
DISTRIBUTED PARALLEL PROCESSING AND

DYNAMIC LOAD BALANCING TECHNIQUES FOR

MULTIDISCIPLINARY HIGH SPEED AIRCRAFT DESIGN

by

DenitzaT. Krasteva

Thesissubmittedto the Facultyof the

Virginia PolytechnicInstitute andStateUniversity

in partial fulfillmentof the requirementsfor the degreeof

MASTER OF SCIENCE

in

Computer Science and Applications

APPROVED:

Layne T. Watson

Dennis G. Kafura Rakesh K. Kapania

September, 1998

Blacksburg, Virginia

DISTRIBUTED PARALLEL PROCESSING AND

DYNAMIC LOAD BALANCING TECHNIQUES FOR

MULTIDISCIPLINARY HIGH SPEED AIRCRAFT DESIGN

by

DenitzaT. Krasteva

CommitteeChairman:LayneT. Watson

ComputerScience

(ABSTRACT)

Multidisciplinarydesignoptimization(MDO)forlarge-scaleengineeringproblemsposes

manychallenges(e.g.,thedesignof anefficientconcurrentparadigmfor globaloptimization

basedondisciplinaryanalyses,expensivecomputationsovervastdatasets,etc.)This work

focuseson the applicationof distributedschemesfor massivelyparallelarchitecturesto

MDO problems,asatool for reducingcomputationtime andsolvinglargerproblems.The

specificproblemconsideredhereisconfigurationoptimizationof ahighspeedcivil transport

(HSCT), andthe efficientparallelizationof the embeddedparadigmfor reasonabledesign

spaceidentification.Two distributeddynamicload balancingtechniques(randompolling

andglobalroundrobin with messagecombining)andtwo necessaryterminationdetection

schemes(globaltaskcountandtokenpassing)wereimplementedandevaluatedin termsof

effectivenessandscalabilityto largeproblemsizesand athousandprocessors.Theeffectof

certainparameterson executiontime wasalsoinspected.Empiricalresultsdemonstrated

stableperformanceandeffectivenessfor all schemes,andthe parametricstudyshowedthat

the selectedalgorithmicparametershavea negligibleeffectonperformance.

ACKNOWLEDGEMENTS.

Duringthecourseof this workI havehadthe advantageof receivingacademicsupport

frommyadvisor,Dr. LayneWatsonandtheprofessorsandstudentsfromtheMDO group

Dr. BernardGrossman,Dr. William Mason,Dr. RaphaelHaftka,andChuckBaker.Many

thanksgo to Dr. Watsonwho providedthe initial stimulusfor this work. His guidance

hasfacilitatedarich educationalexperiencefor methroughnumerousdiscussions,valuable

adviceanddirection,encouragement,and fair criticism. I am very happythat I had the

chanceto haveDr. Watsonasmyacademicadvisor.I wouldalsoliketo thankDr. Grossman,

Dr. Masonand ChuckBakerfor their support and discussionsduring the weeklyMDO

meetings,and Dr. Haftka for his invaluableadviceandcritique of my work. Finally, Dr.

Kafurais the professorto whomI amgratefulfor sparkingmy interestin concurrencyand

distributedsystemsissuesduringhisAdvancedConceptsin OperatingSystemsclass.

My deepestgratitudegoesto my parents,ChavdarKrastevandPollinaKrasteva,and

family who havepatiently providedme with unfailingsupport, encouragementand care

eventhoughthey werenot physicallyhere.I amvery thankful to my grandparents,who

showedconstantinterestin everystepof my progress.ChrisGaleisresponsiblefor making

my stay in Blacksburgwonderful,andfor makingmefeelgoodat timeswhenI hadlittle

reasonto do so.Finally, I would like to pay tribute to all my friendsand collegueswho

contributedto creatinga greateducationaland personalatmospherefor me.

Financially,this workwassupportedin part by Air ForceOfficeof ScientificResearch

grant F49620-92-J-0236,National ScienceFoundationgrant DMS-9400217,and National

Aeronauticsand SpaceAdministrationgrantNAG-2-1180.I wouldalsolike to gratefully

acknowledgethe useof the Intel ParagonXP/S 5, XP/S 35, and XP/S 150computers,

locatedin the Oak RidgeNationalLaboratoryCenterfor ComputationalSciences(CCS),

fundedby the Departmentof Energy'sMathematical,Information,and Computational

Sciences(MICS) Divisionof the Officeof Computationaland TechnologyResearch.A lot

of the resultsdescribedin this thesiswereobtainedfromrunson thesecomputers.

iii

TABLE OF CONTENTS

i. Introduction ... 1

2. HSCT Configuration Optimization ... 5

2.1 Design Variables .. 7

2.2 Constraints .. 7

2.3 Multi-fidelity Analysis .. ii

3. Reasonable Design Space Paradigm ... 12

3.1 Design of Experiments Theory .. 12

4. Parallelization Strategy ... 14

4.1 Parallel Implementation .. 15

4.1.1 MPI ... 15

4.1.2 Threads ... 16

5. Distributed Algorithms ... 18

5.1 Assumptions ... 18

5.2 Dynamic Load Balancing ... 19

5.2.1 Random Polling ... 19

5.2.1 Global Round Robin with Message Combining 20

5.3 Termination Detection ... 21

5.3.1 Global Task Count .. 22

5.3.2 Token Passing ... 23

6. Parallel Performance .. 25

7. Parametric Study ... 30

8. Conclusions and Future Work ... 35

References .. 36

Appendix A: Code for Message Handling Thread 39

iv

Appendix B: Code for Worker Thread ... 50

Appendix C: Code for GRR-MC Thread 55

Appendix D: Design Variable Definition File Used for Test Runs 68

Vita .. 69

LIST OF FIGURES

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1. Typical HSCT configuration .. 6

2. Wing planform design variables .. 8

3. Wing airfoil thickness design variables 8

4. GRR-MC spanning tree for N = 8, where x is the value of T 21

5. Snapshot from nupshot utility of static load distribution, N = 7 26

6. Snapshot from nupshot utility of GRR-MC with GTC termination, N = 7 26

7. Snapshot from nupshot utility of RP with GTC termination, N = 7 ... 26

Figure 8. Speedup with base N = 32 for RP and GRR-MC with global task count

termination, on N = 2 {5"''10} processors ... 28

Figure 9. Speedup with base N = 32 for RP and GRR-MC with token passing termi-

nation, on N = 2 {5"''10} processors .. 28

Figure

Figure

Figure

Figure

Figure

Figure

10. Effect of transfer threshold for N = 32 on 30,915 designs 32

11. Effect of transfer threshold for N = 64 on 30,915 designs 32

12. Effect of splitting ratio a for N = 32 on 30,915 designs 33

13. Effect of splitting ratio a for N = 64 on 30,915 designs 33

14. Effect of splitting ratio on RP GTC for N = 64 on 2,026, 23 designs .. 34

15. Effect of transfer threshold on RP TP for N = 64 on 2,026, 23 designs 34

LIST OF TABLES

Table 1. Design variables and typical values 9

Table 2. Optimization Constraints .. 10

Table 3. Intel Paragon parallel times (hh:mm:ss) for low fidelity analysis of 2,026,231

HSCT designs ... 25

Table 4. Values for algorithmic parameters 30

V

i. INTRODUCTION.

The requirement for timely deliverance, in the context of inherent computational com-

plexity and huge problem size spanning several disciplines, is typical of modern large-scale

engineering problems (e.g., aircraft design). This has provided the driving force for research

in the area of multidisciplinary design optimization (MDO) to develop practical, scalable

methodologies for design optimization and analysis from the perspective of more than one

discipline. The computational intensity of realistic multidisciplinary design optimization

problems presents a major obstacle and bottleneck. For this reason, high performance com-

puting and its efficient use constitute a very important MDO tool. There is an ongoing effort

amongst engineering and scientific computing researchers to build sophisticated parallel and

distributed algorithms for the solutions of specific types of problems, such as computational

fluid dynamics (CFD), partial differential equations (PDEs), finite element analysis, etc.

(see, for example, the July 1998 issue of Advance8 in Engineering Software). Despite their

good performance and promising potential, such codes are not widely integrated in MDO

environments, since it is a nontrivial task to efficiently blend heterogeneous, disciplinary

engineering codes together. Obstacles that arise are complex interactions between disciplines,

incompatible interfaces, nonstandard programming practices, lack of detailed documenta-

tion, and sometimes failure to scale up to the sizes of realistic MDO problems. As a result,

more customization is needed than is feasible. Burgee et al. [7] discuss similar difficulties

in their effort to parallelize sequential MDO codes composed of legacy disciplinary analysis

codes.

Several efforts are described in the literature that propose parallel and distributed

solutions to the complexity and computational burden of large scale MDO problems. One

strain of research develops methodologies for MDO problem modeling and formulation

with the goal of creating significant opportunities for distributed and parallel computation.

Kroo et al. [24] propose two such methodologies. One is the decomposition of analyses

into simpler modules with limited interdependencies, so that each module can be run

concurrently. Collaborative optimization [5], on the other hand, aims at modeling the entire

design process as a collaboration between parallel tasks/disciplines, under the auspices of

1

a centralized coordinating process. Dennis and Lewis introduce the "individual discipline

feasible" [8] problem formulation approach for MDO that has the advantage of using third

party disciplinary analysis codes. There is work at Georgia Tech on agent based technologies

for the IMAGE infrastructure of their decision support integrated product and process

development (IPPD) architecture DREAMS [15]. The applicability and scalability of the

above methods for large-scale systems has yet to be established.

A second strain of research is oriented towards the design and implementation of

generic MDO computing frameworks that support concurrent execution across distributed,

heterogeneous platforms (see Access Manager [27], COMETBOARDS [18], and Fido [34]). For

example, Wujek et al. [35] propose a framework, later extended by Yoder and Brockman [36],

that facilitates distributed collaborative design [24] and manages the entire problem-solving

life-cycle through a graphical user interface. These systems aim to automate the design

optimization process by controlling computing processes, and tracking and monitoring

intermediate results. Their problem definition capabilities need to be very flexible and robust

in order to accommodate complex MDO problems. Additionally, tracking and monitoring

tools like FIDO's Spy [34] are very important to keep the designer informed about the

state of the optimization, and to allow the designer to interact with the automated process.

Currently, more empirical evidence is needed to show if automated, "push-button" (see

Dennis and Lewis [8]) systems are well suited to large, complex MDO problems.

Finally, there has been research on using sophisticated parallel algorithms for different

MDO subproblems such as optimization, analysis, etc. For example, Burgee et al. [7] and

Balabanov et al. [1] implemented coarse-grained parallel versions of existing analysis and

optimization codes for a High Speed Civil Transport. The results were reasonable, but speedup

tapered off for less than 100 nodes, due to I/O overhead, and other factors discussed in [7],

[1]. Their conclusion was that fine-grained parallelism and reduced I/O versions of the codes

would improve scalability. There are some reports of efficiency achieved on massively parallel

architectures, i.e., scalability to thousands of nodes. For example, Dennis and Torczon [9]

developed the parallel direct search methods for derivative free optimization that are blatantly

parallel. Direct search methods are suitable for problems with a relatively small number

of designvariables(< 50).GhattasandOrozcohavedevelopeda parallelreducedHessian

sequentialquadraticprogramming(SQP)methodforshapeoptimization[12]that scalesvery

wellup to thousands(16000)of processorsfor relativelysmallnumbersof designvariables

(< 50),but performancequicklydegradesasthenumberofdesignvariablesincreases.Eldred

et al. [11]havedevelopedan objectorientedsoftwareframeworkfor genericoptimization

that experiencedoptimal performanceat 512 processorsfor a certain test problem,but

starteddegradingafterthat. Moreresearchseemsto focusonmoderateparallelism,i.e.,less

than 100processors.Forexample,Jamesonet al. [20]assessparallelimplementationsof an

algorithmapplyingcontroltheoryto CFD aerodynamicoptimization.Reportedefficiencies

rangebetween66and95percent,but theneedformoreeffectiveloadbalancingisrecognized

andthe focusof currentstudy.For moreresearchonparallelanddistributedMDO tools,

includingparallelgeneticalgorithmsusingMPI [31],andJavabasedsolutions,see[19],[3],

[10],[2].

This paper focuses on the effective use of massive parallelism and scalable distributed

control applied to the reasonable design space identification paradigm embedded within the

problem of the multidisciplinary configuration optimization of a High Speed Civil Transport

(HSCT). The approach here uses a variable complexity paradigm [7] where computation-

ally cheap low fidelity techniques are used together with computationally expensive high

fidelity techniques throughout the optimization process. Geometric constraints and low

fidelity analysis are applied to define promising regions in the design space and to identify

intervening/important variables/terms for surrogate models. Higher fidelity analyses are

used to generate smooth response surfaces for those regions, which are then analyzed by

the optimizers in search of local optima. Typical configuration designs are comprised of 5

to 50 design variables.

The paradigm of reasonable design space identification consists of performing millions

of low fidelity analyses at extreme points of a box around a nominal configuration. A single

design evaluation takes a fraction of a second on a slow processor, but as the number of

design variables grows, millions of evaluations require a significant amount of time. Such

an evaluation is too fine grained to lend itself to task parallelism, and so is taken as the

3

atomic grain of computation. In terms of data parallelism, the problem is irregular because

each configuration that fails preliminary analysis (violates feasibility constraints) has to

be moved towards the center of the box until it is coerced to a reasonable design. This

results in a variable number of analyses and time per configuration. Initially, a parallel

implementation was developed where all configurations to be evaluated were spread evenly

across available processors. A severe load imbalance, where total idle time amounted to one

half of total processing time, was observed. Thus dynamic load balancing strategies, so that

the load can be effectively redistributed amongst processors at run time, are essential. Two

receiver initiated distributed load balancing algorithms_andom polling (RP) and global

round robin with message combining (GRR-MC)_ere implemented.

Load balancing causes remapping of jobs to processors so that processors that have

finished their work at some point in time can resume with a new load. Thus a processor having

no load at a certain point in time does not signify that there is no more work to be done on a

global level. A termination detection algorithm is needed to assert global termination of the

system. Two complementary termination detection schemes_lobal task count (GTC) and

token passing (TP)_ave been implemented. The parallel codes make use of the Message

Passing Protocol (MPI) [31] for interprocessor and collective communication, and POSIX

threads (pthreads) for concurrency at the processor level. To provide context, the HSCT

aircraft design problem is described in detail in Chapter 2. Chapter 3 describes the reasonable

design space paradigm, Chapters 4 and 5 the algorithms and their implementation. Chapters

6 and 7 analyze the results and parametric studies, and Chapter 8 offers conclusions and

possible future work.

