DISTRIBUTED PARALLEL PROCESSING AND
DYNAMIC LOAD BALANCING TECHNIQUES FOR
MULTIDISCIPLINARY HIGH SPEED AIRCRAFT DESIGN

by

Denitza T. Krasteva

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

n

Computer Science and Applications

APPROVED:

Layne T. Watson

Dennis G. Kafura Rakesh K. Kapania

September, 1998

Blacksburg, Virginia



DISTRIBUTED PARALLEL PROCESSING AND
DYNAMIC LOAD BALANCING TECHNIQUES FOR
MULTIDISCIPLINARY HIGH SPEED AIRCRAFT DESIGN

by

Denitza T. Krasteva

Committee Chairman: Layne T. Watson

Computer Science

(ABSTRACT)

Multidisciplinary design optimization (MDO) for large-scale engineering problems poses
many challenges (e.g., the design of an efficient concurrent paradigm for global optimization
based on disciplinary analyses, expensive computations over vast data sets, etc.) This work
focuses on the application of distributed schemes for massively parallel architectures to
MDO problems, as a tool for reducing computation time and solving larger problems. The
specific problem considered here is configuration optimization of a high speed civil transport
(HSCT), and the efficient parallelization of the embedded paradigm for reasonable design
space identification. Two distributed dynamic load balancing techniques (random polling
and global round robin with message combining) and two necessary termination detection
schemes (global task count and token passing) were implemented and evaluated in terms of
effectiveness and scalability to large problem sizes and a thousand processors. The effect of
certain parameters on execution time was also inspected. Empirical results demonstrated
stable performance and effectiveness for all schemes, and the parametric study showed that

the selected algorithmic parameters have a negligible effect on performance.



ACKNOWLEDGEMENTS.

During the course of this work I have had the advantage of receiving academic support
from my advisor, Dr. Layne Watson and the professors and students from the MDO group—
Dr. Bernard Grossman, Dr. William Mason, Dr. Raphael Haftka, and Chuck Baker. Many
thanks go to Dr. Watson who provided the initial stimulus for this work. His guidance
has facilitated a rich educational experience for me through numerous discussions, valuable
advice and direction, encouragement, and fair criticism. I am very happy that I had the
chance to have Dr. Watson as my academic advisor. I would also like to thank Dr. Grossman,
Dr. Mason and Chuck Baker for their support and discussions during the weekly MDO
meetings, and Dr. Haftka for his invaluable advice and critique of my work. Finally, Dr.
Kafura is the professor to whom I am grateful for sparking my interest in concurrency and
distributed systems issues during his Advanced Concepts in Operating Systems class.

My deepest gratitude goes to my parents, Chavdar Krastev and Pollina Krasteva, and
family who have patiently provided me with unfailing support, encouragement and care
even though they were not physically here. I am very thankful to my grandparents, who
showed constant interest in every step of my progress. Chris Gale is responsible for making
my stay in Blacksburg wonderful, and for making me feel good at times when I had little
reason to do so. Finally, I would like to pay tribute to all my friends and collegues who
contributed to creating a great educational and personal atmosphere for me.

Financially, this work was supported in part by Air Force Office of Scientific Research
grant F49620-92-J-0236, National Science Foundation grant DMS-9400217, and National
Aeronautics and Space Administration grant NAG-2-1180. I would also like to gratefully
acknowledge the use of the Intel Paragon XP/S 5, XP/S 35, and XP/S 150 computers,
located in the Oak Ridge National Laboratory Center for Computational Sciences (CCS),
funded by the Department of Energy’s Mathematical, Information, and Computational
Sciences (MICS) Division of the Office of Computational and Technology Research. A lot

of the results described in this thesis were obtained from runs on these computers.

iii



TABLE OF CONTENTS

CINErOdUCHION .ot 1
. HSCT Configuration Optimization .......... ...ttt 5
2.1 Design Variables . ... e 7
2.2 COMSETaIIES « ottt ettt 7
2.3 Multi-fidelity Analysis ... ...ttt e e 11

. Reasonable Design Space Paradigm ........ ..o i 12
3.1 Design of Experiments Theory ........ .o 12

. Parallelization Strategy . .......cointiiii i 14
4.1 Parallel Implementation ........ ..o e 15
4.1 M .o 15

4.1.2 Threads ...t 16

. Distributed Algorithms .. ... ... . i e 18
5.1 AU DI ONS ottt it e e e 18
5.2 Dynamic Load Balancing ......... i 19
5.2.1 Random Polling ...... ... i 19

5.2.1 Global Round Robin with Message Combining ................... 20

5.3 Termination Detection . ......i it e e 21
5.3.1 Global Task Count ........coiiiiiiiii i 22

5.3.2 Token Passing ........cooiiiiiiiiiiiiii i 23

. Parallel Performance . ...t 25
. Parametric Study . ... e 30
. Conclusions and Future Work . ... e 35
R e enCes . oo 36
Appendix A: Code for Message Handling Thread ............................ 39

v



Appendix C: Code for GRR-MC Thread ..., 55
Appendix D: Design Variable Definition File Used for Test Runs ............... 68
N 7 69

LIST OF FIGURES

Figure 1. Typical HSCT configuration .......... ..o, 6
Figure 2. Wing planform design variables ........ ... ... i i, 8
Figure 3. Wing airfoil thickness design variables .......... ... ... ... 8
Figure 4. GRR-MC spanning tree for N = &8, where z is the value of T .......... 21
Figure 5. Snapshot from nupshot utility of static load distribution, N =7 ....... 26

Figure 6. Snapshot from nupshot utility of GRR-MC with GTC termination, N =7 26
Figure 7. Snapshot from nupshot utility of RP with GTC termination, N =7 ... 26
Figure 8. Speedup with base N = 32 for RP and GRR-MC with global task count
termination, on N = 21510} processors .........iiiiiiii 28

Figure 9. Speedup with base N = 32 for RP and GRR-MC with token passing termi-

nation, on N = 21510} processors .........oveiiiiiiii 28
Figure 10. Effect of transfer threshold for N = 32 on 30,915 designs ............. 32
Figure 11. Effect of transfer threshold for N = 64 on 30,915 designs ............. 32
Figure 12. Effect of splitting ratio « for N = 32 on 30,915 designs .............. 33
Figure 13. Effect of splitting ratio « for N = 64 on 30,915 designs .............. 33

Figure 14. Effect of splitting ratio on RP GTC for N = 64 on 2,026, 23 designs .. 34
Figure 15. Effect of transfer threshold on RP TP for N = 64 on 2,026, 23 designs 34

LIST OF TABLES

Table 1. Design variables and typical values ......... ... it i.. 9
Table 2. Optimization Constraints ............uueiiiiiie i 10
Table 3. Intel Paragon parallel times (hh:mm:ss) for low fidelity analysis of 2,026,231
HSCT designs .ottt e et e e e 25

Table 4. Values for algorithmic parameters .......... ... ... 30



1. INTRODUCTION.

The requirement for timely deliverance, in the context of inherent computational com-
plexity and huge problem size spanning several disciplines, is typical of modern large-scale
engineering problems (e.g., aircraft design). This has provided the driving force for research
in the area of multidisciplinary design optimization (MDO) to develop practical, scalable
methodologies for design optimization and analysis from the perspective of more than one
discipline. The computational intensity of realistic multidisciplinary design optimization
problems presents a major obstacle and bottleneck. For this reason, high performance com-
puting and its efficient use constitute a very important MDO tool. There is an ongoing effort
amongst engineering and scientific computing researchers to build sophisticated parallel and
distributed algorithms for the solutions of specific types of problems, such as computational
fluid dynamics (CFD), partial differential equations (PDEs), finite element analysis, etc.
(see, for example, the July 1998 issue of Advances in Engineering Software). Despite their
good performance and promising potential, such codes are not widely integrated in MDO
environments, since it is a nontrivial task to efficiently blend heterogeneous, disciplinary
engineering codes together. Obstacles that arise are complex interactions between disciplines,
incompatible interfaces, nonstandard programming practices, lack of detailed documenta-
tion, and sometimes failure to scale up to the sizes of realistic MDO problems. As a result,
more customization is needed than is feasible. Burgee et al. [7] discuss similar difficulties
in their effort to parallelize sequential MDO codes composed of legacy disciplinary analysis
codes.

Several efforts are described in the literature that propose parallel and distributed
solutions to the complexity and computational burden of large scale MDO problems. One
strain of research develops methodologies for MDO problem modeling and formulation
with the goal of creating significant opportunities for distributed and parallel computation.
Kroo et al. [24] propose two such methodologies. One is the decomposition of analyses
into simpler modules with limited interdependencies, so that each module can be run
concurrently. Collaborative optimization [5], on the other hand, aims at modeling the entire

design process as a collaboration between parallel tasks/disciplines, under the auspices of

1



a centralized coordinating process. Dennis and Lewis introduce the “individual discipline
feasible” [8] problem formulation approach for MDO that has the advantage of using third
party disciplinary analysis codes. There is work at Georgia Tech on agent based technologies
for the IMAGE infrastructure of their decision support integrated product and process
development (IPPD) architecture DREAMS [15]. The applicability and scalability of the
above methods for large-scale systems has yet to be established.

A second strain of research is oriented towards the design and implementation of
generic MDO computing frameworks that support concurrent execution across distributed,
heterogeneous platforms (see Access Manager [27], COMETBOARDS [18], and Fido [34]). For
example, Wujek et al. [35] propose a framework, later extended by Yoder and Brockman [36],
that facilitates distributed collaborative design [24] and manages the entire problem-solving
life-cycle through a graphical user interface. These systems aim to automate the design
optimization process by controlling computing processes, and tracking and monitoring
intermediate results. Their problem definition capabilities need to be very flexible and robust
in order to accommodate complex MDO problems. Additionally, tracking and monitoring
tools like FIDO’s Spy [34] are very important to keep the designer informed about the
state of the optimization, and to allow the designer to interact with the automated process.
Currently, more empirical evidence is needed to show if automated, “push-button” (see
Dennis and Lewis [8]) systems are well suited to large, complex MDO problems.

Finally, there has been research on using sophisticated parallel algorithms for different
MDO subproblems such as optimization, analysis, etc. For example, Burgee et al. [7] and
Balabanov et al. [1] implemented coarse-grained parallel versions of existing analysis and
optimization codes for a High Speed Civil Transport. The results were reasonable, but speedup
tapered off for less than 100 nodes, due to I/O overhead, and other factors discussed in [7],
[1]. Their conclusion was that fine-grained parallelism and reduced I/0O versions of the codes
would improve scalability. There are some reports of efficiency achieved on massively parallel
architectures, i.e., scalability to thousands of nodes. For example, Dennis and Torczon [9]
developed the parallel direct search methods for derivative free optimization that are blatantly

parallel. Direct search methods are suitable for problems with a relatively small number

2



of design variables (< 50). Ghattas and Orozco have developed a parallel reduced Hessian
sequential quadratic programming (SQP) method for shape optimization [12] that scales very
well up to thousands (16000) of processors for relatively small numbers of design variables
(< 50), but performance quickly degrades as the number of design variables increases. Eldred
et al. [11] have developed an object oriented software framework for generic optimization
that experienced optimal performance at 512 processors for a certain test problem, but
started degrading after that. More research seems to focus on moderate parallelism, i.e., less
than 100 processors. For example, Jameson et al. [20] assess parallel implementations of an
algorithm applying control theory to CFD aerodynamic optimization. Reported efficiencies
range between 66 and 95 percent, but the need for more effective load balancing is recognized
and the focus of current study. For more research on parallel and distributed MDO tools,
including parallel genetic algorithms using MPI [31], and Java based solutions, see [19], [3],
[10], [2].

This paper focuses on the effective use of massive parallelism and scalable distributed
control applied to the reasonable design space identification paradigm embedded within the
problem of the multidisciplinary configuration optimization of a High Speed Civil Transport
(HSCT). The approach here uses a variable complexity paradigm [7] where computation-
ally cheap low fidelity techniques are used together with computationally expensive high
fidelity techniques throughout the optimization process. Geometric constraints and low
fidelity analysis are applied to define promising regions in the design space and to identify
intervening /important variables/terms for surrogate models. Higher fidelity analyses are
used to generate smooth response surfaces for those regions, which are then analyzed by
the optimizers in search of local optima. Typical configuration designs are comprised of 5
to 50 design variables.

The paradigm of reasonable design space identification consists of performing millions
of low fidelity analyses at extreme points of a box around a nominal configuration. A single
design evaluation takes a fraction of a second on a slow processor, but as the number of
design variables grows, millions of evaluations require a significant amount of time. Such

an evaluation is too fine grained to lend itself to task parallelism, and so is taken as the

3



atomic grain of computation. In terms of data parallelism, the problem is irregular because
each configuration that fails preliminary analysis (violates feasibility constraints) has to
be moved towards the center of the box until it is coerced to a reasonable design. This
results in a variable number of analyses and time per configuration. Initially, a parallel
implementation was developed where all configurations to be evaluated were spread evenly
across available processors. A severe load imbalance, where total idle time amounted to one
half of total processing time, was observed. Thus dynamic load balancing strategies, so that
the load can be effectively redistributed amongst processors at run time, are essential. Two
receiver initiated distributed load balancing algorithms—random polling (RP) and global
round robin with message combining (GRR-MC)—were implemented.

Load balancing causes remapping of jobs to processors so that processors that have
finished their work at some point in time can resume with a new load. Thus a processor having
no load at a certain point in time does not signify that there is no more work to be done on a
global level. A termination detection algorithm is needed to assert global termination of the
system. Two complementary termination detection schemes—global task count (GTC) and
token passing (TP)—have been implemented. The parallel codes make use of the Message
Passing Protocol (MPI) [31] for interprocessor and collective communication, and POSIX
threads (pthreads) for concurrency at the processor level. To provide context, the HSCT
aircraft design problem is described in detail in Chapter 2. Chapter 3 describes the reasonable
design space paradigm, Chapters 4 and 5 the algorithms and their implementation. Chapters
6 and 7 analyze the results and parametric studies, and Chapter 8 offers conclusions and

possible future work.



2. HSCT CONFIGURATION OPTIMIZATION.

The parallelization techniques described in the following chapters are applied in the
context of designing an optimal supersonic aircraft with a capacity for 251 passengers,
minimum range of 5,500 nautical miles, cruise speed of Mach 2.4, and ceiling height of
70,000 ft. The problem is formulated as a constrained optimization

min f(z), subject to g¢;(z) <0 foralliec{l,...,m},

Tmin <T<Tman

where f: R™ — R is the objective function, £ € R™ is a vector of n design variables, and
g : R™ — R is a vector of m constraints. The values of the design variables in vector x are

lower and upper bounded by %,,;, and x,,q, respectively.

