. The later are shown explicitly for different values of AE in

Figs. 13-22. It is important to keep this influence in mind when dealing with Monte-Carlo type simulations

as it is possible, but highly improbable, that two VSFDF simulations will yield identical results. Figs. 23-

31 show the influence of the ensemble domain size (See Fig. 1) on the first and second moments. The

first moments as obtained by VSFDF simulation agree very well with their LES-FD counterparts even for

large values of AE. The small differences in these moments can be contributed to the difference in the

seed of the random number generator for different cases. However, the second moments exhibit significant

differences. These differences exhibit a converging pattern of behavior as the ensemble domain is decreased.

This was predicted and shown theoretically in See. E. As ensemble domain size decreases, the values of

the SGS components predicted by the VSFDF simulation converge to their LES-FD values. Figs. 16-

19, and 25-28 illustrate this behavior quite clearly. The scatter plots of first and second moments are

presented in Figs. 32-34. The correlation and linear regression coefficients (denoted by p and r respectively

on the figures) offer another set of indicators for consistency for VSFDF simulations. Tim p2 indicates ttw

percentage of variance of the VSFDF data accounted for by a linear fit. Figs. 35-44 provide a simple visual

demonstration of the consistency of the VSFDF simulations and Figs. 45 and 46 show the consistency of
the time evolution of the simulation.

4 Summary and Concluding Remarks

The Filtered Density Function (FDF) methodology has proven very effective in LES of turbulent reactive

flows.24,25, 27,2s, 30 In all of the previous investigations, however, the FDF of either only the scalar 24(SFDF),

or velocity 31(VFDF) were considered. The objective of present work is to develop and validate the FDF

methodology for LES of the joint velocity-scalar field (VSFDF). For this purpose, a methodology for

velocity FDF developed by Gicque131 is extended to include the scalar field resulting in a VSFDF method

for LES. The exact transport equations governing the evolution of VSFDF are derived. It is shown that

the effects of the SGS convection in these equations as well as the terms resulting from reaction source

terms appear in the closed form. The remaining unclosed terms are modeled via VSFDF formulation with

Generalized Langevin Model (GLM) for the Lagrangian velocity field evolution and Linear Mean Square

Estimation (LMSE) Model for the Lagrangian scalar field evolution. The closure strategy is similar to that

for PDF methods in Reynolds Averaged Navier-Stokes (RANS) simulations and consequently equivalent
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to a second-ordermomentSGSclosure.

ThemodeledVSFDF transport equationsaresolvednumericallyvia a LagrangianMonteCarloscheme.
Theresult of this simulationis then compared to a well established LES using a finite difference scheme

(LES-FD). The consistency of the VSFDF method and the convergence of its Monte Carlo solutions are

assessed. This assessment is done by comparing solutions of the first two filtered moments obtained via

Monte Carlo procedure and LES-FD. The third order moment terms in the second filtered moment trans-

port equations for LES-FD are closed by corresponding quantities obtained from VSFDF. The assessment

itself contains the comparisons of Reynolds average quantities for varying ensemble domain size(AE) and

average particle density size(NE). The theoretical predictions for these comparisons are validated. Addi-

tionally, instantaneous comparisons of data scatter, visual inspection of first and second moments, and time

consistency of the simulations are examined. The consistency and convergence of the VSFDF simulation

is demonstrated by good agreement of the first two moments as obtained with Monte Carlo simulations
and LES-FD for all considered test cases.

