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ACCURACY ASSESSMENT OF THE RESPONSE SURFACE METHOD

While the response surface method is an effective method in engineering

optimization, its accuracy is often affected by the use of limited amount of data points for

model construction. In this chapter, the issues related to the accuracy of the RS

approximations and possible ways of improving the RS model using appropriate

treatments, including the iteratively re-weighted least square (IRLS) technique and the

radial-basis neural networks, are investigated. A main interest is to identify ways to offer

added capabilities for the RS method to be able to at least selectively improve the

accuracy in regions of importance. An example is to target the high efficiency region of

a fluid machinery design space so that the predictive power of the RS can be maximized

when it matters most. Analytical models based on polynomials, with controlled level of

noise, are used to assess the performance of these techniques.

Specifically, the focus of this chapter is to address the following questions: (i)

how to identify outliers associated with a given RS representation and improve the RS

model via appropriate treatments? (i) how to focus on selected design data so that RS can

give better performance in regions critical to design optimization? (iii) how to combine

NN and polynomial techniques for improving the accuracy of the RS model? The

following sections will give the details to each of these questions.



Iteratively Re-weighted Least Square (IRLS) Procedure

While constructing the RS, we often encounter the so-called outliers. Outliers are

extreme cases on one variable, or a combination of variables, which have strong

influences on the statistics and hence they should be carefully examined. These may

reflect genuine properties of the underlying phenomenon, out of reach of a given

polynomial-based RS, or be due to measurement errors or other anomalies, which should

not be modeled [1, 2].

To highlight the impact of the outliers on RS accuracy, consider the case shown in

Figure 1, where 20-data points, shown by the symbol * in the figure, are supplied to fit an

analytical function (Eqn. (3.10)). As shown, by including or excluding a single outlier is

capable of considerably changing the slope oft he regression line and, consequently, the

accuracy of the approximation as shown in Figure 1. Of course, in many applications, it

is not clear whether the disagreement between a RS and the training/testing data is caused

by the outliers or the model accuracy. This is the main issue, which motivates our study

here.

In this dissertation, iteratively re-weigkted least square (IRLS) method originated

by Beaton and Tukey [3] is applied to determine outliers. Iteratively re-weighted least

square is a least square regression procedure where an additional scale factor (weight) is

included in the fitting process and it can be adopted for detection of the outliers [4-7].
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Figure 1" Effect of outliers on RS approximation and accuracy

The iteratively re-weighted least square procedure starts with an initial RS fitted

to data and then low weights are assigned to points with large errors and the data refitted

using a weighted least-square procedure. This process is repeated until convergence and

weights of points that do not fit the underlying model (outliers) tend to converge small

values. This effectively eliminates these points from the fitting process [4]. The

weighting formula assigned to a data point is given by

w= - ifle/a"l < B (3.1)

otherwise

where e is the errors, _a is the rms-error, and B is a tuning constant [5]. Typically

1<B<3, and closer to two, is suggested [6]. In this study, 1.9 is used for the tuning

constant, B.



The coefficients of IRLS approximation are calculated by using the following

fomaula

XrWXb = X'_ V/y (3.2)

where W is the diagonal weight matrix.

When calculating the coefficients in each iteration, the IRLS procedure employs

the following step:

= b (`) -_-[ xTw(i)x] -1 xT_/(i) (y - 23 (0) (3.3)
b(,+l)

and the initial coefficients are calculated by using

b = (xrx) -_Xry (3.4)

It should be noted that when all the weights are 1, the problem reduces to an

ordinary least squares solution. In the present work, a configuration is determined by

IRLS as an outlier if the weight is less than 0. 01.

By identifying the outliers in the RS construction, we can [4- 8]

• Gain better understanding of the scatter of the data generated by

computational models or experimental measurements.

• Evaluate the effect of the outliers on the calculation of statistics mad degree of

fidelity of the RS model. The number ofoutliers can indicate the level of

fidelity of the RS.

• Interpret and find ways to treat such design points without necessarily

excluding them, because the so-called outliers can appear simply due to the

lack of enough flexibility of a given polynomial used to construct the RS.



Biased Usage of Input Data

The outlier analyses can help assess the fidelity of each data point with a given RS,

which, in turn, can aid selective refinement of the RS in regions of importance. Such

approaches enable us to improve the model performance in critical areas and/or identify

needs for further input data [9].

As already mentioned, in many design problems, we are more interested in data in

certain regions. For example, in a fluid machinery design, the high efficiency region is of

particular importance [10-11 ]. Within the limit of a quadratic or cubic polynomial-based

RS, one may better achieve the optimization goal by placing higher emphases in these

regions, even if this means that data in lower efficiency regions are fitted with worse

accuracy than before. In the present approach, we identify data in selected regions and

ensure that all of them receive emphasis, while employing the standard IRLS procedure

to treat data in other regions. This procedure will be referred to here as the biased IRLS

approach.

The main difference between the standard IRLS and the biased IRLS is the weight

distribution used during IRLS procedure. In the standard IRLS procedure, the weight

distribution given in Eqn. (3.1) is used and the model assigns the weights according to

this fommla. Whereas for the biased IRLS procedure, the weight distribution can be

customized according to the region of interest. For example, we will consider y ___O. 5 in

Eqn. (3.10) as the region of interest.

For the biased IRLS procedure, weight distribution is chosen depending on the

feasible region of the design problem. For example, Toropov and Alvarez [12] and van

Keulen and Toropov [13] employed exponential weight distribution in order to improve
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computationallyexpensiveandnoisyresponsefunctions. Theweightdistributionusedin

this studyis shownin Figure2. Accordingly,thedatawith weightslower thanw,,,_._=0.8,

due to the standard IRLS procedure, are artificially lifted to 0.8 if y _>Y,,a_ = 0.5. To help

devise a smooth weigh distribution, we have adopted the following steps: for those data

points receiving the weight lower than w,,,i,_=0.2 are forced to be 0.2 if y _<y,,_,, = 0.2 ; if

0.2 > y _ 0.5, then the following quadratic function is used to calculate the weight.

w=cly 2 +c2y+c 3

with

(3.5)

c2=-2 W ,,--Wma x
(ym,- y,.ax)2 Y,.ax (3.7)

C3 = l%ox q ....Wmm -- _ax 2 y2.,ox (3.8)
(Ym,o--Y°,o)

Modified Weight Distribution
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Test Problems

An analytical model based on a polynomial is devised to help assess the

performance of the various strategies. We investigate two different types of input data

for constructing a RS: (1) data with no ambiguity, so that the RS model is expected to

approximate the data as accurately as possible, and (2) data generated by adding noises

generated by pseudo-random numbers to the analytical function, with the goal of

evaluating the impact on RS's filtering capability.

Quartic Polynomial in 2-Dimension

A quartic function in 2-Dimension (2-D) is devised, as shown in Eqn. (3.10).

3 2 3 2 2+ 3 2 2
y¢ = 2000+lO00x x 2-500x +25x_ +xj x 2+x_ x I +xlx 2 +x:x 2+x 2 (3.9)

Equation (3.9) can be normalize into (0,1) region using

__

Yl - min(yl)

rnax( y_ ) - min( yi )
(3.10)

Using Eqn. (3.10), 61 data are generated. Nine of them are selected based on

FCCD and the rest of 52 designs are selected based on OA design. 465-additional data is

generated for testing.

Quartic Polynomial with Noise
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Thenormallydistributedpseudo-randomdatais addedto Eqn. (3.10)to examine

theeffectof noiseonRSapproximationaccuracy.Noisedistributionof 2%(Figure3a),

4%(Figure3b),and +6% (Figure 3c) are considered to see the effect of amount of noise.
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Figure 3" Noise distributions to the original analytic data (# of data points: 465)

Results

We have studied three quadratic approximation models:

• RS without outliers treatment,

• Standard IRLS

• Biased IRLS

A framework combining NN and polynomial RS techniques is also employed in

order to identify additional ways to improve the accuracy of the RS model. The results of
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these three quadratic approximationmodels and

equation-generateddata, with and without noise,

sections.

NN-enhancedRSs, for the quartic

are summarizedin the following

Polynomial-based RSs

The response surface generated by considering all input data with equal

weighting, along with the standard IRLS and biased IRLS models, obtained for the no

noise case are illustrated in Figure 4.

The standard IRLS procedure identifies four outliers for data with 2%, 4% and

6% noise and without noise. Out of the four, two of them are in the y > 0.5 region. The

biased IRLS procedure detects two outliers for all cases. None of them is in y >_0.5 by

design.

The statistical summaries of the RS, the standard IRLS and the biased IRLS

models constructed for data, with and without noise, are shown in Table 1. Without the

influence of noise, even though the overall testing error of the biased IRLS model is

higher than the original RS, it is most accurate in y _>0.5 (Figure 5). The same

observation holds for 2%, 4%, and 6% noise cases.

It appears that while noises can affect the performance of the RS, one can

consistently target the region of importance and improve the accuracy of a RS there.
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Table 1" Statistical summaries of different quadratic models (a) original RS, (b) standard

IRLS, and (c) biased IRLS for analytical data with no noise, 2%, 4%, and 6% noise (# of

training data=61, # of test data=465, and # of test data in y>0.5=405)

RS Standard IRLS Biased IRL_

RSquare 0.89 0.84 0.85

0.88 0.82 0.84

9.22% 11.36% 10.63%

RSquare Adj

%Training rms-Error

Mean of Response

% Testing rms- Error

% Testing nns-Error in y>0.5

# of Training Data in y>0.5
Max Error

0.64

7.92%

7.18%

51

24.24%

0.64

9.12%

7.45%

49

40.28%

0.65

8.78%

6.41%

51

23.15%

2% NOISE

RSquare 0.89 0.83 0.85

RSquare Adj

%Training rms-Error

Mean of Response

0.88

9.41%

0.64

0.82

11.52%

0.64

9.10%

7.5O%

50

40.44%

7.95%

7.24%

52

24.40%

% Testing rrn. s- Error

% Testing rms-Error in y>0.5

# of Training Data in y>0.5

Max Error

0.83

10.82%

0.65

8.78%

6.43%

52

23.26%

4% NOISE

RSquare 0.88 0.83 0.84

0.87

9.67%

0.81

11.74%

0.64

RSquare Adj

¾Training rms-Error

Mean of Response

_/oTesting rms- Error

Testing rms-Error in y>0.5

# of Training Data in y>0.5
Max Error

0.64

0.83

52

11.10%

5O

0.65

7.99% 9.08% 8.79%

7.30% 7.56% 6.47%

52

40.60%24.56% 23.34%

6% NOISE

RSquare 0.88 0.82 0.83

RSquare Adj 0.87 0.81 0.82

YoTraining rms-Error 10.00% 12.01% 11.43%

Mean of Response

YoTesting rms- Error

0.64 0.64

9.06%8.03%

0.65

8.82%

Testing rms-Error in y>0.5 7.38% 7.63% 6.52%

# of Training Data in y>0.5 53 51 53

Max Error 24.72% 40.73% 23.43%
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Percentage testing rms-error in y>0.5
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Neural Network Training

Three different RBNN designs are considered: solveRB, and two RBNN designs

created by Orr [14-17] by using ridge regression (RRNN) and regression trees (RTNN)

methods. The relative performances of these designs are compared and N-N-enhanced

RSs are constructed by using each of these designs.

While training RBNNs, the first step is to decide test/train partitions of the

available data. For this purpose, a 5-fold cross-validation technique is used. The results

of 5-fold cross-validation for 61-data obtained for the analytical function, given by Eqn.

(3.1), are shown in Table 2.

Table 2: Results of 6-fold cross validation for analytical data without noise (# of training

data=51 and # of testing data=10)

Data Set #1

RSquare

0.89

RSquare

Adj
0.88

Training
rms-error %

9.48%

Mean of

Response
0.64

Testing rms-
error %

9.88%

Data Set #2 0.90 0.89 9.41% 0.64 9.66%

Data Set #3 0.88 0.87 10.61% 0.63 9.80%

Data Set #4 0.90 0.89 9.50% 0.63 9.42%

Data Set #5 0.90 0.89 9.84% 0.63 8.17%

9.77%0.88 0.64Average 0.90 9.39%

Accordingly, data set #4 which has the closest statistics to the average statistics is

chosen as the test/train partition of the NN training.

While training solveRB, two network design parameters need to be optimized: the

spread constant, sc, and the error goal. The soIveRB networks are trained by using the

range ofsc and error goal in order to select the optimum values for these parameters

13



yielding the smallest testing rms-error of the network shown in Figure 6 and Figure 7.