Takeoff gross weight (TOGW), expressed as the aggregate of payload, fuel, structural
and nonstructural weights, serves as the selected objective function. TOGW is dependent
on many of the engineering disciplines involved, (e.g., structural design determines empty
aircraft weight, aerodynamic design affects required fuel weight, etc.), and thus provides
a measure of merit for the HSCT as a whole. Guinta [13] suggests that minimized takeoff
gross weight is also in some sense related to minimized acquisition and recurring costs for

the aircraft. Figure 1 [23] illustrates a typical aircraft configuration.

The suite of optimization and analysis tools employed for this problem comprises codes
developed by engineers in-house (e.g., vortex lattice subsonic aerodynamics, panel code
for supersonic aerodynamics) and by third parties (e.g., optimizer, weights and structures,
Harris [16] wave drag code for supersonic aerodynamics). The analysis tools are of varying
complexity and computational expense, and some have coarse-grained parallel implementa-
tions. Interactions and coordination amongst programs in the suite are mostly carried out

via file I/0.



Figure 1. Typical HSCT configuration.



2.1. DESIGN VARIABLES.

Successful aircraft design optimization requires a suitable mathematical characterization
of configuration parameters. Typically a configuration has n < 50 design variables. In this
particular case, 29 variables are used to define the HSCT in terms of geometric—wing-body-
nacelle—layout (twenty six variables) and mission profile (three variables). See Table 1 [13]
for descriptions and typical values of all design variables. The wing is parametrized with
eight variables for planform (see Figure 2 [13]) and five variables for leading edge and airfoil
shape properties (see Figure 3 [13]). Two variables express the engine nacelle locations
along the wing semi-span. The fuselage shape is defined with eight variables specifying the
axial location and radius for each of four restraint points along its fixed 300 ft length. The
horizontal and vertical tails are trapezoidal planforms whose areas each comprise a design
variable. The thrust of the engine is also a variable. Internal volume of the aircraft is fixed

at 23,270 ft3.

The idealized mission profile is divided into three segments—takeoff, supersonic leg at
Mach 2.4, and landing. There are three variables related to the mission—{flight fuel weight,

climb rate, and initial supersonic cruise/climb altitude.

2.2. CONSTRAINTS.

The HSCT optimization process is subject to 69 explicit nonlinear constraints of vary-
ing complexity and computational expense. The least expensive to evaluate are geometric
constraints that are used to eliminate physically senseless designs involving negative lengths,
zero thickness, etc. Aerodynamic and performance constraints vary from moderately expen-
sive (e.g., stability issues) to computationally intensive (range > 5,500). Table 2 [13] lists

all constraints with short descriptions.



| -«—— fuselage centerline
y

Figure 2. Wing planform design variables.

z
X{1_13 t/cratio at 3 spanwise locations

AN AN

X 19 LEradius Xg max. thickness location

Figure 3. Wing airfoil thickness design variables.



Table 1. Design variables and typical values.

Index Typical Value Description
1 181.48 Wing root chord
2 155.90 LE break point, = (ft)
3 49.20 LE break point, y (ft)
4 181.60 TE break point, = (ft)
5 64.20 TE break point, y (ft)
6 169.50 LE wing tip, x (ft)
7 7.00 Wing tip chord (ft)
8 74.90 Wing semi-span (ft)
9 0.40 Chordwise location of max. thickness
10 3.69 LE radius parameter
11 2.58 Airfoil t/c ratio at root, (%)
12 2.16 Airfoil t/c ratio at LE break, (%)
13 1.80 Airfoil t/c ratio at LE tip, (%)
14 2.20 Fuselage restraint 1, z (ft)
15 1.06 Fuselage restraint 1, y (ft)
16 12.20 Fuselage restraint 2, z (ft)
17 3.50 Fuselage restraint 2, y (ft)
18 132.46 Fuselage restraint 3, z (ft)
19 5.34 Fuselage restraint 3, y (ft)
20 248.67 Fuselage restraint 4, z (ft)
21 4.67 Fuselage restraint 4, y (ft)
22 26.23 Nacelle 1 location (ft)
23 32.39 Nacelle 2 location (ft)
24 697.90 Vertical tail area (ft2)
25 713.00 Horizontal tail area (ft2)
26 39000.00 Thrust per engine (Ib)
27 322617.00 Flight fuel (Ib)
28 64794.00 Starting cruise/climb altitude (ft)
29 33.90 Supersonic cruise/climb rate (ft/min)




Table 2. Optimization constraints.

Index Constraint

Geometric Constraints

1 Fuel volume < 50% wing volume
2 Airfoil section spacing at Cy;, > 3.0 ft
3-20 Wing chord > 7.0 ft
21 LE break within wing semi-span
22 TE break within wing semi-span
23 Root chord t/c ratio > 1.5%
24 LE break chord t/c ratio > 1.5%
25 Tip chord t/c ratio > 1.5%
26-30 Fuselage restraints
31 Nacelle 1 outboard of fuselage
32 Nacelle 1 inboard of nacelle 2
33 Nagcelle 2 inboard of semi-span

Aerodynamic/Performance Constraints

34 Range > 5500 nautical miles

35 Cp, at landing speed <1
36-53 Section Cp, at landing < 2

54 Landing angle of attack < 12°
5558 Engine scrape at landing

59 Wing tip scrape at landing

60 LE break scrape at landing

61 Rudder deflection < 22.5°

62 Bank angle at landing < 5°

63 Tail deflection at approach < 22.5°

64 Takeoff rotation to occur < Vi

65 Engine-out limit with vertical tail

66 Balanced field length < 11000 ft
67-69 Mission segments: thrust available > thrust required

10



2.3. MULTI-FIDELITY ANALYSIS.

Minimizing TOGW requires a large number of disciplinary analyses (e.g., structural,
aerodynamic), so that the optimal configuration(s) can be found. The computational cost of
sophisticated analysis techniques becomes prohibitive as the number of design variables grows
(> 5), and simpler methods are not accurate enough. A multi-fidelity approach employs
methods of varying complexity and computational cost, so that optimization becomes
feasible.

Initially, the reasonable design space paradigm employs geometric and low-fidelity
analyses to constrain the design space, so that many grossly unreasonable configurations are
excluded. The resulting space is called the reasonable design space. High fidelity analyses
are then used to construct polynomial approximations, referred to as response surfaces, for
the reasonable region. The optimizer works with response surfaces instead of the actual
high fidelity analyses, because the former smooth out numerical noise and once generated
are much faster and simpler to work with. Additionally, more than one response surface
can be generated concurrently.

Unfortunately, the complexity and accuracy of polynomial approximations are adversely
affected as the number of design variables increases (> 20). For this reason, low fidelity
analyses are used to reduce the dimensionality and cost of polynomial models by identifying

intervening variables and important terms to be used in reduced term models.

11



3. REASONABLE DESIGN SPACE PARADIGM.

Defining the reasonable design space consists of evaluating configurations at extreme
points (vertices) in a box that contains the region of interest. At these extreme points, designs
are found that often prove to be nonsensical on the basis of geometrical constraints or from
estimates of the objective function and constraints based on low-fidelity analyses. These
low fidelity analyses cannot accurately evaluate constraints, but they allow identification
of points that are obviously meaningless. Unreasonable designs are then moved towards
the center of the box, using a linear bisection algorithm, until they are no longer in gross
violation of the constraints. The edge of the reasonable design space is determined in this

manner.

3.1. DESIGN OF EXPERIMENTS THEORY.

A point selection algorithm is needed to generate the configurations from the box—a
p-cube, centered at the origin, where p is the number of design variables—that will be used
to define the reasonable design space. A full factorial design is a possible choice, but it will
result in an unwieldy number of configurations. For example, a 25 variable problem with two
levels for each design variable results in 225 =~ 33 million points. With an average of three
evaluations needed to bring a point to the reasonable design space, this would require about
100 million low-fidelity analyses. Presently, this computation is prohibitive, and a scheme
based on the partially balanced incomplete block (PBIB) design [17] is used to generate
points.

A PBIB of order n consists of points where combinations of n, usually between two
and four, variables at a time change their level. The level | signifies how many different
discrete values a variable can assume [4]. For example, a variable allowed to take values in

{—1,0, 1} has level three [22]. The total number of configurations generated by this scheme

> ()

where n is the order, p is the number of design variables, and [ is the level. In effect, this

1s

results in all combinations where 1 through n variables can each take any one of [ values,

12



while the remaining variables are held at a nominal value. The nominal point, where all
variables are at their nominal value, is also included (¢ = 0 in the above formula). For
example, the number of configurations that would have to be evaluated when [ = 2, p = 25,

and n =41is

4
(2
g 2’( 5) = 222051.
)

i=0
Clearly this is a much smaller set of points than produced with a full factorial design.

Unfortunately, using a PBIB point sample reduces the coverage of the reasonable design

space, and optimization often leads to unexplored corners of the design space.

13



4. PARALLELIZATION STRATEGY.

The basic algorithm behind the reasonable design space paradigm consists of generating
a partially balanced incomplete block (PBIB) design of specific size, evaluating all configu-
rations in the block around a nominal design using low fidelity analysis and constraints, and
moving infeasible designs towards the center until they become acceptable. The method for
coercing feasibility is linear bisection, where the values of the active variables are moved
towards the nominal values until the boundary of the feasible region is found within a
specified tolerance interval. The parallel version was implemented so that only one arbitrary
manager node Pys deals with file I/O—reading initialization files, and storing results on
disk. The manager node is also responsible for disseminating initialization information (e.g.,
nominal design variable values, PBIB size, etc.) to and gathering results from all other nodes
P;. All nodes, including Py, generate a respective part PBIB; of the PBIB vector and
perform evaluations on those configurations. The pseudocode below describes the parallel

version algorithmically.

if Py; then
read initialization files;
broadcast initialization data to all F;;
end if
receive initialization data;
generate PBIB;;
for all configurations z; in PBIB;
evaluate constraints for x;
until violation within tolerance limit
move z; towards closest reasonable configuration using linear bisection;
evaluate constraints for z;;
end until
end for

send PBIB; to Pyy;

14



if Py; then
gather and save all PBIB;;
end if

Even though each processor gets roughly the same number of configurations initially,
a load imbalance is likely to occur when an indeterminate number of total evaluations are
required. To achieve better balance, the algorithm was augmented to include logics for
distributed dynamic load balancing and termination detection. The dynamic load balancing
logic entails a processor to start searching for more work when it has under a certain

threshold of configurations left to evaluate:

while (local work < threshold A termination not detected)
search for work;

end while

Similarly, termination detection logic monitors certain conditions in order to establish that

all work has been performed.

when termination condition
broadcast termination to all P;;

end process;

4.1. PARALLEL IMPLEMENTATION.

The distributed control algorithms were implemented in C to mesh with the existing

analysis codes that were in both C and FORTRAN 77.

4.1.1. MPI.

The Message Passing Interface (MPI) [31] is a message passing standard developed
by the MPI forum—a group of more than 80 people representing universities, research
centers, vendors and manufacturers of parallel systems. As a communications protocol MPI

is platform independent, thread-safe, and has a lot of useful functionality—combining the

15



best features of several existing messaging protocols [31]. A brief discussion of these attributes
follows.

e Platform independence: MPI was developed to work on parallel platforms regardless
of underlying architecture. This abstraction over native communication protocols makes
MPT applications portable across architectures (distributed memory, shared memory,
or network clusters) as long as an MPI implementation for the desired platform exists.
For many architectures MPI implementations are readily available, since the standard
is widely supported by computer manufacturers.

e Built-in functionality: One of the important advantages of MPI is that it provides
reliable communications, so the programmer does not have to deal with communication
failures (see assumptions in Chapter 5.1). The standard also incorporates mechanisms
for point-to-point and collective communication (e.g., broadcast, scatter, gather, etc.),
overlapping computation and communication, process topologies and groups, and aware-
ness and manipulation of the parallel environment. Much of this functionality has been
incorporated in the parallel version of the code.

e Thread-safety: The dynamic load balancing code exploits a multi-threaded paradigm.
This implies that all modules and packages used in the code have to be designed to

work with threads, otherwise results are unpredictable.

4.1.2. THREADS.

The implementation of the load balanced code is multi-threaded based on the POSIX
threads (pthreads) package. Threads are distinet concurrent paths of execution within
the same OS process that get scheduled within the allotted time of their parent process.
Different scheduling techniques can be used depending on the package and the operating
system support. For more detail see [30]. One of the challenging aspects of multithreaded
design is that threads share access to their parent process’ memory. This calls for mutual
exclusion and synchronization techniques, like semaphores, monitors, etc., that can introduce
extra complexity to the code. An advantage of this approach is that it exploits concurrency

at the processor level. For example, a thread could be running on the I/O controller, another

16



on the network service node, and a third one could be performing computations on the
processing unit. Such concurrency can also be achieved by using nonblocking I/O or MPI
calls, but organizing each logical task within the process in a thread can provide a finer-
grained concurrency and a more intuitive design. For example, Kumar, Grama, and Rao
show a state diagram describing a “generic parallel formulation” [25], where the grain of
concurrency depends on the fixed unit of work. In a typical multithreaded approach threads
that have no work stay idle without consuming processing cycles, and start working only
when they are signaled that there is more work to be done, thus avoiding busy-wait.

In this implementation, one thread is simply a worker responsible for evaluating configu-
rations from the local vector, and sleeping when there is no work. A second thread deals with
message passing and processing (e.g., placing incoming work in the vector for the worker, sig-
naling threads about the occurrence of certain conditions, such as termination, etc.). Global
round robin logic with message combining is encapsulated as a separate thread that cycles
between a sleep/delay phase and the routing of GRR-MC messages along a spanning tree
topology. Mutual exclusion for shared data, like the local configurations vector, is achieved
with semaphores. The use of POSIX threads introduced a lot of complexities derived not so
much from using semaphores to maintain mutual exclusion and synchronization, but rather
due to technical issues like thread safety of library calls, testing a distributed system with
many players, etc. On the good side, design and implementation ended up being modular

and relatively encapsulated.

17



5. DISTRIBUTED ALGORITHMS.

5.1. ASSUMPTIONS.

Let W be the total number of configurations to be evaluated, and let N be the
number of processors available for computation. The following conditions are assumed for
the communications network:

e communication channels are reliable, i.e., there is no message loss, corruption, dupli-

cation, or spoofing;
e communication channels do not necessarily obey the FIFO rule;
e messages take an unpredictable, but finite amount of time to reach their destination;

e a message that has been sent is considered in transition until it has been processed at

its destination;
e cach processor has knowledge of its own identity;

e the processors are completely connected, i.e., there is either a direct or an indirect

communication route from every processor to every other;

e the network is fixed, i.e., its does not change size dynamically. Thus each processor has

knowledge of the total number of processors in the network.