4

2. HSCT CONFIGURATION OPTIMIZATION.

The parallelization techniques described in the following chapters are applied in the

context of designing an optimal supersonic aircraft with a capacity for 251 passengers,

minimum range of 5,500 nautical miles, cruise speed of Mach 2.4, and ceiling height of

70,000 ft. The problem is formulated as a constrained optimization

min f(x), subject to gi(x) <_ 0 for all i E {1,...,m},
X_in _X_X_ax

where f : R n --_ R is the objective function, x E R n is a vector of n design variables, and

g : R" _ R is a vector of m constraints. The values of the design variables in vector x are

lower and upper bounded by x,_in and X,_ax respectively.

Takeoff gross weight (TOGW), expressed as the aggregate of payload, fuel, structural

and nonstructural weights, serves as the selected objective function. TOGW is dependent

on many of the engineering disciplines involved, (e.g., structural design determines empty

aircraft weight, aerodynamic design affects required fuel weight, etc.), and thus provides

a measure of merit for the HSCT as a whole. Guinta [13] suggests that minimized takeoff

gross weight is also in some sense related to minimized acquisition and recurring costs for

the aircraft. Figure 1 [23] illustrates a typical aircraft configuration.

The suite of optimization and analysis tools employed for this problem comprises codes

developed by engineers in-house (e.g., vortex lattice subsonic aerodynamics, panel code

for supersonic aerodynamics) and by third parties (e.g., optimizer, weights and structures,

Harris [16] wave drag code for supersonic aerodynamics). The analysis tools are of varying

complexity and computational expense, and some have coarse-grained parallel implementa-

tions. Interactions and coordination amongst programs in the suite are mostly carried out

via file I/O.

5

Figure1. Typical HSCTconfiguration.

2.1. DESIGN VARIABLES.

Successfulaircraftdesignoptimizationrequiresasuitablemathematicalcharacterization

of configurationparameters.Typically a configurationhasn __ 50 design variables. In this

particular case, 29 variables are used to define the HSCT in terms of geometric wing-body-

nacelle layout (twenty six variables) and mission profile (three variables). See Table 1 [13]

for descriptions and typical values of all design variables. The wing is parametrized with

eight variables for planform (see Figure 2 [13]) and five variables for leading edge and airfoil

shape properties (see Figure 3 [13]). Two variables express the engine nacelle locations

along the wing semi-span. The fuselage shape is defined with eight variables specifying the

axial location and radius for each of four restraint points along its fixed 300 ft length. The

horizontal and vertical tails are trapezoidal planforms whose areas each comprise a design

variable. The thrust of the engine is also a variable. Internal volume of the aircraft is fixed

at 23,270 ft 3.

The idealized mission profile is divided into three segments takeoff, supersonic leg at

Mach 2.4, and landing. There are three variables related to the mission flight fuel weight,

climb rate, and initial supersonic cruise/climb altitude.

2.2. CONSTRAINTS.

The HSCT optimization process is subject to 69 explicit nonlinear constraints of vary-

ing complexity and computational expense. The least expensive to evaluate are geometric

constraints that are used to eliminate physically senseless designs involving negative lengths,

zero thickness, etc. Aerodynamic and performance constraints vary from moderately expen-

sive (e.g., stability issues) to computationally intensive (range __ 5,500). Table 2 [13] lists

all constraints with short descriptions.

7

I
fuselage centerline

I

L

X

x 1
(X2,X 3)

(x4,x5_,

Figure 2. Wing planform design variables.

Z

x 11 13 t/c ratio at 3 spanwise locations

Ii. X

\ \
x 10 LE radius x 9 max. thickness location

Figure 3. Wing airfoil thickness design variables.

Index

Table 1. Design variables and typical values.

Typical Value Description

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

181.48

155.90

49.20

181.60

64.20

169.50

7.00

74.90

0.40

3.69

2.58

2.16

1.80

2.20

1.06

12.20

3.50

132.46

5.34

248.67

4.67

26.23

32.39

697.90

713.00

39000.00

322617.00

64794.00

33.90

Wing root chord

LE break point, x (ft)

LE break point, y (ft)

TE break point, x (ft)

TE break point, y (ft)

LE wing tip, x (ft)

Wing tip chord (ft)

Wing semi-span (ft)
Chordwise location of max. thickness

LE radius parameter

Airfoil t/c ratio at root, (%)

Airfoil t/c ratio at LE break, (%)

Airfoil t/c ratio at LE tip, (%)

Fuselage restraint 1, x (ft)

Fuselage restraint 1, y (ft)

Fuselage restraint 2, x (ft)

Fuselage restraint 2, y (ft)

Fuselage restraint 3, x (ft)

Fuselage restraint 3, y (ft)

Fuselage restraint 4, x (ft)

Fuselage restraint 4, y (ft)

Nacelle 1 location (ft)

Nacelle 2 location (ft)

Vertical tail area (ft 2)

Horizontal tail area (ft 2)

Thrust per engine (lb)

Flight fuel (lb)

Starting cruise/climb altitude (ft)

Supersonic cruise/climb rate (ft/min)

Index

Table2. Optimizationconstraints.

Constraint

1
2

3 20
21
22
23
24
25

26 30
31
32
33

Geometric Constraints

Fuelvolume< 50%wingvolume
Airfoil sectionspacingat Ctip >_ 3.0 ft

Wing chord > 7.0 ft

LE break within wing semi-span

TE break within wing semi-span

Root chord t/c ratio > 1.5%

LE break chord t/c ratio > 1.5%

Tip chord t/c ratio > 1.5%

Fuselage restraints

Nacelle 1 outboard of fuselage
Nacelle 1 inboard of nacelle 2

Nacelle 2 inboard of semi-span

Aerodynamic/Performance Constraints

34

35
36 53

54

55 58

59

60

61

62

63

64

65

66

67 69

Range _> 5500 nautical miles

CL at landing speed __ 1

Section CL at landing __ 2

Landing angle of attack __ 12°

Engine scrape at landing

Wing tip scrape at landing

LE break scrape at landing

Rudder deflection __ 22.5 °

Bank angle at landing __ 5°
Tail deflection at approach __ 22.5 °

Takeoff rotation to occur __ V._in

Engine-out limit with vertical tail

Balanced field length __ 11000 ft

Mission segments: thrust available _> thrust required

10

2.3. MULTI-FIDELITY ANALYSIS.

MinimizingTOGW requiresa largenumberof disciplinaryanalyses(e.g.,structural,

aerodynamic),sothat theoptimalconfiguration(s)canbefound.Thecomputationalcostof

sophisticatedanalysistechniquesbecomesprohibitiveasthenumberofdesignvariablesgrows

(_>5), and simplermethodsarenot accurateenough.A multi-fidelity approachemploys

methodsof varying complexityand computationalcost, so that optimization becomes

feasible.

Initially, the reasonabledesignspaceparadigmemploysgeometricand low-fidelity

analysesto constrainthedesignspace,sothat manygrosslyunreasonableconfigurationsare

excluded.The resultingspaceis calledthe reasonabledesignspace.High fidelity analyses

arethenusedto constructpolynomialapproximations,referredto asresponsesurfaces,for

the reasonableregion.The optimizerworkswith responsesurfacesinsteadof the actual

highfidelity analyses,becausethe formersmoothout numericalnoiseandoncegenerated

aremuchfasterand simplerto workwith. Additionally,morethan oneresponsesurface

canbegeneratedconcurrently.

Unfortunately,thecomplexityandaccuracyofpolynomialapproximationsareadversely

affectedas the numberof designvariablesincreases(_>20).For this reason,low fidelity

analysesareusedto reducethe dimensionalityandcostof polynomialmodelsby identifying

interveningvariablesand importanttermsto beusedin reducedterm models.

11

3. REASONABLE DESIGN SPACE PARADIGM.

Definingthe reasonabledesignspaceconsistsof evaluatingconfigurationsat extreme

points(vertices)in aboxthat containstheregionofinterest.At theseextremepoints,designs

arefoundthat oftenproveto benonsensicalon thebasisof geometricalconstraintsor from

estimatesof the objectivefunction and constraintsbasedon low-fidelityanalyses.These

low fidelity analysescannotaccuratelyevaluateconstraints,but they allow identification

of points that areobviouslymeaningless.Unreasonabledesignsare then movedtowards

the centerof the box,usinga linearbisectionalgorithm,until they areno longerin gross

violationof the constraints.The edgeof the reasonabledesignspaceis determinedin this

manner.

3.1. DESIGN OF EXPERIMENTS THEORY.

A point selectionalgorithmis neededto generatethe configurationsfrom the bo_a

p-cube, centered at the origin, where p is the number of design variables_hat will be used

to define the reasonable design space. A full factorial design is a possible choice, but it will

result in an unwieldy number of configurations. For example, a 25 variable problem with two

levels for each design variable results in 225 _ 33 million points. With an average of three

evaluations needed to bring a point to the reasonable design space, this would require about

100 million low-fidelity analyses. Presently, this computation is prohibitive, and a scheme

based on the partially balanced incomplete block (PBIB) design [17] is used to generate

points.

A PBIB of order n consists of points where combinations of n, usually between two

and four, variables at a time change their level. The level l signifies how many different

discrete values a variable can assume [4]. For example, a variable allowed to take values in

{-1, 0, 1} has level three [22]. The total number of configurations generated by this scheme

is

i=0

where n is the order, p is the number of design variables, and l is the level. In effect, this

results in all combinations where 1 through n variables can each take any one of l values,

12

while the remaining variables are held at a nominal value. The nominal point, where all

variables are at their nominal value, is also included (i = 0 in the above formula). For

example, the number of configurations that would have to be evaluated when l = 2, p = 25,

and n = 4 is
4

E2i(25) =222051.
i=0

Clearly this is a much smaller set of points than produced with a full factorial design.

Unfortunately, using a PBIB point sample reduces the coverage of the reasonable design

space, and optimization often leads to unexplored corners of the design space.

13

4. PARALLELIZATION STRATEGY.

The basic algorithm behind the reasonable design space paradigm consists of generating

a partially balanced incomplete block (PBIB) design of specific size, evaluating all configu-

rations in the block around a nominal design using low fidelity analysis and constraints, and

moving infeasible designs towards the center until they become acceptable. The method for

coercing feasibility is linear bisection, where the values of the active variables are moved

towards the nominal values until the boundary of the feasible region is found within a

specified tolerance interval. The parallel version was implemented so that only one arbitrary

manager node PM deals with file I/O_eading initialization files, and storing results on

disk. The manager node is also responsible for disseminating initialization information (e.g.,

nominal design variable values, PBIB size, etc.) to and gathering results from all other nodes

Pi. All nodes, including PM, generate a respective part PBIBi of the PBIB vector and

perform evaluations on those configurations. The pseudocode below describes the parallel

version algorithmically.

if PM then

read initialization files;

broadcast initialization data to all Pi;

end if

receive initialization data;

generate PBIBi;

for all configurations xj in PBIBi

evaluate constraints for x j;

until violation within tolerance limit

move xj towards closest reasonable configuration using linear bisection;

evaluate constraints for x j;

end until

end for

send PBIBi to PM;

14

if PM then

gather and save all PBIBi;

end if

Even though each processor gets roughly the same number of configurations initially,

a load imbalance is likely to occur when an indeterminate number of total evaluations are

required. To achieve better balance, the algorithm was augmented to include logics for

distributed dynamic load balancing and termination detection. The dynamic load balancing

logic entails a processor to start searching for more work when it has under a certain

threshold of configurations left to evaluate:

while (local work _< threshold A termination not detected)

search for work;

end while

Similarly, termination detection logic monitors certain conditions in order to establish that

all work has been performed.

when termination condition

broadcast termination to all Pi;

end process;

4.1. PARALLEL IMPLEMENTATION.

The distributed control algorithms were implemented in C to mesh with the existing

analysis codes that were in both C and FORTRAN 77.

4.1.1. MPI.

The Message Passing Interface (MPI) [31] is a message passing standard developed

by the MPI forum a group of more than 80 people representing universities, research

centers, vendors and manufacturers of parallel systems. As a communications protocol MPI

is platform independent, thread-safe, and has a lot of useful functionality_ombining the

15

bestfeaturesofseveralexistingmessagingprotocols[31].A briefdiscussionoftheseattributes

follows.

• Platform independence:MPI wasdevelopedto workonparallelplatformsregardless

ofunderlyingarchitecture.Thisabstractionovernativecommunicationprotocolsmakes

MPI applicationsportableacrossarchitectures(distributedmemory,sharedmemory,

or networkclusters)aslongasanMPI implementationfor the desiredplatformexists.

FormanyarchitecturesMPI implementationsarereadilyavailable,sincethe standard

is widelysupportedby computermanufacturers.

• Built-in functionality: Oneof the important advantagesof MPI is that it provides

reliablecommunications,sotheprogrammerdoesnot haveto dealwith communication

failures(seeassumptionsin Chapter5.1).The standardalsoincorporatesmechanisms

for point-to-pointandcollectivecommunication(e.g.,broadcast,scatter,gather,etc.),

overlappingcomputationandcommunication,processtopologiesandgroups,andaware-

nessandmanipulationof theparallelenvironment.Muchofthis functionalityhasbeen

incorporatedin the parallelversionof the code.

• Thread-safety: Thedynamicloadbalancingcodeexploitsamulti-threadedparadigm.

This impliesthat all modulesand packagesusedin the codehaveto be designedto

workwith threads,otherwiseresultsareunpredictable.

4.1.2. THREADS.

Theimplementationof the loadbalancedcodeis multi-threadedbasedon the POSIX

threads(pthreads)package.Threadsare distinct concurrentpaths of executionwithin

the sameOSprocessthat get scheduledwithin the allotted time of their parentprocess.