The same ideas hold for Orr's RRNN and RTNNs.
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Figure 6: Optimization ofsolveRB network design parameters, sc, for analytical data with

no noise and 2% noise (error goal=0.001)
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Using the test/train (51/10) partition of the data set # 4, three RBNNs are trained.

Figure 8 shows the solveRB approximations for the data set without noise and with the

highest noise level of 6%. Both figures agree well with the true function shown in Figure

4 (a).
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Figure 8: SolveRB approximation for analytical data without noise and with 6% noise

Table 3 shows the statistics of the approximations obtained by using solveRB

NNs, RRNN and RTNN for data sets with 2%, 4%, and 6% noises, and without noise.

Besides testing error obtained by using thel 0-test data as a part of NN training, a larger

data set with 465 data is also used to test the prediction accuracy of the NN

approximation. All of these results are presented in Table 3.

According to this table, all three RBNN methods for the data without noise can be

accurately trained with testing accuracy of better than 1% in the entire domain. This is

still the case for solveRB and RRNN when the noise level is 2%. As the noise level

increases, the overall error and error in the region of interest increases but remains lower

than 2%. Among the three altematives of RBNN designs, solveRB and RRNN has

comparable performance whereas RTNN is less accurate (Figure 9).
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Table3: Statisticalsummariesof RBNNtraining for analyticaldatawith nonoise,2%,
4%,and6%noise(# of trainingdata=51,# of testdata=465,and# of testdatain
y>0.5=405)

SolveRB RRNN
RSquare 1.00 1.00

0.99 0.99
0.68 0.68

0.94%

0.66%

RSquareAdj
Meanof Response
%Testingrms-Errorwith 10Data
asapartof Training
% Testingrms-Error

1.07%

0.52%

%Testingrms-Errorin y>0.5 0.64% 0.53%
#of TrainingDatain y>0.5
MaxError
2%NOISE
RSquare

42
2.82%

0.99
0.98

1.48%

0.68
0.60%

RSquareAdj
%Testingrms-Errorwith 10Noisy
Dataasapart of Training
Meanof Response

% Testing rms-Error

¾ Testing rms-Error in y>0.5

42

0.71%

0.99

0.98

1.78%

0.68

0.54%

RTNN

1.00

1.00

0.67

0.77%

0.58%

0.53%

42

2.67%

0.98

0,96

2.24%

0.68

2.72%

0.57% 0.48% 2.22%

# of Tra!ning Data in y>0.5 43 43 43
Max Error 2.79% 1.60% 14.62%

4% NOISE

RSquare 0.94 0.96 0.94

RSquare Adj 0.87 0.92 0.86

l%Testing rms-Error with 10 Noisy 4.08% 3.16% 4.14%
Data as a part of Training

0.67 0.68 0.68

1.38% 0.84% 1.82%

1.33% 0.76% 1.68%

43 4343

2.58%

Mean of Response

I% Testing rms-Error

% Testing rms-Error in y>0.5

# of Training Data in y>0.5

Max Error 3.76% 7.66%

6% NOISE

RSquare 0.92 0.92 0.92

0.82 0.82

4.75%

0.68

4.70%

0.68

1.46%

RSquare Adj

%Testing rms-Error with 10 Noisy

Data as a part of Training

Mean of Response

% Testing rms-Error 1.20%

1.11%

0.81

4.80%

0.67

1.55%

% Testing rms-Error in y>0.5 1.23% 1.31%

43 43

3.26%

# of Training Data in y>0.5
Max Error 4.07%

43

5.14%
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Figure 9: Percentage error versus noise distributions for solveRB, RRNN, and RTNN
approximations
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Neural Network-Enhanced RS

To investigate whether on can use the NN-predicted data to help improve the

predictive capability of the polynomial-based RSM, a subset of 25 data (??) is selected

from the entire set of 465 data. These 25 data points correspond to the highest y among

all 465 data, and are added to the original training set of 61 data to enrich the data

concentration in the region of interest.

The performance of the solveRB-enhanced RS, with and without noise, is

demonstrated Figure 10.

!

I
0.94

0.861667

0.783333

oF

(a) No noise (b) 6% noise

Figure 10: SolveRB-enhanced quadratic RS for analytical data with and without noises.

Table 4 compares the statistics of the RRNN-enhanced and solveRB-enhanced

RS, both with the biased IRLS procedure. From this table, it is observed that RBNN can

be effectively combined with the biased IRLS procedure, yielding better accuracy in the

targeted region, i.e., y _ 0.5, in all cases. The opposite is true in terms of the overall
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testingaccuracy.It is alsonotedthat thetestingaccuracyofsolveRB-enhancedmodels

arebetterthanRRNN-enhancedmodelsup to 2%noise. As thenoiseincreasesto 4%

andbeyond,theRRNN-enhancedmodelsoutperformthesolveRB-enhanced models

(Figure 11). By comparing Table 4 with Table 1, it can be seen that while the NN-

enhanced RS models give better training statistics than the original RS, it doesn't seem to

improve the effectiveness of the biased-IRLS treatment with no enhancement from the

NN at all. This outcome is somewhat surprising because substantially more data in the

targeted region are used to construct the RS.
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Figure 11" Percentage error versus noise distributions for solveRB-, RRNN-, and RTNN-

enhanced RS and biased IRLS approximations

20



Table4: Comparisonof statisticalsummariesofRBNN-enhancedRSandRBNN-
enhancedbiasedIRLS for analyticaldatawith nonoise,2%,4%and6%noise(# of
trainingdata=86,# of trainingdatain y>0.5=76,#of testdata=440,and# of testdatain
y>0.5=380)

RSquare

SolveRB-

Enhanced

RS

0.92

RRNN-

Enhanced

RS

0.92

SolveRB-

Enhanced

Biased IRLS

0.90

RRNN-

Enhanced

Biased IRLS

0.90

RSquare Adj 0.92 0.92 0.89 0.89

%Training rms-Error 7.54% 7.70% 8.58% 8.72%

0.72Mean of Response

% Testing rms-Error

% Testing rms-Error in y>0.5
Max Error

0.72

8.04%

7.25%

17.08%

7.86%

RSquare Adj

%Training rms-Error

0.72

8.80%

6.57%

12.60%

7.07%

16.75%

0.73

8.97%

6.78%

10.84%

2% NOISE

RSquare 0.92 0.92 0.90 0.90

_,Square Adj 0.92 0.92 0.89 0.89

/oTraining rrns-Error 7.56% 7.67% 8.58% 8.69%

Mean of Response 0.72 0.72 0.72 0.72

% Testing rms-Error 7.82% 7.97% 8.71% 8.89%

% Testing rms-Error in y>0.5 7.06% 7.19% 6.54% 6.71%

Max Error 16.71% 16.95% 11.97% 11.49%

4% NOISE

RSquare 0.92 0.92 0.90 0.90

0.92 0.92 0.89 0.89

7.75%

0.72Mean of Response

7.64% 8.75%

0.73

8.95%

6.80%

0.72

7.90%

7.12%

% Testing rms-Error

% Testing rms-Error in y>0.5

8.04%

7.28%

17.12%

8.66%

0.72

8.80%

6.62%

Max Error 16.79% 11.21% 12.34%

6% NOISE

RSquare 0.92 0.92 0.90 0.90

RSquare Adj 0.92 0.92 0.89 0.89

7.68% 7.61%

0.71

7.84%

0.72

7.96%

8.69%

0.72
%Training rms-Error

Mean of Response

% Testing rms-Error

% Testing rms-Error in y>0.5

8.88%

8.63%

0.72

8.73%

7.19% 7.07% 6.70% 6.55%

Max Error 16.93% 16.64% 11.61% 13.08%
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Summary

In this chapter, standard IRLS, biased IRLS method placing higher emphasis on

data belonging to a region of interests and a global optimization framework combining

NN and polynomial RS teclmiques are used as searching for possible ways of irnproving

the RS model. Analytical models based on a cubic polynomial in 7-D, with and without

noise, are used to assess the effectiveness of these techniques. The results obtained can

be summarized as follows:

• High-amplitude noise designs (outliers) are identified by IRLS methods.

Since the true function is known to be cubic polynomial, the reason of the

designs determined as outliers in this paper is modeling inaccuracy.

• Accuracy of the RS can be enhanced in regions of interest by increasing the

weighting of the data in that region while constructing the RS. Such a method

is found to be useful when modeling error dominates the noise.

• Neural networks are effective tools for approximation as long as they are well

trained. One of the critical issues when training the NN accurately is to

decide on the test/train partitions of the data. Cross-validation method can be

used for the purpose.

• The NN-enhanced RSM can be quite useful depending on how well and

accurate the NN is trained. NN-en_hanced RSM may reduce the required

number of computational calculations required to construct an accurate RS

substantially. However, the performance of such an approach can be affected

by the amount of the noise of the computational/experimental data.
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ABSTRACT

The goal of this effort is to compare the performance
of response surface methodology (RSM) and neural networks

(NN) to aid preliminary design of two rocket engine
components. A data set of 45 training points and 20 test

points, obtained from a semi-empirical model based on three
design variables, is used for a shear coaxial injector element.

Data for supersonic turbine design is based on six design
variables, 76 training data and 18 test data obtained from

simplified aerodynamic analysis. Several RS and NN are first
constructed using the training data. The test data are then

employed to select the best RS or NN. Quadratic and cubic
response surfaces have been used in RSM and radial basis

neural network (RBNN) and back-propagation neural network

(BPNN) in NN. Two-layered RBNN has been generated using
two different training algorithms, namely, solverbe and

solverb. A two-layered BPNN is generated with Tan-Sigmoid

transfer function. Various issues related to the training of the
neural networks have been addressed, including number of

neurons, error goals, and spread constants, and the accuracy
of different models in representing the design space. A search

for the optimum design is carried out using a standard,

gradient-based optimization algorithm over the response
surfaces represented by the polynomials and trained neural
networks. Usually a cubic polynomial performs better than the
quadratic polynomial but ex_ep.tion have been noticed.

Moreover, cubic polynomials requires larger amount of data

for regression analysis as compared to quadratic polynomials
due to more number of coefficients in the equation. Among

the NN choices, the RBNN designed using solverb yields
more consistent performance for both engine components

considered. The ease of training an RBNN and the consistency
in performance over BPNN does promise the possibility of it

being used as an optimization strategy for engineering design
problems.
* Graduate Student Assistant, Student Member AIAA
1"Graduate Student Assistant, Student Member AIAA
:1:Professor and Dept. Chair., Associate Fellow AIAA
§ Aerospace Engineer, Member AIAA
¶ Aerospace Engineer, Member AIAA
# Distinguished Professor, Fellow AIAA
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1 INTRODUCTION

1.1 General Background

Advanced rocket propulsion systems are being
proposed to meet goals for increased performance,

robustness, and safety while concurrently decreasing
weight and cost. These new goals are forcing consideration
of design variables over ranges and in combinations not

typically employed, thereby increasing the design space
complexity. Objective and efficient evaluation of these new

and complex designs can be facilitated by development and

implementation of systematic techniques. Accordingly,
Response Surface Methodology J (RSM) and Neural
Network 2 (NN) techniques have been used to generate

surrogate models representing data obtained from complex
numerical and experimental simulations. An optimization
algorithm is then used to interrogate these models for

optimum design conditions, based on specified constraints.
In this study, the preliminary design issues related to rocket

propulsion components, including gas-gas injectors and

supersonic turbines have been investigated. The objective
of this effort is to assess relative performance of RSM and

NN techniques in representing the design space.
A polynomial-based RSM is used, in which the

design space is represented with quadratic and cubic
polynomials in the dependent variables. The polynomial

coefficients are obtained by linear regression. Then using a
gradient search method the maximum or the minimum of

the surface can be located. Response Surface
methodologies have been used before for rocket engine
component design. For example, Tucker et al. 3 have used

RSM for rocket injector design. The approach is not tied to

any specific data type or source. The dimensionality of the
data is not a concern, and data obtained through both

numerical and experimental methods can be effectively
used. RSM enables the designer to combine any number of

design variables for different types of injectors and
propellant combinations. This generality allows the

consideration of information at varying levels of breadth
(i.e., scope of design variables) and depth (i.e., details of

the design variables).

The RSM is effective in representing the global
characteristics of the design space and it filters noise
associated with design data. Depending on the order of

polynomial employed and the shape of the actual response
surface, the RSM can introduce substantial errors in certain
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regionsof thedesignspace.It hasbeenshownbyShyyetal:
thatforagiveninjectordesign,athirdorderresponsesurface
performsbetterthana secondordersurface.Generationof
polynomialbasedsurfacescanbecostlyforcasesinvolving
manyofdesignvariablesduetotheamountofdatarequiredto
evaluatethecoefficients.In fact,thenumberof coefficients
increasesrapidlywiththeorderofpolynomial.Forexample,a
completesecond-orderpolynomialof N design variables has
(N+l)(N+2)/(2:) coefficients. A complete cubic model has
(N+l)(N+2)(N+3)/(3:) coefficients. The choice of order of the

polynomial and the terms to be included depends on the
design problem. Many combinations of terms may have to be

tried to represent the design space before the best one can be
selected.