It is a prerequisite for the dynamic load balancing and termination detection paradigms
described below that initially all work is distributed evenly amongst all processors. Thus,
every node starts off with an initial load equal to approximately total work divided by
number of processors W/N. For the remaining part of this chapter node and processor will
be used interchangeably, and task, work, and load shall refer to the process of evaluating
and possibly coercing a configuration, represented by a row of the PBIB design matrix, to
a reasonable design.

18



5.2.

DYNAMIC LOAD BALANCING.

Both algorithms described in this chapter have the following attributes.
Nonpreemptive: partially executed tasks are not transferred. Preemption can be very
expensive in terms of transferring a task’s state.

Receiver initiated: work transfer is initiated by receiving nodes. This is more suitable
here, since total work is fixed, and there is no good heuristic for estimating if a node
is comparatively overloaded, i.e., how long a task will take.

Threshold transfer policy: a node starts looking for more work when the number
of its tasks has dropped below a certain threshold.

Fixed ratio splitting policy: when a node is about to transfer work, it uses a fixed
ratio « to split its work W; to send away aW;. « is fixed because the algorithms will
not be collecting any system information to help them adapt a to the global state.
(a = 0.5 for the results here.)

No information policy: the nodes do not attempt to gather any information about
the system state. The potential overhead inherent in information collection outweighs
the benefits, since the communication network is static, processors are aware of all other
processors, and no work is created dynamically. Surveys of dynamic load balancing can

be found in [21], [30].

5.2.1. RANDOM POLLING (RP).

When a processor runs out of work it sends a request to a randomly selected processor.

This continues until the processor finds work or there is no more work in the system and

termination is established. Each processor is equally likely to be selected. This is a totally

distributed algorithm, and has no bottlenecks due to centralized control. One drawback is

that the communication overhead may become quite large due to the unpredictable number

of random requests generated. Also, in the worst case, there is no guarantee that any of the

idle processors will ever be requested for work, and effectively no load balancing may be

achieved. Detailed analysis and some implementation results on random polling are treated

by Sanders in [28], [29)].

19



5.2.2. GLOBAL ROUND ROBIN WITH MESSAGE COMBINING (GRR-MC).

The idea behind a global round robin is to make sure that successive work requests go
to processors in a round robin fagshion. For example, in a parallel system of N processors, if
the first work request goes to processor 0, the second one will go to processor 1, such that
the ith request will be sent to processor ¢ mod N. All processors will have been polled for
work in NV requests. This scheme requires global knowledge of which processor, say 7', is to
be polled next. A designated processor acts as the global round robin manager, and keeps
track of T. When a node needs work it will refer to the manager for the current value of
T'. Before responding to other queries the manager will increment 7" to T'+ 1 mod N. The
node looking for work can then send a request for tasks to the processor whose identity is
equal to T. A major drawback of this scheme is that as N grows and the work requests

increase, the manager will become congested with queries, posing a severe bottleneck.

Kumar, Grama, and Rao [25] suggested that message combining be introduced to reduce
the contention for access to the manager. Processors are organized in a binary spanning tree
with the manager as the root, where each processor is a leaf of this tree. When a processor
needs the value of T it sends a request up the spanning tree towards towards the root. Each
processor at an intermediate node of the tree holds requests received from its children for
some predefined time d before it propagates them up in one combined request. If ¢ is the
cumulative number of requests for T received at the root from one of its children, then T’
is incremented by 4 before a request from another child is processed. The value of T before
it was incremented is percolated back down the tree through the child. Information about
combined requests is kept in tables at intermediate tree nodes until they are granted, so
that the correct value of T percolates down the tree. An example of global round robin with
message combining is illustrated in Figure 1.

20



110

000 001 011 100 111

Figure 4. GRR-MC on a spanning tree, where x is the value of T', and N = 8.

5.3. TERMINATION DETECTION.

Termination is part of the global state of a distributed system, because it depends
on the global availability of work, as opposed to the work load of a single processor. The
definition of global termination for this system implies that all processors are idle, and that
there are no work transfer messages in transit. In other words, since no additional work is
created on the fly, global termination has occurred when all computation is complete. An
idle node is one which has no work, and is searching for work using one of the dynamic load
balancing algorithms described above. A busy node is one which has work to perform. A
processor can change its state from busy to idle only when it finishes its tasks, and from
idle to busy only when it receives a work transfer message. Clearly, termination is a stable
state, because if all processes are idle, and there are no messages in transit, then no node
will receive a work transfer message, and thus change its status to busy.

The global state of a distributed system can be captured in two ways, synchronously
and asynchronously. The former can be achieved by freezing all processes on all processors
and inspecting the state of each processor and each communication channel. This can be
very time consuming when the number of processors is large, and more than one global
state capture may need to be performed. Both of the algorithms described below establish

termination asynchronously.

21



5.3.1. GLOBAL TASK COUNT (GTC).

The idea behind global task count is to keep track of all finished tasks, and use this
to detect when all work has been performed, i.e., establish termination. This algorithm is
applicable because the total number of tasks is available, and fixed. One processor, the
manager, is responsible for keeping track of the finished tasks count C. Initially, C is set to
0. Whenever a processor completes its set of tasks, it sends a notification to the manager
with the number of tasks that it completed. Upon receiving such a message the manager
increments C accordingly. Eventually, as all has been performed, the value of C becomes
equal to the known total number of tasks. At this point, the manager notifies all processors

that termination has occurred.

Global task count detects termination immediately after it occurs, which makes it very
fast. The total number of messages sent by a node to the manager is equal to the number of
times that the node became busy with work, including its initial load. A potential drawback
is that sending messages to a single manager may become a bottleneck, as the number
of processors increases. On the other hand, total completion notifications are expected to
be of order N, and to be spread out in time. This algorithm is very similar to Mattern’s
Credit Recovery Algorithm described in [32] and Huang’s algorithm treated in [30]. Task
count here corresponds to credits in Mattern’s and Huang’s algorithms that are not scaled
to 1. The fact that credits are not scaled to 1 has the advantage of avoiding floating point
representation issues that would otherwise be encountered. A separate proof of correctness

for global task count is considered redundant.

22



5.3.2. TOKEN PASSING (TP).

Token passing is a wave algorithm for a ring topology. For a thorough discussion of
wave algorithms see [33]. A wave is a pass of the token around the ring where all processors
have asynchronously testified to being idle. This is not enough to claim termination, since
all nodes are polled at different times, and with dynamic load balancing, it is uncertain if
they remained idle or later became busy. A second wave is needed to ascertain that there has
been no change in the status of any processor. For a similar algorithm, see [6]. Termination
is detected in at most two waves or 2N messages, after it occurs. The total number of
messages used depends on the total number of times the token is passed around the ring,

but is bounded below by 2N.

FEach processor P; keeps track of its state in a local flag idle;. Initially, idle; is set to
false if a processor starts off with some load, otherwise it is set to true. Consequently,
idle; is set to false every time a processor receives more work as a result of dynamic
load balancing. A token containing a counter 7T, is being passed among all processors in a
circular fashion. Upon receiving the token, a processor holds it until it has finished all its
pending work tasks;, is not expecting replies to work requests, and has made more than U
unsuccessful attempts to find work. At that point, P; checks the value of its idle; flag. In
case idle; is true the processor increments the token counter 7, by 1. In the case where idle;
is false, the T, is reset to 0, and the value of idle; is set to true. After this, if the token
counter happens to be equal to the number of processors N, termination is established and
all processors are notified. Otherwise, the token is sent to the next processor in the ring.

Pseudo code for this scheme for each processor P; follows.

23



on start-up
token arrives at Py with T, := 0;
if tasks; > 0 then idle; := false

else idle; :=true;

when token arrives at P;
wait until (tasks; = 0 A expected replies to work requests by P, =0 A
unsuccessful consecutive work requests by P; > U);
if idle; = true then T, .= T, + 1
else T, :=0;
idle; = true;
if T, = N then establish termination

else send token to neighbor P 1ymoan;

when extra work arrives at P;

idle; := false;

U is an algorithmic parameter, whose effect on performance is discussed in the parametric
study chapter. It can be shown that T, = N = global termination because 7, = N means
that each processor P; has consistently had no local work, for two consecutive waves around
the ring, i.e., all processors are idle. Since the token is passed only when a processor expects
no replies to work requests, i.e., it is passed between request-reply cycles only, it is clear
that there is no work in transition. On the other hand, if global termination takes place
all processors will be idle making unsuccessful attempts to find work. Eventually, for all P;
the number of unsuccessful attempts to find work will become more than U, allowing each
processor to pass the token to its neighbor when it is not expecting a reply to a request for
work. This ensures that for all P;, idle; will become true in the first wave, and that for all
F;, T, will be incremented during the second wave until 7, = N. Thus, T, = N <= global

termination.

24



6. PARALLEL PERFORMANCE.

Table 3. Intel Paragon parallel times (hh:mm:ss) for low fidelity analysis of
2,026,231 HSCT designs.

N RP GRR-MC Static
GTC TP GTC TP

32 8:28:38 8:38:23 8:30:00 8:39:41 12:48:11
(6:38) (2:33) (1:30) (:48) (1:52)
64 4:08:05 4:13:08 4:13:08 4:18:09 7:06:59
(:03) (:04) (:02) (:02) (:09)
128 2:11:46 2:12:54 2:14:04 2:17:36 3:43:30
256 57:39 1:03:46 59:27 1:08:24 1:54:58
512 31:16 33:04 33:34 34:26 1:01:49
1024 15:20 15:43 17:30 17:27 29:26

To test scalability and efficiency a relatively large data set with approximately 2 million
(2,026,231) designs was generated using the point selection algorithm described earlier with
order 4 and level 3. All runs have been performed on Intel Paragon platforms, which have a
mesh architecture with Intel i860 XP processors comprising the computing entities. Figures
5-7 are snapshots produced with the nupshot utility, showing the states of nodes during
execution for a small sample problem on N = 7 nodes. In these snapshots a processor can be
in one of three states, performing useful computation, sitting idle, or reading initialization
files—file I/O. When dynamic load balancing is not in effect (Figure 5), processors appear
to spend half of their time being idle. With GRR-MC (Figure 6) and RP (Figure 7) idle
states are more scattered, and seem significantly reduced. It can also be seen that even
though RP and GRR-MC result in different distributions, both are very effective.

Table 3 shows execution times from the Intel Paragon computer XP/S 7 (100 compute
nodes) at Virginia Tech, and the Intel Paragon XP/S 5, XP/S 35, and XP/S 150 (128,
512, 1024 compute nodes, respectively) computers at the Oak Ridge National Laboratory
Center for Computational Sciences. Times are given in hours, minutes, and seconds; for
N < 64 the average of five runs is reported, with the standard deviation in parentheses

under the time. The same problem run on the XP/S 7 XP/S 5, and XP/S 35 Paragons takes

25



Figure 5. Snapshot from nupshot utility of static load distribution, N = 7.

Figure 6. Snapshot from nupshot utility of GRR-MC with global task count

termination, N = 7.

Figure 7. Snapshot from nupshot utility of RP with global task count termi-

nation, N =7.

26



comparable amounts of time; times on the XP/S 150 Paragon tend to be a little higher (4

to 12 percent) than similar runs on the XP/S 35. Random polling uses the same fixed seed

for all runs. For all other results, N > 128, only one run was completed because of limited

access to larger machines. The table starts from N = 32 nodes instead of N = 1 because

the time required to run 2 million designs on one processor is prohibitive (> 400 hours).

Furthermore, the current implementation generates all the PBIB designs in one chunk, so

the memory required (535 MBytes) for all designs would also be prohibitive. The original

serial code has not been used for comparisons because its intensive use of file I/O makes

it extremely ineflicient, and thus infeasible even for problems of moderate size. Times in

Table 3 do not include disk storage (1.2GBytes) for the final results. Figures 8 and 9 show

speedup for all schemes, based on the execution times for NV = 32 processors.

(1)

Several observations can be made from Figures 8-9 and Table 3.

Scalability: all algorithms, including static distribution, scale well for N < 1024 nodes,
with random polling showing no noticeable degradation in efficiency at N = 1024 nodes.
Dynamic vs. static: both dynamic load balancing techniques seem to be very effective,
35 to 50 percent better than static distribution, and this difference increases with the
number of processors N.

Stable execution times: the standard deviations of total execution time for runs
on 32 and 64 processors are very small, which indicates that performance is relatively
stable. Random polling is expected to have more variance in execution time when the
seed is not fixed, but not a significant difference.

Superlinear speedup: the latter rows of Table 3 exhibit superlinear speedup for
global round robin with message combining and random polling. This implies that at
32 nodes the memory requirement (18 MBytes) for working with a relatively large
number of tasks (= 63, 319) per node can degrade performance on the XPS/7 platform
due to resource starvation. See Quinn [26] for a discussion of general circumstances for
superlinear speedup.

Global task count vs. token passing: Global task count seems to outperform token

passing for N < 1024 with GRR-MC and RP, but the relative difference decreases for

27



speedup

1000 ¢
800 1 —a— rp gtc
000 ¢ ¢+ grr gtc
400 ¢
-—»x-- static
200 ¢

‘ ‘ ‘ ‘ N
200 400 600 800 1000
Figure 8. Speedep with base N = 32 for RP and GRR-MC with global task

count, on N = 21510} processors.

speedup
1000+
800 1 —*— rp Tp
600 o grr tp
400+
—» - static
200 ¢

‘ ‘ ‘ ‘ N
200 400 600 800 1000
Figure 9. Speedep with base N = 32 for RP and GRR-MC with token passing,

on N = 21510} processors.

28



larger N. Clearly, the overhead involved in processing all completion messages (> N)
by one manager node under global task count increases with V.

Random polling vs. global round robin with message combining: With both
termination detection schemes random polling clearly outperforms global round robin
with message combining. The relative difference in execution times increases as N
becomes larger. The simplicity of the random polling algorithm leads to the lack of any
significant overhead. Contention conditions are unlikely to occur because messages are
randomly directed and typically the number of unsuccessful work acquisition messages
increases significantly only just before termination. Global round robin with message
combining, on the other hand, involves a longer wait, comprised of a fair number of
communication messages across the spanning tree, before it can send a work acquisition
request and the price of unsuccessful work acquisition requests is higher, because they
imply more time spent idle. Furthermore, on average the total number of messages
processed by a node running GRR-MC is higher that that for a node running RP, since
each request is propagated back and forth through as many as log, N other nodes.
Finally, for both algorithms, the fact that all nodes start off with some load, which is
expected to be relatively balanced among them for a large number of randomly long
tasks, serves to decrease the initial number of unsuccessful work acquisition requests,

which in turn improves performance.

29



7. PARAMETRIC STUDY.

The purpose of this study is to evaluate the effect, if any, of algorithmic parameters
on the performance of the distributed schemes. Two dynamic load balancing parameters,
splitting ratio and transfer threshold, discussed in Chapter 5.2, are reviewed, together with
two algorithm-specific parameters, delay d for GRR-MC and unsuccessful work acquisition
attempts threshold U for token passing (TP). Delay is defined as CPU clock ticks, where
the actual wait time is the delay clock ticks multiplied by the clock resolution. See Table 4
for the sets of values used to test these parameters. The variation of random polling times

for five different seeds is also examined.