Differentschedulingtechniquescanbe useddependingon the packageand the operating

systemsupport.For moredetail see[30].Oneof the challengingaspectsof multithreaded

designis that threadsshareaccessto their parentprocess'memory.This callsfor mutual

exclusionandsynchronizationtechniques,likesemaphores,monitors,etc.,that canintroduce

extracomplexityto thecode.An advantageof this approachis that it exploitsconcurrency

at theprocessorlevel.Forexample,athreadcouldberunningontheI/O controller,another

16

on the network service node, and a third one could be performing computations on the

processing unit. Such concurrency can also be achieved by using nonblocking I/O or MPI

calls, but organizing each logical task within the process in a thread can provide a finer-

grained concurrency and a more intuitive design. For example, Kumar, Grama, and Rao

show a state diagram describing a "generic parallel formulation" [25], where the grain of

concurrency depends on the fixed unit of work. In a typical multithreaded approach threads

that have no work stay idle without consuming processing cycles, and start working only

when they are signaled that there is more work to be done, thus avoiding busy-wait.

In this implementation, one thread is simply a worker responsible for evaluating configu-

rations from the local vector, and sleeping when there is no work. A second thread deals with

message passing and processing (e.g., placing incoming work in the vector for the worker, sig-

naling threads about the occurrence of certain conditions, such as termination, etc.). Global

round robin logic with message combining is encapsulated as a separate thread that cycles

between a sleep/delay phase and the routing of GRR-MC messages along a spanning tree

topology. Mutual exclusion for shared data, like the local configurations vector, is achieved

with semaphores. The use of POSIX threads introduced a lot of complexities derived not so

much from using semaphores to maintain mutual exclusion and synchronization, but rather

due to technical issues like thread safety of library calls, testing a distributed system with

many players, etc. On the good side, design and implementation ended up being modular

and relatively encapsulated.

17

5. DISTRIBUTED ALGORITHMS.

5.1. ASSUMPTIONS.

Let W be the total number of configurations to be evaluated, and let N be the

number of processors available for computation. The following conditions are assumed for

the communications network:

• communication channels are reliable, i.e., there is no message loss, corruption, dupli-

cation, or spoofing;

• communication channels do not necessarily obey the FIFO rule;

• messages take an unpredictable, but finite amount of time to reach their destination;

• a message that has been sent is considered in transition until it has been processed at

its destination;

• each processor has knowledge of its own identity;

• the processors are completely connected, i.e., there is either a direct or an indirect

communication route from every processor to every other;

• the network is fixed, i.e., its does not change size dynamically. Thus each processor has

knowledge of the total number of processors in the network.

It is a prerequisite for the dynamic load balancing and termination detection paradigms

described below that initially all work is distributed evenly amongst all processors. Thus,

every node starts off with an initial load equal to approximately total work divided by

number of processors WIN. For the remaining part of this chapter node and processor will

be used interchangeably, and task, work, and load shall refer to the process of evaluating

and possibly coercing a configuration, represented by a row of the PBIB design matrix, to

a reasonable design.

18

5.2. DYNAMIC LOAD BALANCING.

Both algorithms described in this chapter have the following attributes.

• Nonpreemptive: partially executed tasks are not transferred. Preemption can be very

expensive in terms of transferring a task's state.

• Receiver initiated: work transfer is initiated by receiving nodes. This is more suitable

here, since total work is fixed, and there is no good heuristic for estimating if a node

is comparatively overloaded, i.e., how long a task will take.

• Threshold transfer policy: a node starts looking for more work when the number

of its tasks has dropped below a certain threshold.

• Fixed ratio splitting policy: when a node is about to transfer work, it uses a fixed

ratio c_ to split its work Wi to send away c_Wi. c_ is fixed because the algorithms will

not be collecting any system information to help them adapt c_ to the global state.

(c_ = 0.5 for the results here.)

• No information policy: the nodes do not attempt to gather any information about

the system state. The potential overhead inherent in information collection outweighs

the benefits, since the communication network is static, processors are aware of all other

processors, and no work is created dynamically. Surveys of dynamic load balancing can

be found in [21], [30].

5.2.1. RANDOM POLLING (RP).

When a processor runs out of work it sends a request to a randomly selected processor.

This continues until the processor finds work or there is no more work in the system and

termination is established. Each processor is equally likely to be selected. This is a totally

distributed algorithm, and has no bottlenecks due to centralized control. One drawback is

that the communication overhead may become quite large due to the unpredictable number

of random requests generated. Also, in the worst case, there is no guarantee that any of the

idle processors will ever be requested for work, and effectively no load balancing may be

achieved. Detailed analysis and some implementation results on random polling are treated

by Sanders in [28], [29].

19

5.2.2. GLOBAL ROUND ROBIN WITH MESSAGE COMBINING (GRR-MC).

The idea behind a global round robin is to make sure that successive work requests go

to processors in a round robin fashion. For example, in a parallel system of N processors, if

the first work request goes to processor 0, the second one will go to processor 1, such that

the ith request will be sent to processor i rood N. All processors will have been polled for

work in N requests. This scheme requires global knowledge of which processor, say T, is to

be polled next. A designated processor acts as the global round robin manager, and keeps

track of T. When a node needs work it will refer to the manager for the current value of

T. Before responding to other queries the manager will increment T to T + 1 rood N. The

node looking for work can then send a request for tasks to the processor whose identity is

equal to T. A major drawback of this scheme is that as N grows and the work requests

increase, the manager will become congested with queries, posing a severe bottleneck.

Kumar, Grama, and Rao [25] suggested that message combining be introduced to reduce

the contention for access to the manager. Processors are organized in a binary spanning tree

with the manager as the root, where each processor is a leaf of this tree. When a processor

needs the value of T it sends a request up the spanning tree towards towards the root. Each

processor at an intermediate node of the tree holds requests received from its children for

some predefined time d before it propagates them up in one combined request. If i is the

cumulative number of requests for T received at the root from one of its children, then T

is incremented by i before a request from another child is processed. The value of T before

it was incremented is percolated back down the tree through the child. Information about

combined requests is kept in tables at intermediate tree nodes until they are granted, so

that the correct value of T percolates down the tree. An example of global round robin with

message combining is illustrated in Figure 1.

20

000

ooo o.

000 001 010 011 100 101 110 111

Figure 4. GRR-MC on a spanning tree, where x is the value of T, and N = 8.

5.3. TERMINATION DETECTION.

Termination is part of the global state of a distributed system, because it depends

on the global availability of work, as opposed to the work load of a single processor. The

definition of global termination for this system implies that all processors are idle, and that

there are no work transfer messages in transit. In other words, since no additional work is

created on the fly, global termination has occurred when all computation is complete. An

idle node is one which has no work, and is searching for work using one of the dynamic load

balancing algorithms described above. A busy node is one which has work to perform. A

processor can change its state from busy to idle only when it finishes its tasks, and from

idle to busy only when it receives a work transfer message. Clearly, termination is a stable

state, because if all processes are idle, and there are no messages in transit, then no node

will receive a work transfer message, and thus change its status to busy.

The global state of a distributed system can be captured in two ways, synchronously

and asynchronously. The former can be achieved by freezing all processes on all processors

and inspecting the state of each processor and each communication channel. This can be

very time consuming when the number of processors is large, and more than one global

state capture may need to be performed. Both of the algorithms described below establish

termination asynchronously.

21

5.3.1. GLOBAL TASK COUNT (GTC).

The idea behind global task count is to keep track of all finished tasks, and use this

to detect when all work has been performed, i.e., establish termination. This algorithm is

applicable because the total number of tasks is available, and fixed. One processor, the

manager, is responsible for keeping track of the finished tasks count C. Initially, C is set to

0. Whenever a processor completes its set of tasks, it sends a notification to the manager

with the number of tasks that it completed. Upon receiving such a message the manager

increments C accordingly. Eventually, as all has been performed, the value of C becomes

equal to the known total number of tasks. At this point, the manager notifies all processors

that termination has occurred.

Global task count detects termination immediately after it occurs, which makes it very

fast. The total number of messages sent by a node to the manager is equal to the number of

times that the node became busy with work, including its initial load. A potential drawback

is that sending messages to a single manager may become a bottleneck, as the number

of processors increases. On the other hand, total completion notifications are expected to

be of order N, and to be spread out in time. This algorithm is very similar to Mattern's

Credit Recovery Algorithm described in [32] and Huang's algorithm treated in [30]. Task

count here corresponds to credits in Mattern's and Huang's algorithms that are not scaled

to 1. The fact that credits are not scaled to 1 has the advantage of avoiding floating point

representation issues that would otherwise be encountered. A separate proof of correctness

for global task count is considered redundant.

22

5.3.2. TOKEN PASSING (TP).

Token passing is a wave algorithm for a ring topology. For a thorough discussion of

wave algorithms see [33]. A wave is a pass of the token around the ring where all processors

have asynchronously testified to being idle. This is not enough to claim termination, since

all nodes are polled at different times, and with dynamic load balancing, it is uncertain if

they remained idle or later became busy. A second wave is needed to ascertain that there has

been no change in the status of any processor. For a similar algorithm, see [6]. Termination

is detected in at most two waves or 2N messages, after it occurs. The total number of

messages used depends on the total number of times the token is passed around the ring,

but is bounded below by 2N.

Each processor Pi keeps track of its state in a local flag idlei. Initially, idlei is set to

false if a processor starts off with some load, otherwise it is set to true. Consequently,

idlei is set to false every time a processor receives more work as a result of dynamic

load balancing. A token containing a counter T_ is being passed among all processors in a

circular fashion. Upon receiving the token, a processor holds it until it has finished all its

pending work tasksi, is not expecting replies to work requests, and has made more than U

unsuccessful attempts to find work. At that point, Pi checks the value of its idlei flag. In

case idlei is true the processor increments the token counter T_ by 1. In the case where idlei

is false, the T_ is reset to 0, and the value of idlei is set to true. After this, if the token

counter happens to be equal to the number of processors N, termination is established and

all processors are notified. Otherwise, the token is sent to the next processor in the ring.

Pseudo code for this scheme for each processor Pi follows.

23

on start-up

token arrives at P0 with T_ := 0;

if tasksi > 0 then idlei := false

else idlei := true;

when token arrives at Pi

wait until (tasksi = 0 A expected replies to work requests by Pi = 0 A

unsuccessful consecutive work requests by Pi >_ U);

if idlei = true then T_ := T_ + 1

else T_ := 0;

idlei := true;

if T_ = N then establish termination

else send token to neighbor P(i_-l)modN;

when extra work arrives at Pi

idlei := false;

U is an algorithmic parameter, whose effect on performance is discussed in the parametric

study chapter. It can be shown that T_ = N _ global termination because T_ = N means

that each processor Pi has consistently had no local work, for two consecutive waves around

the ring, i.e., all processors are idle. Since the token is passed only when a processor expects

no replies to work requests, i.e., it is passed between request-reply cycles only, it is clear

that there is no work in transition. On the other hand, if global termination takes place

all processors will be idle making unsuccessful attempts to find work. Eventually, for all Pi

the number of unsuccessful attempts to find work will become more than U, allowing each

processor to pass the token to its neighbor when it is not expecting a reply to a request for

work. This ensures that for all Pi, idlei will become true in the first wave, and that for all

Pi, T_ will be incremented during the second wave until T_ = N. Thus, T_ = N _=_ global

termination.

24

6. PARALLEL PERFORMANCE.

Table 3. Intel Paragonparallel times(hh:mm:ss)for low fidelity analysisof

2,026,231HSCTdesigns.

N RP GRR-MC Static

GTC TP GTC TP

32 8:28:38 8:38:23 8:30:00 8:39:41 12:48:11

(6:38) (2:33) (1:30) (:48) (1:52)
64 4:08:05 4:13:08 4:13:08 4:18:09 7:06:59

(:03) (:04) (:02) (:02) (:09)
128 2:11:46 2:12:54 2:14:04 2:17:36 3:43:30

256 57:39 1:03:46 59:27 1:08:24 1:54:58

512 31:16 33:04 33:34 34:26 1:01:49

1024 15:20 15:43 17:30 17:27 29:26

To test scalability and efl:iciency a relatively large data set with approximately 2 million

(2,026,231) designs was generated using the point selection algorithm described earlier with

order 4 and level 3. All runs have been performed on Intel Paragon platforms, which have a

mesh architecture with Intel i860 XP processors comprising the computing entities. Figures

5 7 are snapshots produced with the nupshot utility, showing the states of nodes during

execution for a small sample problem on N = 7 nodes. In these snapshots a processor can be

in one of three states, performing useful computation, sitting idle, or reading initialization

files file I/O. When dynamic load balancing is not in effect (Figure 5), processors appear

to spend half of their time being idle. With GRR-MC (Figure 6) and RP (Figure 7) idle

states are more scattered, and seem significantly reduced. It can also be seen that even

though RP and GRR-MC result in different distributions, both are very effective.

Table 3 shows execution times from the Intel Paragon computer XP/S 7 (100 compute

nodes) at Virginia Tech, and the Intel Paragon XP/S 5, XP/S 35, and XP/S 150 (128,

512, 1024 compute nodes, respectively) computers at the Oak Ridge National Laboratory

Center for Computational Sciences. Times are given in hours, minutes, and seconds; for

N _< 64 the average of five runs is reported, with the standard deviation in parentheses

under the time. The same problem run on the XP/S 7 XP/S 5, and XP/S 35 Paragons takes

25

Figure5. Snapshotfrom nupshot utility of static load distribution, N ----7.

Figure 6. Snapshot from nupshot utility of GRR-MC with global task count

termination, N ----7.

Figure 7. Snapshot from nupshot utility of RP with global task count termi-

nation, N ----7.

26

comparableamountsof time; timeson the XP/S 150Paragontend to bea little higher(4

to 12percent)thansimilar runson the XP/S 35.Randompollingusesthe samefixedseed

for all runs.For all other results,N _> 128, only one run was completed because of limited

access to larger machines. The table starts from N = 32 nodes instead of N = 1 because

the time required to run 2 million designs on one processor is prohibitive (> 400 hours).

Furthermore, the current implementation generates all the PBIB designs in one chunk, so

the memory required (535 MBytes) for all designs would also be prohibitive. The original

serial code has not been used for comparisons because its intensive use of file I/O makes

it extremely inefficient, and thus infeasible even for problems of moderate size. Times in

Table 3 do not include disk storage (1.2GBytes) for the final results. Figures 8 and 9 show

speedup for all schemes, based on the execution times for N = 32 processors.

Several observations can be made from Figures 8 9 and Table 3.

(1) Scalability: all algorithms, including static distribution, scale well for N _< 1024 nodes,

with random polling showing no noticeable degradation in efficiency at N = 1024 nodes.

(2) Dynamic vs. static: both dynamic load balancing techniques seem to be very effective,

35 to 50 percent better than static distribution, and this difference increases with the

number of processors N.