An optimization scheme requiring large amounts of

data and evaluation time to generate meaningful results is of
limited value. While the preliminary designs can be
accomplished with empirically based information, detailed

designs often require use of data from experiments and/or

computational fluid dynamics (CFD) analyses. This data can
be time consuming and expensive to generate in large

quantities. Recently, NN have been used to represent the
models instead of the more typical polynomial RSM. Work in

the area of NN by Shyy et al. 4 and Papila et al. 5 have shown
that some NN can perform well even when a modest amount
of data is available. NN involves a linear or a nonlinear

regression process, depending upon the type of neural network
used, to evaluate the weights associated with the neurons of
the network. Norgaad et al. 6 and Ross et al. 7 have investigated

the feasibility of reducing wind tunnel test times by using NN

to interpolate between measurements and demonstrated cost

savings. These works have focused on using the NN to predict
data. Attempts to use the network as a function evaluator and

then to link it to the optimizer have been made by Protzel et
al. 8,Rai and Madavan 9 and Greenman and Roth 1°.

NN are highly flexible in functional form and hence
can offer significant potential for representing complex

functions. Networks that are flexible and employ linear
regression methods can use both of these properties to
improve the performance. The number of neurons in the

network, size of the region over which the neuron is sensitive,
and the training accuracy of the network are some of the

parameters that need to be selected in a network. These can be
determined by comparing the performance of NNs designed

with different values of these parameters. NNs can be
effectively used in two ways. First, they can be used in

conjunction with RSM. In complex regions of the surface, the
NN can be trained using the existing data. The trained NN can

then be used to generate additional data to augment existing
data, thus possibly enhancing the accuracy of the surface in

that particular area. Such an approach was investigated by
Shyy et al 4. This work demonstrated that the NN could indeed

yield additional information to help generate more accurate

polynomial-based response surfaces. Second, NN can generate
data to be used directly in conducting gradient-based

optimization. In other words, NN can perform the role of
either enhancing the fidelity of a polynomial-based response

surface, as in the first approach, or generating information as
input to an optimizer by itself without resorting to a
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polynomial representation, as in the second approach.
Either way, the only function evaluations required are for

the points sought by the optimizer, which searches the
design space based on the sensitivity of the response to the

perturbations in the design variables.

1.2 Scope

The present work is aimed at a direct comparison

of the RSM and NN techniques in terms of accuracy and
efficiency; the hybrid RSM-NN scheme noted above will

not be used here. Both techniques are applied to data used

in the design of two rocket engine components: a shear co-
axial injector and a supersonic turbine. Variations of each

technique are evaluated. Both second and third order

polynomials will be used for the Response Surface (RS).
Two NN schemes, radial basis and the more commonly
used back-propagation NNs are used. The same database

for each component will be used to train both the RS and

the NN. Both will then be linked to an optimization
procedure. There is little rigorous theory in the literature to

establish the desired framework for a clear comparison
between the performances of the two techniques. However,

this work provides an assessment of the techniques
regarding their practical use in the rocket engine

component design process.

2 APPROACHES

2.1 Summary of Analytical Models and Design
Variables

Two components of a rocket propulsion system

have been considered here, the injector and the turbine.
First, a shear coaxial injector element that uses gaseous

oxygen (GO2) and gaseous hydrogen (GH2) as propellants

is used to investigate the relative performance of RSM and
NN in the design of rocket engine injectors. The original
data set from Tucker et al3 (45 design points) is used to

generate quadratic and cubic response surfaces for both,

energy release efficiency (ERE), a measure of injector
performance, and chamber wall heat flux (Q). These 45
design points are evenly distributed over the design space.

ERE was obtained using correlations taking into account
combustor length, Lco,,_ (length from injector to throat), and

the propellant velocity ratio, V/Vo. The nominal chamber
wall heat flux at a point just downstream of the injector,

Q ..... was calculated using a modified Bartz equation. It
was then correlated with propellant mixture ratio, O/F, and

propellant velocity ratio, V/Vo to yield the actual chamber

wall heat flux, Q. The accuracy of each polynomial fit on
the original data set is evaluated. Two different types of

radial basis NN (RBNN) and a back propagation NN
(BPNN) are also trained to represent ERE and Q. Each

surface is then used to conduct design optimization over the
same range of independent variables. The optimal design

points are compared with exact points calculated from the
empirical model of Calhoon et al_l. The range of design

variables considered in this study is shown in Table 1.
Tables IA, 2A and 3A (see appendix) show the
performance and heat flux for the 45 combinations of O/F,



V/Vo and L_o,,o considered. Table 4A (see appendix) contains
20 additional data points that are not used in the generation of

response surfaces or the neural networks. These points are
used to assess the accuracy of different variants of RSM and
NN.

The other propulsion system component examined is

a supersonic turbine where the preliminary design is
conducted by one-dimensional aerodynamic analysis using
FpgenML 12. FpgenML generates a flowpath and runs a

preliminary meanline calculation on this flowpath. In this
study, a single stage turbine has been considered. There are six

design parameters and four output variables involved in this

design process. There are 76 design points available for
training (Table 5A). These 76 points were selected by using a

face centered composite (fcc) design. Instead of 77 design
points, as would be provided by afcc design for six variables,
only 76 were available since the meanline code could not

converge for one of the designs. The design variables are the

mean diameter, D, RPM, blade annulus area, A ..... vane axial
chord, Cv, blade axial chord, Cb, and stage reaction, kr. These

are parameters influencing the structural properties and
performance of the turbine. Overall efficiency of the turbine,

r/, turbine weight, W, a lumped inertia measure, (AN) 2 (A,,n x

(RPM) 2) and speed at pitchline, Vpitch(D × RPM) are chosen as
dependent variables. The goal is to maximize the incremental

payload (Apay), which is derived from turbine weight (W) and

efficiency (77). Therefore, the objective is a design where W is

minimized and 77 is maximized. Due to the structural

considerations, constraints have to be imposed on (AN) 2 and

gpitch"

Using 18 additional simulations, distributed within

the design space, the accuracy of the models is tested. This

additional testing data set, generated with the same analysis
method, is shown in Table 6A. The ranges considered for the
design variables and the dependent variables are shown in

Eqs. (1) and (2).

For the design variables: "_
15.2> D> 5.1

t

43954.4 > RPM > 18837.6

69.9 >Ann, > 37.6 (1)
1.3 > Cv>0.3

1.3 > Cb>0.3
0> kr > 0.5

For dependent variables: "]
0.70 >r/> 0.14
913.62 > W> 480.58

1.1644x1011 > (AN) 2 > 0.182 xl011 (2)
2576.6 > Vrim> 67.4

2.2 Objective Functions

When attempting to optimize two or more different
objective functions, conflicts between them arise because of

the different relationships they have with the independent
parameters. To solve this problem, a multi-objective lz

approach is investigated in this study. Here, competing

objective functions are combined to a single composite
objective function. The maximization of the composite
function effectively provides a compromise between the
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individual functions. An average of some form is normally

used to represent the composite function. For example,
Tucker et al 3 used a geometric mean to combine their two

objectives, ERE and Q. The composite desirability is of the
form

(3)

where D is the composite objective function, di's are

normalized values of the objective functions and l is the
number of objective functions.

Another way of constructing a composite function

is to use a weighted sum of the objective functions. The
composite desirability function can then be expressed as

I

D = Za, f/ (4)
i=1

where D is the composite objective function and f's are the

non-normalized objective functions. The a_'s are

dimensional parameters that control the importance of each
objective function.

For the injector, the goal is to maximize the

energy release efficiency, ERE while minimizing the
chamber wall heat flux, Q. This is achieved by maximizing

a composite objective function given by Eq (5).

where the normalized functions are defined in Eqs. (6) and

(7). In the case where a response should be maximized,
such as ERE, the normalized function takes the form:

ERE- A I"dERe = B-A ) forA_<ERE<_B (6)

where B is the target value and A is the lowest acceptable
value. We set dERE = 1 for any ERE > B and deRe = 0 for

ERE < A. The choice of s is made based on the subjective
importance of this objective in the composite desirability
function. In the case where a response is to be minimized,
such as Q, the normalized function takes on the form:

dQ [E-C) forC<_ERE<_E
(7)

where C is the target value and E is the highest acceptable

value. We set do = 1 for any Q < Cand dQ = 0 for Q > E.
A, B, C, and E are chosen according to the designer's
priorities or, as in the present study, simply as the boundary

values of the domain of ERE and Q. The value of t is again
chosen to reflect the importance of the objectives in the

design. In the study A and B are equal to 95.0 and 99.9,

respectively. Values of C and E are equal to 0.48 and 1.I,
respectively. Both s and t were set to a value of 1.



In thecaseof theturbine,aweightedsumofthetwo
objectivesr/ and W has been used. The expression, in the
context of the turbine gives the incremental value of the

payload with the change in W and rl. The goal is to maximize
this incremental value, which in turn results in minimum W

and maximum r/.

D = Apay = 80xlOOx(r 1- rlb)-(W-Wo) (8)

where r/= the calculated efficiency

r/b = the baseline efficiency (r/b=0.627)

W = calculated weight
Wb = the baseline weight (Wb=1140.01bs).

The weight associated with r1 expressed in
percentage, by multiplying it with 100, is 80 and the weight

associated with W is -1. This relationship is developed based
on detailed turbopump design processes. For one percent
increase in efficiency a payload increase of 801bs can be

achieved, and as the weight of the turbine increases the
payload has to be correspondingly decreased.

2.3 Response Surface Methodology (RSM)
Polynomial RSM constructs polynomials of assumed

order and unknown coefficients based on regression analysis.
The solution for the set of coefficients that best fits the

training data is a linear least square problem. The number of
coefficients to be evaluated depends on the order of

polynomial and the number of design parameters involved.

According to the injector model developed by
Calhoon et al _1, injector performance, as measured by ERE

depends only on the velocity ratio, V/Vo, and combustion
chamber length, Lcomb. Examination of the original data sets in

Tables 1A-3A (see appendix) indicates 15 distinct design

points for ERE. Since chamber wall heat flux depends only on
the velocity ratio, V/Vo, and the oxidizer to fuel ratio, O/F,

there are 9 distinct design points for Q. The design space for
this problem is depicted in Figure I. For ERE, the 5 distinct
chamber lengths offer the potential for a fourth-order

polynomial fit in Lcomb, while the three different velocity ratios

limit the fit in V/Vo to second order. Quadratic and cubic
response surfaces for both ERE and Q have been generated for
evaluation. The above-noted limitations on the data limits the

cubic surfaces to be third order in Lco,,b only.
As already mentioned, to construct a complete

quadratic polynomial of N design variables, the number of
coefficients required is (N+1)(N+2)/(2!). In the turbine case

with 6 design variables, we would need to estimate 28

coefficients. A complete cubic model would require
(N+1)(N+2)(N+3)/(3!) or 84 coefficients and four levels.
Since the data available is not sufficient to evaluate all the

cubic terms, reduced cubic models are employed.

The response surfaces were generated by standard
least-squares regression using JMP TM, a statistical analysis

software package. JMP is an interactive, spreadsheet-based
program having a variety of statistical analysis tools.

Statistical techniques are also available for identifying
polynomial coefficients that are not well characterized by the
data. A stepwise regression procedure based on t-statistics is
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used to discard terms and improve the prediction accuracy.

The t-statistic, or t-ratio, of a particular coefficient is given
by the value of the coefficient divided by the standard error
of the coefficient, which is an estimate of its standard

deviation. The accuracy of different surfaces at points

different from the training data can be estimated by

comparing the adjusted root mean square error defined as:

(9)

Here e_ is the error at {h point of the training data, n is the

number of training data points and np is the number of
coefficients. When the data contains uncorrelated Gauss!an

noise, or, provides an unbiased estimate of that noise. Even

when the error is not solely due to noise or, provides a good
overall comparison among the different surface fits.

The accuracy of the models in representing the
objective functions is also gauged by comparing the values

of the objective function at test design points, different

from those used to generate the fit. The root mean square

error, or, for the test set is given by:

(10)

In this equation e_ is the error at the i th test point and m is

the number of test points.