Table 4. Values for algorithmic parameters.

Parameter Set of Values
splitting ratio « {0.10,0.25,0.40, 0.50, 0.60, 0.75,0.90}
transfer threshold {0, 15, 30, 45, 60, 75,90, 105}
unsuccessful work acquisition attempts U for TP {0, 5,10, 15, 20,25}
delay d for GRR-MC in clock ticks {500, 1000, 1500, 2000, 2500, 3000, 3500}

Comprehensive runs were initially performed with a relatively small data set of 30,915
configurations on N = 32 and 64 processors. A larger number of processors N was not used
because of time constraints on the larger Paragons. The trends observed were confirmed
with a few runs on the large data set with N = 64 nodes. Both the delay d for global round
robin with message combining and the random seed for random polling introduced very
small fluctuations in execution times—the variation was less than 1 percent in most cases.

Variation of the unsuccessful acquisition attempts U for token passing and the trans-
fer threshold also resulted in a very insignificant difference in execution time, and no
particular pattern was observed. For instance, Figures 10 and 11 are surface plots show-
ing how performance varies with different values for transfer threshold. The vertical axis
denotes execution time in hours; the axis labeled transfer threshold is for the values

{0, 15, 30,45, 60, 75,90, 105} taken by this parameter; the schemes axis parameterizes the

30



schemes RP GTC, RP TP, GRR-MC GTC, GRR-MC TP for which execution time is
measured. Figures 12 and 13 are similar surface plots illustrating the effect of the splitting
ratio a € {0.10,0.25,0.40,0.50,0.60,0.75,0.90} parameter. A difference in time occurs at
the two extreme values a € {0.10, 0.9}, and even here the increase in time is at most 15
percent. Runs on 64 nodes with the large data set of 2,026,231 configurations confirm the
trend at the extreme values, but also show that the increase in time becomes less than 1

percent (see Figures 14 and 15).

31



hours GRR TP

0.125
0.12%

GRR GTC

RP TP
45

transfer threshold 75

105 RP GTC

Figure 10. Effect of transfer threshold for N = 32 on 30,915 designs.

hours

Figure 11. Effect of transfer threshold for N = 64 on 30,915 designs.

32



0

0.14
hours
13
0.12 GRR GTC
0.1
4 RP TP
0.5
splitting ratio
0.9 RP GIC
Figure 12. Effect of splitting ratio « for N = 32 on 30, 915 designs.
GRR TP

GRR GTC

0.08
0.07

hours0.075
0.065

0.1

0.5

0

splitting ratio
Figure 13. Effect of splitting ratio a for N = 64 on 30, 915 designs.

33



hours

4.14) \N\/—/

‘9splitting ratio

1 .25 .4.5 .6 .75

Figure 14. Effect of splitting ratio on RP GTC for N = 64 on 2,026, 23 designs.

hours

4-221\—‘\Q/‘\*/

£ hreshold
15 30 45 60 75 9o ranster thresho

Figure 15. Effect of transfer threshold on RP TP for N = 64 on 2,026, 23 designs.

34



8. CONCLUSIONS AND FUTURE WORK.

Distributed control and load balancing techniques were applied to an aspect of the
multidisciplinary design optimization of a high speed civil transport. Two dynamic load
balancing algorithms (random polling and global round robin with message combining)
together with two necessary termination detection schemes (global task count and token
passing) were implemented for the reasonable design space identification paradigm. Perfor-
mance was evaluated on up to 1024 processors for all combinations of dynamic load balancing
and termination detection schemes, plus the static distribution case. The effect of various
algorithmic parameters was also explored, and found to be negligible except at extreme
values. The results were very encouraging in terms of the effectiveness of dynamic load
balancing (35-50 percent improvement over a static distribution), and the scalability of the
algorithms (speedup was essentially linear). Most importantly, the time spent identifying the
reasonable design space has been dramatically decreased, permitting the low fidelity analysis
of 2 million designs, which was impractical before. The logical next step is to go beyond
merely identifying the reasonable design space, and to identify good design regions within
the reasonable design space, which would then be passed off to mildly parallel machines
(e.g., IBM SP/2 or SGI Origin 2000) for “local” high fidelity optimization.

This effort is a stepping stone towards the goal of a MDO problem solving environment
that will provide a complete and convenient computing environment for interactive multi-
disciplinary aircraft design. As shown by the experience of Burgee et al. [7], Guruswamy
[14], and many others, some crucial disciplinary analysis codes (for structural mechanics,
fluid dynamics, aerodynamic analysis, propulsion, to name a few) perform very poorly
in a multidisciplinary parallel computing environment. These codes represent hundreds of
man-years of experience and development, and are unlikely to be rewritten for parallel
machines any time soon. Thus the challenge is to find approaches to MDO (e.g., variable
complexity modeling and response surface techniques) which permit the use of massively
parallel computing for some phases of the process (one such phase was demonstrated here)
and legacy disciplinary codes on serial computers for other phases. One highly touted solu-
tion is “network computing”, but that still remains far from practical for serious large-scale

multidisciplinary design.

35



REFERENCES.

[1] V. Balabanov, M. Kaufman, A.A. Giunta, B. Grossman, W.H. Mason, L.T. Watson,
R.T. Haftka, “Developing customized weight function by structural optimization on
parallel computers,” in 37th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural
Dynamics and Materials Conference, Salt Lake City, UT, pp. 113-125, Apr. 15-17 1996.

[2] J.C. Becker, C.L. Bloebaum, “Distributed computing for multidisciplinary design opti-
mization using Java,” in Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Bellevue, WA, pp. 1583-1593, Sept. 1996.

[3] C.H. Bischof, L.L. Green, K.J. Haigler, T.L. Knauff, Jr., “Parallel calculation of
sensitivity derivatives for aircraft design using automatic differentiation,” in Fifth
AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimiza-
tion, Panama City, FL, pp. 73-86, Sept. 1994.

[4] G.E.P. Box, D.W. Behnken, “Some new three level designs for the study of quantitative
variables,” Technometrics, vol. 2, 1960.

[5] R.D. Braun, I.M. Kroo, “Development and application of the collaborative optimization
architecture in a multidisciplinary design environment,” in Multidisciplinary Design Op-
timization: State of the Art, N. Alexandrov, M.Y. Hussaini (Eds.), STAM, Philadelphia,
PA, pp. 98-116, 1995.

[6] J. Brzezinski, J. Hélary, M. Raynal, “Distributed termination detection: General model
and algorithms,” Tech. Rep. BROADCAST#TR93-05, ESPRIT Basic Research Project
BROADCAST, Aug. 1993.

[7] S. Burgee, A.A. Giunta, V. Balabanov, B. Grossman, W.H. Mason, R. Narducci, R.T.
Haftka, L.T. Watson, “A coarse-grained parallel variable-complexity multidisciplinary
optimization paradigm,” The International Journal of Supercomputer Applications and
High Performance Computing, vol. 10(4), pp. 269-299, 1996.

[8] J.E. Dennis, Jr., R. M. Lewis, “Problem formulations and other issues in multidisciplinary
optimization,” Tech. Rep. CRPC-TR94469, CRPC, Rice University, Apr. 1994.

[9] J.E. Dennis, Jr., V. Torczon, “Direct search methods on parallel machines,” SIAM
Journal of Optimization, vol. 1(4), pp. 448-474, Nov. 1991.

[10] D.J. Doorly, J. Peiré, J.P. Oesterle, “Optimisation of aerodynamic and cou-
pled aerodynamic-structural design using parallel genetic algorithms,” in Sixth
AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Bellevue, WA, pp. 401-409, Sept. 1996.

[11] M.S. Eldred, W.E. Hart, W.J. Bohnhoff, V.J. Romero, S.A. Hutchison, A.G. Salinger,
“Utilizing object-oriented design to build advanced optimization strategies with generic
implementation,” in Sixth ATAA /NASA /ISSMO Symposium on Multidisciplinary Anal-
ysis and Optimization, Bellevue, WA, pp. 1568-1582, Sept. 1996.

[12] O. Ghattas, C.E. Orozco, “A parallel reduced Hessian SQP method for shape opti-
mization,” in Multidisciplinary Design Optimization: State of the Art, N. Alexandrov,
M.Y. Hussaini (Eds.), SIAM, Philadelphia, PA, pp. 133-152, 1995.

[13] A.A. Guinta, Aircraft multidisciplinary design optimization using design of experiments
theory and response surface modeling methods, Ph.D. dissertation, Department of
Aerospace Engineering, Virginia Polytechnic Institute and State University, Blacksburg,
VA, May 1997.

36



[14] G. Guruswamy, “Impact of parallel computing on high fidelity based multidisciplinary
analysis,” in 7th AIAA /JUSAF/NASA /ISSMO Symposium on Multidisciplinary Analysis
and Optimization, St. Louis, MO, ATAA Paper 98-4709, pp. 67-80, Sept. 1998.

[15] M.A. Hale, J.I. Craig, “Use of agents to implement an integrated computing environ-
ment,” in Computing in Aerospace 10, San Antonio, TX, ATAA Paper 95-1001, pp.
403-413, Mar. 1995.

[16] R.V. Harris Jr., “An analysis and correlation of aircraft wave drag,” NASA TM X-947
(1964).

[17] K.Hinkelman, Design and analysis of experiments, John Wiley & Sons, Inc., 1994.

[18] D.A. Hopkins, S.N. Patnaik, L. Berke, “General-purpose optimization engine for multi-
disciplinary design applications,” in Sixth AIAA/NASA/ISSMO Symposium on Mul-
tidisciplinary Analysis and Optimization, Bellevue, WA, pp. 1558-1565, Sept. 1996.

[19] K. F. Hulme, C.L. Bloebaum, “Development of CASCADE: a multidisciplinary de-
sign test simulator,” in Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Bellevue, WA, pp. 438—447, Sept. 1996.

[20] A. Jameson, J.J. Alonso, “Automatic aecrodynamic optimization on distributed memory
architectures,” in 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, ATAA Paper
96-0409, Jan. 1996.

[21] H. Kameda, J. Li, C. Kim, Y. Zhang, Optimal Load Balancing in Distributed Computer
Systems, Springer-Verlag, 1997.

[22] M.D. Kaufman, Variable-complexity response surface approximations for wing structural
weight in HSCT design, Master’s thesis, VPI and State University, Apr. 1996.

[23] D.L. Knill, A.A. Giunta, C.A. Baker, B. Grossman, W.H. Mason, R.T. Haftka, L.T.
Watson, “Response surface models combining linear and euler aerodynamics for HSCT
design,” Journal of Aircraft, to appear.

[24] I. Kroo, S. Altus, R. Braun, P. Gage, I. Sobieski, “Multidisciplinary optimization
methods for aircraft preliminary design,” in Fifth AIAA /USAF /NASA /OAI Symposium
on Multidisciplinary Analysis and Optimization, Panama City, FL, pp. 697-707, Sept.
1994.

[25] V. Kumar, A.Y. Grama, V.N. Rao, “Scalable load balancing techniques for parallel
computers,” Journal of Parallel and Distributed Computing, vol. 22(1), pp. 60-79, Jul.
1994.

[26] M.J. Quinn, Parallel computing : theory and practice, McGraw-Hill, New York, NY,
1994.

[27] S.A. Ridlon, “A software framework for enabling multidisciplinary analysis and opti-
mization,” in Sixth AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, Bellevue, WA, pp. 1280-1285, Sept. 1996.

[28] P. Sanders, “A detailed analysis of random polling dynamic load balancing,” in Inter-
national Symposium on Parallel Architectures, Algorithms, and Networks, Kanazawa,
Japan, 1994, pp. 382-389.

, “Some implementation results on random polling dynamic load balancing,” Tech.
Rep. iratr-1995-40, Universitat Karlsruhe, Informatik fiir Ingenieure und Naturwis-
senschaftler, 1995.

[30] M. Singhal, N.G. Shivaratri, Advanced Concepts in Operating Systems, McGraw-Hill,
1994.

[29]

37



[31] M. Snir, S. Otto, S. Huss-Lederman, D.W. Walker, J. Dongarra, MPI The Complete
Reference, MIT Press, 1996.

[32] G. Tel, Topics in Distributed Algorithms, Cambridge International Series in Parallel
Computation: 1, Cambridge University Press, 1991.

[33] , Introduction to Distributed Algorithms, Cambridge University Press, 1994.

[34] R.P. Weston, J.C. Townsend, T.M. Edison, R.L. Gates, “A distributed computing envi-
ronment for multidisciplinary design,” in Fifth AIAA/USAF/NASA/OAI Symposium
on Multidisciplinary Analysis and Optimization, Panama City, FL, pp. 1091-1095, Sept.
1994.

[35] B.A. Wujek, J.A. Renaud, S. M. Batill, “A concurrent engineering approach for mul-
tidisciplinary design in a distributed computing environment,” in Multidisciplinary
Design Optimization: State of the Art, N. Alexandrov, M.Y. Hussaini (Eds.), STAM,
Philadelphia, PA, pp. 189-208, 1995.

[36] S. Yoder, J. Brockman, “A software architecture for collaborative development and
solution of MDO problems,” in Sixth AIAA/NASA/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization, Bellevue, WA, pp. 1060-1062, Sept. 1996.

38



Appendix A: CODE FOR MESSAGE PROCESSING THREAD.