(3) Stable execution times: the standard deviations of total execution time for runs

on 32 and 64 processors are very small, which indicates that performance is relatively

stable. Random polling is expected to have more variance in execution time when the

seed is not fixed, but not a significant difference.

(4) Superlinear speedup: the latter rows of Table 3 exhibit superlinear speedup for

global round robin with message combining and random polling. This implies that at

32 nodes the memory requirement (18 MBytes) for working with a relatively large

number of tasks (_ 63,319) per node can degrade performance on the XPS/7 platform

due to resource starvation. See Quinn [26] for a discussion of general circumstances for

superlinear speedup.

(5) Global task count vs. token passing: Global task count seems to outperform token

passing for N _< 1024 with GRR-MC and RP, but the relative difference decreases for

27

speedup

i000

8OO

6OO

400

200

J

jx
j • j

J
/ • j J

_j J•J

200 400 600 800 i000
N

rp gt c

• grr gtc

static

Figure 8. Speedep with base N = 32 for RP and GRR-MC with global task

count, on N = 2 {5"''10} processors.

speedup

i000

800

600

400

200

J

J o

jX

•jX j

•j f

200 400 600 800 i000
N

rp tp

o grr tp

static

Figure 9. Speedep with base N = 32 for RP and GRR-MC with token passing,

on N = 2{5"''10} processors.

28

larger N. Clearly, the overhead involved in processing all completion messages (_> N)

by one manager node under global task count increases with N.

(6) Random polling vs. global round robin with message combining: With both

termination detection schemes random polling clearly outperforms global round robin

with message combining. The relative difference in execution times increases as N

becomes larger. The simplicity of the random polling algorithm leads to the lack of any

significant overhead. Contention conditions are unlikely to occur because messages are

randomly directed and typically the number of unsuccessful work acquisition messages

increases significantly only just before termination. Global round robin with message

combining, on the other hand, involves a longer wait, comprised of a fair number of

communication messages across the spanning tree, before it can send a work acquisition

request and the price of unsuccessful work acquisition requests is higher, because they

imply more time spent idle. Purthermore, on average the total number of messages

processed by a node running GRR-MC is higher that that for a node running RP, since

each request is propagated back and forth through as many as log 2 N other nodes.

Finally, for both algorithms, the fact that all nodes start off with some load, which is

expected to be relatively balanced among them for a large number of randomly long

tasks, serves to decrease the initial number of unsuccessful work acquisition requests,

which in turn improves performance.

29

7. PARAMETRIC STUDY.

The purpose of this study is to evaluate the effect, if any, of algorithmic parameters

on the performance of the distributed schemes. Two dynamic load balancing parameters,

splitting ratio and transfer threshold, discussed in Chapter 5.2, are reviewed, together with

two algorithm-specific parameters, delay d for GRR-MC and unsuccessful work acquisition

attempts threshold U for token passing (TP). Delay is defined as CPU clock ticks, where

the actual wait time is the delay clock ticks multiplied by the clock resolution. See Table 4

for the sets of values used to test these parameters. The variation of random polling times

for five different seeds is also examined.

Table 4. Values for algorithmic parameters.

Parameter Set of Values

splitting ratio
transfer threshold

unsuccessful work acquisition attempts U for TP

delay d for GRR-MC in clock ticks

{O.lO,O.25,o.4o,o.5o,o.6o,o.75,o.9o}
{o,15,3o,45,6o,75,9O, lO5}
{o,5,1o,15,2o,25}
{500,1000,1500,2000,2500,3000,3500}

Comprehensive runs were initially performed with a relatively small data set of 30,915

configurations on N = 32 and 64 processors. A larger number of processors N was not used

because of time constraints on the larger Paragons. The trends observed were confirmed

with a few runs on the large data set with N ----64 nodes. Both the delay d for global round

robin with message combining and the random seed for random polling introduced very

small fluctuations in execution times_he variation was less than 1 percent in most cases.

Variation of the unsuccessful acquisition attempts U for token passing and the trans-

fer threshold also resulted in a very insignificant difference in execution time, and no

particular pattern was observed. For instance, Figures i0 and ii are surface plots show-

ing how performance varies with different values for transfer threshold. The vertical axis

denotes execution time in hours; the axis labeled transfer threshold is for the values

{0, 15, 30, 45, 60, 75, 90, 105} taken by this parameter; the schemes axis parameterizes the

30

schemes RP GTC_ RP TP_ GRR-MC GTC_ GRR-MC TP for which execution time is

measured. Figures 12 and 13 are similar surface plots illustrating the effect of the splitting

ratio _ E {0.10_ 0.25_ 0.40_ 0.50_ 0.60_ 0.75_ 0.90} parameter. A difference in time occurs at

the two extreme values _ E {0.10_ 0.9}_ and even here the increase in time is at most 15

percent. Runs on 64 nodes with the large data set of 2_026_231 configurations confirm the

trend at the extreme values_ but also show that the increase in time becomes less than 1

percent (see Figures 14 and 15).

31

hours

0.13

0.125

0.12

0
15

3O
45

6O
transfer threshold 75

90
105 RP GTC

RP TP

GRR TP

GRR GTC

Figure i0. Effect of transfer threshold for N = 32 on 30,915 designs.

hours

0.07

0.065

0
15

3O
45

6O
transfer threshold 75

90
105 RP GTC

RP TP

GRR TP

GRR GTC

Figure ii. Effect of transfer threshold for N = 64 on 30,915 designs.

32

hours

0.13

0.12

0.i

0.25

0.4

0.5

splitting ratio
0.75

0.9 RP GTC

RP TP

GRR TP

GRR GTC

Figure 12. Effect of splitting ratio c_ for N = 32 on 30,915 designs.

/

0.08

hours 0. 075

0.07

0.065

0.i

0.25

0.4

0.5

splitting ratio
0.75

0.9 RP GTC

RP TP

GRR

GRR GTC

TP

Figure 13. Effect of splitting ratio c_ for N = 64 on 30,915 designs.

33

hours

4.18

4.16

4.14

4.12

/

•i .25 .4 .5 .6 .75 .9
splitting ratio

Figure 14. Effect of splitting ratio on RP GTC for N = 64 on 2,026, 23 designs.

hours

4.24

4.23

4.22

4.21

15 30 45 60 75 90
transfer threshold

Figure 15. Effect of transfer threshold on RP TP for N = 64 on 2,026, 23 designs.

34

8. CONCLUSIONS AND FUTURE WORK.

Distributed control and load balancing techniques were applied to an aspect of the

multidisciplinary design optimization of a high speed civil transport. Two dynamic load

balancing algorithms (random polling and global round robin with message combining)

together with two necessary termination detection schemes (global task count and token

passing) were implemented for the reasonable design space identification paradigm. Perfor-

mance was evaluated on up to 1024 processors for all combinations of dynamic load balancing

and termination detection schemes, plus the static distribution case. The effect of various

algorithmic parameters was also explored, and found to be negligible except at extreme

values. The results were very encouraging in terms of the effectiveness of dynamic load

balancing (35 50 percent improvement over a static distribution), and the scalability of the

algorithms (speedup was essentially linear). Most importantly, the time spent identifying the

reasonable design space has been dramatically decreased, permitting the low fidelity analysis

of 2 million designs, which was impractical before. The logical next step is to go beyond

merely identifying the reasonable design space, and to identify good design regions within

the reasonable design space, which would then be passed off to mildly parallel machines

(e.g., IBM SP/2 or SGI Origin 2000) for "local" high fidelity optimization.

This effort is a stepping stone towards the goal of a MDO problem solving environment

that will provide a complete and convenient computing environment for interactive multi-

disciplinary aircraft design. As shown by the experience of Burgee et al. [7], Guruswamy

[14], and many others, some crucial disciplinary analysis codes (for structural mechanics,

fluid dynamics, aerodynamic analysis, propulsion, to name a few) perform very poorly

in a multidisciplinary parallel computing environment. These codes represent hundreds of

man-years of experience and development, and are unlikely to be rewritten for parallel

machines any time soon. Thus the challenge is to find approaches to MDO (e.g., variable

complexity modeling and response surface techniques) which permit the use of massively

parallel computing for some phases of the process (one such phase was demonstrated here)

and legacy disciplinary codes on serial computers for other phases. One highly touted solu-

tion is "network computing", but that still remains far from practical for serious large-scale

multidisciplinary design.

35

REFERENCES.

[i] V. Balabanov, M. Kaufman, A.A. Giunta, B. Grossman, W.H. Mason, L.T. Watson,

R.T. Haftka, "Developing customized weight function by structural optimization on

parallel computers," in 37th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural

Dynamics and Materials Conference, Salt Lake City, UT, pp. 113 125, Apr. 15-17 1996.

[2] J.C. Becker, C.L. Bloebaum, "Distributed computing for multidisciplinary design opti-

mization using Java," in Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, Bellevue, WA, pp. 1583 1593, Sept. 1996.

[3] C.H. Bischof, L.L. Green, K.J. I-Iaigler, T.L. Knauff, Jr., "Parallel calculation of

sensitivity derivatives for aircraft design using automatic differentiation," in Fifth

AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimiza-

tion, Panama City, FL, pp. 73 86, Sept. 1994.

[4] G.E.P. Box, D.W. Behnken, "Some new three level designs for the study of quantitative

variables," Technometrics, vol. 2, 1960.

[5] R.D. Braun, I.M. Kroo, "Development and application of the collaborative optimization

architecture in a multidisciplinary design environment," in Multidisciplinary Design Op-

timization: State of the Art, N. Alexandrov, M.Y. Hussaini (Eds.), SIAM, Philadelphia,

PA, pp. 98 116, 1995.

[6] J. Brzezinski, J. H61ary, M. Raynal, "Distributed termination detection: General model

and algorithms," Tech. Rep. BROADCAST_TR93-05, ESPRIT Basic Research Project

BROADCAST, Aug. 1993.

[7] S. Burgee, A.A. Giunta, V. Balabanov, B. Grossman, W.H. Mason, R. Narducci, R.T.

Haftka, L.T. Watson, "A coarse-grained parallel variable-complexity multidisciplinary

optimization paradigm," The International Journal of Supercomputer Applications and

High Performance Computing, vol. 10(4), pp. 269 299, 1996.

[8] J.E. Dennis, Jr., R. M. Lewis, "Problem formulations and other issues in multidisciplinary

optimization," Tech. Rep. CRPC-TR94469, CRPC, Rice University, Apr. 1994.

[9] J.E. Dermis, Jr., V. Torczon, "Direct search methods on parallel machines," SIAM

JournM of Optimization, vol. 1(4), pp. 448-474, Nov. 1991.

[10] D.J. Doorly, J. Peir6, J.P. Oesterle, "Optimisation of aerodynamic and cou-

pled aerodynamic-structural design using parallel genetic algorithms," in Sixth

AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,

Bellevue, WA, pp. 401 409, Sept. 1996.

[11] M.S. Eldred, W.E. Hart, W.J. Bohnhoff, V.J. Romero, S.A. I-Iutchison, A.G. Salinger,

"Utilizing object-oriented design to build advanced optimization strategies with generic

implementation," in Sixth AIAA /NASA /ISSMO Symposium on Multi disciplinary AnM-

ysis and Optimization, Bellevue, WA, pp. 1568 1582, Sept. 1996.

[12] O. Ghattas, C.E. Orozco, "A parallel reduced Hessian SQP method for shape opti-

mization," in Multidisciplinary Design Optimization: State of the Art, N. Alexandrov,

M.Y. Hussaini (Eds.), SIAM, Philadelphia, PA, pp. 133-152, 1995.

[13] A.A. Guinta, Aircraft multidisciplinary design optimization using design of experiments

theory and response surface modeling methods, Ph.D. dissertation, Department of

Aerospace Engineering, Virginia Polytechnic Institute and State University, Blacksburg,

VA, May 1997.

36

[14] G. Guruswamy, "Impact of parallel computing on high fidelity based multidisciplinary

analysis," in 7th AIAA /USAF/NASA /ISSM O Symposium on Multidisciplinary Analysis

and Optimization, St. Louis, MO, AIAA Paper 98-4709, pp. 67 80, Sept. 1998.

[15] M.A. Hale, J.I. Craig, "Use of agents to implement an integrated computing environ-

ment," in Computing in Aerospace 10, San Antonio, TX, AIAA Paper 95-1001, pp.

403-413, Mar. 1995.

[16] R.V. Harris Jr., "An analysis and correlation of aircraft wave drag," NASA TM X-947

(1964).

[17] K.Hinkelman, Design and analysis of experiments, John Wiley & Sons, Inc., 1994.

[18] D.A. Hopkins, S.N. Patnaik, L. Berke, "General-purpose optimization engine for multi-

disciplinary design applications," in Sixth AIAA/NASA/ISSMO Symposium on Mul-

tidisciplinary Analysis and Optimization, Bellevue, WA, pp. 1558 1565, Sept. 1996.

[19] K. F. Hulme, C.L. Bloebaum, "Development of CASCADE: a multidisciplinary de-

sign test simulator," in Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, Bellevue, WA, pp. 438 447, Sept. 1996.

[20] A. Jameson, J.J. Alonso, "Automatic aerodynamic optimization on distributed memory

architectures," in 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper

96-0409, Jan. 1996.

[21] H. Kameda, J. Li, C. Kim, Y. Zhang, Optimal Load Balancing in Distributed Computer

Systems, Springer-Verlag, 1997.

[22] M.D. Kaufman, Variable-complexityresponse surface approximations for wing structural

weight in HSCT design, Master's thesis, VPI and State University, Apr. 1996.

[23] D.L. Knill, A.A. Giunta, C.A. Baker, B. Grossman, W.H. Mason, R.T. Haftka, L.T.

Watson, "Response surface models combining linear and euler aerodynamics for HSCT

design," JournM of Aircraft, to appear.

[24] I. Kroo, S. Altus, R. Braun, P. Gage, I. Sobieski, "Multidisciplinary optimization

met hods for aircraft preliminary design," in Fifth AIAA/USAF/NASA/OAI Symposium

on Multidisciplinary Analysis and Optimization, Panama City, FL, pp. 697 707, Sept.
1994.

[25] V. Kumar, A.Y. Grama, V.N. Rao, "Scalable load balancing techniques for parallel

computers," Journa/ofParalld and Distributed Computing, vol. 22(1), pp. 60 79, Jul.
1994.