2.4 Neural Networks

Two different types of NN have been used,
namely radial basis Is and back-propagation _s. The training

process of the network is a cyclic process and the weights

and biases of the nodes of the network are adjusted until an
accurate mapping is obtained. This trained network can
then predict the values of the objective for any new set of

design variables in the design space. The neural network
toolbox 15 available in Matlab is used for the current

analysis.

2.4.1 Radial Basis Neural Networks (RBNN)

Radial-basis neural networks are two-layer

networks with a hidden layer of radial-basis transfer
function and a linear output layer (Figure 2). RBNN

requires large number of neurons, depending on the size of
the data set, but they can be designed in a small amount of

time. This is due to the fact that the process of determining
the weights associated with the large number of neurons

uses linear regression. Thus, they may be efficient to train
when there are large amounts of data available for training.

In Matlab, radial-basis networks can be designed
using two different design procedures, solverbe and

solverb. Solverbe designs a network with zero error on the
training vectors by creating as many radial basis neurons as

there are input sets. Therefore, solverbe may result in a

larger network than required and map the network exactly,
thereby fitting numerical noise. A more compact design in
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termsof networksizeisobtainedfromsolverb, which creates
one neuron at a time to minimize the number of neurons

required. At each epoch or cycle, neurons are added to the

network till a user specified RMS error is reached or until the

network has the maximum number of neurons possible. The

design parameters for solverb are the spread constant, a user
defined RMS error goal, and the maximum number of epochs

whereas it is only the spread constant for solverbe.
The transfer function for radial basis neuron is

radbas, which is shown in Figure 2b. Radbas has maximum

and minimum outputs of 1 and 0, respectively. The output of
the function is given by

a= radbas(dist(w,p)xb) (11)

where radbas is the transfer function, dist is the vector

distance between the network weight vector, w and the input
vector, p, and b is the bias. The weights associated with each

neuron in the network together comprise the weight vector.
The input vector is the set of design points that are used to

train the network. In a radial basis network (Figure 2a) each

neuron in the radbas hidden layer is assigned weights, wl
which are equal to the values of different input design points.

Therefore, each neuron acts as a detector for a different input.
The bias for each neuron in that layer, bt is set to 0.8326/sc,

where sc is the spread constant, a value defined by the user.
This defines the area of response of each neuron. The whole

process is then reduced to the evaluation of the weights,

wz,and biases, b2, in the output linear layer, which is a linear
regression problem. If the input to a neuron is identical to the

weight vector, the output of that neuron is 1, since the
effective input to the transfer function is zero. When a value of

0.8326 is passed through the transfer function the output is
0.5. For a vector distance equal to or less than 0.8326/b, the

output is 0.5 or more. The spread constant controls the
efficiency of the RBNN. It defines the radius of the design

space over which a neuron has a response of 0.5 or more.

Small values of sc can result in poor response in a domain not
closely located to neuron positions, that is, for inputs that are
much different from the weights assigned to a neuron as

compared to the defined radius the response from the neuron
will be negligible. This would prevent the network from

assessing the trend of the design space accurately causing an
underfitting of the domain. Large values will result in low

sensitivity of neurons. Since the radius of sensitivity is large,
neurons whose weights are different from the input values by

a large amount will also have high output thereby resulting in
an equivocal response from all the neurons and this might

result in overfitting, that is, the noise in data may also be fit
accurately. Hence, the network may not be able to account for
the characteristics of the data. Both conditions would result in

a badly designed network. The best value of the spread

constant for some test data can be found by comparing cr for
networks with different spread constants. In case of the

injector design there are two objectives, namely ERE and Q

and for turbine the objectives are 77and W. Figures 3 and 4

give the variation of <7 for the network design with solverbe

for the objective functions of the two engine components. In

case of solverb the error goal during training also defines

the accuracy of the network. An objective of fitting a
numerical model is to remove the noise associated with the

data. A model, which maps exactly as solverbe does, will

not eliminate the noise, whereas solverb will. Figures 5 and

6 give the variation of <7 for the network design with

solverb for the objective functions of the two engine
components.

Comparing Figures 3-6 it can be seen that for low

values of spread constant the NN network has a poor

performance. As the spread constant increases cr

asymptotically decreases. However, as demonstrated by
Figure 5a the performance of the network can deteriorate

for higher values of the spread constant. The region with a

large variation in (7 is highly unreliable because this

indicates a high sensitivity of the model to a small variation
of spread constant and possibly the test data, in this region.

Hence the desirable spread constant is selected from the
region where the performance of the network is relatively
consistent.

Figures 5 and 6 show also the influence of error

goal on the network. Generally if a network maps the

training data accurately it can be expected to perform
efficiently with the test data. However, accurately mapping

noisy data may result in poor prediction capabilities for the
network. The variation in the performance is not significant

except for the ERE and Q network (Figure 5), where the

poor performance of the network at high values of spread
constant improves for a larger error goal. This may

indicate the presence of noise in the data for ERE, which
solverb is able to eliminate with an appropriate error goal.

Figure 7 shows variations in number of epochs and a with
the variation of error goal for a given spread constant

when RBNN is designed with solverb. The number of
neurons in the network is one more than the number of

epochs. One expects that as the error goal increases the
number of epochs becomes smaller and the network

performs less accurately as in Figures 7a and 7b. However
as demonstrated by Figures 7c and 7d, a more stringent
error goal for the training data does not necessarily result

in better predictive capability against the test data. Less

accurate network can be designed for these objectives,
which have smaller prediction error.

When choosing an appropriate network the above-
mentioned features have to be considered. The performance

of the constructed NN is best judged by comparing the
prediction error as given in Eq. (10), for different networks.
Using solverbe, networks are designed with varying spread

constants and the one that yields the smallest error is

selected. When solverb is used, networks are designed for
different spread constants and error goals. The network
that gives the smallest error for the test data is used. The
details of the networks selected are discussed in later
sections.

2.4.2 Back-propagation Neural Networks (BPNN)
Back-propagation networks are multi-layer

networks with hidden layers of sigmoid transfer function
and a linear output layer (Figure 8). The transfer function in



thehiddenlayersshouldbedifferentiableandthus,eitherlog-
sigmoidor tan-sigmoidfunctionsaretypicallyused.In this
study,a singlehiddenlayerwith a tan-sigmoidtransfer
function,tansig, (Figure 8b) is considered. The output of the
function is given by

a = tansig (u,gp + b) (12)

where tansig is the transfer function, w is the weight vector, p
is the input vector and b is the bias vector. The maximum and

minimum outputs of the function are 1 and -1, respectively.
The number of neurons in the hidden layer of a back-

propagation network is a design parameter. It should be large
enough to allow the network to map the functional

relationship, but not too large to cause overfitting. Once it has
been chosen, the network design is reduced to adjusting the

weight matrices and the bias vectors. These parameters for
back-propagation networks are usually adjusted using gradient

methods like the Levenberg-Marquardt 15 technique. In

Matlab, back-propagation networks can be trained by using
three different training functions, trainbp, trainbpx and

trainlm. The first two are based on the steepest descent
method. Simple back-propagation with trainbp is usually slow

since it requires small learning rates for stable learning.
Trainbpx, applying momentum or adaptive learning rate, can

be considerably faster than trainbp, but trainlm, applying
Levenberg-Marquardt optimization, is the most efficient since

it is based on a more efficient optimization algorithm.
The design parameters for trahdm are the number of

neurons in the hidden layer, a user defined error goal, and the

maximum number of epochs. The training continues until
either the error goal is reached, the minimum error gradient

occurs or the maximum number of epochs has been met.

For BPNN, the initial weights and biases are
randomly generated and then the optimum weights and biases

are evaluated through an iterative process. The weights and
biases are updated by changing them in the direction of down
slope with respect to the sum-squared error of the network,

which is to be minimized. The sum-squared error is the sum of
the squared error between the network prediction and the

actual values of the output. In BPNN (Figure 8a) the weights,
wl, and biases, bl, in the hidden tansig layer are not fixed as in

the case of RBNN. Hence, the weights have a nonlinear
relationship in the expression between the inputs and the

outputs. This results in a nonlinear regression problem, which
takes a longer time to solve than RBNN. Depending upon the

initial weights and biases, the convergence to an optimal
network design may or may not be achieved. Due to the

randomness of the initial guesses, if one desires to mimic the
process exactly for some purpose, it is impossible to re-train

the network with the same accuracy or convergence unless the

process is reinitiated exactly as before. The initial guess of the
weights is a random process in Matlab. Hence to re-train the
network the initial guess has to be recorded.

The architecture is decided based on past experience
with similar kind of dataset. For a given objective the error

goal is fixed and the number of hidden layer neurons are

varied between 2 and the total number of inputs. Each network
is retrained few times so as to start the search from random
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initial weights and biases. The networks that do not achieve

the error goal are discarded. Among the converged
networks the selection of the best network is made based on

the value of or. The goal is to attain as low a value for cr as
possible. The number of neurons in the hidden layer is

increased one at a time till the error goal is achieved and a

small value of cr is obtained. Although this method may not

be the best way to obtain the best BPNN, it is considered
adequate for the current study. At times larger network has

a high value of or, which maybe due to overfitting of the

design space. To prevent the model from converging to a
local minimum, an iterative method is used as suggested by
Stepniewski et a116. The obtained network is retrained with

initial weights obtained by perturbing the weights of the
obtained network.

w = wo +Xrw o (13)

where w is the initial weight vector for the network to be

trained, Wo is the weight vector of the obtained network, A
is the level of pertubation (0.1) and r is a matrix of random
numbers between-1 to 1.

2.5 Optimization Process

The entire optimization process can be divided
into two parts:

1) RS/NN training phase for establishing an
approximation,

2) Optimizer phase.

In the first phase, RS or NN are generated with the
available training data set. In the second phase the

optimizer uses the RS/NN during the search for the
optimum until the final converged solution is obtained. The

initial set of design variables is randomly selected from

within the design space. The flowchart of the process is
shown in Figure 9.

The optimization problem at hand can be

formulated as min{f(x)}subject to Ib < x < ub, where Ib is
the lower boundary vector and ub is the upper boundary

vector of the design variables vector x. If the goal is to
maximize the objective function then fix) can be written as
-g(x), where g(x) is the objective function. Additional linear

or nonlinear constraints can be incorporated if required.

The present design process does not have any such
additional constraints. The optimization toolbox _7 in

Matlab used here employs a sequential quadratic-
programming algorithm.

3 RESULTS AND DISCUSSION

The RS and NN are constructed using the training

data. The test data is then employed to select the best RS or
NN. Specifically in RSM, the difference between the RS

and the training data, as given by Eq. (9), is normally used
to judge the performance of the fit. The additional use of

the test data helps to evaluate the performance of different

polynomials over design points not used during the training
phase. This gives a complementary insight into the quality



of theRSoverthedesignspace.Forboththerocketengine
components,differentpolynomialswere tried. Table2
comparestheperformanceof differentpolynomialsusedto
representthetwoobjectivefunctionsof theinjectorcase,ERE
and Q. Starting with the all the possible cubic terms in the

model, revised models are generated by removing and adding
terms. Similar kind of analysis is also done for the turbine

case. The best polynomial is selected based on a combined

evaluation between cr_ and a.

For the NN, the test data helps evaluate the accuracy

of networks with varying neurons in BPNN and varying

spread constant in RBNN. Thus the test data are part of the
evaluation process to help select the final NN. Based on the

RSM or NN model, a search for optimum design is carried out
using a standard, gradient-based optimization algorithm over

the response surfaces represented by the polynomials and
trained neural networks.

3.1 Shear-Coaxial Injector
According to the available data, the injector

performance, ERE, depends only on the velocity ratio, V/Vo,
and combustion chamber length, Lcom_, which indicates 15

distinct design points for ERE. The chamber wall heat flux, Q,

depends on velocity ratio, V/Vo, and oxidizer to fuel ratio,
O/F, and has nine distinct points. For ERE, as seen from
Figure 1, five distinct levels for Lcomb offers the potential for a

fourth-order polynomial fit in the same, while three different
velocity ratios and oxidizer to fuel ratio limit the fit in these
variables to second order.

A reduced quadratic and a higher order response
surfaces are used for the two objective functions. The first
model in Table 2a and the sixth model in Table 2b are the

selected cubic models for ERE and Q, respectively. There is
no considerable improvement notice among the remaining
cubic model for ERE. For Q, the selected model is the best in

terms of cr,, although there are other models with identical
value of ft.