The C code where all threads are invoked and message handling takes place, as mentioned

in Chapter 4.1.2., is listed in this appendix.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <mpi.h>

#include "prof.h" /** profiling constants *x*/

#include "defines.h" /** const definitions for structs.h **x/
#include "structs.h" /** aircraft struct definition **/
#include "HSCTSearch.h"

#include "lib.h" /** matrix functions **/

#include "prelim.h"
#include "compute.h"
#include "grr_mc.h"
#include "random.h"
#include "worker.h"
#include "safemem.h"
#define COMM_BUFS 10
/%%
Token Passing variables that are shared between the worker thread,
the token passing routine, and the message handling routine
*kk/
int idle, token_count_buf, token_received, unsucc_work_attempts, expecting_reply;
/et etk koo skt stk et sk et st s ke stk ek oo sk e ket sk stk et sk et sk ke ek sk ek st s ke sk ke etk o ek ok ok
ComputationPhase: Routine for message processing; it starts off the other
threads respective of the algorithm parameters passed by the user.
The main part of this routine consists of a loop that checks for
messages and processes them.
ettt etk o etk skt et sk ke stk sk stk et oo o sk ek st s ke stk etk sk et sk ek ek sk ke st e ke sk ke ek o e ko ok o /
int ComputationPhase( struct cntrl_struct *cntrl, MatrixClass *dvar,
MatrixClass *local_points, Aircraft *aircraft,

Prog_Args_Struct *prog_args_struct)

register int i;

int my_rank, group_size, done_count, carryover, error_status,
j, num_leaves, num_leaves_rcvd, child_leaves, child,
index, target_node, test_flag, tot_sent_work,
tot_work_rcvd, tot_work_rcvd_buf, total_msgs,
tot_sent_work_buf [COMM_BUFS],
*grr_msg_buf = NULL, *done_indices = NULL;

double dbl_work_sent,

*work_sent_buf [COMM_BUFS] ,

39



*work_rcvd_buf = NULL, *work_sent = NULL;
Q_Element *q_el = NULL;
MPI_Request rgst_work_rqst= MPI_REQUEST_NULL,
rgst_work_sent [COMM_BUFS], rgst_qty_work_sent [COMM_BUFS],
*mpi_rqst = NULL;
MPI_Status work_sent_status, work_rgst_status, terminate_status,
carryover_status, *mpi_status = NULL;
Worker_Args_Struct worker_args;
GRR_MC_Args_Struct grr_mc_args;
MPI_Datatype MPI_MATRIX_ROW;
pthread_t thread_id[TOTAL_THREADS] ;
/** Global task count termination variables **/
int buf_tasks_cmplt = 0, tasks_cmplt_count = 0 ;
/** GRR - MC variables **/
int #**msg = NULL, *data = NULL;
MPI_Comm_size( MPI_COMM_WORLD, &group_size);
MPI_Comm_rank( MPI_COMM_WORLD, &my_rank);
error_status = PRELIM_SUCCESS;
MPI_Type_contiguous( local_points->nDim+1, MPI_DQUBLE, &MPI_MATRIX_ROW);
MPI_Type_commit( &MPI_MATRIX_ROW );
/** initialization of global shared variables *x*/
pthread_mutex_init (&mutex_matrix, pthread_mutexattr_default);
pthread_cond_init (&cond_worker_wait, pthread_condattr_default);
tasks_matrix.nDim = local_points—->nDim;
tasks_matrix.mDim = local_points—->mDim;
tasks_matrix.d = local_points->d;
matrix_cur_pos = 1;
matrix_top_pos = local_points->mDim;
dlb = FALSE;
termination = FALSE;
total_msgs = TOT_MAIN_MSG_TYPES;
/#** TOKEN TERMINATION  *%/
if (prog_args_struct->TERM == TERM_TOKEN)
{
expecting_reply = FALSE;
unsucc_work_attempts = 0;
if ((matrix_top_pos-matrix_cur_pos)+l > 0)
idle = FALSE;
else
idle = TRUE;
token_count_buf = 0;
if ( my_rank == MASTER_RANK)
token_received = TRUE;
else

token_received = FALSE;

40



/%% GRR-MC *x/
if (prog_args_struct->D_L_B == D_L_B_GRR_MC)

{
total_msgs += GetGRRMessageCount (my_rank, group_size);
msg = MsgIntBufferCreate(my_rank,
total_msgs-TOT_MAIN_MSG_TYPES, GRR_MC_MSG_SIZE);
grr_msg_buf = safe_malloc(GRR_MC_MSG_SIZE*sizeof(int));
if ( grr_msg_buf == NULL)
{
fprintf (stderr, "worker(%d): cannot allocate grr_msg_buf!\n",my_rank) ;
return PRELIM_ERROR;
}
}

/#** RANDOM_POLLING **/
else if (prog_args_struct->D_L_B == D_L_B_RANDOM_POLLING)
{

Init_Random_Polling(group_size,

(unsigned int) prog_args_struct->RANDOM_SEED *my_rank) ;

}
/** allocation of MPI request handles for the persistent recieves **x/
mpi_rqgst = (MPI_Request *) safe_calloc( total_msgs, sizeof(MPI_Request));
if ( mpi_rqst == NULL )

{
fprintf (stderr, "ComputationPhase(%d): cannot allocate mpi_rgst!\n",
my_rank) ;
return PRELIM_ERROR;
}

/** allocation of MPI structures for storing the status of persistent
receive requests *x*/

mpi_status = (MPI_Status *) safe_calloc( total_msgs, sizeof (MPI_Status));

if ( mpi_status == NULL )

{
fprintf (stderr, "ComputationPhase(d): cannot allocate mpi_status!\n", my_rank);
return PRELIM_ERROR;

}

done_indices= (int *) safe_calloc( total_msgs, sizeof(int));

if ( done_indices == NULL )

{
fprintf (stderr, "ComputationPhase(%d): cannot allocate done_indices!\n", my_rank);
return PRELIM_ERROR;

}

/** reset MPI request handles to NULL #*x*/

for (1 =0; i < total_msgs; i++ )
mpi_rqgst[i] = MPI_REQUEST_NULL;

for (i =0; i < COMM_BUFS; i++ )

{

41



rgst_work_sent [i] = MPI_REQUEST_NULL;
work_sent_buf[i] = NULL;
rgst_qty_work_sent[i] = MPI_REQUEST_NULL;

}

/** creation of GRR-MC thread **/

if (prog_args_struct->D_L_B == D_L_B_GRR_MC)

{
/** create GRR-MC threads **/
grr_mc_args.grr_mc_delay = prog_args_struct->grr_mc_delay;
pthread_create (&thread_id[DLB_THREAD], pthread_attr_default,

(void *)GRR_MC_Routine, (void *)&grr_mc_args);

pthread_yield();
pthread_yield();

}

/** creation of worker thread **/
worker_args.cntrl = (struct cntrl_struct *) cntrl;
worker_args.dvar = (MatrixClass *) dvar;
worker_args.aircraft = (Aircraft *) aircraft;
worker_args.prog_args_struct = (Prog_Args_Struct *)prog_args_struct;
pthread_create(&thread_id [WORKER_THREAD], pthread_attr_default,
(void *)WorkerRoutine, (void *)&worker_args);
pthread_yield();
/** dynamic load balancing: initialization of a MPI persistent receive request
for every type of message that can be received and handled
in the processing loop. *x*/
if (prog_args_struct->D_L_B != D_L_B_NONE)
{
MPI_Recv_init( NULL, O, MPI_INT, MPI_ANY_SOURCE,
TAG_WORK_RQST, MPI_COMM_WORLD, &mpi_rqgst[MSG_WORK_RQST] );
MPI_Recv_init( &num_leaves_rcvd, 1, MPI_INT, MPI_ANY_SOURCE,
TAG_TERM, MPI_COMM_WORLD, &mpi_rqgst[MSG_TERM] );
/#** TOKEN TERMINATION  s**/
if (prog_args_struct->TERM == TERM_TOKEN)
{
MPI_Recv_init ( &token_count_buf, 1, MPI_INT, MPI_ANY_SOURCE,
TAG_TERM_TOKEN, MPI_COMM_WORLD, &mpi_rqgst[MSG_TOKEN]) ;
}
/** GLOBAL TASK COUNT TERMINATION x*x*/
if (prog_args_struct->TERM == TERM_TASK_COUNT)
{
MPI_Recv_init( &buf_tasks_cmplt, 1, MPI_INT, MPI_ANY_SOURCE,
TAG_TERM_TASKS_CMPLT, MPI_COMM_WORLD, &mpi_rqst[MSG_TERM_TASKS_CMPLT] );
}
MPI_Recv_init (&tot_work_rcvd_buf, 1, MPI_INT, MPI_ANY_SOURCE,
TAG_WORK_RQST_REPLY, MPI_COMM_WORLD, &mpi_rqst[MSG_WORK_RQST_REPLY] );
/%% TOT_MAIN_MSG_TYPES-1: recive work is not initialized here *x*x/

42



MPI_Startall(TOT_MAIN_MSG_TYPES-1, mpi_rqst);
if (prog_args_struct->D_L_B == D_L_B_GRR_MC)

{
/** start perisitent MPI message receive requests for all nodes that GRR-MC
messages will be received from **/
InitGRRRecvs(my_rank, group_size, mpi_rgst, msg, TOT_MAIN_MSG_TYPES, total_msgs);
}

}
/** message processing loop *x*/
carryover= FALSE;
while(termination == FALSE && prog_args_struct->D_L_B != D_L_B_NONE)
{
pthread_yield();
/** test if some messages of different types have been received
Note: MPI_Waitsome would have been more appropriate here if it was implemented without
busy wait. In this version of MPI, using MPI_Waitsome actually increases execution time
roughly by a factor of 2, because of busy wait. *x*/
MPI_Testsome(total_msgs, mpi_rqst, &done_count, done_indices, mpi_status);
pthread_yield();
pthread_yield();
if (done_count == MPI_UNDEFINED)

{
if (carryover == FALSE)
continue;
else
done_count=0;
}
if (carryover != FALSE)
{
done_indices[done_count] = MSG_WORK_RQST;
memcpy(&mpi_status[done_count], &carryover_status,
sizeof (MPI_Status));
done_count++;
}

/** process all received messages **/
for ( i = 0; (i< done_count) && (termination == FALSE); i++)
{
pthread_yield();
switch (mpi_status[i] .MPI_TAG)
{
case TAG_TERM: /#* Termination message **/
Handle_Term_Msg(my_rank, group_size,
prog_args_struct->TERM, num_leaves_rcvd) ;
break;
case TAG_GRR_MC_TARGET: /** message with GRR-MC target *x*/
if (msgldone_indices[i]-TOT_MAIN_MSG_TYPES][0] ==

43



my_rank && (group_size > 1))

{
j =SendToParent( 1, my_rank, O, 1, (int**)&grr_msg_buf,
&rgst_work_rqst) ;
}
else
{
if (prog_args_struct->TERM == TERM_TOKEN)
{
pthread_mutex_lock (&mutex_matrix);
expecting_reply = TRUE;
pthread_mutex_unlock(&mutex_matrix);
}
/** send work request to target node *x*/
MPI_Test(&rqgst_work_rgst, &test_flag, &work_rgst_status) ;
MPI_Isend(NULL, O, MPI_INT,
msg[done_indices[i]-TOT_MAIN_MSG_TYPES] [0],
TAG_WORK_RQST, MPI_COMM_WORLD, &rgst_work_rgst);
}
MPI_Start (&mpi_rqgst [MSG_GRR_MC_TARGET]);
break;

case TAG_GRR_MC_TARGET_RQST: /** GRR-MC message up the tree #*x/
j = SaveMsgFromRight (my_rank,
msg[done_indices[i]-TOT_MAIN_MSG_TYPES] [0],
msg[done_indices[1]-TOT_MAIN_MSG_TYPES] [1]);
MPI_Start (&mpi_rqgst [done_indices[i]]);
break;
case TAG_GRR_MC_TARGET_REPLY: /#* GRR-MC message down the tree */
SaveMsgFromParent (my_rank,
msg[done_indices[i]-TOT_MAIN_MSG_TYPES] [0],
msg[done_indices[1]-TOT_MAIN_MSG_TYPES] [1]);
MPI_Start (&mpi_rqgst [done_indices[i]]);
break;
case TAG_WORK_RQST: /#** request for work from another node **/
j= Handle_Work_Rqst_Msg(my_rank, group_size,
(double)prog_args_struct->D_L_B_SPLIT_RATIO,
mpi_status[i] .MPI_SOURCE, COMM_BUFS,
rgst_qty_work_sent, tot_sent_work_buf,
rgst_work_sent, work_sent_buf);
switch (j)
{
case PRELIM_ERROR:
error_status = PRELIM_ERROR;
break;
case PRELIM_SUCCESS:
if (carryover != FALSE)

44



carryover == FALSE;
}
MPI_Start (&mpi_rqgst [MSG_WORK_RQST]);
break;
case PRELIM_INCOMPLETE:
if (carryover == FALSE)

{

memcpy ( &carryover_status, &mpi_status[i],
sizeof (MPI_Status));

carryover == TRUE;

}

break;
}
break;

case TAG_TERM_TOKEN: /** termination token **/
pthread_yield();
token_received = TRUE;
pthread_mutex_lock(&mutex_matrix);

TokenRoutine(my_rank, group_size,
prog_args_struct—>N0_WORK_THRESHOLD);

pthread_mutex_unlock(&mutex_matrix);
MPI_Start (&mpi_rqst [MSG_TOKEN]);

break;

case TAG_TERM_TASKS_CMPLT: /** tasks complete message **/
pthread_yield();
tasks_cmplt_count += buf_tasks_cmplt;
if ( tasks_cmplt_count ==

(cntrl->phase_two_end-cntrl->phase_two_start)+1l )

{
num_leaves = group_size-1;
MPI_Send(&num_leaves, 1, MPI_INT, my_rank, TAG_TERM,
MPI_COMM_WORLD) ;

}

else

{
MPI_Start (&mpi_rqst [MSG_TERM_TASKS_CMPLT]);

}

break;

case TAG_WORK_RQST_REPLY: /#** reply to work acquisition request *ok /
pthread_yield();
if ( tot_work_rcvd_buf == 0 )
{
pthread_yield();
/#** TOKEN TERMINATION *x*/
if (prog_args_struct->TERM == TERM_TOKEN)

45



unsucc_work_attempts++;
pthread_mutex_lock (&mutex_matrix);
expecting_reply = FALSE;
TokenRoutine(my_rank, group_size, prog_args_struct->NO_WORK_THRESHOLD) ;

pthread_mutex_unlock(&mutex_matrix);

if (prog_args_struct->D_L_B == D_L_B_RANDOM_POLLING)

/#** RANDOM POLLING **/
target_node = Generate_Random_Node(my_rank, group_size);
/** send work request to target node *x*/
/#** TOKEN TERMINATION s/
if (prog_args_struct->TERM == TERM_TOKEN)
{
pthread_mutex_lock(&mutex_matrix);
expecting_reply = TRUE;
pthread_mutex_unlock (¥mutex_matrix) ;
}
MPI_Test(&rqgst_work_rgst, &test_flag, &work_rqgst_status);
MPI_Isend(NULL, O, MPI_INT, target_node, TAG_WORK_RQST,
MPI_COMM_WORLD, &rqgst_work_rgst);
}
else if (prog_args_struct—>D_L_B
== D_L_B_GRR_MC)

{
SendToParent ( 1, my_rank, O, 1, (int**)&grr_msg_buf,
&rqst_work_rgst) ;
}
}
else
{

pthread_yield();
if (work_rcvd_buf != NULL)
safe_free(work_rcvd_buf);
work_rcvd_buf = (double *)
safe_calloc(tot_work_rcvd_buf * (tasks_matrix.nDim+1),
sizeof (double));
if ( work_rcvd_buf == NULL )

{
fprintf (stderr, "ComputationPhase(%d): cannot allocate work_rcvd_buf!\n",
my_rank) ;
error_status = PRELIM_ERROR;
}

MPI_Irecv( work_rcvd_buf, tot_work_rcvd_buf,
MPI_MATRIX_ROW, mpi_status[i] .MPI_SOURCE,

46



TAG_WORK, MPI_COMM_WORLD, &mpi_rqst[MSG_WORK]);
}
MPI_Start (&mpi_rqgst [MSG_WORK_RQST_REPLY]);
break;
case TAG_WORK: /#* message with extra work *x*/
MPI_Get_count( &mpi_status[i], MPI_MATRIX_ROW,
&tot_work_rcvd) ;
pthread_mutex_lock(&mutex_matrix);
if ( AcceptWork(tot_work_rcvd, work_rcvd_buf,
&matrix_top_pos, &tasks_matrix) == PRELIM_ERROR )

error_status = PRELIM_ERROR;
}
safe_free(work_rcvd_buf);
work_rcvd_buf = NULL;
if (prog_args_struct->TERM == TERM_TOKEN)

{
unsucc_work_attempts = 0;
idle = FALSE;
expecting_reply = FALSE;

}

dlb = FALSE;

pthread_cond_signal (&cond_worker_wait);
pthread_mutex_unlock(&mutex_matrix);
pthread_yield();
break;
default:
fprintf (stderr, "ComputationPhase()d): udefined tag %d\n",
my_rank, mpi_status[i] .MPI_TAG);
} /** switch **/
} /*x for *x*x/
} /** while *x/
/** wait for all threads to be done **/
pthread_yield();
pthread_join(thread_id [WORKER_THREAD], NULL);
if (prog_args_struct->D_L_B == D_L_B_GRR_MC)
pthread_join(thread_id [DLB_THREAD], NULL);
local_points->mDim = tasks_matrix.mDim;
local_points->d = tasks_matrix.d;
/** cancel pending MPI message receive requests *x*/
for (j = 0; j < total_msgs; j++)
{
MPI_Test (&mpi_rgst[j], &test_flag, &mpi_status[jl);
if ( test_flag == FALSE )
{

/** MPI_Cancel is not implemented for recieves in this implementation of MPI.