Work is in progress on further evaluating the performance of VSFDF model by comparing the results

obtained with a 3D homogeneous shear layer case with the DNS and experimental data. The effectiveness ot

the model as compared to some commonly used LES models such as Smagorinsky, or Dynamic Slnagorinsky

will also be evaluated as well its computational expense. Progress towards the development of VSFDF ibr

LES of reaction flows will follow as the VSFDF's major advantages over its predecessors are the treatment

of the convective transport and reactive terms in a closed form.
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Figure 3: Particle density distribution per LES grid points for a typical VSFDF simulation for _E = 0.5A

and NE = 40 at t=34.3
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Figure 16: Effect of the random number sequence used in the Monte-Carlo solver with NE = 40 oil

repeatability of the LES-FD and VSFDF simulations for Reynoh:ls averaged values of _-(u, u) field. (-

LES-FD, ....VSFDF)
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Figure 17: Effect of the random number sequence used in the Monte-Carlo solver with NE ---- 40 on

repeatability of the LES-FD and VSFDF simulations for Reynolds averaged values of T(v,v) field. (-

LES-FD, VSFDF)
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Figure 18: Effect of the random number sequeace used in the Monte-Carlo solver with NE = 40 on

repeatability of the LES-FD and VSFDF simule.tions for Reynohts averaged values of _-(u,v) field. (-

LES-FD, VSFDF)

36



0.03

0.02

0.01

........._................._.............' [__-o.,,1

0'03 f ................................................ !.... AE=I .0A

0.02
0.01[

I

o.o iO.O F .................'...............
0.01[

-20 -10 0 10 20

Y

Figure 19: Effect of the random number sequence used in the Monte-Carlo solver with NE ---- 40 oi1

repeatability of the LES-FD and VSFDF simulations for Reynolds averaged values of turbulent kinetic

energy, k, field. (- LES-FD, VSFDF)
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Figure 20: Effect of the random number sequence used in the Monte-Carlo solver with NE = 40 on

repeatability of the LES-FD and VSFDF simulations for Reynolds averaged values of T(u, ¢) field. (-

LES-FD, VSFDF)
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Figure 21: Effect of the random number sequence used in the Monte-Carlo solver with NE = 40 oil

repeatability of the LES-FD and VSFDF simulations for Reynolds averaged values of _-(v, ¢) field. (-

LES-FD, VSFDF)
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Figure 22: Effect of the random number sequence used in the Monte-Carlo solver with N[_: = 40 on

repeatability of the LES-FD and VSFDF simulations for Reynolds averaged values of-r(¢,¢) field. (-

LES-FD, VSFDF)
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Figure 23: Cross-stream variation of the Reynolds averaged values of the (u) component of the velocity

field: (a) NE = 20, (b) WE = 40, (c) WE = 80
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Figure 24: Cross-stream variation of the Reynolds averaged values of the (¢), scalar field: (a) NE = 20,

(b) WE = 40, (c) WE = 80
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Figure 25: Cross-stream variation of the Reynolds averaged values of the r(u, u) component of the SGS

stress tensor: (a) NE = 20, (b) NE = 40, (c) i'VE = 80
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Figure 26: Cross-stream variation of the Reynolds averaged values of the T(V, V) component of the SGS

stress tensor: (a) NE = 20, (b) NE = 40, (c) NE = 80
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Figure 27: Cross-stream variation of the Reynolds averaged values of the T(U,V), SGS stress tensor:

NE : 20, (b) NiT, : 40, (c)NE : 80
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Figure 28: Cross-stream variation of the Reynolds averaged values of the turbulent kinetic energy, k: (a)

NE = 20, (b) NE = 40, (c) NE = 80
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Figure 29: Cross-stream variation of the Reynolds averaged values of the r(u, ¢), SGS tensor: (a) NE ----20,

(b) NE = 40, (c) iE = 80
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Figure 30: Cross-stream variation of the Reynolds averaged values of the T(V, ¢), SGS tensor: (a) N£ = 20,

(b) WE = 40, (c) WE = 80
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Figure 31: Cross-stream variation of the Reynolds averaged values of the T(¢, ¢), SGS tensor: (a) Nm = 20,

(b) WE = 40, (c) NE = 80

49



(a) (b)

1

0.5

o

-0.5

-1

:)=0.9999 j

32 =0.9998

-1 -0.5 0 0.5

LES-FD

0.5 :_=0.9985 ,,,,_'

)2=0.9970 _f

0

-0.25

-0.5
-0.5 -0.25 0 0.25 0.5

LES-FD

(c)