ERE = 70.43 + 1.580Vy /V o + 6.208Lcom_ -

0.190( V: /V o )Lcomb -0.331( Lcomb )2 (14)

Q =0.479 -0.0460/F +O.191Vy/V o +

0.009(0/F) 2 -0.028(0/F)V:/V o (15)

ERE = 50.059 + 3.758V: / Vo + 14.573Lco,,_,

-0.05(V:/Vo) 2 - 0.777(V:/Vo)Lco,,,b

-1 459(L,o,,,,,) _ + 0.002(V:/Vo)2L:o,,_,

+0.046V: / Vo(Leo,,_)2 + 0.047(L_o,,_)3 (16)

Q = -0.566-0.3580/F + 0.383V:/V o

-0.0191(O / F) 2 - 0.107(0 / F)V: / Vo

-o.oo3(v:/vo) _+O.O05(O/F)_V: /Vo

+0.002(0 / F)(V z I Vo)2 (17)
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Equations (t4) and (15) are the reduced quadratic

responses and Eqs. (16) and (17) represent the reduced
cubic polynomials used for the two objective functions. The

t-statistics for the coefficients in Eq. (14) vary between
49.30 and 8.06. For the coefficients in Eq. (15), they vary

between 6.28 and 0.52. In Eqs. (16) and (17), the t-statistics

of the coefficents vary between 14.69 and 0.31 and 3.36
and 0.74, respectively.

The radial basis networks designed with solverbe

are the largest with 15 neurons in the hidden layer for ERE
network and nine neurons for the Q network. Solverb

designs a network for ERE with 14 neurons in the hidden

layer and a network for Q with eight neurons. Compared to
RBNN, BPNN has fewer neurons, the number of neurons in

the hidden layer are eight and four for the ERE and Q

networks, respectively. Details of the networks used are

listed in Table 3. The spread constant used for RBNNs and
the error goal of the training data is also given in Table 3.

The spread constant values are selected from the region
where the performance of the network is consistent with the

variation of spread constant (Figures 3-6). The error goal,
in the case of solverb, is selected based on the network with

the best performance for the ideal spread constant (Figure
7).

The error in predicting the values of the objective
function by different schemes is given in Table 4. Several

observations can be readily made.

1. The NN method performs better than the RSM for this
data set.

2. Both solverbe and solverb are of comparable

performance.
3. The BPNN helps generate a smaller network it and

hence performance at par as compared to RBNN.
4. The polynomial-based response surfaces are not as

flexible as the NN. However, the cubic polynomial is
more accurate than the quadratic one.

The various models generated are compared with
test data in Figures 10 and 11. The curves representing the
NN predictions are closer to the data obtained from the

injector model than the RSs thereby demonstrating that NN
models are able to predict better than the RSs. BPNN

performs as well as RBNN but tends to be fiat. Due to its

lower order, the quadratic polynomial is fiat. The cubic
polynomial is able to perform better than quadratic.

The optimum solution obtained from various

schemes is shown in Table 5 and Figures 12 and 13. The
aim is to maximize ERE and minimize Q. The trend of the

objective functions in the design space is monotonic and

hence every model is able to select identical optimum
design for the given constraints. The flatness of the

polynomials result in bad predictive values of the objective
function for the optimum design. The cubic polynomial is

more flexible than quadratic but is not consistent. For a

V/Vo constraint of 4 the quadratic polynomial is more
accurate but for higher values of V/Vo the cubic polynomial
is more accurate. In contrast, the NN models are able to

perform well. Since the optimum design happens to be the
same as one of the training points, solverbe is able to



predictthevaluesoftheobjectivefunctionaccurately.Solverb

performs equally well, thereby showing the capability of
performance with fewer neurons. Performance of BPNN is not
as satisfactory as suggested in Table. 4. For lower constraints

of VIA/o, it performs poorly but for higher values of V/Vo it is
good. This may be due to the selection of fewer neurons in the
hidden layers of the networks. Overall, it is still better than to

the RSM and demonstrates the flexibility of NN over RS.

As stated by Papila et al 5, when it comes to choosing

between NN and polynomials, polynomials are easy to

compute. The number of coefficients might be numerous but
the linearity of the system expedites the process of coefficient
evaluations. This is also the reason RBNN train fast. On the

other hand, the weights of BPNN are evaluated through a
nonlinear process. Of all the NN presented here, the one
designed with the help of solverbe is the fastest to train since

the values of the weights are set to values of the input
dependent variables. Solverb trains with the addition of one

neuron at a time with weights similar to the input and hence is
slower. BPNN is slower to train than RBNN because at each

step the error is propagated back to all the weights in the
system unlike the RBNN.

3.2 Supersonic Turbine

The generation of RS and the training of the NNs are
done with the 76 design points in Table 5A. The analysis was
initially done without the constraints and then with the

constraints on (AN) 2and Vpjtch.

A quadratic RS was initially generated. Then, cubic

terms were included. Cubic terms that are products of three
different variables were included because of the number of

data available and the number of levels being three. The trend
of the design data also suggests the presence of some of these

terms. Therefore, the initial cubic equation has 45 terms. A

reduced third order RSs for 77and W was selected based on the

relative performances of different polynomials obtained by
removing terms from the initial cubic equation based on t-
statistics. The cubic equation was selected based on the

evaluated value of cro and cr. Table 6 suggests that the reduced
cubic polynomial is better than the quadratic polynomial since

cr_is better for the former. The values of cr are comparable.

77= 0.410+0.180D+0.112RPM + 0.012Ao_,,

+0.006C v + 0.003C h - 0.025k r - 0.026D 2

+0.032D. RPM - O.OI ORPM 2 + 0.006DA,,,

+0.O05 A,_,,RPM + 0.002CvD + 0.003CvRPM

-0.007Cv I - 0.006Cb 2 - 0.010krD - O.006krRPM

--0.005k rA,,,,,,- O.O05k rC v - O.O02k ,Cb - 0.008k, 2

+O.O02DAa,,,,RPM + O.O01DCvRPM - O.O02DAo_,k r

-O.O03DCvk r - 0.002A,,,,, RPMk r

-0.002C bRPMk_

W = 734.123 + 169.3 IOD - 34.926RPM

+13.313A_,,,, + 6.756Cv + 4.134C b - 29.062k r

-42.01D 2 - 25.157D. RPM + 4.690DA ....

(18)
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-5.131A_,,, 2 + 1.261C D + 0.512C_RPM

-6.706C_ 2 - 1.023C_D - 0.746C bRPM

+0.236CBA,,,, ' - 5.366C_ 2 - 7.695krD

+ 3.396krRPM - 4.803k_A_,,,, - 4.85 Ik ,.C,,

-1.833krC b - 7.676kr 2+ 0.437DCvRPM

-0.511DCbRPM + 3.292Dk_ RPM + 0.627DA,,,,,C b

-1.443DA,_,,,,k,. - 2.392DCvk r

-0.539C,,RPMk r (19)

The t-statistics for the coefficients in Eq. (18)
varies between 179.72 and 1.2. The coefficients in Eq. (19)

have t-statistics varying between 822.66 and 0.68.

The networks designed with solverb have 37 and

75 neurons for r/ and W, respectively in the hidden layer,
while those designed with solverbe has 76 neurons each.

The BPNN uses significantly less number of neurons by

generating networks with five and 60 neurons for r/and W,
respectively, in a single hidden layer. The NN architectures
chosen are listed in Table 7.

The accuracy of the various models is tested with
the data available in Table 6A and the error is shown in

Table 8. Solverbe has a poor prediction for r/, which might
be due to overfitting, but performs well for W. The outcome

of Table 8 for the supersonic turbine is similar to that of

Table 4 for injector, except that BPNN is clearly inferior to
RBNN. Overall, based on the two cases, it seems that

solverb is most consistent among all methods evaluated.
The optimum solutions subjected to the

constraints, of (AN) 2 limited to less than 6.0 x lO_°in2rpm 2

and Vpitch is limited to less than 1600.Oin/sec, are presented
in Table 9. Since (AN) 2 is proportional to the product of

square of RPM and A .... and Vpi,.h is proportional to D
times RPM, no NN/RS is generated for them. By

comparing the predicted optimal design by the various
methods, one observes that solverbe and BPNN yield

noticeably larger errors in r/ and W, respectively. Solverb

and the response surface are more consistent with both r/

and W. Judged by the error in predicting Apay, it seems that
the RSM is most accurate. However, since the real goal is

to maximize Apay, it is important to note that the actual

value of Apay for the optimal design chosen by the RSM is
the worst. Clearly, the large multiplier in Eq. (8) causes

bias in relative weighting between 77and W, which in turn,

causes different "apparent" accuracy levels by various
methods.

From a design perspective, it is interesting to

understand the impact of the constraints from A,o,_ and Vt,_tch
on the optimal turbine parameters. Such an assessment is
offered in Figures 14 and 15. As D, RPM and A,,, decrease,

_, W, Vpitch, AN 2 and Apay decrease. Cb and C_ are almost
constant over the design space and they do not have any

noticeable effect on the objective functions and constraints.
In the case of Cv, the BPNN shows a small perturbation for

the analysis with the constraint. This might be due to the
mapping of some noise by BPNN. Otherwise it is



unaffectedby the inclusionof the constraints.Thestage
reaction,K,, is unaffected as expected, since we are dealing

only with the single stage of the turbine. Hence there is no
split on the stage reaction.
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variables and training data size are critical for practical

design applications, and should be addressed in the future.

5 ACKNOWLEDGMENT

4 SUMMARY AND CONCLUSIONS

In the present study, the RS and NN are first

constructed using the training data. The test data are then

employed to assess the performance of various polynomials
and to offer insight into model improvement by removing and

adding terms. The best polynomial is selected based on a

combined evaluation between a, and a. For the NN, the test

data helps evaluate the accuracy of networks with varying

neurons in BPNN and varying spread constants in RBNN.
Thus the test data are adopted to help select appropriate RSM
and NN models. Once an RSM or NN model is constructed, a

search for optimum design is carried out using a standard,

gradient-based optimization algorithm over the response
surfaces represented by the polynomials and trained neural
networks.

Based on the results obtained, we have reached the

following conclusions.
1. Higher order polynomials perform better than lower order

polynomials as they have more flexibility. However,
appropriate statistical measure needs to be taken to
determine the best order to use.

2. In the present study, both NN and RSM can perform
comparably for modest data sizes.

3. Among all the NN configurations, RBNN designed with
solverb seems to be more consistent in performance for

both injector and turbine cases.

4. Radial basis networks, even when designed efficiently
with solverb, tend to have many more neurons than a

comparable back-propagation with tan-sigmoid or log-
sigmoid neurons in the hidden layer. The basic reason for

this is the fact that the sigmoid neurons can have outputs
over a large region of the input space, while radial basis

neurons only respond to relatively small regions of the
input space. Thus, larger input spaces require more radial
basis neurons for training.

5. Configuring a radial basis network often takes less time
than that for a back-propagation network because the

training process for the former is a linear in nature.

6. RBNN with the combined feature of flexibility and linear
regression is more accurate than BPNN, which is
nonlinear.

Based on the results shown in Tables 4 and 8, it is seen

that the RBNN technique performs consistently, and holds
promise for the design/optimization of advanced rocket

propulsion components. The method adopted here to generate
BPNN is not necessarily the most efficient. Given a better
method of making the selection of the number of neurons in

the hidden layer, BPNN, might be able to perform better.

Future work would be aimed at implementing a better
designing procedure for back-propagation networks. The work

has been carried out with modest data sizes and the training is
fast for such cases. Issues related to the number of design

The present study has been supported by NASA

Marshall Space Flight Center.
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Leo,_, in.

4,5,6,7,8

4,5,6,7,8

O/F V/V o
4,6,8 4

4,6,8 6

4,6,8 8 4,5,6,7,8

Table 1: Range of design variables considered for the shear coaxial injector element.

Coefficient = 0Model
#

Terms

Removed

(V/Vo) 2

Terms Included

Quadratic and less

a,, (%) a(%)

3 (Vt/Vo)2L,.om o

4 (Vt/Vo)ZLco,,b, (Vt/Vo) "_

5 (Vt/Vo)2Lcomb, (Vt/Vo) J (L_o_b)4

6 (Vt/Vo)2L_omb, (VfVo) _ (Lcomb)4, (V/Vo)2(L,.omO) 2
7 (V/Vo)2L_o_b, (Vt/Vo) 3 , (Lcomb) 4, (V/Vo)2(Lcomb) 2, VJVo(Lcomb) "_

Table 2(a): Different cubic polynomials for ERE. (Dependent variables: V/Vo and Lco_b, 15 traimng points,
10 test points) (the error are given in percentages of the mean value of the responses).