47



Please uncomment when that changes. *x*/
/*#MPI_Cancel (&mpi_rgst[j] );
MPI_Request_free (&mpi_rgst[j] )*/;

}

/** cancel pending MPI message send requests #*x/
for (i = 0; i< COMM_BUFS; i++)

{
MPI_Test(&rqst_work_sent[i], &test_flag, &work_sent_status);
if ( test_flag == FALSE )
{
/** MPI_Cancel is just a noop for sends in this implementation of MPI. #x/
/*MPI_Cancel (&rqst_work_sent [i] );
MPI_Request_free (&rqst_work_sent[i] );*/
}
MPI_Test(&rqst_qty_work_sent[i], &test_flag, &work_sent_status) ;
if ( test_flag == FALSE )
{
/* MPI_Cancel (&rgst_qty_work_sent [i]);
MPI_Request_free (&rqst_qty_work_sent[i]l); */
}
if (work_sent_buf[i] != NULL)
safe_free(work_sent_buf[i]);
}

MPI_Test(&rgst_work_rqgst, &test_flag, &work_rgst_status);
if ( test_flag == FALSE )
{

/*MPI_Cancel (§rqst_work_rgst);

MPI_Request_free(&rqst_work_rqgst) ;*/
}
if (work_rcvd_buf != NULL)

safe_free(work_rcvd_buf);
if ( msg != NULL)

MsgIntBufferFree(msg) ;
safe_free(mpi_rqgst);
safe_free(mpi_status);
safe_free(done_indices);
safe_free(grr_msg_buf);

MPI_Type_free (¥MPI_MATRIX_ROW);

/#** RANDOM_POLLING **/

if (prog_args_struct->D_L_B == D_L_B_RANDOM_POLLING)
{

Cleanup_Random_Polling();

}
pthread_cond_destroy(&cond_worker_wait);

pthread_mutex_destroy(&mutex_matrix);

48



return error_status;

}

[/ kskokeskokeskofok ok ok ok ok sk sk etk skoksk okok ok sk sk ok sk sk ko o skof skoke sk s ko ok ok sk ok ek ok ek sk ko skokesk ok ok ok ok sk ko ok sk ok ok
TokenRoutine: Routine for processing the termination detection token.
sk skokeskokeskofok ok ok ko ok ok skofok ko skoksk ok sokeok sk ko ok sk ko e skok sk ok sk ko ek ok ko kool skok skokok sk ko ook sk ko ek ok skokek ok sk okok ok /
void TokenRoutine( int my_rank, int group_size, int NO_WORK_THRESHOLD)
{

int num_leaves, token_count, local_task_count;

if ((NO_WORK_THRESHOLD > unsucc_work_attempts) ||

(matrix_top_pos-matrix_cur_pos)+1 > O || token_received == FALSE ||

expecting_reply != FALSE)

{
return;
}
if ( idle == FALSE )
{
token_count = 0;
idle = TRUE;
}
else
{
token_count = token_count_buf + 1;
}
token_received = FALSE;
if ( token_count == group_size )
{

num_leaves = group_size-1;
MPI_Send(&num_leaves, 1, MPI_INT, my_rank, TAG_TERM, MPI_COMM_WORLD) ;

}
else
{
MPI_Send(&token_count, 1, MPI_INT, (my_rank +1)jgroup_size,
TAG_TERM_TOKEN, MPI_COMM_WORLD);
}

49



Appendix B: CODE FOR WORKER THREAD.

The C code for the woker thread as mentioned in Chapter 4.1.2. is listed in this

appendix.

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <mpi.h>

#include <mpe.h> /** MPI log facility #x/

#include "prelim.h"

#include "prof.h" /** profiling constants *x*/

#include "defines.h" /** const definitions for structs.h **/
#include "structs.h" /** aircraft struct definition **/
#include "HSCTSearch.h"

#include "lib.h" /** matrix functions **/

#include "worker.h"

#include "random.h"

#include "grr_mc.h"

#include "compute.h"

#include "safemem.h"

/** Global variable used to coordinate token passing **/
extern int expecting_reply;

/e skt ke ok stk stk sk s o s ok e ok sk ke ke sk stk stk sk s s e ok sk s s ke ok ek sk ke stk keksk ki s sk ek e ke ok ok
WorkerRoutine: Routine that performs low level analysis on
local configurations, and waits for more work

when all local configurations are analysed.
This routine is also responsible for triggering the
initial search for work.
steoke stk s ke ke stk stk e sk e e e ok e ok sk ok stk ke sksk ki skl sk sk sk s ke ok sk sk ke stk ki ki sk sk sk ok ke ok ok /
void WorkerRoutine ( Worker_Args_Struct *worker_args)
{
Aircraft *aircraft;
int interval, j, target_node, flag, my_rank, group_size,
*grr_msg_buf=NULL;
MPI_Status work_rgst_status;
MPI_Request rgst_work_rqst= MPI_REQUEST_NULL;
VectorClass point, point_copy; /*, flops_var;x*/
/*% TASK COUNT TERMINATIQON *x*/
int tasks_cmplt_count = 0, buf_tasks_cmplt = O;
MPI_Status status;
MPI_Request tasks_cmplt_rqst = MPI_REQUEST_NULL;
MPI_Comm_size( MPI_COMM_WORLD, &group_size);
MPI_Comm_rank( MPI_COMM_WORLD, &my_rank);
VectorClear( &point );

50



pthread_cleanup_push((void *)VectorClear, (void *)&point);
VectorNew(&point, tasks_matrix.nDim);
if ( point.d == NULL)
{
fprintf (stderr, "worker(%d): cannot allocate point!\n",my_rank);
pthread_exit (NULL);
}
pthread_cleanup_push((void *)VectorFree, (void *)&point);
VectorClear( &point_copy );
pthread_cleanup_push((void *)VectorClear, (void *)&point_copy);
VectorNew(&point_copy, tasks_matrix.nDim);
if ( point_copy.d == NULL)
{
fprintf (stderr, "worker(%d): cannot allocate point_copy!\n",my_rank);
pthread_exit (NULL);
}
pthread_cleanup_push((void *)VectorFree, (void *)&point_copy);
grr_msg_buf = safe_malloc(GRR_MC_MSG_SIZE+sizeof(int));
if ( grr_msg_buf == NULL)
{
fprintf (stderr, "worker(%d): cannot allocate grr_msg_buf!\n",my_rank) ;
pthread_exit (NULL);
}
pthread_cleanup_push((void *)safe_free, (void *)grr_msg_buf);
((Worker_Args_Struct *)worker_args)->aircraft->opt.des_var = point.d;
((Worker_Args_Struct *)worker_args)->aircraft->opt.num_dv =
((Worker_Args_Struct *)worker_args)->dvar->mDim;
if (worker_args->prog_args_struct->D0_LOG == TRUE)
MPE_Log_event (COMPUTE_START, O, M_COMPUTE_START);
while ( TRUE )
{
pthread_mutex_lock(&mutex_matrix) ;
pthread_cleanup_push((void *)pthread_mutex_unlock, (void *)&mutex_matrix);

if ( termination != FALSE )

{
if (worker_args->prog_args_struct->D0_LOG == TRUE)
MPE_Log_event (COMPUTE_END, O, M_COMPUTE_END);
pthread_exit (NULL);
}

/** if there are no more tasks left, dynamic load balncing is
on, and no work request has been sent yet then send a
request to a chosen node **/

if ((matrix_top_pos-matrix_cur_pos)+l <=

worker_args->prog_args_struct->D_L_B_THRESHOLD
&& dlb == FALSE
&& worker_args->prog_args_struct->D_L_B {= D_L_B_NONE )

51



if (worker_args->prog_args_struct->D_L_B==D_L_B_RANDOM_POLLING)
{
/#** RANDOM POLLING #**/
target_node = Generate_Random_Node(my_rank, group_size);
expecting_reply = TRUE;
/** send work request to target node *x*/
MPI_Test (&rqst_work_rqst, &flag, &status);
MPI_Isend(NULL, O, MPI_INT, target_node, TAG_WORK_RQST,
MPI_COMM_WORLD, &rqst_work_rgst);
}
else if (worker_args—>prog_args_struct—>D_L_B
== D_L_B_GRR_MC)

{
SendToParent (1, my_rank, O, 1, (int**)&grr_msg_buf,
&rgst_work_rqst) ;
}
dlb = TRUE;

}
while ( worker_args->prog_args_struct->D_L_B {= D_L_B_NONE &&

(matrix_top_pos-matrix_cur_pos)+1l == 0 )

if ( worker_args->prog_args_struct->TERM == TERM_TASK_COUNT &&
/** TASK COUNT TERMINATION *x*/
tasks_cmplt_count > 0 )

{
buf_tasks_cmplt = tasks_cmplt_count;
MPI_Test (&rqst_work_rqst, &flag, &status);
/** send message to manager node **/
MPI_Isend(&buf_tasks_cmplt, 1, MPI_INT, MASTER_RANK,

TAG_TERM_TASKS_CMPLT, MPI_COMM_WORLD, &tasks_cmplt_rgst);

tasks_cmplt_count = 0 ;

}

/#** TOKEN TERMINATION  s**/
if (worker_args->prog_args_struct->TERM == TERM_TOKEN)
{
TokenRoutine(my_rank, group_size,
worker_args->prog_args_struct->NO_WORK_THRESHOLD) ;
}
if (worker_args->prog_args_struct->D0_LOG == TRUE)
MPE_Log_event (IDLE_START, 0, M_IDLE_START);
pthread_cond_wait (¥cond_worker_wait,&mutex_matrix);
if (worker_args->prog_args_struct->D0_LOG == TRUE)
MPE_Log_event (IDLE_END, 0, M_IDLE_END);
if ( termination != FALSE )
{

52



if (worker_args->prog_args_struct->D0_LOG == TRUE)
MPE_Log_event (COMPUTE_END, 0, M_COMPUTE_END) ;
pthread_exit (NULL);

}
/** take one task **/
/** copy current task to local scope **/
memcpy (&point_copy.d[1],&tasks_matrix.d[matrix_cur_pos] [1],
tasks_matrix.nDim * sizeof(double));
matrix_cur_pos++;
pthread_mutex_unlock(&mutex_matrix);
pthread_cleanup_pop(FALSE);
/** do computation *x*/
for ( j = 1; j <= worker_args->prog_args_struct->TASK_LENGTH; ++j)
{
VectorCopy (&point, &point_copy, FALSE);
if ( LowFidelityAnalysis( ((Worker_Args_Struct *)worker_args)->cntrl,
((Worker_Args_Struct *)worker_args)->dvar, &point,
((Worker_Args_Struct *)worker_args)->aircraft,
worker_args->prog_args_struct->PARTIAL_FACTORIAL_LEVELS) ==
PRELIM_ERROR)

{
if (worker_args->prog_args_struct->D0_LOG == TRUE)
MPE_Log_event (COMPUTE_END, O, M_COMPUTE_END);
pthread_exit (NULL);
}

}
pthread_mutex_lock(&mutex_matrix) ;

memcpy (&¥tasks_matrix.d[matrix_cur_pos-1][1], &point.d[1],

tasks_matrix.nDim * sizeof(double));

pthread_mutex_unlock(&mutex_matrix);
if (worker_args->prog_args_struct->TERM == TERM_TASK_COUNT)
{

/#** TASK COUNT TERMINATION s*/

tasks_cmplt_count++;

}
if (worker_args—>prog_args_struct—>D_L_B == D_L_B_NONE
&& (matrix_top_pos-matrix_cur_pos)+l == 0 )
{
termination = TRUE;
}

} /** while (termination == FALSE) #**/
MPI_Test(&tasks_cmplt_rgst, &flag, &status);
if ( flag == FALSE )

/* MPI_Cancel (&tasks_cmplt_rqst) ;

53



MPI_Request_free(&tasks_cmplt_rqst); */
}
MPI_Test (&rqst_work_rqst, &flag, &status);
if ( flag == FALSE )
{
/* MPI_Cancel (&§rgst_work_rgst);
MPI_Request_free(&rgst_work_rqgst); */
}
safe_free(grr_msg_buf);
pthread_cleanup_pop (FALSE) ;
VectorFree (&point_copy);
pthread_cleanup_pop (FALSE) ;
VectorClear (&point_copy) ;
pthread_cleanup_pop (FALSE) ;
VectorFree(&point);
pthread_cleanup_pop (FALSE) ;
VectorClear (&point) ;
pthread_cleanup_pop (FALSE) ;
if (worker_args->prog_args_struct->D0_LOG == TRUE)
{
MPE_Log_event (COMPUTE_END, 0, M_COMPUTE_END) ;

54



Appendix C: CODE FOR GRR-MC THREAD.

The C code for the GRR-MC thread, and supporting routines as mentioned in Chapter

4.1.2. is listed in this appendix.