[26] M.J. Quinn, Paralld computing : theory and practice, McGraw-Hill, New York, NY,
1994.

[27] S.A. Ridlon, "A software framework for enabling multidisciplinary analysis and opti-

mization," in Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis

and Optimization, Bellevue, WA, pp. 1280 1285, Sept. 1996.

[28] P. Sanders, "A detailed analysis of random polling dynamic load balancing," in Inter-

nationM Symposium on Paralld Architectures, Algorithms, and Networks, Kanazawa,

Japan, 1994, pp. 382 389.

[29] __, "Some implementation results on random polling dynamic load balancing," Tech.

Rep. iratr-1995-40, Universit/it Karlsruhe, Informatik fiir Ingenieure und Naturwis-
senschaftler, 1995.

[30] M. Singhal, N.G. Shivaratri, Advanced Concepts in Operating Systems, McGraw-Hill,
1994.

37

[31]M. Snir, S. Otto, S. Huss-Lederman, D.W. Walker, J. Dongarra, MPI The Complete

Reference, MIT Press, 1996.

[32] G. Tel, Topics in Distributed Algorithms, Cambridge International Series in Parallel

Computation: 1, Cambridge University Press, 1991.

[33] __, Introduction to Distributed Algorithms, Cambridge University Press, 1994.

[34] R.P. Weston, J.C. Townsend, T.M. Edison, R.L. Gates, "A distributed computing envi-

ronment for multidisciplinary design," in Fifth AIAA/USAF/NASA/OAI Symposium

on MultidisciplinaryAnalysis and Optimization, Panama City, FL, pp. 1091 1095, Sept.
1994.

[35] B.A. Wujek, J.A. Renaud, S. M. Batill, "A concurrent engineering approach for mul-

tidisciplinary design in a distributed computing environment," in Multidisciplinary

Design Optimization: State of the Art, N. Alexandrov, M.Y. Hussaini (Eds.), SIAM,

Philadelphia, PA, pp. 189 208, 1995.

[36] S. Yoder, J. Brockman, "A software architecture for collaborative development and

solution of MDO problems," in Sixth AIAA/NASA/ISSMO Symposium on Multidis-

ciplinary Analysis and Optimization, Bellevue, WA, pp. 1060 1062, Sept. 1996.

38

Appendix A: CODE FOR MESSAGE PROCESSING THREAD.

TheCcodewhereallthreadsareinvokedandmessagehandlingtakesplace,asmentioned

in Chapter4.1.2.,is listedin this appendix.

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include "worker.h"

#include "safemem.h"

#define COMM_BUFS I0

/**

<stdio.h>

<stdlib.h>

<pthread.h>

<mpi.h>

"prof.h"

"defines.h"

"structs.h"

"HSCTSearch.h"

"lib.h" /** matrix functions

"prelim.h"

"compute.h"

"grr_mc.h"

"random.h"

/** profiling constants **/

/** const definitions for structs.h **/

/** aircraft struct definition **/

**/

Token Passing variables that are shared between the worker thread,

the token passing routine, and the message handling routine

**/

int idle, token_count_bur, token_received, unsucc_work_attempts, expecting_reply;

**

ComputationPhase: Routine for message processing; it starts off the other

threads respective of the algorithm parameters passed by the user.

The main part of this routine consists of a loop that checks for

messages and processes them.

int ComputationPhase(struct cntrl_struct *cntrl, MatrixClass *dvar,

MatrixClass *local_points, Aircraft *aircraft,

Prog_Args_Struct *prog_args_struct)

register int i;

int my_rank, group_size, done_count, carryover, error_status,

j, num_leaves, num_leaves_rcvd, child_leaves, child,

index, target_node, test_flag, tot_sent_work,

tot_work_rcvd, tot_work_rcvd_buf, total_msgs,

tot_sent_work_buf[COMM_BUFS],

*grr_msg_buf = NULL, *done_indices = NULL;

double dbl_work_sent,

*work_sent_buf[COMM_BUFS],

39

*work_rcvd_buf = NULL, *work_sent = NULL;

Q_Element *q_el = NULL;

MPI_Request rqst_work_rqst= MPI_P_QUEST_NULL,

rqst_work_sent[COMM_BUFS], rqst_qty_work_sent[COMM_BUFS],

*mpi_rqst = NULL;

MPI_Status work_sent_status, work_rqst_status, terminate_status,

carryover_status, *mpi_status = NULL;

Worker_Args_Struct worker_args;

GRR_MC_Args_Struct grr_mc_args;

MPI_Datatype MPI_MATRIX_ROW;

pthread_t thread_id[TOTAL_THP_ADS];

/** Global task count termination variables **/

int buf_tasks_cmplt = O, tasks_cmplt_count = 0 ;

/** GRR - MC variables **/

int **msg = NULL, *data = NULL;

MPI_Comm_size(MPI_COMM_WOR/_D, &group_size);

MPI_Comm_rank(MPI_COMM_WOPJ_D, &my_rank);

error_status = PRELIM_SUCCESS;

MPI_Type_contiguous(local_points->nDim+l, MPI_DOUBLE, &MPI_MATRIX_ROW);

MPI_Type_commit(&MPI_MATRIX_ROW);

/** initialization of global shared variables **/

pthread_mutex_init(_mutex_matrix, pthread_mutexattr_default);

pthread_cond_init(_cond_worker_wait, pthread_condattr_default);

tasks_matrix.nDim = local_points->nDim;

tasks_matrix.mDim = local_points->mDim;

tasks_matrix.d = local_points->d;

matrix_cur_pos = I;

matrix_top_pos = local_points->mDim;

dlb = FALSE;

termination = FALSE;

total_msgs = TOT_MAIN_MSG_TYPES;

/**TOKEN TERMINATION **/

if (prog_args_struct->TERM == TERM_TOKEN)

{

expecting_reply = FALSE;

unsucc_work_attempts = O;

if ((matrix_top_pos-matrix_cur_pos)+l > O)

idle = FALSE;

else

idle = TRUE;

token_count_bur = O;

if (my_rank == MASTER_RANK)

token_received = TRUE;

else

token_received = FALSE;

4O

/_ GRR-MC _/

if (prog_args_struct->D_L_B == D L B_GRR_MC)

{

total_msgs += GetGRRMessageCount(my_rank, group_size);

msg = MsgIntBufferCreate(my_rank,

total_msgs-TOT_MAIN_MSG_TYPES, GRR_MC_MSG_SIZE);

grr_msg_buf = safe_malloc(GRR_MC_MSG_SIZE_sizeof(int));

if (grr_msg_buf == NULL)

{

fprintf(stderr, "worker(Zd): cannot allocate grr_msg_buf!\n",my_rank);

return PRELIM_ERROR;

}

}

/_ RANDOM_POLLING _/

else if (prog_args_struct->D_L_B == D_L_B_RANDOM_POLLING)

{

Init_Random_Polling(group_size,

(unsigned int) prog_args_struct->RANDOM_SEED _my_rank);

}

/_ allocation of MPI request handles for the persistent recieves _/

mpi_rqst = (MPI_Request _) safe_calloc(total_msgs, sizeof(MPI_Request));

if (mpi_rqst == NULL)

{

fprintf(stderr, "ComputationPhase(Zd): cannot allocate mpi_rqst!\n",

my_rank) ;

return PRELIM_ERROR;

}

/_ allocation of MPI structures for storing the status of persistent

receive requests _/

mpi_status = (MPI_Status _) safe_calloc(total_msgs, sizeof(MPI_Status));

if (mpi_status == NULL)

{

fprintf(stderr, "ComputationPhase(Zd): cannot allocate mpi_status!\n", my_rank);

return PRELIM_ERROR;

}

done_indices= (int _) safe_calloc(total_msgs, sizeof(int));

if (done indices == NULL)

{

fprintf(stderr, "ComputationPhase(Zd): cannot allocate done_indices!\n", my_rank);

return PRELIM_ERROR;

}

/_ reset MPI request handles to NULL _/

for (i = O; i < total_msgs; i++)

mpi_rqst[i] = MPI_REQUEST_NULL;

for (i = O; i < COMM_BUFS; i++)

{

41

rqst_work_sent[i] = MPI_REQUEST_NULL;

work_sent_bur[i] = NULL;

rqst_qty_work_sent[i] = MPI_P_QUEST_NULL;

}

/_ creation of GR/%-MC thread _/

if (prog_args_struct->D_L_B == D L B_GR/%_MC)

{

/_ create GR/%-MC threads _/

grr_mc_args.grr_mc_delay = prog_args_struct->grr_mc_delay;

pthread_create(_thread_id[DLB_THREAD], pthread_attr_default,

(void *)GRl%MC_Routine, (void *)_grr_mc_args);

pthread yield();

pthread yield();

}

/_ creation of worker thread _/

werker_args.cntrl = (struct cntrl_struct _) cntrl;

worker_args.dvar = (MatrixClass _) dvar;

worker_args.aircraft = (Aircraft _) aircraft;

worker_args.prog_args_struct = (Prog_Args_Struct _)prog_args_struct;

pthread_create(&thread_id[WORKER_THP_AD], pthread_attr_default,

(void _)WorkerRoutine, (void _)&workerargs);

pthreadyield();

/_ dynamic load balancing: initialization of a MPI persistent receive request

for every type of message that can be received and handled

in the processing loop. _/

if (prog_args_struct->D_L_B != D_L_B_NONE)

{

MPI_Recv_init(NULL, O, MPI_INT, MPI_ANY_SOUI%CE,

TAG WORK RQST, MPI COMM WOP_D, &mpi rqst[MSG WORK RQST]);

MPI_Recv_init(&num_leaves_rcvd, 1, MPI_INT, MPI_ANY_SOUI%CE,

TAG TERM, MPI COMM WOP_D, &mpi rqst[MSG TERM]);

/** TOKEN TERMINATION **/

if (prog args struct->TERM == TERM TOKEN)

{

MPI_Recv_init(&token_count_bur, 1, MPI_INT, MPI_ANY_SOURCE,

TAG_TERM_TOKEN, MPI_COMM_WORLD, &mpi_rqst[MSG_TOKEN]);

}

/** GLOBAL TASK COUNT TERMINATION **/

if (prog args struct->TERM == TERM TASK COUNT)

{

MPI_Recv_init(&buf_tasks_cmplt, 1, MPI_INT, MPI_ANY_SOURCE,

TAG_TERM_TASKS_CMPLT, MPI_COMM_WORLD, &mpi_rqst[MSG_TERM_TASKS_CMPLT]);

}

MPI_Recv_init(&tot_work_rcvd_buf, 1, MPI_INT, MPI_ANY_SOURCE,

TAG WORK RQST P_PLY, MPI COMM WOP_D, &mpi rqst[MSG WORK RQST P_PLY]);

/_ TOT_MAIN_MSG_TYPES-I: recive work is not initialized here _/

42

MPI_StartalI(TOT_MAIN_MSG_TYPES-1, mpi_rqst);

if (prog args struct->D L B == D L B GRI%MC)

{

/_ start perisitent MPI message receive requests for all nodes that GRR-MC

messages will be received from _/

InitGRR/%ecvs(my_rank, group_size, mpi_rqst, msg, TOT_MAIN_MSG_TYPES, total_msgs);

}

}

/_ message processing loop _/

carryover= FALSE;

while(termination == FALSE && prog_args_struct->D_L_B != D_L_B_NONE)

{

pthread yield();

/_ test if some messages of different types have been received

Note: MPI_Waitsome would have been more appropriate here if it was implemented without

busy wait. In this version of MPI, using MPI_Waitsome actually increases execution time

roughly by a factor of 2, because of busy wait. _/

MPI_Testsome(total_msgs, mpi_rqst, &done_count, done_indices, mpi_status);

pthread yield();

pthread yield();

if (done_count == MPI_UNDEFINED)

{

if (carryover == FALSE)

continue;

else

done_count=O;

}

if (carryover != FALSE)

{

done_indices[done_count] = MSG_WORE_RQST;

memcpy(&mpi_status[done_count], &carryover_status,

sizeof(MPI_Status));

done_count++;

}

/_ process all received messages _/

for (i = O; (i< done_count) && (termination == FALSE); i++)

{

pthreadyield();

switch (mpi status[i].MPI TAG)

{

case TAG_TERM: /_ Termination message _/

Handle Term Msg(my rank, group size,

prog_args_struct->TERM, num_leaves_rcvd);

break;

case TAG_GRI%MC_TARGET: /_ message with GRR-MC target _/

if (msg[done indices[i]-TOT MAIN MSG TYPES] [0] ==

43

my_rank _ (group_size > I))

j =SendToParent(I, my_rank, O, I, (int**)&grr_msg_buf,

&rqst_work_rqst);

}

else

{

if (prog_args_struct->TERM == TERM_TOKEN)

{

pthread_mutex_lock(&mutex_matrix);

expecting_reply = TRUE;

pthread_mutex_unlock(&mutex_matrix);

}

/** send work request to target node **/

MPI_Test(&rqst_work_rqst, &test_flag, &work_rqst_status);

MPI_Isend(NULL, O, MPI_INT,

msg[done_indices[i]-TOT_MAIN_MSG_TYPES] [0],

TAG_WORK_RQST, MPI_COMM_WORLD, &rqst_work_rqst);

}

MPI_Start(&mpi_rqst[MSG_GRR_MC_TARGET]);

break;

case TAG_GRR_MC_TARGET_RQST: /** GRR-MC message up the tree **/

j = SaveMsgFromRight(my_rank,

msg[done_indices[i]-TOT_MAIN_MSG_TYPES] [0],

msg[done_indices[i]-TOT_MAIN_MSG_TYPES] [I]);

MPI_Start(&mpi_rqst[done_indices[i]]);

break;

case TAG_GRR_MC_TARGET_REPLY: /** GRR-MC message down the tree */

SaveMsgFromParent(my_rank,

msg[done_indices[i]-TOT_MAIN_MSG_TYPES] [0],

msg[done_indices[i]-TOT_MAIN_MSG_TYPES] [I]);

MPI_Start(&mpi_rqst[done_indices[i]]);

break;

case TAG_WORK_RQST: /** request for work from another node **/

j = Handle_Work_Rqst_Msg(my_rank, groupsize,

(double)prog_args_struct->D L B_SPLIT_RATIO,

mpi_status[i].MPI_SOURCE, COMM_BUFS,

rqst_qty_work_sent, tot_sent_work_bur,

rqst_work_sent, work_sent_bur);

switch (j)