Model Coefficient = 0 Terms
# Removed

0.218 0.280

0.0857 0.212

0.0799 0.214

0.0799 0.214

0.0859 0.213

0.0936 0.212

0.0988 0.212

TermsIncluded ff_(%) a(%)

Quadratic and less 5.445 3.490

5.584 2.234

5.584 2.094

5.584 2.094

5.584 2.234

3.909 2.094

2.094

1 (O/F) 2

2 (V/Vo)3,(O/F) _

3 (O/F) 3 (Vt/Vo) 2

4 (Vt/Vo) 2, (O/F) _

5 (V/Vol, (O/F)'

6 (V/Vo) 3, (O/F) 3, (V/Vo) 2
7 (VftVo) _, (O/F) _, (V/Vo) 2 (V/Vo )e( O/F ) 2 5.584

Table 2(b): Different cubic polynomials for Q. (Dependent variables: O/F and V/Vo, 9 training points, 4 test
points) (the error are given in percentages of the mean value of the responses).

Scheme # of

Layers

RBNN (Solverbe) 2

RBNN (Solverb) 2
BPNN 2

# of neurons in

the hidden layer
ERE Q

15 9

14 8

8 4

# of neurons in

the output layer
ERE Q

i 1
1 1

1 1

Error goal aimed for during training

ERE Q

0.0 {sc = 3.25) 0.0 {sc = 1.20}

0.001 {sc = 1.05} 0.001 {sc = 1.05}
0.01 0.01

Table 3: Neural Network architectures used to design the model for shear coaxial injector
spread constant }

element. {sc =

Scheme cr for ERE (%) cr for Q (%)
RBNN (Solverbe) 0.207 1.396

RBNN (Soh,erb) 0.133 1.536

BPNN 0.180 0.832
Partial Cubic RS

Quadratic RS

0.213 2.234

0.280 3.490

Table 4: RMS error in predicting the values of the objective function by various schemes for the shear

coaxial in ector element (the error are given in percentages of the mean value of the responses).

V/Vo Scheme O/F Lcomb, in. ERE, % Q, Btu/inZ-sec

4 RBNN (Solverbe) 8.0 7.0 98.60 (0.00) 0.588 (0.00)

RBNN (Solverb) 8.0 7.0 98.60 (0.00) 0.588 (0.00)

I0
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BPNN
PartialCubicRS

QuadraticRS
Model

8.0 6.9
8.0 7.0
8.0 7.0
8.0 7.0

Model 8.0 6.9
6 RBNN(Solverbe) 8.0 7.0

RBNN(Solverb) 8.0 7.0
BPNN 8.0 7.0

PartialCubicRS 8.0 7.0

98.64(0.14) 0.578(1.70)
98.61(0.01) 0.594(1.02)
98.67(0.07)

98.60
98.50

99.20(0.00)
99.20(0.00)

0.591(0.51)
0.588

0.588

0.512 (0.00)

0.512 (0.00)

99.18 (0.02) 0.513 (0.20)

99.15 (0.O5) 0.500 (2.34)
Quadratic RS 8.0 7.0 99.17 (0.03) 0.531 (3.71)

Model 8.0 7.0 99.20 0.512

8 RBNN (Solverbe) 8.0 7.0 99.40 (0.00) 0.493 (0.00)

RBNN (Solverb) 8.0 7.0 99.40 (0.00) 0.493 (0.00)

BPNN 8.0 7.0 99.41 (0.01) 0.500 (1.42)

Partial Cubic RS 8.0 7.0 99.42 (0.02) 0.499 (1.22)

Quadratic RS 8.0 7.0 99.67 (0.27) 0.471 (4.46)
Model 8.0 7.0 99.40 0.493

Table 5: Optimal Solutions for fixed values of V/Vo and given range of O/F and Lcomb obtained with NN
and RSM schemes for the shear coaxial injector element. (Constraints: 4 < O/F < 8, 4 < L_omb< 7) (error

given in pararenthesis for each prediction is in %)

Type of RS or. for W (%) cr for W (%)

Quadratic RS
Reduced Cubic RS 1.949

afor r7 (%)
0.863

1.031
0.788 1.281

0.402 1.223

Table 6: Training and predicting error for different response surfaces of the objective functions of the

supersonic turbine. (the error are given in percentages of the mean value of the responses)

Scheme

RBNN (Solverbe)

RBNN (Solverb)

# of Layers # of neurons in the

hidden layer

77 W
76 76

37 75

5 6O

# of neurons in the

output layer

77 W
1 1

1 1

1 1

Error goal aimed for

during

r/
0.0

{sc = 9.50}
0.001

{sc = 6.50 }

training
W

0.0

{sc = 9.45 }
0.001

{sc = 8.35}
BPNN 2 0.001 0.001

Table 7: Neural Network architectures used to design the models for r/, W and Vri,, of the supersonic
turbine. {sc = spread constant}.

Scheme afor W (%)
RBNN (Solverbe)

afor 77(%)
1.251 1.096

RBNN (Solverb) 0.292 1.102

BPNN 0.777 2.563

Reduced Cubic RS 1.031 1.223

Table 8: RMS error in predicting the values of the objective function by various schemes for the supersonic

turbine. (the error are given in percentages of the mean value of the responses)

Scheme D, in. RPM A .... Cv, Cb, Kr, 77 W, lbs
in 2 in. in. %

RBNN 9.88 37086.8 43.62 1.10 0.95 0.0 0.508 725.17

(Solverbe) (5.80) (0.74)

Vpitch, AN 2
in./sec *

101° '
in2*

rpm 2
1600.0 6.00

z_pay,
Ibs

-537.17

(29.80)
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Meanline
RBNN

(Solverb)
Meanline
BPNN

Meanline
Reduced
CubicRS
Meanline

Table9: O

10.15
10.41

10.41
9.18

9.18

37086.843.62 1.10 0.95 0.0
36090.5 46.06 1.13 0.90 0.0

36090.546.06 1.13 0.90 0.0
35188.648.46 0.89 1.30 0.0

35188.6
39926.7

39926.7

48.46 0.89 1.30 0.0
37.64 1.30 0.99 0.0

37.64 1.30 0.99 0.0
9timalSolutionswithconstraintson Vrim and AN

parenthesis for each prediction is in %)

0.480 730.61

0.492 744.45

(1.75) (0.17)
O.484 745.76

O.497 692.96

(2.49) (8.63)
0,484 758.76

0.475 674.21

(1.50) (2.10)
0.468 688.44

for a supersonic

1600.0 6.00

1600.0 6.00

1600 6.00

1600.0 6.00

1600.0 6.00

1600.0 6.00

-765.22

-684.45

(9.16)
-753.45

-592.96

(21.49)
-755.23

-750.21

(8.40)
1600.0 6.00 -819.00

turbine. (error given in

8

7

6'

5;

4

Design Space for ERE

r

6

vf/vo

[

T

7

• IO Original set

rlTest Set

8

7

5

4

Design Space for Q

V

7

vf/vo

(a) (b)

OOriginal set ]

DTest set

Figure 1: Design space for (a) ERE. (15 Training points, 10 Test points) (b) Q. (9 Training points, 4 Test
points) for the injector.

inputs

P

radbas hidden layer

f ..z...

radbas

linear output layer

put

(a)

Figure 2: (a) Radial basis network, (b) Transfer function, radbas. (Continued)
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a
/\

b

0.0 ' ' > w-p
-0.8326/1: +0.8326/b

a= radbas(dist(w,p)xb)

(b)

Figure 2: (a) Radial basis network, (b) Transfer function, radbas.
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Figure 3: Comparison of o for different NN designed with solverbe for (a) ERE (%) and (b) Q (Btu/in 2-
sec).
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Figure 4: Comparison of cy for different NN designed with solverbe for (a) r/(%) and (b) W (lbs).
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a vs Spread Conslanl (so)
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Figure 5: Comparison of (r for different NN designed with solverb for (a) ERE (%) and (b) Q (Btu/in2-sec).
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Figure 6: Comparison of o for different NN designed with solverb for (a) r/(%) and (b) W (Ibs).
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Figure 7: Comparison of Error goal vs number of Epochs and cr for networks trained with solverb. (a) ERE

(%), (b) Q (Btu/in2-sec), (c) r/(%) and (d) W (lbs). (Continued)
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Figure 7: Comparison of Error goal vs number of Epochs and cr for networks trained with solverb. (a) ERE

(%), (b) Q Btu/in2-sec), (c) r/(%) and (d) W (lbs).
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Figure 8: (a) Back-propagation Network, (b) Transfer function, tansig.

17



Second Phase

Perturb

Design
variables

Evaluate

gradient

Initial Design
Variables

,,A I..,
Y[ RS or trained NN r

es

Figure 9: Schematic of the optimization process.

AIAA-2000-4880

First Phase

Training data set I

I Training NN or RS I

Y

I
I

J

Comparison of RSs and Injector Model

99 "-- - " ..
_=7

_"b=6 - " "

97 .'"

96 ° ° " ° °
Qua&

9,4
_,_,,"_"J" _ t..¢,¢_ b = 4 ..... Cubic

93 ,O RS

92 / , , ,

4 5 6 7

VCVo

O Injector

Model

Comparison of NNs and Injector Model

IOI ] I O Injector

1: _i Model

98 _,=,_- _ _ RBNN

ua_ 9697_ (Solverbe)

95 ...... RBNN

94 (Solverb)

93
m m _ BPNN

92 I

4 5 6 7

V t,'Vo

(a) (b)
Figure 10: Comparison of models with test data for ERE of the injector. (a) RSs (b) NNs.

Comparison between RSs and Injector Model

1.2 I ....

11 Off: =_

0.4 _ O/F = 8

0.2 _,

0

4 5 6 7
V/Vo

0 Injector

Model

Qua&

RS

...... Cubic

RS

Comparison between NNs and Injector Model

1.2

0.8

21

4 5 6 7 8

V/V.

(a) (b)
Figure 11: Comparison of models with test data for Q of the injector. (a) RSs, (b) NNs.

Injector

Model

RBNN

(Solverbe)

...... RBNN

(Solverb)

_ _ BPNN

18



AIAA-2000-4880

r
Comparison between the RSs [ Comparison between the NNs

100 -[ -_ I O Injector / 1001 O lnjec|or Model

' ,_l .,,"".,"'_ / cso,,or_)
97 _Quaa. RS / vcv_- 8 ./ j¢" --

i / ¢"/" I".....RBNN
96 97

k "vc¢o=4 /

94 (Solverbe)

92

4 5 l.,_b6 7 8 A (Cubic)Opt" 4 5 7 8 [ ÷ Opt, (BPNN)

(a) (b)
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(b)
1) or lack of constraints (case 2) on objective functions. (a)

Optimum Efficiency, r/(%), (b) Optimum Weight, W (lbs), (c) Optimum pitch speed, Vmt_h (in. /sec), (d)
Optimum Annulus Area X RPM, AN 2 (in2*rpm z) and (e) Optimum Incremental Payload, Apay (lbs).
(Continued).
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Figure 15: Effect due to presence (case I) or lack of constraints (case 2) on objective functions. (a)

Optimum Efficiency, r] (%), (b) Optimum Weight, W (Ibs), (c) Optimum pitch speed, Vmtch (in./sec), (d)

Optimum Annulus Area X RPM, AN 2 (in2*rpm 2) and (e) Optimum Incremental Payload, Apay (Ibs).
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APPENDIX

O/F

4.0
v/vo
4.0

4.0 4.0

4.0 4.0

4.0 4.0

4.0 4.0

4.0 6.0

Lcomb, in.
4.0

ERE, % Q, Btu/inCsec
92.9 0.753

5.0 96.0 0.753

6.0 97.6 0.753

7.0 98.6 0.753
8.0 99.0 0.753

4.0 95.0 0.928

4.0 6.0 5.0 97.1 0.928

4.0 6.0 6.0 98.5 0.928

4.0 6.0 7.0 99.2 0.928

4.0 6.0 8.0 99.4 0.928

4.0 8.0 4.0 96.6 1.I0

4.0 8.0 5.0 98.2 1.10

4.0 8.0 6.0 99.1 1.I0

4.0 8.0 7.0 99.4 1.10

4.0 8.0 8.0 99.6
Table IA. Performance and heat flux res

1.10

_onses for O/F = 4 for the shear coaxial injector element. (Tables
1A-3A together contain 45 data points used as the training set)

O/F

6.0

6.0

6.0

V/Vo
4.0

4.0

L,.o,,i,, in. ERE, % Q, Btu/inZ-sec
4.0 92.9 0.691

5.0 96.0 0.691
4.0 6.0 97.6 0.691

6.0 4.0 7.0 98.6 0.691

6.0 4.0 8.0 99.0 0.691

6.0 6.0 4.0 95.0 0.642

6.0 6.0 5.0 97.1 0.642

6.0 6.0 6.0 98.5 0.642

6.0 6.0 7.0 99.2 0.642

6.0 6.0 8.0 99.4 0.642

6.0 8.0 4.0 96.6 0.741

6.0 8.0 5.0 98.2 0.741

6.0 8.0 6.0 99.1 0.741

6.0 8.0 7.0 99.4 0.741
6.0 8.0 8.0 99.6

Table 2A. Performance and heat flux responses for O/F = 6 for the shear

0.741

coaxial injector element.
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O/F

8.0
VIAl,,
4.0

Lcomb,in. ERE, % Q, Btu/in2-sec
4.0 92.9 0.588

8.0 4.0 5.0 96.0 0.588

8.0 4.0 6.0 97.6 0.588

8.0 4.0 7.0 98.6 0.588

8.0 4.0 8.0 99.0 0.588

8.0 6.0 4.0 95.0 0.512

8.0 6.0 5.0 97.1 0.512

8.0 6.0 6.0 98.5 0.512

8.0 6.0 7.0 99.2 0.512

8.0 6.0 8.0 99.4 0.512

8.0 8.0 4.0 96.6 0.493

8.0 8.0 5.0 98.2 0.493

8.0 8.0 6.0 99.1 0.493

8.0 8.0 7.0 99.4 0.493

8.0 8.0 8.0 99.6 0.493

Table 3A. Performance and heat flux responses for O/F = 8 for the shear coaxial injector element.