LL
E3
LL
CO
>

0.8

0.6

0.4

0.2

p =0.9995 '

rp2==0.9990. ...... ,_o

L

0.25 0.5 0.75

LES-FD

Figure 32: Scatter plot of the filtered velocity, (u) and (v>, and scalar, (¢) obtained via VSFDF and

LES-FD for AE = 0.5A,NE = 40. (a) (u>, (b) (v>, (c) (¢). - - least-squares-fit line, - 1:1 fit line. p is the

correlation coefficient, r is the linear regression coefficient
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Figure 33: Scatter plot of the components of the SGS stress tensor, T(U, U), T(V, V), and 7(u, v) obtained

via VSFDF and LES-FD for A E = 0.5A,NE = 40. (a) T(U, U), (b) T(V, V), (C) 7(U, V). - - least-squares-fit

line, - 1:1 fit line. p is the correlation coefficient, r is the linear regression coefficient
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Figure 34: Scatter plot of the components of the SOS tensor, T(U, ¢), T(V, ¢), and T(¢, ¢) obtained via

VSFDF and LES-FD for AE = 0.5A,NE = 40. (a) _-(u,¢), (b) T(V,¢), (C) T(¢,¢). - - least-squares-fit

line, - 1:1 fit line. p is the correlation coefficient, r is the linear regression coefficient
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Figure 35: Visual consistency for stream-wise velocity field, (u). The LES-FD results are obtained for

AE = 0.5A, NE = 40 at t=34.3. (Captions: Left - LES-FD, Right - VSFDF'
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Figure 36: Visual consistency for span-wise velocity field, (v). The LES-FD results are obtained for

AS = 0.SA, NE = 40 at t=34.3. (Captions: Left - LES-FD, Right - VSFDF)
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Figure 37: Visual consistency for the vorticity field. The LES-FD results are obtained for A E = 0.5A,

WE --= 40 at t=34.3. (Captions: Left - LES-FD, Right - VSFDF)
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Figure 38: Visual consistency for the scalar field. The LES-FD results are obtained for AE = 0.5A.

NE = 40 at t=34.3. (Captions: Left - LES-FD, Right - VSFDF)
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Figure 39: Visual consistency for the r(u, u) component of the SGS stress tensor. The LES-FD results are

obtained for AE = 0.5A, WE = 40 at t=34.3. (Captions: Left - LES-FD, Right - VSFDF)
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Figure 40: Visual consistency for the r(v, v) component of the SGS stress tensor. The LES-FD results are

obtained for A E = 0.5A, W E = 40 at t=34.3. (Captions: Left - LES-FD, Right - VSFDF)

55



20

15

10

20

10

5

>- G

-2O
10 20 30 0 10 20 30

x x

-20 -15 -10 -5 0

Figure 41: Visual consistency for the _-(u, v) component of the SGS stress tensor. The LES-FD results are

obtained for AE = 0.5A, NE = 40 at t=34.3. (Captions: Left - LES-FD, Right VSFDF)
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Figure 42: Visual consistency for the _'(u, ¢) component of the SGS stress tensor. The LES-FD results are

obtained for A_ = 0.5A, N E = 40 at t=34.3. (Captions: Left - LES-FD, Right - VSFDF)
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Figure 43: Visual consistency for the r(v, ¢) component of the SGS stress tensor. Tile LES-FD results arc

obtained for A E = 0.5A, WE = 40 at t=34.3. (Captions: Left - LES-FD, Right - VSFDF)
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Figure 44: Visual consistency for the r(¢, ¢) component of the SGS stress tensor. The LES-FD results are

obtained for A E = 0.5A, N E = 40 at t=34.3. (Captions: Left - LES-FD, Right - VSFDF)
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Figure 45: Time evolution of the scalar(with superimposed vorticity isolines) and vorticity fields for LES-

FD obtained with A E = 0.5A and NE = 40
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Figure 46: Time evolution of the scalar(with superimposed vorticity isolines) and vorticity fields _r VSFDF
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