{

case PRELIM_ERROR:

error_status = PRELIM_ERROR;

break;

case PRELIM_SUCCESS:

if (carryover != FALSE)

44

{
carryover == FALSE;

}

MPI_Start(_mpi_rqst[MSG_WORK_RQST]);

break;

case PRELIM_INCOMPLETE:

if (carryover == FALSE)

{

memcpy(_carryover_status, _mpi_status[i],

sizeof(MPI_Status));

carryover == TRUE;

}

break;

}

break;

case TAG_TERM_TOKEN: /** termination token **/

pthread_yield();

token_received = TRUE;

pthread_mutex_lock(_mutex_matrix);

TokenRoutine(my_rank, group_size,

prog_args_struct->N0_WORK_THRESHOLD);

pthread_mutex_unlock(_mutex_matrix);

MPI_Start(_mpi_rqst[MSG_TOKEN]);

break;

case TAG_TERM_TASKS_CMPLT: /** tasks complete message **/

pthread_yield();

tasks_cmplt_count += buf_tasks_cmplt;

if (tasks_cmplt_count ==

(cntrl->phase_two_end-cntrl->phase_two_start)+l)

{

num_leaves = group_size-l;

MPI_Send(_num_leaves, I, MPI_INT, my_rank, TAG_TERM,

MPI_COMM_WORLD);

}

else

{

MPI_Start(_mpi_rqst[MSG_TERM_TASKS_CMPLT]);

}

break;

case TAG_WORK_RQST_REPLY: /** reply to work acquisition request **/

pthread_yield();

if (tot_work_rcvd_buf == 0)

{

pthread_yield();

/** TOKEN TERMINATION **/

if (prog_args_struct->TERM == TERM_TOKEN)

45

}
if

{

unsucc_work_attempts++;

pthread_mutex_lock(&mutex_matrix);

expecting_reply = FALSE;

TokeD/%outine(my_rank, group_size, prog_args_struct->N0_WORK_TH_SHOLD);

pthread_mutex_unlock(_mutex_matrix);

(prog_args_struct->D L B == D_L_B_RANDOM_POLLING)

/** RANDOM POLLING **/

target_node = Generate_Random_Node(my_rank, group_size);

/** send work request to target node **/

/** TOKEN TERMINATION **/

if (prog_args_struct->TEEM == TERM_TOKEN)

{

pthread_mutex_lock(&mutex_matrix);

expecting_reply = TRUE;

pthread_mutex_unlock(&mutex_matrix);

}

MPI_Test(&rqst_work_rqst, &test_flag, &work_rqst_status);

MPI_Isend(NULL, O, MPI_INT, target_node, TAG_WORK_RQST,

MPI_COMM_WOELD, &rqst_work_rqst);

}

else if (prog_args_struct->D_L_B

== D_L_B_GRE_MC)

{

SendToParent(1, my_rank, O, 1, (int**)&grr_msg_buf,

&rqst_work_rqst);

}

}

else

{

pthread_yield();

if (work_rcvd_buf != NULL)

safe_free(work_rcvd_buf);

work_rcvd_buf = (double *)

safe_calloc(tot_work_rcvd_buf * (tasks_matrix.nDim+l),

sizeof(double));

if (work_rcvd_buf == NULL)

{

fprintf(stderr, "ComputationPhase(Zd): cannot allocate work_rcvd_buf!\n",

my_rank);

error_status = PEELIM_EREOR;

}

MPI_Irecv(work_rcvd_buf, tot_work_rcvd_buf,

MPI_MATRIX_ROW, mpi_status[i].MPI_S0URCE,

46

TAG_WORK, MPI_COMM_WORLD, &mpi_rqst[MSG_WORK]);

}

MPI_Start(&mpi_rqst[MSG_WORK_RQST_REPLY]);

break;

case TAG_WORK: /** message with extra work **/

MPl_Get_count(&mpi_status[i], MPI_MATRIX_ROW,

&tot_work_rcvd);

pthread_mutex_lock(&mutex_matrix);

if (AcceptWork(tot_work_rcvd, work_rcvd_buf,

_matrix_top_pos, _tasks_matrix) == PRELIM_ERROR)

{

error_status = PRELIM_ERROR;

}

safe_free(work_rcvd_buf);

work_rcvd_buf = NULL;

if (prog_args_struct->TERM == TERM_TOKEN)

{

unsucc_werk_attempts = O;

idle = FALSE;

expecting_reply = FALSE;

}

dlb = FALSE;

pthread_cond_signal(&cond_worker_wait);

pthread_mutex_unlock(&mutex_matrix);

pthread_yield();

break;

default:

fprintf(stderr, "ComputationPhase(%d): udefined tag %d\n",

my_rank, mpi_status[i].MPI_TAG);

} /_ switch _/

} /_ for _/

} /_ while _/

/_ wait for all threads to be done _/

pthread_yield();

pthread_join(thread_id[WORKER_THREAD], NULL);

if (prog_args_struct->D_L_B == D L B_GRR_MC)

pthread_join(thread_id[DLB_THREAD], NULL);

local_points->mDim = tasks_matrix.mDim;

lecal_peints->d = tasks_matrix.d;

/_ cancel pending MPI message receive requests _/

for (j = O; j < total_msgs; j++)

{

MPI_Test(&mpi_rqst[j], &test_flag, &mpi_status[j]);

if (test flag == FALSE)

{

/_ MPI_Cancel is not implemented for recieves in this implementation of MPI.

47

Please uncomment when that changes. **/

/*MPI_Cancel(&mpi_rqst[j]);

MPI_Kequest_free(&mpi_rqst[j])*/;

}

}

/** cancel pending MPI message send requests **/

for (i = O; i< COMM BUFS; i++)

{

MPI_Test(&rqst_work_sent[i], &test_flag, &work_sent_status);

if (test flag == FALSE)

{

/** MPI_Cancel is just a noop for sends in this implementation of MPI. **/

/*MPI Cancel(&rqst work sent[i]);

MPI Kequest free(&rqst work sent[i]);*/

}

MPI_Test(&rqst_qty_work_sent[i], &test_flag, &work_sent_status);

if (test flag == FALSE)

{

/* MPI Cancel(&rqst qty work sent[i]);

MPI Kequest free(&rqst qty work sent[i]); */

}

if (work sent buf[i] != NULL)

safe free (work sent buf[i]);

}

MPI_Test(&rqst_work_rqst, &test_flag, &work_rqst_status);

if (test flag == FALSE)

{

/*MPI_Cancel(&rqst_work_rqst);

MPI_Kequest_free(&rqst_work_rqst);*/

}

if (work_rcvd_buf != NULL)

safe_free(work_rcvd_buf);

if (msg != NULL)

MsgIntBufferFree(msg);

safe_free(mpi_rqst);

safe_free(mpi_status);

safe_free(done_indices);

safe free(grr msg buf);

MPI_Type_free(_MPI_MATRIX_ROW);

/_ RANDOM_P0LLING _/

if (prog_args_struct->D_L_B == D L B_RANDOM_P0LLING)

{

Cleanup_Random_Polling() ;

}

pthread_cond_destroy(_cond_worker_wait);

pthread_mutex_destroy(_mutex_matrix);

48

return error_status;

}

**

TokeD/%outine: Koutine for processing the termination detection token.

void TokeD/%outine(int my_rank, int group_size, int N0_WORE_THRESHOLD)

{

int hum_leaves, token_count, local_task_count;

if ((N0_WOKK_THR_SHOLD >unsucc_work_attempts)]]

(matrix_top_pos-matrix_cur_pos)+l > 0]] token_received == FALSE]]

expecting_reply != FALSE)

{

return;

}

if (idle == FALSE)

{

token_count = 0;

idle = TRUE;

}

else

{

token_count = token_count_bur + I;

}

token_received = FALSE;

if (token_count == group_size)

{

hum_leaves = group_size-l;

MPI_Send(_num_leaves, I, MPI_INT, my_rank, TAG_TERM, MPI_COMM_WOBID);

}

else

{

MPI_Send(_token_count, I, MPI_INT, (my_rank +l)_group_size,

TAG_TERM_TOKEN, MPI_COMM_WOBID);

}

49

Appendix B: CODE FOR WORKER THREAD.

The C code for the woker thread as mentioned in Chapter 4.1.2. is listed in this

appendix.

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

<stdlib.h>

<stdio.h>

<pthread.h>

<mpi.h>

<mpe.h>

"prelim.h"

"pref.h"

"defines.h"

"structs.h"

"HSCTSearch.h"

"lib.h" /** matrix functions **/

"worker.h"

"random.h"

"grr_mc.h"

"compute.h"

/** MPI log facility **/

/** profiling constants **/

/** const definitions for structs.h **/

/** aircraft struct definition **/

#include "safemem.h"

/** Global variable used to coordinate token passing **/

extern int expecting_reply;

/***

WorkerRoutine: Routine that performs low level analysis on

local configurations, and waits for more work

when all local configurations are analysed.

This routine is also responsible for triggering the

initial search for work.

**/

void WorkerRoutine(Worker_Args_Struct *worker_args)

{

Aircraft *aircraft;

int interval, j, target_node, flag, my_rank, group_size,

*grr_msg_buf=NULL;

MPI_Status work_rqst_status;

MPI_Request rqst_work_rqst= MPI_REQUEST_NULL;

VectorClass point, point_copy; /*, flops_var;*/

/** TASK C0UNT TERMINATION **/

int tasks_cmplt_count = O, buf_tasks_cmplt = O;

MPI_Status status;

MPI_Request tasks_cmplt_rqst = MPI_REQUEST_NULL;

MPI_Comm_size(MPI_COMM_WORLD, _group_size);

MPI_Comm_rank(MPI_COMM_WORLD, _my_rank);

VectorClear(_point);

50

pthread_cleanup_push((void *)VectorClear,(void *)&point);

VectorNew(&point, tasks_matrix.nDim);

if (point.d == NULL)

{

fprintf(stderr, "worker(Zd): cannot allocate point!\n",my_rank);

pthread_exit(NULL);

}

pthread_cleanup_push((void *)VectorFree,(void *)&point);

VectorClear(&point_copy);

pthread_cleanup_push((void *)VectorClear,(void *)&point_copy);

VectorNew(&point_copy, tasks_matrix.nDim);

if (point copy.d == NULL)

{

fprintf(stderr, "worker(Zd): cannot allocate point_copy!\n",my_rank);

pthread_exit(NULL);

}

pthread_cleanup_push((void *)VectorFree,(void *)&point_copy);

grr_msg_buf = safe_malloc(GRl%MC_MSG_SIZE*sizeof(int));

if (grr msg bur == NULL)

{

fprintf(stderr, "worker(Zd): cannot allocate grrmsgbuf!\n",myrank);

pthread_exit(NULL);

}

pthread cleanup_push((void *)safe free,(void *)grr msg bur);

((Worker_Args_Struct *)worker_args)->aircraft->opt.des_var = point.d;

((Worker_Args_Struct *)worker_args)->aircraft->opt.num_dv =

((Worker_Args_Struct *)worker_args)->dvar->mDim;

if (worker_args->prog_args_struct->D0_LOG == TRUE)

MPE_Log_event(COMPUTE_START, O, M_COMPUTE_START);

while (TRUE)

{

pthread_mutex_lock(&mutex_matrix);

pthread_cleanup_push((void *)pthread_mutex_unlock,(void *)&mutex_matrix);

if (termination != FALSE)

{

if (worker_args->prog_args_struct->D0_LOG == TRUE)

MPE_Log_event(COMPUTE_END, O, M_COMPUTE_END);

pthread_exit(NULL);

}

/** if there are no more tasks left, dynamic load balncing is

on, and no work request has been sent yet then send a

request to a chosen node **/

if ((matrix_top_pos-matrix_cur_pos)+l <=

worker_args->prog_args_struct->D L B THRESHOLD

&& dlb == FALSE

&& worker_args->prog_args_struct->D L B != D_L_B_NONE)

51

if (worker_args->prog_args_struct->D L B==D L B_RANDOM_POLLING)

{

/** RANDOM POLLING **/

target_node = Generate_Random_Node(my_rank, group_size);

expecting_reply = TRUE;

/** send work request to target node **/

MPI_Test(_rqst_work_rqst, _flag, _status);

MPI_Isend(NULL, O, MPI_INT, target_node, TAG_WORK_RQST,

MPI_COMM_WORLD, &rqst_work_rqst);

}

else if (worker_args->prog_args_struct->D L B

== D_L_B_GRR_MC)

{

SendToParent(l, my_rank, O, I, (int**)_grr_msg_buf,

_rqst_work_rqst);

}

dlb = TRUE;

}

while (worker_args->prog_args_struct->D_L_B != D_L_B_NONE &&

(matrix_top_pos-matrix_cur_pos)+l == 0)

{

if (worker_args->prog_args_struct->TERM == TERM_TASK_COUNT _

/** TASK COUNT TERMINATION **/

tasks_cmplt_count > 0)

{

buf_tasks_cmplt = tasks_cmplt_count;

MPI_Test(_rqst_work_rqst, _flag, _status);

/** send message to manager node **/

MPI_Isend(&buf_tasks_cmplt, 1, MPI_INT, MASTER_RANK,

TAG_TERM_TASKS_CMPLT, MPI_COMM_WOP_D, &tasks_cmplt_rqst);

tasks_cmplt_ceunt = 0 ;

}

/** TOKEN TERMINATION **/

if (worker_args->prog_args_struct->TERM == TERM_TOKEN)

{

TokenRoutine(my_rank, group_size,

worker_args->prog_args_struct->N0_WORK_THRESHOLD);

}

if (worker_args->prog_args_struct->D0_LOG == TRUE)

MPE_Log_event(IDLE_START, O, M_IDLE_START);

pthread_cond_wait(&cond_worker_wait,&mutex_matrix);

if (worker_args->prog_args_struct->D0_LOG == TRUE)

MPE_Log_event(IDLE_END, O, M_IDLE_END);

if (termination != FALSE)

{

52

if (worker_args->prog_args_struct->D0_LOG == TRUE)

MPE_Log_event(COMPUTE_END, O, M_COMPUTE_END);

pthread_exit(NULL);

}

}

/_ take one task _/

/** copy current task to local scope **/

memcpy(_point_copy.d[l],_tasks_matrix.d[matrix_cur_pos] [I],

tasks_matrix.nDim • sizeof(double));

matrix_cur_pos++;

pthread_mutex_unlock(_mutex_matrix);

pthread_cleanup_pop(FALSE);