O/F

4.0
v/vo
5.0

Leomb, in.
4.0

ERE, %

8.0

Q, Btu/inZ-sec

99.6

94.4 0.812

4.0 5.0 5.0 96.9 0.812

4.0 5.0 6.0 98.1 0.812

4.0 5.0 7.0 99.1 0.812

4.0 5.0 8.0 99.4 0.812

4.0 7.0 4.0 96.0 1.014

4.0 7.0 5.0 97.9 1.014

4.0 7.0 6.0 98.8 1.014

4.0 7.0 7.0 99.4 1.014

4.0 7.0 8.0 99.6 1.014

6.0 5.0 4.0 94.4 0.642

6.0 5.0 5.0 96.9 0.642

6.0 5.0 6.0 98.1 0.642

6.0 5.0 7.0 99.1 0.642

6.0 5.0 8.0 99.4 0.642

6.0 7.0 4.0 96.0 0.691

6.0 7.0 5.0 97.9 0.691

6.0 7.0 6.0 98.8 0.691

6.0 7.0 7.0 99.4 0.691
6.0 7.0

Table 4A: Data used to test the RS and NN for the shear coaxial injector element.
data points used as the testing set)

0.691

The table contains 20
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Mean
Diameter,

D

(in.)

5.081

5.081

5.081

5.081

5.081

5.081

5.081

5.081

5.081

5.081

5.081

5.081

5.081

5.081

RPM Blade

Annulus

Area, Aann
(in z)

Vane
Axial

Chord, C,

(in.)

Blade

Axial

Chord, Cb

(in.)

Stage
Reaction

Kr
(%)

r/(t-s) Weight,
W(lbs)

Pitch

Speed,

Vpitch

(in./sec)
18837.6 37.6379 0.3 0.3 0.0 0.1303 501.45 417.9644

18837.6 37.6379 0.3 0.3 0.0 0.1188 474.55 417.9644 1.34

18837.6 37.6379 0.3 0.3 0.5 0.1364 515.59 417.9644 1.34

18837.6

18837.6

18837.6

18837.6

18837.6

37.6379

37.6379

37.6379

37.6379

37.6379

69.8989

69.8989

69.8989

69.8989

69.8989

69.8989

18837.6

0.3

1.3

1.3

1.3

1.3

0.3

0.3

0.3

0.3

1.3

1.3

18837.6

0.3

1.3

1.3

1.3

1.3

0.3

0.3

0.3

0.3

1.3

1.3

18837.6

0.5

0.5

0.5

0

0

0.5

0.518837.6

0.1220

0.1371

0.1214

0.1444

0.1247

0.1421

0.1233

0.1474

0.1265

0.1483

0.1259

18837.6

482.19

517.05

480.68

533.4

488.51

417.9644

417.9644

417.9644

417.9644

AN 2

* 10 to

(in 2.

rpm 2)
1.34

18837.6

1.34

1.34

1.34

1.34

417.9644 1.34

528.29 417.9644 2.48

485.3 417.9644 2.48

417.9644

417.9644

417.9644

540.05

492.63

542.03

491.39 417.9644

2.48

2.48

2.48

2.48

5.081 18837.6 69.8989 1.3 1.3 0.5 0.1545 555.51 417.9644 2.48

5.081 18837.6 69.8989 1.3 1.3 0.5 0.1291 498.88 417.9644 2.48

5.081 43954.4 37.6379 0.3 0.3 0 0.2842 481.62 ,975.2502 7.27

5.081 43954.4 37.6379 0.3 0.3 0 0.2587 455.22 975.2502 7.27

5.081 43954.4 37.6379 0.3 0.3 0.5 0.2653 462.14 975.25021 7.27

5.081 43954.4 37.6379 1.3 1.3 0 0.3012 498.79 975.2502 7.27

0.26441.3

1.3

37.6379

37.6379

1.3

1.3

975.2502

975.2502

5.081

5.081

43954.4

43954.4

0 461.25

512.860.5 0.3155

5.081 43954.4 37.6379 1.3 1.3 0.5 0.2713 468.41 975.2502

5.081 43954.4 69.8989 0.3 0.3 0 0.3107 508.13 975.2502

5.081 43954.4 69.8989 0.3 0.3 0 0.2692 466.29 975.2502

0.3214 518.52 975.250269.8989

69.8989

43954.4

43954.4

0.3

0.3

0.5

0.5 975.2502473.1

0.3

0.3

5.081

5.081

5.081 43954.4 69.8989 1.3 1.3 0

5.081 43954.4 69.8989 1.3 1.3 0

5.081 43954.4 69.8989 1.3 1.3 0.5

0.2758

0.3261

7.27

7.27

7.27

13.5

13.5

13.5

13.5

523.11 _975.2502 13.5

0.275 472.29 975.2502 13.5

0.3384 534.87 975.2502 13.5

1.3 1.3 0.5 0.2819 479.28 975.2502 13.5

0.3 0.3 0 0.3425 895.71 1253.893 1.34

0.3 0 0.3078 840.05 1253.893 1.34

0.3495

0.3093

0.3604

43954.4 69.89895.081

15.243 18837.6 37.6379

15.243 18837.6 37.6379

15.243 18837.6 37.6379

0.3

0.3

0.3

1.3

1.3

15.243

15.243

15.243

18837.6

0.5

0.5

0

906.58

842.6

923.49

840.98

936.31

843.58

944.92

860.49

0

0.5

0.5

18837.6

37.6379

37.6379

37.637918837.6

15.243 18837.6 37.6379 1.3

15.243 18837.6 37.6379 1.3

15.243 18837.6 69.8989 0.3

0.3

0.3

1.3

0.3

1253.893

1253.893

1253.893

1253.893

1253.893

1253.893

1253.893

1253.893

0.30831.3

18837.615.243 69.8989

Table 5A: Data used to generate the

1.3

1.3

0.3

0.3

RS and train the NN for the

0.3688

0.3099

0.3744

0.3204

su )ersonic turbine. (Continued)

1.34

1.34

1.34

1.34

1.34

1.34

2.48

2.48
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Mean
Diameter,

D

(in.)

RPM Blade

Axial

Chord, Cb
(in.)

15.243 18837.6 0.3

15.243 18837.6 0.3

15.243

15.243

15.243

15.243

15.243

18837.6

18837.6

18837.6

18837.6

43954.4

43954.415.243

15.243 43954.4

15.243 43954.4

15.243 43954.4

1.3

1.3

1.3

1.3

0.3

0.3

0.3

0.3

Stage
Reaction

Kr
(%)
0.5

0.5

0

0

0.5

0.5

0.5

0.5

1.3 0

15.243 43954.4 1.3 0

15.243 43954.4 1.3 0.5

43954.4

43954.4

15.243

15.243

15.243

1.3

0.3

Blade Vane

Annulus Axial

Area, A,,n, Chord, C,,

(in z) (in.)
69.8989 0.3

69.8989 0.3

69.8989 1.3

69.8989 1.3

69.8989 1.3

69.8989 1.3

37.6379 0.3

37.6379 0.3

37.6379 0.3

37.6379 0.3

37.6379 1.3

37.6379 1.3

37.6379 1.3

37.6379 1.3

69.8989 0.3

69.8989 0.3

69.8989 0.3

69.8989 0.3

69.8989 1.3

69.8989 1.3

69.8989 1.3

69.8989 1.3

53.7684 0.8

53.7684 0.8

53.7684 0.8

53.7684 0.8

37.6379 0.8

69.8989 0.8

53.7684 0.3

53.7684 1.3

53.7684 0.8

53.7684 0.8

53.7684 0.8

53.7684 0.8

53.7684 0.8

43954.4

0.5

0

0.3 0

15.243 43954.4 0.3 0.5

15.243 43954.4 0.3 0.5

15.243 43954.4 1.3 0

15.243 43954.4 1.3 0

15.243 43954.4

43954.4

31396

31396

1.3

1.3

0.8

0.8

0.8

0.8

0.8

0.8

0.3

1.3

15.243

5.081

15.243

10.162 18837.6

10.162 43954.4

10.162 31396

31396

31396

10.162

10.162

10.162

10.162

31396

0.5

0.5

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

31396 0.8 0

10.162 31396 0.8 0.5

10.162 31396 0.8 0.25

10.162 31396

10.162 31396

Table 5A: Data used to generatethe

data points used asthetraining set)

0.8

0.8

RS an,

0.25

0.25

q(t-s) Weight,
W (lbs)

0.3832 958.17

0.3243 866.9

0.3905 968.95

0.3219 862.9

0.4003 983.59

0.3259 869.38

0.608 760.14

0.5751 735.2

0.6156 765.89

0.5713 732.32

0.657 796.37

0.5762 736.08

0.6666 803.33

0.5723 733.11

0.6754 809.67

0.6035 756.8

0.6888 819.3

0.6052 758.09

0.7202 841.52

0.6064 759

0.7348 851.67

0.6084 760.47

0.2285 517.15

0.5412 867.47

0.2636 765.49

0.5319 701.6

0.3966 719.85

0.4139 738.52

0.3988 722.24

0.4087 732.98

0.4007 724.3

0.4093 733.6

0.4382 764.27

0.3687 689.01

0.4094 733.74

train the NN for the supersomc turbine.

Pitch AN 2

Speed, * 10 I°

Vpitch (in 2.

(in./sec) rpm z)
1253.893 2.48

1253.893 2.48

1253.893 2.48

1253.893 2.48

1253.893 2.48

1253.893 2.48

2925.751 7.27

2925.751 7.27

2925.751 7.27

2925.751 7.27

2925.751 7.27

2925.751 7.27

,2925.751 7.27

2925.751 7.27

2925.751 13.5

2925.751 13.5

2925.751 13.5

2925.751 13.5

2925.751 13.5

2925.751 13.5

2925.751 13.5

2925.751 13.5

696.6073 5.3

2089.822 5.3

835.9288 1.91

1950.5 10.4

1393.215 3.71

1393.215 6.89

1393.215 5.3

1393.215 5.3

1393.215 5.3

1393.215 5.3

1393.215 5.3

1393.215 5.3

1393.215 5.3

The table contains 76
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Mean
Diameter,

D

(in.)
5.5891

RPM

20093.44

Blade

Annulus

Area, Aann
(in 2)

39.251

Vane

Axial

Chord, Cv

(in.)
0.35

Blade

Axial

Chord, Cb
(in.)