#include <stdio.h>
#include <errno.h>
#include <mpi.h>
#include <sys/timers.h>
#include <pthread.h>
#include "prelim.h"
#include "grr_mc.h"
#include "queue.h"
#include "safemem.h"
/** global variables #**/
extern int termination;
/st ststestste ke stk s ks ke stk ek ks ke ks ke ke ke ke ke ke ke se ke sk ke skt s ke s ke sk sk sk ek ek ek ek ek ke ke ke ke se ke e e
SaveMsgFromParent: Routine to save messages from GRR-MC parent node in GRR-MC
message table.
steseskesteste ke ke ke s ke ek ek ke ke ke ke ke ke ke ke ke ke se ke stk ke sk ke sk kst sk sk ek ek ek ek ek sk ks ke /
int SaveMsgFromParent (int my_rank, int msg, int level)
{
int *data = NULL;
Q_Element *q_el;
int parent_rank = -1;
parent_rank = my_rank & (1 << (level-1));
data = (int *) safe_malloc(sizeof(int));
if ( data == NULL )

{
fprintf (stderr, "SaveMsgFromParent(%d): cannot allocate data!\n",
my_rank) ;
return PRELIM_ERROR;
}
*data = msg;
q_el = NULL;

g_el = (Q_Element *) safe_malloc(sizeof (Q_Element));
if ( g_el == NULL )

{
fprintf (stderr, "SaveMsgFromParent(%d): cannot allocate g_el!\n",
my_rank) ;
safe_free(data);
return PRELIM_ERROR;
}

Init_Q_Element(q_el, (void *)data);

pthread_mutex_lock(&mutex_grr_mc_msg_table);

55



if ( my_rank == parent_rank &&
glob_grr_mc_msg_table[level-2] .from_parent.el_count > O )
{
fprintf (stderr, "SaveMsgFromParent(%d): glob_grr_mc_msg_table[%d].from_parent.el_count
%d > O\n",
my_rank, level-1, glob_grr_mc_msg_table[level—l].from_left);
safe_free(qg_el);
safe_free(data);
return PRELIM_ERROR;
}
Join_Q(&glob_grr_mc_msg_table[level—2].from_parent, q_el);
glob_is_grr_mc_msg_table_dirty = TRUE;
pthread_mutex_unlock(&mutex_grr_mc_msg_table);
return PRELIM_SUCCESS;
}

[/ eststestoteseofeoke ok ke ok ke stk ek sk ek ke e ke e ek ke e ke ke etk e ok e ks ek ke e ke ke ek e ok ke
SaveMsgFromLeft: Routine to save messages from GRR-MC left child node in GRR-MC

message table.

stk s s o o o o o o o SRR SR SR St stk sk skl sttt s e o sk stttk o sk sk sk sk sk ke ok ok s s s sk sk sk stk sk sk s stttk sk kool stk k sk ok ok skoksk ok ok ok sk ok /

int SaveMsgFromLeft(int my_rank, int msg, int level)

{
pthread_mutex_lock(&mutex_grr_mc_msg_table);
if ( glob_grr_mc_msg_table[level] .from_left != 0 )
{
fprintf (stderr, "SaveMsgFromLeft(%d): glob_grr_mc_msg_table[)d] .from_left %d != O\n",
my_rank, level, glob_grr_mc_msg_table[level].from_left);
return PRELIM_ERROR;
}
glob_grr_mc_msg_table[level] .from_left = msg;
glob_is_grr_mc_msg_table_dirty = TRUE;
pthread_mutex_unlock(&mutex_grr_mc_msg_table);
return PRELIM_SUCCESS;
}

[ eskestestestestofefe ek se stk ke etk se stk ke ke ek sk feofe e stk sk kel ke ke sk s ke ket ke etk seskofee ke e
SaveMsgFromRight: Routine to save message from GRR-MC right child node in GRR-MC
message table.

sksfesestofesfe okt ek se sttt ke etk seskofe okl ke ek sk ot ek e ke ket ke ek se sk sk ket ke ek sk ke ke ek /
int SaveMsgFromRight(int my_rank, int msg, int level)
{

int *data = NULL;

Q_Element *q_el;

data = (int *) safe_malloc(sizeof(int));

if ( data == NULL )

{

fprintf (stderr, "SaveMsgFromRight(/d): cannot allocate data!\n",
my_rank) ;

56



return PRELIM_ERROR;

}
*data = msg;
q_el = NULL;
g_el = (Q_Element *) safe_malloc(sizeof (Q_Element));
if ( g_el == NULL )
{
fprintf (stderr, "SaveMsgFromRight(%d): cannot allocate q_el!\n",
my_rank) ;
safe_free(data);
safe_free(qg_el);
return PRELIM_ERROR;
}

Init_Q_Element(q_el, (void *)data);
pthread_mutex_lock(&mutex_grr_mc_msg_table);
Join_Q(&glob_grr_mc_msg_table[level] .from_right, q_el);
glob_is_grr_mc_msg_table_dirty = TRUE;
pthread_mutex_unlock(&mutex_grr_mc_msg_table);
return PRELIM_SUCCESS;
}
/e skt ke ok sk sk stk sk e s e ok e ok sk ok stk stk sk ki sk sk s ke ok e sk sk ok ok sk ke stk kil sk s s e ok ek sk ke stk keksk ki sk s ok ek ke e ke ke ok
InitGRRRecvs: Routine that initiatlizes the persistent MPI recieve requests for all
GRR-MC messages.
stk ks s ke ok stk stk sk s o e ok e ke ke ke ke sk sk stk sk sk e s e ok e s e s e ok ek sk ke stk stk sk ki s sk ek s ke ok ke sk ke stk teksk sk skt sk sk ok ok /
void InitGRRRecvs(int my_rank, int group_size, MPI_Request *mpi_rgst,

int #**msg, int offset, int total_msgs)

/** Initialize persistent receive requests needed by the GRR-MC #*x/
int tree_height = 0, subtree_height =0, i =0,
rank = -1, local_offset = 0O;
/** calculate the spanning tree height *x/
for ( tree_height=1; ((group_size-1) >> tree_height)!= 0; ++tree_height);
/** calculate the height of the tallest subtree that this node
is the root of.
*kk/
for (subtree_height=0; ((my_rank >> subtree_height) & 1)==0 &&
subtree_height < tree_height; ++subtree_height);
local_offset = offset;
/** receive the target #*x/
MPI_Recv_init( msg[0], 1, MPI_INT, MPI_ANY_SOURCE,
TAG_GRR_MC_TARGET, MPI_COMM_WORLD, &mpi_rqst[local_offset]);
local_offset++;
/** receive reply from parent of node’s subtree, if any **/
if (subtree_height > O && subtree_height < tree_height)
{
rank = my_rank & (1 << subtree_height);

57



}

MPI_Recv_init(msg[1], GRR_MC_MSG_SIZE, MPI_INT, rank,
TAG_GRR_MC_TARGET_REPLY, MPI_COMM_WORLD, &mpi_rgst[local_offset]);
local_offset++;
1
/** receive messages only from child nodes that exist *x*/

for (i=0 ; itlocal_offset < total_msgs; it++)

{
rank = (unsigned int)my_rank | (1 << i);
if ( rank < group_size )
{
MPI_Recv_init (msgl[i+local_offset-offset], GRR_MC_MSG_SIZE, MPI_INT, rank,
TAG_GRR_MC_TARGET_RQST, MPI_COMM_WORLD,
&mpi_rqgst[i+local_offset]);
}
}

MPI_Startall(total_msgs-offset, mpi_rqgst+offset);

/s sk e e o sksksksk st stk sk skl etk sk ok sk stttk o ok sk sk sk ok ke ke ok s s s sk sk sk st ke sk s ks skt st stk sk sk stk ke sk ok ok kR sk ok Kok ok ok ok

GetGRRMessageCount: Routine to calculate the total amount of GRR-MC messages that

this node will be receiving from other nodes.

stk s o o o o o o o o SRR SR SR St stk ek skl sttt s e o sk stttk o ok ok sk ok ok ke ok ok s s s sk sk sk stk ke sk s skt stk ke sk koo skekok sk skokok ok sk okok sk ok /

int GetGRRMessageCount(int my_rank, int group_size)

{

}

int tree_height = 0, subtree_height = 0, i = 0, total_msgs = 0;
/** calculate the spanning tree height *x/
for ( tree_height=1; ((group_size-1) >> tree_height) != 0; ++tree_height);
/** calculate the height of the tallest subtree that this node
is the root of.
*kk/
for (subtree_height=0; ((my_rank >> subtree_height) & 1)==0 &&
subtree_height < tree_height; ++subtree_height);
/** the first one is for receiving the TARGET **/
total_msgs = 1;
/** add the messages from existing children #*x/
for (i = 0; i<subtree_height; ++i)
{
if ((my_rank | (1 << i)) < group_size)
total_msgs++;
}
/** add message from parent of subtree, if it exists *x/
if ( subtree_height > O && subtree_height < tree_height )
total_msgs++;

return total_msgs;

/s sk e e o sksksksk st stk sk skl etk sk ok sk stttk o ok sk sk sk ok ke ke ok s s s sk sk sk st ke sk s ks skt st stk sk sk stk ke sk ok ok kR sk ok Kok ok ok ok

GRR_MC_Routine: Routine that sleeps for a specified delay time and then processed all

58



GRR-MC messages that have accumulated in the message table.
stk ks e ke ok stk sk sl sk s o e ok e ke ke ke ke sk sk sk stk sk e s e o sk e s e ok ek sk ke stk stk sk ki s sk sk s ke ok ke sk ke stk teksk sk skt sk sk ok ke ok /
void GRR_MC_Routine (GRR_MC_Args_Struct *grr_mc_args)
{
register int i;
TreelvlMsg *msg_table = NULL;
Queue *request_q = NULL;
int target = 0, group_size, my_rank, rgst_pool_size,
subtree_height = 0, tree_height = O;
Q_Element *q_el = NULL;
TreelvlRgst *rqst = NULL;
struct timespec sleep_time;
pthread_mutex_t mutex;
pthread_cond_t cond;
unsigned long tot_wait_time;
Clear_Q_Params param;
/** message and request buffers *x*/
int **msg_buf = NULL;
MPI_Request *mpi_rqgst_pool = NULL;
MPI_Comm_size( MPI_COMM_WORLD, &group_size);
MPI_Comm_rank( MPI_COMM_WORLD, &my_rank);
pthread_cond_init (&cond,pthread_condattr_default);
pthread_cleanup_push((void *)pthread_cond_destroy, (void *)&cond);
pthread_mutex_init(&mutex_grr_mc_msg_table, pthread_mutexattr_default);
pthread_cleanup_push((void *)pthread_mutex_destroy,
(void *)&mutex_grr_mc_msg_table);
pthread_mutex_init(&mutex, pthread_mutexattr_default);
pthread_cleanup_push((void *)pthread_mutex_destroy, (void *)&mutex);
/** calculate the spanning tree height *x/
for ( tree_height=1; ((group_size-1) >> tree_height) != 0; ++tree_height);
/** calculate the height of the tallest subtree of the GRR-MC spanning tree
that this node is the root of.
*kk/
for (subtree_height=0; ((my_rank >> subtree_height) & 1)==0 &&
subtree_height < tree_height; ++subtree_height);
/** allocate message and memory buffers *x/
rqst_pool_size = 10*(subtree_height+1);
msg_buf = MsgIntBufferCreate(my_rank, rgst_pool_size, GRR_MC_MSG_SIZE);
if ( msg_buf == NULL )

{
fprintf (stderr, "GRR_MC_Routine(%d): cannot allocate msg_buf!\n",
my_rank) ;
pthread_exit (NULL);
}

pthread_cleanup_push((void *)MsgIntBufferFree, (void *)msg_buf);
mpi_rgst_pool = (MPI_Request *)safe_calloc(rgst_pool_size, sizeof (MPI_Request));

59



if ( mpi_rgst_pool == NULL)

{
fprintf (stderr, "GRR_MC_Routine(%d): cannot allocate mpi_rqgst_pool!\n",
my_rank) ;
pthread_exit (NULL);
}

pthread_cleanup_push((void *)safe_free, (void *)mpi_rgst_pool);
for (i = 0; i < rgst_pool_size; i++)
{

mpi_rqst_pool[i] = MPI_REQUEST_NULL;
}
glob_is_grr_mc_msg_table_dirty = FALSE;
glob_grr_mc_msg_table =

(TreeLvlMsgQ *) safe_calloc(subtree_height, sizeof(TreeLvlMsgQ));

if ( glob_grr_mc_msg_table == NULL )

{
fprintf (stderr, "GRR_MC_Routine(%d): cannot allocate glob_grr_mc_msg_table!\n",
my_rank) ;
pthread_exit (NULL);
}

pthread_cleanup_push((void *)safe_free, (void *)glob_grr_mc_msg_table);
/** allocate a vector that stores a queue of immediate child requests
for each level of the spanning tree that this node is a member of,

except for the leaf level.

*kk/

request_q = (Queue *) safe_calloc(subtree_height, sizeof(Queue));
if ( request_q == NULL )

{

fprintf (stderr, "GRR_MC_Routine(%d): cannot allocate request_q!\n",
my_rank) ;
pthread_exit (NULL);
}
pthread_cleanup_push((void *)safe_free, (void *)request_q);
/** initialize the queue at every level #*x/

for (i = 0; i<subtree_height; i++)

{
Init_Q(&request_qlil);
Init_Q(&glob_grr_mc_msg_table[i] .from_parent) ;
glob_grr_mc_msg_table[i] .from_left = 0;
Init_Q(&glob_grr_mc_msg_table[i] .from_right);
}

param.subtree_height = subtree_height;

param.request_q = request_q;
param.glob_grr_mc_msg_table = glob_grr_mc_msg_table;
pthread_cleanup_push((void *)Clear_Qs, (void *)&param) ;

/** allocate a table containing this node’s parent and two children

60



for every level of the spanning tree that the node is at,

except for the leaf level.
*kk/
msg_table = (TreelvlMsg *) safe_calloc(subtree_height, sizeof(TreelLvlMsg));
if ( msg_table== NULL )

{
fprintf (stderr, "GRR_MC_Routine(%d): cannot allocate msg_table!\n",
my_rank) ;
pthread_exit (NULL);
}

pthread_cleanup_push((void *)safe_free, (void *)msg_table);
while(termination == FALSE)
{

/** this loop implements buzy waiting, by sleeping for the
required amount of time by the GRR-MC specs, and then
processing all messages that have been received for
that period.

*kk/

if (grr_mc_args—>grr_mc_delay >0)

{
tot_wait_time = grr_mc_args->grr_mc_delay *

(unsigned long) (MPI_Wtick() * 1e9);
getclock (TIMEOFDAY, &sleep_time);
sleep_time.tv_nsec = sleep_time.tv_nsec +
(tot_wait_time % (unsigned long)1e9);
sleep_time.tv_sec = sleep_time.tv_sec +
(tot_wait_time / 1e9);
pthread_mutex_lock(&mutex) ;
pthread_cond_timedwait(&cond, &mutex, &sleep_time);
pthread_mutex_unlock(&mutex) ;

}

/** if any new messages have arrived make a snapshot of the global GRR-MC
messages table, and reset it to empty status, otherwise go back to
sleep for the specified number of seconds.