/** do computation **/

for (j = I; j <= worker_args->prog_args_struct->TASK_LENGTH; ++j)

{

VectorCopy(_point, _point_copy, FALSE);

if (LowFidelityAnalysis(((Worker_Args_Struct *)worker_args)->cntrl,

((Worker_Args_Struct *)worker_args)->dvar, _point,

((Worker_Args_Struct *)worker_args)->aircraft,

worker_args->prog_args_struct->PARTIAL_FACTORIAL_LEVELS) ==

PRELIM_ERROR)

{

if (worker_args->prog_args_struct->D0_LOG == TRUE)

MPE_Log_event(COMPUTE_END, O, M_COMPUTE_END);

pthread_exit(NULL);

}

}

pthread_mutex_lock(_mutex_matrix);

memcpy(_tasks_matrix.d[matrix_cur_pos-l] [I], _point.d[l],

tasks_matrix.nDim • sizeof(double));

pthread_mutex_unlock(_mutex_matrix);

if (worker_args->prog_args_struct->TERM == TERM_TASK_COUNT)

{

/** TASK COUNT TERMINATION **/

tasks_cmplt_count++;

}

if (worker_args->prog_args_struct->D L B == D_L_B_NONE

_(matrix_top_pos-matrix_cur_pos)+l == 0)

termination = TRUE;

}

} /** while (termination == FALSE) **/

MPI_Test(_tasks_cmplt_rqst, _flag, _status);

if (flag == FALSE)

{

/* MPI_Cancel(_tasks_cmplt_rqst);

53

MPl_Request_free(&tasks_cmplt_rqst); */

}

MPl_Test(_rqst_work_rqst, _flag, _status);

if (flag == FALSE)

{

/* MPl_Cancel(_rqst_work_rqst);

MPl_Kequest_free(_rqst_work_rqst); */

}

safe_free(grr_msg_buf);

pthread_cleanup_pop(FALSE);

VectorFree(_point_copy);

pthread_cleanup_pop(FALSE);

VectorClear(_point_copy);

pthread_cleanup_pop(FALSE);

VectorFree(_point);

pthread_cleanup_pop(FALSE);

VectorClear(_point);

pthread_cleanup_pop(FALSE);

if (worker_args->prog_args_struct->D0_LOG == TKUE)

{

MPE_Log_event(COMPUTE_END, O, M_COMPUTE_END);

}

54

Appendix C: CODE FOR GRR-MC THREAD.

The C code for the GRR-MC thread, and supporting routines as mentioned in Chapter

4.1.2. is listed in this appendix.

#include <stdio.h>

#include <errno.h>

#include <mpi.h>

#include <sys/timers.h>

#include <pthread.h>

#include "prelim.h"

#include "grr_mc.h"

#include "queue.h"

#include "safemem.h"

/** global variables **/

extern int termination;

**

SaveMsgFromParent: Routine to save messages from GRR-MC parent node in GRR-MC

message table.

**/

int SaveMsgFromParent(int my_rank, int msg, int level)

{

int *data = NULL;

Q_Element *q_el;

int parent_rank = -l;

parent_rank = my_rank _ (l << (level-l));

data = (int *) safe_malloc(sizeof(int));

if (data == NULL)

{

fprintf(stderr, "SaveMsgFromParent(_d): cannot allocate data!\n",

my_rank);

return PRELIM_ERROR;

}

*data = msg;

q_el =NULL;

q_el = (Q_Element *) safe_malloc(sizeof(Q_Element));

if (q_el == NULL)

{

fprintf(stderr, "SaveMsgFromParent(_d): cannot allocate q_el!\n",

my_rank);

safe_free(data);

return PRELIM_ERROR;

}

Init_Q_Element(q_el, (void *)data);

pthread_mutex_iock(_mutex_grr_mc_msg_table);

55

if (my_rank == parent_rank &&

glob_grr_mc_msg_table[level-2].from_parent.el_count > 0)

{

fprintf(stderr, "SaveMsgFromParent(_d): glob_grr_mc_msg_table [_d].from_parent.el_count

_d > O\n",

my_rank, level-l, glob_grr_mc_msg_table[level-l].from_left);

safe_free(q_el);

safe_free(data);

return PRELIM_ERROR;

}

Join_Q(_glob_grr_mc_msg_table[level-2].from_parent, q_el);

glob_is_grr_mc_msg_table_dirty = TRUE;

pthread_mutex_unlock(_mutex_grr_mc_msg_table);

return PRELIM_SUCCESS;

}

/@@@

SaveMsgFromLeft: Routine to save messages from GRR-MC left child node in GRR-MC

message table.

@@/

int SaveMsgFromLeft(int my_rank, int msg, int level)

{

pthread_mutex_iock(_mutex_grr_mc_msg_table);

if (glob_grr_mc_msg_table[level].from_left != 0)

{

fprintf(stderr, "SaveMsgFromLeft(%d): glob_grr_mc_msg_table[%d].from_left %d != O\n",

my_rank, level, glob_grr_mc_msg_table[level].from_left);

return PRELIM_ERROR;

}

glob_grr_mc_msg_table[level].from_left = msg;

glob_is_grr_mc_msg_table_dirty = TRUE;

pthread_mutex_unlock(_mutex_grr_mc_msg_table);

return PRELIM_SUCCESS;

}

/@@@

SaveMsgFromRight: Routine to save message from GRR-MC right child node in GRR-MC

message table.

@@/

int SaveMsgFromRight(int my_rank, int msg, int level)

{

int *data = NULL;

Q_Element *q_el;

data = (int *) safe_malloc(sizeof(int));

if (data == NULL)

{

fprintf(stderr, "SaveMsgFromRight(_d): cannot allocate data!\n",

my_rank);

56

return PI%ELIM_ERROR;

}

*data = msg;

q_el =NULL;

q_el = (Q_Element *) safe_malloc(sizeof(Q_Element));

if (q_el == NULL)

{

fprintf(stderr, "SaveMsgFromRight(Zd): cannot allocate q_el!\n",

my_rank);

safe_free(data);

safefree(qel);

return PP_LIM_ER/%0R;

}

Init_Q_Element(q_el, (void *)data);

pthread_mutex_lock(&mutex_grr_mc_msg_table);

Join_Q(&glob_grr_mc_msg_table[level].from_right, q_el);

glob_is_grr_mc_msg_table_dirty = TRUE;

pthread_mutex_nnlock(&mutex_grr_mc_msg_table);

return PP_LIM_SUCCESS;

}

**

InitGRR/%ecvs: Routine that initiatlizes the persistent MPI recieve requests for all

GRR-MC messages.

**/

void InitGRR/%ecvs(int my_rank, int group_size, MPI_Request *mpi_rqst,

int **msg, int offset, int total_msgs)

{

/** Initialize persistent receive requests needed by the GRR-MC **/

int tree_height = O, subtree_height = O, i = O,

rank = -1, local_offset = O;

/** calculate the spanning tree height **/

for (tree_height=l; ((group_size-l) >> tree_height)!= O; ++tree height);

/** calculate the height of the tallest subtree that this node

is the root of.

**/

for (subtree_height=O;((my_rank >> subtree_height) & I)==0 &&

subtree_height < tree_height; ++subtree_height);

local_offset = offset;

/** receive the target **/

MPI_Recv_init(msg[O], 1, MPI_INT, MPI_ANY_SOURCE,

TAG_GRR_MC_TARGET, MPI_COMM_WORLD, &mpi_rqst[local_offset]);

local_offset++;

/** receive reply from parent of node's subtree, if any **/

if (subtree_height > 0 && subtree_height < tree_height)

{

rank = my_rank & (I << subtree_height);

57

MPI_Recv_init(msg[l], GR/%_MC_MSG_SIZE, MPI_INT, rank,

TAG_GR/%_MC_TARGET_REPLY, MPI_COMM_WOPJ_D, &mpi_rqst[local_offset]);

local_offset++;

}

/_ receive messages only from child nodes that exist _/

for (i=O ; i+local_offset < total_msgs; i++)

{

rank = (unsigned int)my_rank I (I << i);

if (rank < group_size)

{

MPI_Recv_init(msg[i+local_offset-offset], GR/%_MC_MSG_SIZE, MPI_INT, rank,

TAG_GR/%_MC_TARGET_RQST, MPI_COMM_WOPJ_D,

_mpi_rqst[i+local_offset]);

}

}

MPI_Startall(total_msgs-offset, mpi_rqst+offset);

}

/@@@

GetGRRMessageCount: Routine to calculate the total amount of GRI%-MC messages that

this node will be receiving from other nodes.

@@/

int GetGRRMessageCount(int my_rank, int group_size)

{

int tree_height = O, subtree_height = O, i = O, total_msgs = O;

/_ calculate the spanning tree height _/

for (tree_height=l; ((group_size-l) >> tree_height) != O; ++tree_height);

/** calculate the height of the tallest subtree that this node

is the root of.

**/

for (subtree_height=O;((my_rank >> subtree_height) & I)==0 &&

subtree_height < tree_height; ++subtree_height);

/** the first one is for receiving the TARGET **/

total_msgs = 1;

/** add the messages from existing children **/

for (i = O; i<subtree_height; ++i)

{

if ((my_rank] (1 << i)) < group_size)

total_msgs++;

}

/** add message from parent of subtree, if it exists **/

if (subtree_height > 0 && subtree_height < tree_height)

total_msgs++;

return total_msgs;

}

/@@@

GRl%MC_Routine: Routine that sleeps for a specified delay time and then processed all

58

GRR-MC messages that have accumulated in the message table.

___________/

void GRl%MC_Koutine(GRl%MC_Args_Struct _grr_mc_args)

{

register int i;

TreeLvlMsg _msg_table = NULL;

@ueue _request_q = NULL;

int target = O, group_size, my_rank, rqst_pool_size,

subtree_height = O, tree_height = O;

@_Element _q_el = NULL;

TreeLvlKqst _rqst = NULL;

struct timespec sleep_time;

pthread_mutex_t mutex;

pthread_cend_t cend;

unsigned long tot_wait_time;

Clear_@_Params param;

/** message and request buffers **/

int **msg_buf = NULL;

MPI_Kequest *mpi_rqst_pool = NULL;

MPI_Comm_size(MPI_COMM_WOP_D, &group_size);

MPI_Comm_rank(MPI_COMM_WOP_D, &my_rank);

pthread_cond_init(&cond,pthread_condattr_default);

pthread_cleanup_push((void *)pthread_cond_destroy,(void *)&cond);

pthread_mutex_init(&mutex_grr_mc_msg_table, pthread_mutexattr_default);

pthread_cleanup_push((void *)pthread_mutex_destroy,

(void *)&mutex_grr_mc_msg_table);

pthread_mutex_init(&mutex, pthread_mutexattr_default);

pthread_cleanup_push((void *)pthread_mutex_destroy,(void *)&mutex);

/** calculate the spanning tree height **/

for (tree_height=l; ((group_size-l) >> tree height) != O; ++tree height);

/** calculate the height of the tallest subtree of the GRR-MC spanning tree

that this node is the root of.

**/

for (subtree_height=O;((my_rank >> subtree_height) & I)==0 &&

subtree_height < tree_height; ++subtree_height);

/** allocate message and memory buffers **/

rqst_pool_size = lO*(subtree_height+l);

msg_buf = MsgIntBufferCreate(my_rank, rqst_pool_size, GRI%MC_MSG_SIZE);

if (msg_buf == NULL)

{

fprintf(stderr, "GRl%MC_Koutine(_d): cannot allocate msg_buf!\n",

my_rank);

pthread_exit(NULL);

}

pthread_cleanup_push((void *)MsgIntBufferFree,(void *)msg_buf);

mpi_rqst_pool = (MPI_Kequest *)safe_calloc(rqst_pool_size, sizeof(MPI_Kequest));

_9

if (mpi_rqst_pool == NULL)

{

fprintf(stderr, "GRR_MC_Routine(%d): cannot allocate mpi_rqst_pool!\n",

my_rank);

pthread_exit(NULL);

}

pthread_cleanup_push((void *)safe_free,(void *)mpi_rqst_pool);

for (i = O; i < rqst_pool_size; i++)

{

mpi_rqst_pool[i] = MPI_REQUEST_NULL;

}

glob_is_grr_mc_msg_table_dirty = FALSE;

glob_grr_mc_msg_table =

(TreeLvlMsgQ *) safe_calloc(subtree_height, sizeof(TreeLvlMsgQ));

if (glob_grr_mc_msg_table == NULL)

{

fprintf(stderr, "GRR_MC_Routine(%d): cannot allocate glob_grr_mc_msg_table!\n",

my_rank);

pthread_exit(NULL);

}

pthread_cleanup_push((void *)safe_free,(void *)glob_grr_mc_msg_table);

/** allocate a vector that stores a queue of immediate child requests

for each level of the spanning tree that this node is a member of,

except for the leaf level.

request_q = (Queue *) safe_calloc(subtree_height, sizeof(Queue));

if (request_q == NULL)

{

fprintf(stderr, "GRR_MC_Routine(%d): cannot allocate request_q!\n",

my_rank);

pthread_exit(NULL);

}

pthread_cleanup_push((void *)safe_free,(void *)request_q);

/** initialize the queue at every level **/

for (i = O; i<subtree_height; i++)

{

Init_Q(&request_q[i]);

Init_Q(&glob_grr_mc_msg_table[i].from_parent);

glob_grr_mc_msg_table[i].from_left = O;

Init_Q(&glob_grr_mc_msg_table[i].from_right);

}

param.subtree_height = subtree_height;

param.request_q = request_q;

param.glob_grr_mc_msg_table = glob_grr_mc_msg_table;

pthread_cleanup_push((void *)Clear_Qs,(void *)¶m);

/** allocate a table containing this node's parent and two children

60

for every level of the spanning tree that the node is at,

except for the leaf level.

**/

msg_table = (TreeLvlMsg *) safe_calloc(subtree_height, sizeof(TreeLvlMsg));

if (msg table== NULL)

{

fprintf(stderr, "GRR_MC_Routine(Zd): cannot allocate msg_table!\n",

myrank);

pthread_exit(NULL);

}

pthreadcleanup_push((void *)safe free,(void *)msgtable);

while(termination == FALSE)

{

/** this loop implements buzy waiting, by sleeping for the

required amount of time by the GRR-MC specs, and then

processing all messages that have been received for

that period.

**/

if (grr_mc_args->grr_mc_delay > 0)

{

tot_wait_time = grr_mc_args->grr_mc_delay *

(unsigned long)(MPI Wtick() * Ie9);

getclock(TIMEOFDAY, &sleep_time);

sleep_time.tv_nsec = sleep_time.tv_nsec +

(tot_wait_time Z (unsigned long)le9);

sleep_time.tv_sec = sleep_time.tv_sec +

(tot_wait_time / le9);

pthread_mutex_lock(&mutex);

pthread_cond_timedwait(&cond, &mutex, &sleep_time);

pthread_mutex_unlock(&mutex);

}

/** if any new messages have arrived make a snapshot of the global GRR-MC

messages table, and reset it to empty status, otherwise go back to

sleep for the specified number of seconds.

**/

pthread_mutex_lock(&mutex_grr_mc_msg_table);

if (glob_is_grr_mc_msg_table_dirty == FALSE)

{

pthread_mutex_unlock(&mutex_grr_mc_msg_table);

pthread yield();

continue;

}

for (i = 0; i < subtree_height; i++)

{

if (glob grr mc msg table[i].from parent.el count > 0)

{

61

q_el = Pop_Q(&glob_grr_mc_msg_table[i].from_parent);

msg_table[i].from_parent = *(int *)q_el->data;

Destroy_Q_Element(q_el);

}

else

{

msg_table[i].from_parent = MSG_NONE;

}

msg_table [i] .from_left = glob_grr_mc_msg_table [i] .from_left ;

glob_grr_mc_msg_table [i] .from_left = O;

if (glob_grr_mc_msg_table[i].from_right.el_count > O)

{

q el = Pop_Q(&glob grr mc msg table [i].from right);

msg table[i].from right = *(int *)q el->data;

Destroy_Q_Element(q_el);

}

else

{

msg_table [i] .from_right = O;

}

if (glob_grr_mc_msg_table[i].from_parent.el_count == 0 &&

glob grr mc msg table[i].from right.el count == O)

glob_is_grr_mc_msg_table_dirty = FALSE;

}

pthread_mutex_unlock(&mutex_grr_mc_msg_table);

/** for all levels that this node belongs to process the

messages starting from the lowest level

**/

for (i = O; i < subtree_height && (termination == FALSE); i++)

{

/** handle messages from parent node, if any, and if this is not the

global root level.

**/

if (msg table[i].from parent > MSG NONE)

{

if (i >= (tree_height-I))

fprintf(stderr, "GRR MC Routine(%d): root has message from parent %d\n",

my rank, msg table[i].from parent);

if (request_q[i].el_count == O)

{

fprintf(stderr, "GRR_MC_Routine(%d): request q at level %d gets reply with no

rqsts\n",

my_rank, i+l);

pthread_exit(NULL);

}

else

62

q_el = Pop_Q(_request_q[i]);

if (SendToChildren(((TreeLvlRqst *)q_el->data)->left_rqst,

((TreeLvlRqst *)q_el->data)->right_rqst,

msg_table[i].from_parent, my_rank, group_size, i+1,

rqst_pool_size, msg_buf, mpi_rqst_pool)

== PP_LIM_ER/%0R)

{

Destroy_Q_Element(q_el);

pthread_exit(NULL);

}

Destroy_Q_Element(q_el);

}

/** handle messages from child nodes, if any **/

if ((msg_table[i].from_left + msg_table[i].from_right) > 0)

{

if (i == (tree_height - 1))

{

if (SendToChildren(msg_table[i].from_left, msg_table[i].from_right,

target, my_rank, group_size, i+1,

rqst_pool_size, msg_buf, mpi_rqst_pool)==PRELIM_ERROR)

pthread_exit(NULL);

}

target += msg_table[i].from_left + msg_table[i].from_right;

target _= group_size;

}

else

{

rqst = NULL;

rqst = (TreeLvlRqst _) safe_malloc(sizeof(TreeLvlRqst));

if(rqst == NULL)

{

fprintf(stderr, "GRl%MC_Routine(_d): cannot allocate rqst, i _d\n",

my_rank, i);

pthread_exit(NULL);

}

rqst->left_rqst = msg_table[i].from_left;

rqst->right_rqst = msg_table[i].from_right;

q_el = NULL;

q_el = (Q_Element _) safe_malloc(sizeof(Q_Element));

if(q_el == NULL)

{

fprintf(stderr, "GRl%MC_Routine(_d): cannot allocate q_el, i _d\n",

my_rank, i);

pthread_exit(NULL);

}

63

)
)

)
)
/** cleanup **/

Init_Q_Element(q_el, rqst);

Join_Q(&request_q[i], q_el);

if (SendToParent(msg table[i].from left+msg table[i].from right,

my_rank, i+1, rqst_pool_size, msg_buf, mpi_rqst_pool)

== PRELIM_ERROR)

pthread_exit(NULL);

safe_free(msg_table);

pthread_cleanup_pop(FALSE);

Clear_Qs(¶m);

pthread_cleanup_pop(FALSE);

safe_free(request_q);

pthread_cleanup_pop(FALSE);

safe_free(glob_grr_mc_msg_table);

pthread_cleanup_pop(FALSE);

safe_free(mpi_rqst_pool);

pthread_cleanup_pop(FALSE);

MsgIntBufferFree(msg_buf);

pthread_cleanup_pop(FALSE);

pthread_mutex_destroy,(&mutex);

pthread_cleanup_pop(FALSE);

pthread_mutex_destroy(&mutex_grr_mc_msg_table);

pthread_cleanup_pop(FALSE);

pthread_cond_destroy(&cond);

pthread_cleanup_pop(FALSE);

}

**

SendToParent: Send a message to GRR-MC parent node.

int SendToParent(int msg_from_child, int my_rank, int cur_level,

int rqst_pool_size, int **msg_buf, MPl_Request *mpi_rqst_pool)

MPl_Status mpi_status;

int parent_rank = -I, test_flag = FALSE, i = O, index = MPI_UNDEFINED;

parent_rank = my_rank _ (I << cur_level);

if (parent_rank == my_rank)

if(SaveMsgFromLeft(my_rank, msg_from_child, cur_level) == PP_LIM_ERROR)

return PP_LIM_ERROR;

)

64

else

{

test_flag = FALSE;

for (i=O;(i<lO00)&&(termination==FALSE)&&(test_flag == FALSE)&&

(rqst_pool_size > O);i++)

{

MPI_Testany(rqst_pool_size, mpi_rqst_pool, _index,

_test_flag, _mpi_status);

pthread_yield();

}

if (test_flag == FALSE II rqst_pool_size == O)

{

fprintf(stderr, "SendToParent(_d): Target reply cannot be sent, term _d, rqst_pool_size

Zd!\n",

my_rank, termination, rqst_pool_size);

return PP_LIM_ER/%0R;

}

if (index == MPI_UNDEFINED)

index = O;

msg_buf[index] [0] = msg_from_child;

msg_buf [index] [i] = cur_level;

MPI_Isend(msg_buf[index], 2, MPI_INT, parent_rank, TAG_GRI%MC_TARGET_RQST,

MPI_COMM_WORLD, &mpi_rqst_pool[index]);

}

return PRELIM_SUCCESS;

}

/@@@

SendToChildren: Send messages to GRR-MC child nodes.

@@/

int SendToChildren(int left_child_rqst, int right_child_rqst,

int msg_from_parent, int my_rank, int group_size, int cur_level,

int rqst_pool_size, int **msg_buf, MPI_Request *mpi_rqst_pool)

MPI_Status mpi_status;

int left_child_rank = -I, right_child_rank = -I, return_value,

test_flag = FALSE, i = O, index = MPI_UNDEFINED, *data = NULL;

@_Element *q_el = NULL;

return_value = PP_LIM_SUCCESS;

left_child_rank = my_rank;

right_child_rank = ((unsigned int)my_rank) I (i << (cur_level-i));

if (cur_level == i)

{

if (left_child_rqst > O)

{

test_flag = FALSE;

for (i=O;(i<lO00)&&(termination==FALSE)&&(test_flag == FALSE)&&

65

(rqst_pool_size > O);i++)

{

MPI_Testany(rqst_pool_size, mpi_rqst_pool, &index,

&test_flag, &mpi_status);

pthread_yield();

}

if (test_flag == FALSE II rqst_pool_size == O)

{

fprintf(stderr, "SendToChildren(%d): taget to left child cannot be sent!\n",

my_rank) ;

return PRELIM_ERROR;

}

if (index == MPI_UNDEFINED)

index= 0 ;

msg_buf[index] [0] = msg_from_parent;

MPI_Isend(msg_buf[index], 1, MPI_INT, left_child_rank,

TAG_GRR_MC_TARGET, MPI_COMM_WORLD, &mpi_rqst_pool[index]);

}

if (right_child_rqst > O)

{

test_flag = FALSE;

for (i=O;(i<lO00)&&(termination==FALSE)&&(test_flag == FALSE)&&

(rqst_pool_size > O);i++)

{

MPI_Testany(rqst_pool_size, mpi_rqst_pool, &index,

&test_flag, &mpi_status);

pthread_yield();

}

if (test_flag == FALSE II rqst_pool_size == O)

{

fprintf(stderr, "SendToChildren(%d): taget to right child cannot be sent!\n",

my_rank) ;

return PRELIM_ERROR;

}

if (index == MPI_UNDEFINED)

index= 0 ;

msg_buf [index] [0] = msg_from_parent + left_child_rqst ;

msg_buf[index] [0] %= group_size;

MPI_Isend(msg_buf[index], 1, MPI_INT, right_child_rank,

TAG_GRR_MC_TARGET, MPI_COMM_WORLD, &mpi_rqst_pool[index]);

}

}

else

{

if (left_child_rqst > O)

{

66

if (SaveMsgFromParent (my_rank, msg_from_parent, cur_level) ==

PRELIM_ERROR)

return PRELIM_ERROR;

}

if (right_child_rqst> 0)

{

test_flag = FALSE;

for (i=0; (i< 1000) && (terminat ion==FALSE) && (test flag == FALSE) &&

(rqst_pool_size > 0) ;i++)

{

MPI_Testany(rqst_pool_size, mpi_rqst_pool, &index,

&test_flag, &mpi_status) ;

pthread_yield () ;

}

if (test flag == FALSE II rqst_pool_size == 0)

{

fprintf (stderr, "SendToChildren (%d) : cannot send to right !\n",

my_rank) ;

return PRELIM_ERROR;

}

if (index == MPI_UNDEFINED)

index= 0 ;

msg_buf [index] [0] = left_child_rqst + msg_from_parent ;

msg_buf [index] [0] %= group_size;

msg_buf [index] [I] = cur level;

i = MPI_Isend(msg_buf [index], 2, MPI_INT, right_child_rank,

TAG_GRR_MC_TARGET_REPLY, MPI_COMM_WORLD, _mpi_rqst_pool[index]);

}

}

return return_value ;

67

Appendix D: DESIGN VARIABLE DEFINITION FILE USED FOR TEST RUNS.

This is a listing of the design variable definition file used for all test runs described

in this thesis. The file specifies nominal values, scaling factors and move limits for all 29

design variables.

#Design variables after cycle 0

#29 Number of design variables

1 1.64096261431 0.90 1.10 1) xlO0

2 1.02408973683 0.90 1.10 2) xlO0

3 3.45162853760 0.90 1.10 3) xlO

4 1.48328698215 0.95 1.05 4) xlO0

5 2.63225104343 0.95 1.15 5) xlO

6 1.29115031424 0.95 1.15 6) xlO0

7 1.09276364577 0.90 1.10 7) xlO

8 7.02892196451 0.90 1.10 8) xlO

wing root chord (ft.)

L.E. break, x (ft.)

L.E. break, y (ft.)

T.E. break, x (ft.)

T.E. break, y (ft.)

L.E. wing tip, x (ft.)

wing tip chord (ft.)

wing semi-span (ft.)

9 4.95664234483 0.90 1.10 9)

10 3.22302689070 0.90 1.10 10)

11 3.00807173152 0.90 1.10 11)

12 2.11606696299 0.90 1.10 12)

13 1.83790866614 0.90 1.10 13)

14 0.22780937915 0.90 1.15 14)

15 0.35754528327 0.90 1.10 15)

16 1.13290732737 0.85 1.15 16)

17 0.49449630510 0.95 1.05 17)

18 1.29314680446 0.85 1.15 18)

19 0.47098654714 0.95 1.05 19)

20 2.03776220420 0.90 1.15 20)

21 0.56988572208 0.95 1.05 21)

22 1.01430224591 0.95 1.15 22)

23 1.95367015459 0.85 1.05 23)

24 4.08559941655 0.95 1.05 24)

25 5.65244506717 0.90 1.10 25)

26 0.39716110063 0.90 1.10 26)

27 5.64621807013 0.90 1.10 27)

28 8.23320534848 0.90 1.10 28)

29 4.60000000000 0.90 1.10 29)

xO.1, location of max. t/c on airfoil (x/c)

xl, L.E. radius parameter

xO.01 t/c at wing root

xO.01 t/c at L.E. break 1

xO.01 t/c at wing tip

xlO0 fuselage restraint 1, x (ft.)

xlO fuselage restraint 1, r (ft.)

xlO0 fuselage restraint 2, x (ft.)

xlO fuselage restraint 2, r (ft.)

xlO0 fuselage restraint 3, x (ft.)

xlO fuselage restraint 3, r (ft.)

xlO0 fuselage restraint 4, x (ft.)

xlO fuselage restraint 4, r (ft.)

xlO nacelle 1 y location (ft.)

xlO nacelle 2 y location (ft.)

xle05 flight fuel (ibs.)

xle04, starting cruise altitude (ft.)

xlO0, cruise climb rate (ft./min.)

xlO0, vertical tail area

xlO0, horizontal tail area

xlO00, thrust (ibs)

68

VITA.

Denitza T. Krasteva was born on in She is a graduate

research assistant at Virginia Polytechnic Institute and State University in Blacksburg,

Virginia. She received a Bachelor of Arts in Computer Science in May 1995 from the

American University in Bulgaria, Blagoevgrad, Bulgaria, after which she spent a year

working as a software engineer in Sofia. Her research interests involve parallel computation,

distributed systems and concurrent processes. She will be receiving a Master of Science in

Computer Science in September 1998.

69