*kk/

pthread_mutex_lock(&mutex_grr_mc_msg_table);

if (glob_is_grr_mc_msg_table_dirty == FALSE )

{
pthread_mutex_unlock(&mutex_grr_mc_msg_table);
pthread_yield();
continue;

}

for (i = 0; i < subtree_height; i++)

{

if ( glob_grr_mc_msg_table[i] .from_parent.el_count > 0)

{

61



g_el = Pop_Q(&glob_grr_mc_msg_table[i] .from_parent) ;
msg_table[i] .from_parent = *(int *)q_el->data;
Destroy_Q_Element(q_el);

}
else
{
msg_table[i] .from_parent = MSG_NONE;
}

msg_table[i] .from_left = glob_grr_mc_msg_table[i].from_left;
glob_grr_mc_msg_table[i] .from_left = 0;
if (glob_grr_mc_msg_table[i].from_right.el_count > 0)

{
g_el = Pop_Q(&glob_grr_mc_msg_table[i] .from_right);
msg_table[i] .from_right = *(int *)g_el->data;
Destroy_Q_Element(q_el);

}

else

{
msg_table[i] .from_right = 0;

}

if (glob_grr_mc_msg_table[i].from_parent.el_count == 0 &&
glob_grr_mc_msg_table[i] .from_right.el_count == 0)
glob_is_grr_mc_msg_table_dirty = FALSE;
}
pthread_mutex_unlock(&mutex_grr_mc_msg_table);
/** for all levels that this node belongs to process the
messages starting from the lowest level
*kk/

for ( i = 0; i < subtree_height && (termination == FALSE); i++)

{
/** handle messages from parent node, if any, and if this is not the
global root level.
**/
if ( msg_table[i].from_parent > MSG_NONE )
{
if (i >= (tree_height-1) )
fprintf (stderr, "GRR_MC_Routine(%d): root has message from parent %d\n",
my_rank, msg_table[i].from_parent);
if (request_q[i].el_count == 0)
{
fprintf (stderr, "GRR_MC_Routine(%d): request q at level %d gets reply with no
rgsts\n",
my_rank, i+1);
pthread_exit (NULL);
}
else

62



q_el = Pop_Q(&request_qlil);
if ( SendToChildren(((TreelLvlRgst *)q_el->data)->left_rgst,
((TreelLvlRgst *)q_el->data)->right_rgst,
msg_table[i] .from_parent, my_rank, group_size, i+l,
rgst_pool_size, msg_buf, mpi_rqgst_pool)
== PRELIM_ERROR)

Destroy_Q_Element(q_el);
pthread_exit (NULL);
}
Destroy_Q_Element(q_el);
}
/** handle messages from child nodes, if any *x*/
if ( (msg_table[i].from_left + msg_table[i] .from_right) > 0 )
{
if (i == (tree_height - 1))

{
if (SendToChildren( msg_table[i] .from_left, msg_table[i].from_right,
target, my_rank, group_size, i+1,
rqst_pool_size, msg_buf, mpi_rqgst_pool)==PRELIM_ERROR)
{
pthread_exit (NULL);
}
target += msg_table[i].from_left + msg_table[i].from_right;
target %= group_size;
}
else
{
rgst = NULL;
rgst = (TreelLvlRgst *) safe_malloc(sizeof(TreeLvlRgst));
if ( rqst == NULL )
{
fprintf (stderr, "GRR_MC_Routine(%d): cannot allocate rgst, i %d\n",
my_rank, 1i);
pthread_exit (NULL);
}

rgst->left_rqst = msg_table[i].from_left;
rgst->right_rqst = msg_table[i].from_right;
q_el = NULL;

g_el = (Q_Element *) safe_malloc(sizeof (Q_Element));
if( q_el == NULL )
{
fprintf (stderr, "GRR_MC_Routine(%d): cannot allocate q_el, i %d\n",
my_rank, 1i);
pthread_exit (NULL);
}

63



Init_Q_Element(q_el, rgst);
Join_Q( &request_ql[il, q_el);
if (SendToParent (msg_table[i] .from_left+msg_table[i].from_right,
my_rank, i+l, rqgst_pool_size, msg_buf, mpi_rqgst_pool)
== PRELIM_ERROR)

pthread_exit (NULL);

}
/** cleanup **/
safe_free(msg_table);
pthread_cleanup_pop (FALSE) ;
Clear_Qs(&param) ;
pthread_cleanup_pop (FALSE) ;
safe_free(request_q);
pthread_cleanup_pop (FALSE) ;
safe_free(glob_grr_mc_msg_table);
pthread_cleanup_pop (FALSE) ;
safe_free(mpi_rqgst_pool);
pthread_cleanup_pop (FALSE) ;
MsgIntBufferFree (msg_buf) ;
pthread_cleanup_pop (FALSE) ;
pthread_mutex_destroy, (&mutex) ;
pthread_cleanup_pop (FALSE) ;
pthread_mutex_destroy(&mutex_grr_mc_msg_table);
pthread_cleanup_pop (FALSE) ;
pthread_cond_destroy(&cond) ;
pthread_cleanup_pop (FALSE) ;
}
[/ kskokeskokeskofok ok ok sk ok ok sk sk etk ik kok ok sk sk ok ok sk ok sk ko ok sk s kol ok ok sk ok ek ok ek ok sk ko skokesk ok ok ok ok sk ko ok sk ok ok
SendToParent: Send a message to GRR-MC parent node.
sk sk okeskofok ok ok ko ok ok skofok ko skokk ook ok sokeok sk ko ok sk ok sk ko sk ok sk ko ek ok sk koo ko skokk sk kok ok sk sk ko ek ok skokok ok sk okok ok /
int SendToParent (int msg_from_child, int my_rank, int cur_level,

int rgst_pool_size, int **msg_buf, MPI_Request *mpi_rqst_pool)

MPI_Status mpi_status;
int parent_rank = -1, test_flag = FALSE, i = 0, index = MPI_UNDEFINED;
parent_rank = my_rank & (1 << cur_level);
if (parent_rank == my_rank )
{
if ( SaveMsgFromLeft (my_rank, msg_from_child, cur_level) == PRELIM_ERROR)
return PRELIM_ERROR;

64



else

{
test_flag = FALSE;
for ( i=0;(i<1000)&&(termination==FALSE)&&(test_flag == FALSE)&&
(rgst_pool_size > 0);i++)
{
MPI_Testany( rqst_pool_size, mpi_rgst_pool, &index,
&test_flag, &mpi_status);
pthread_yield();
}
if ( test_flag == FALSE || rgst_pool_size == 0)
{
fprintf (stderr, "SendToParent(}d): Target reply cannot be sent, term %d, rgst_pool_size
%di\n",
my_rank, termination, rgst_pool_size);
return PRELIM_ERROR;
}
if (index == MPI_UNDEFINED)
index= 0;
msg_buf [index] [0] = msg_from_child;
msg_buf [index] [1] = cur_level;
MPI_Isend(msg_buf[index], 2, MPI_INT, parent_rank, TAG_GRR_MC_TARGET_RQST,
MPI_COMM_WORLD, &mpi_rqst_pool[index]);
}

return PRELIM_SUCCESS;
}
/s sk sk e o o sksk sk sk st stk sk skl sttt s ko sk stttk s ok ok sk sk sk sk ok ok s s s sk sk sk stk sk sk sk sk st stk sk koo stk sk sk ok ok kR sk ok Kok ok ok ok
SendToChildren: Send messages to GRR-MC child nodes.
stk s s o o o o o o o SRR SR SR St stk sk sk sttt s ko sk stttk o ok ok sk sk sk sk ok ok s s s sk sk sk stk ke sk sk skt stk ke sk sk stk ke sk ok ok skokok ok kokok ok ok /
int SendToChildren( int left_child_rqgst, int right_child_rgst,
int msg_from_parent, int my_rank, int group_size, int cur_level,

int rgst_pool_size, int **msg_buf, MPI_Request *mpi_rqgst_pool)

MPI_Status mpi_status;
int left_child_rank = -1, right_child_rank = -1, return_value,
test_flag = FALSE, i = 0, index = MPI_UNDEFINED, *data = NULL;
Q_Element *q_el = NULL;
return_value = PRELIM_SUCCESS;
left_child_rank = my_rank;
right_child_rank = ((unsigned int)my_rank) | (1 << (cur_level-1));
if (cur_level == 1)
{
if (left_child_rgst > 0)
{
test_flag = FALSE;
for ( i=0;(i<1000)&& (termination==FALSE)&& (test_flag == FALSE)&&

65



(rgst_pool_size > 0);i++)

{
MPI_Testany( rqst_pool_size, mpi_rgst_pool, &index,
&test_flag, &mpi_status);
pthread_yield();
}
if ( test_flag == FALSE || rgst_pool_size == 0)
{
fprintf (stderr, "SendToChildren(%d): taget to left child cannot be sent!\n",
my_rank) ;
return PRELIM_ERROR;
}
if (index == MPI_UNDEFINED)

index= 0;
msg_buf [index] [0] = msg_from_parent;
MPI_Isend(msg_buf [index], 1, MPI_INT, left_child_rank,
TAG_GRR_MC_TARGET, MPI_COMM_WORLD, &mpi_rqst_pool[index]);
}
if (right_child_rgst > 0)
{
test_flag = FALSE;
for ( i=0;(i<1000)&& (termination==FALSE)&& (test_flag == FALSE)&&

(rgst_pool_size > 0);i++)

MPI_Testany( rqst_pool_size, mpi_rgst_pool, &index,
&test_flag, &mpi_status);
pthread_yield();
}
if ( test_flag == FALSE || rgst_pool_size == 0)
{
fprintf (stderr, "SendToChildren(%d): taget to right child cannot be sent!\n",
my_rank) ;
return PRELIM_ERROR;
}
if (index == MPI_UNDEFINED)
index= 0;
msg_buf [index] [0] = msg_from_parent + left_child_rgst;
msg_buf [index] [0] %= group_size;
MPI_Isend(msg_buf [index], 1, MPI_INT, right_child_rank,
TAG_GRR_MC_TARGET, MPI_COMM_WORLD, &mpi_rqst_pool[index]);

else

if (left_child_rgst > 0)

66



}

}

if ( SaveMsgFromParent(my_rank, msg_from_parent, cur_level) ==
PRELIM_ERROR)
return PRELIM_ERROR;

if ( right_child_rgst> 0)

{

test_flag = FALSE;
for ( i=0;(i<1000)&& (termination==FALSE)&& (test_flag == FALSE)&&
(rgst_pool_size > 0);i++)

{
MPI_Testany( rqst_pool_size, mpi_rgst_pool, &index,
&test_flag, &mpi_status);
pthread_yield();
}
if ( test_flag == FALSE || rgst_pool_size == 0)
{
fprintf (stderr,"SendToChildren(}d): cannot send to right!\n",
my_rank) ;
return PRELIM_ERROR;
}
if (index == MPI_UNDEFINED)

index= 0;
msg_buf [index] [0] = left_child_rqst + msg_from_parent;
msg_buf [index] [0] %= group_size;
msg_buf [index] [1] = cur_level;
i = MPI_Isend(msg_buf[index], 2, MPI_INT, right_child_rank,

TAG_GRR_MC_TARGET_REPLY, MPI_COMM_WORLD, &mpi_rqgst_pool[index]);

return return_value;

67



Appendix D: DESIGN VARIABLE DEFINITION FILE USED FOR TEST RUNS.

This is a listing of the design variable definition file used for all test runs described
in this thesis. The file specifies nominal values, scaling factors and move limits for all 29

design variables.

#Design variables after cycle 0

#29 Number of design variables

1 1.64096261431 0.90 1.10 1) =x100, wing root chord (ft.)

2 1.02408973683 0.90 1.10 2) x100, L.E. break, x (ft.)

3 3.45162853760 0.90 1.10 3) x10, L.E. break, y (£ft.)

4 1.48328698215 0.95 1.05 4) x100, T.E. break, x (ft.)

5 2.63225104343 0.95 1.15 5) =x10, T.E. break, y (ft.)

6 1.29115031424 0.95 1.15 6) x100, L.E. wing tip, x (ft.)

7 1.09276364577 0.90  1.10 7) x10, wing tip chord (ft.)

8 7.02892196451 0.90 1.10 8) x10, wing semi-span (ft.)

9 4.95664234483 0.90 1.10 9) x0.1, location of max. t/c on airfoil (x/c)
10 3.22302689070 0.90 1.10 10) x1, L.E. radius parameter

11 3.00807173152 0.90 1.10 11) x0.01, t/c at wing root

12 2.11606696299 0.90 1.10 12) x0.01, t/c at L.E. break 1

13 1.83790866614 0.90 1.10 13) x0.01, t/c at wing tip

14 0.22780937915 0.90 1.15 14) x100, fuselage restraint 1, x (ft.)
15 0.35754528327 0.90 1.10 15) x10, fuselage restraint 1, r (ft.)
16 1.13290732737 0.85 1.15 16) x100, fuselage restraint 2, x (ft.)
17 0.49449630510 0.95 1.05 17)  x10, fuselage restraint 2, r (ft.)
18 1.29314680446 0.85 1.15 18) x100, fuselage restraint 3, x (ft.)
19 0.47098654714 0.95 1.05 19) x10, fuselage restraint 3, r (ft.)
20 2.03776220420 0.90 1.15 20) x100, fuselage restraint 4, x (ft.)
21 0.56988572208 0.95 1.05 21) x10, fuselage restraint 4, r (ft.)
22 1.01430224591 0.95 1.15 22) x10, nacelle 1 y location (ft.)

23 1.95367015459 0.85 1.05 23) x10, nacelle 2 y location (ft.)

24 4.08559941655 0.95 1.05 24) x1e05, flight fuel (lbs.)

25 5.65244506717 0.90 1.10 25) x1e04, starting cruise altitude (ft.)
26 0.39716110063 0.90 1.10 26) x100, cruise climb rate (ft./min.)
27 5.64621807013 0.90 1.10 27) x100, vertical tail area

28 8.23320634848 0.90 1.10 28) x100, horizontal tail area

29 4.60000000000 0.90 1.10 29) x1000, thrust (1bs)

68



VITA.

Denitza T. Krasteva was born on [jj il - in - B chc is a graduate

research assistant at Virginia Polytechnic Institute and State University in Blacksburg,
Virginia. She received a Bachelor of Arts in Computer Science in May 1995 from the
American University in Bulgaria, Blagoevgrad, Bulgaria, after which she spent a year
working as a software engineer in Sofia. Her research interests involve parallel computation,
distributed systems and concurrent processes. She will be receiving a Master of Science in

Computer Science in September 1998.

69