Stage
Reaction,

Kr
(%)

r/(t-s) Weight,
W(lbs)

Pitch

Speed,

Vpitch

(in./sec)

AN 2

* lOw

(in 2.

rpm 2)
0.35 0.03 0.1582 541.999 490.41 1.58

6.0972 21349.28 40.864 0.4 0.4 0.05 0.1863 576.690 568.43 1.86

6.6053 22605.121 42.477 0.45 0.45 0.08 0.2147 606.644 652.02 2.17

7.1134 23860.96 44.090 0.5 0.5 0.10 0.2432 632.936 741.19 2.51

7.6215 25116.8 45.703 0.55 0.55 0.13 0.2717 655.980 835.93 2.88

8.1296 26372.64 47.316 0.6 0.6 0.15 0.3001 676.217 936.24 3.29

8.6377 27628.48 48.929 0.65 0.65 0.18 0.3283 693.910 1042.12 3.73

9.1458 28884.32 50.542 0.7 0.7 0.20 0.3560 709.287 1153.58 4.22

9.6539 30140.16 52.155 0.75 0.75 0.23 0.3830 722.487 1270.61 4.74

10.6701 32651.84 55.381 0.85 0.85 0.28 0.4350 743.202 1521.39 5.90

11.1782 33907.68 56.995 0.9 0.9 0.30 0.4597 751.038 1655.14 6.55

11.6863 135163.52 58.608 0.95 0.95 0.33 0.4833 757.273 1794.46 7.25

12.1944 36419.36 60.221 1 1 0.35 0.5058 761.977 1939.35 7.99

12.7025 37675.2 61.834 1.05 1.05 0.38 0.5269 765.201 2089.82 8.78

13.2106 38931.04 63.447 1.1 1.1 0.40 0.5466 766.977 2245.86 9.62

13.7187 40186.88 65.060 1.15 1.15 0.43 0.5646 767.347 2407.47 10.51

14.2268 41442.72 66.673 1.2 1.2 0.45 0.5810 766.329 2574.66 11.45

14.7349 42698.56 68.286 1.25 1.25 0.48 0.5955 763.961 2747.42 12.45

Table 6A: Data used to testthe RS and NNforthe supersonic turbine.(The table contains 18 data points
used asthetestingset)
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The response surface methodology for rocket engine injector design optimization for which only modest amounts

of data may exist is examined. Two main aspects are emphasized: relative performance of quadratic and cubic

polynomial response surfaces and enhancement of the fidelity of the response surface via neural networks. A data

set of 45 design points from a semi-empirical model for a shear coaxial injector element using gaseous oxygen and

gaseous hydrogen propellants is used to formulate response surfaces using quadratic and cubic polynomials. This

original data set is also employed to train a two-layered radial basis neural network (RBNN). The trained network

is then used to generate additional data to augment the original information available to characterize the design
space. Quadratic and cubic polynomials are again used to generate response surfaces for this RBNN-enhanced

data set. The response surfaces resulting from both the original and RBNN-enhanced data sets are compared

for accuracy. Whereas the cubic fit is superior to the quadratic fit for each data set, the RBNN-enhanced data

set is capable of improving the accuracy of the response surface if noticeable errors from polynomial curve fits

are encountered. Furthermore, the RBNN-enhanced data set yields more consistent selections of optimal designs

between cubic and quadratic polynomials. The techniques developed can be directly applied to injector design and
optimization for rocket propulsion.

Nomenclature

A = lowest acceptable value of energy releaseefficiency
(ERE)

a = radial basis neural network output

B = target value of ERE
b = bias associated with a neuron in neural networks

C = target value of Q

D = composite desirability function

d_ = desirability function related to ERE
d2 = desirability function relatedto Q

E = highest acceptable value of Q

ei = error at the ith design point

L_mb = combustor length (length from injector to throat)
n = number of data points

n t, = number of coefficients in the response surface

O/F = propellant mixture ratio
p = input vector of the neural network

Q = actual chamber wall heat flux

Qnom = nominal chamber wall heat flux
radbas = transfer function of radial basis neural network

s = weighting factor for dt

t = weighting factor for do
a = root mean square error

a_ = adjusted root mean square error
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I. Introduction

HE injector design methodologies used successfully in pre-
vious rocket propulsion system development programs were

typically based on large subscale databases and the empirical de-
sign tools derived from them. t-5 Extensive sub- and full-scale hot-

fire test programs often guided these methodologies. Current and

planned launch vehicle programs have tight budgets and aggressive

schedules, neither of which is conductive to the large test programs

of the past. Also, new requirements for operability and maintain-
ability require that injector design be robust. Hence, variables not

previously included in the injector design now merit consideration

for inclusion in the design process. Also, the effect of the injector de-

sign on variables, peripheral to, but influenced by the injector, may
need to be included in the injector design process. These new pro-

grams with compressed schedules, lower budgets, and more strin-

gent requirements make development of broader and more efficient

injector design methodologies an attractive goal.
Historically, injectors have been designed, fabricated, and tested

based on experience and intuition. As hardware was tested, design-

ers proposed modifications aimed at obtaining an improved design.

Despite their experience and skill, these efforts were unlikely to pro-

duce the optimal design in a short time frame. Also, as more design

variables are considered, the design process becomes increasingly
complex, and it is more difficult to foresee the effect of the modi-

fication of one variable on other variables. Use of an optimization

approach to guide the design addresses both of these issues. The op-

timization scheme allows complex, interrelated information to be
managed in such a way that the extent to which variables influence

each other can be objectively evaluated and optimal design points
can be identified with confidence.

Development of an optimization scheme for injector design called

methodology for optimizing the design of injectors (method 1) has

been reported by Tucker et al. 6 Method I is used to generate appro-
priate injector design data and then guide the designer toward an

optimum design subject to the specified constraints. As reported,

391
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method I uses the response surface methodology (RSM) to facili-

tate the optimization. The RSM approach is to conduct a series of

well-chosen experiments (empirical, numerical, physical, or some

combination of the three) and use the resulting information to con-
struct a global approximation (response surface) of the measured

quantity (response) over the design space. A standard constrained

optimization algorithm is then used to interrogate the response sur-

face for an optimum design.

The initial demonstration of method I by Tucker et al. 6 focused

on a simple optimization of a shear coaxial injector element with

gaseous oxygen and gaseous hydrogen propellants. The design data

were generated using an empirical design methodology developed

by Calhoon et al. 7 These researchers conducted a large number

of cold-flow and hot-fire tests over a range of propellant mixture

ratios, propellant velocity ratios, and chamber pressure for shear

coaxial, swirl coaxial, impinging, and premixed elements. The data

were correlated directly with injector/chamber design parameters,
which are recognized from both theoretical and empirical stand-

points as the controlling variables. For the shear coaxial element,
performance, as measured by energy release efficiency (ERE), is

obtained using correlations taking into account combustor length

Lcomb (length from injector to throat) and the propellant velocity

ratio V:/Vo. The nominal chamber wall heat flux at a point just
downstream of the injector, Q,om, is calculated using a modified

Bartz equation and is correlated with propellant mixture ratio O/F

and propellant velocity ratio V:/Vo to yield the actual chamber wall

heat flux Q. The objective in the initial demonstration of method I

was to maximize injector performance while minimizing chamber
wall heat flux (lower heat fluxes reduce cooling requirements and

increase chamber life) and chamber length (shorter chambers lower

engine weight).

The initial demonstration of method I used quadratic polynomi-

als to generate the response surfaces. The surfaces for ERE and Q

were joined by use of a desirability function, and optimum design

points were sought as the independent variables (O/F, V//Vo, and
Lcomb) were constrained over different ranges. The initial demon-

stration reported by Tucker et al. 6 is viewed as a proof of concept
for method I.

II. Scope of Current Research

Empirical design methodologies, such as that by Calhoon et al., 7

may allow the designer to generate large quantities of data within a
design space. However, due to their empiricism, these methodolo-
gies are often sufficiently accurate only over the range of variables
for which test data were taken to develop the methodology. For
some injector types, propellant combinations, or design conditions,
this limitation may require that additional data be generated to en-

sure confidence in the design. Historically, these data have been

generated in sub- and full-scale test programs. More recently com-

putational fluid dynamics (CFD)analysis from validated models has
been used to augment the test data. Data from test programs and CFD
analysis are expensive and time consuming to obtain. Recognition of
this has direct implications for the usefulness of optimization tech-
niques in injector design methodologies. Although the optimization

scheme must be capable of efficiently organizing large amounts
of design information generated from empirical design methodolo-

gies, it must also be able to make effective use of the relatively small

amounts of data available in some cases. An optimization scheme

that requires large amounts of data to generate meaningful results

will be marginally useful, if at all, when only small amounts of data
are available for use.

The present effort seeks to investigate approaches that would

make RSM robust and reliable for injector design optimization, es-

pecially when only limited amounts of design data exist. We first

investigate the relative performance of a quadratic and a cubic poly-

nomial for constructing response surfaces. The original data set
from Tucker et al. _ (with 45 design points) is used to generate the

response surfaces for ERE and Q. The quality of each fit on the

original data set is evaluated. Then, an approach to train a radial
basis neural network (RBNN) to enhance the information available

to construct the response surface is presented. Specific issues rela-

tire to the network training are evaluated and discussed. This trained

RB NN is then used to generate additional design data. The data gen-

erated from the network are combined with the original data from the
Calhoon et al. 7 model to form an enhanced data set, which is then re-

fit with quadratic and cubic polynomial surfaces. The quality of the

fit of the resulting surfaces is compared. Also, each surface is used

to conduct design optimization over the same range of independent

variables. The optimal design points are compared with exact points

calculated from the empirical model.

III. Approaches

A. General

The range of propellant mixture ratios O/F propellant velocity
ratios If/Vo, and chamber lengths Lcomb considered in this study

are shown in Table 1. Tables 2-4 shows the empirically derived
performance and heat flux for the 45 combinations of O/F, Vy/Vo,
and Lco,,b considered. Hereafter, these 45 design points are referred

to as the original data set. As noted earlier, this original data set is
augmented with additional design points generated using a trained
RBNN. This new and larger data set is referred to as the enhanced

data set. The RSM, using both quadratic and cubic polynomials, is

used to fit both surfaces. The following two sections give pertinent
details on the RSM and neural networks (NN).

Table 1 Range of design
variables considered

O / F Vy / Vo Lcomh, in.

4,6,8 4 4-8
4,6,8 6 4-8
4,6,8 8 4-8

Table 2 Performance and heat flux
responses for O/F = 4 elements

Lcornb, ERE, Q,
O/F Vf/Vo in. % Btu/in.2-s

4.0 4.0 4.0 92.9 0.753
4.0 4.0 5.0 96.0 0.753
4.0 4.0 6.0 97.6 0.753
4.0 4.0 7.0 98.6 0.753
4.0 4.0 8.0 99.0 0.753
4.0 6.0 4.0 95.0 0.928
4.0 6.0 5.0 97.1 0.928
4.0 6.0 6.0 98.5 0.928
4.0 6.0 7.0 99.2 0.928
4.0 6.0 8.0 99.4 0.928
4.0 8.0 4.0 96.6 1.10
4.0 8.0 5.0 98.2 1.10
4.0 8.0 6.0 99. I 1.10
4.0 8.0 7.0 99.4 1.10
4.0 8.0 8.0 99.6 1.10

Table 3 Performance and heat flux
responses for OIF = 6 elements

Leomb, ERE, Q,
O/F VI/Vo in. % Btu/in.:_-s

6.0 4.0 4.0 92.9 0.691
6.0 4.0 5.0 96.0 0.691
6.0 4.0 6.0 97.6 0.691
6.0 4.0 7.0 98.6 0.691
6.0 4.0 8.0 99.0 0.691
6.0 6.0 4.0 95.0 0.642
6.0 6.0 5.0 97. I 0.642
6.0 6.0 6.0 98.5 0.642
6.0 6.0 7.0 99.2 0.642
6.0 6.0 8.0 99.4 0.642
6.0 8.0 4.0 96.6 0.741
6.0 8.0 5.0 98.2 0.741
6.0 8.0 6.0 99.1 0.741
6.0 8.0 7.0 99.4 0.741
6.0 8.0 8.0 99.6 0.741
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Table 4 Performance and heat flux

responses for O/F = 8 elements

Lcomt,, ERE, Q,
O/F Vf/Vo in. % Btu/in.2-s

8.0 4.0 4.0 92.9 0.588
8.0 4.0 5.0 96.0 0.588
8.0 4.0 6.0 97.6 0.588
8.0 4.0 7.0 98.6 0.588
8.0 4.0 8.0 99.0 0.588
8.0 6.0 4.0 95.0 0.512
8.0 6.0 5.0 97.1 0.512
8.0 6.0 6.0 98.5 0.512
8.0 6.0 7.0 99.2 0.512
8.0 6.0 8.0 99.4 0.512

8.0 8.0 4.0 96.6 0.493
8.0 8.0 5.0 98.2 0.493
8.0 8.0 6.0 99.1 0.493
8.0 8.0 7.0 99.4 0.493
8.0 8.0 8.0 99.6 0.493

B. RSM

The approach of RSM 8 is to perform a series of experiments, or

numerical analyses, for a prescribed set of design points, and to con-

struct a response surface of the measured quantity over the design

space. In the present context, the two responses of interest are a mea-

sure of combustor performance ERE and the injector wall heat flux

Q. The design space consists of the set of relevant variables O/F,

V:/Vo, and Lcomb considered over the ranges shown in Table 1. The

response surfaces are fit by standard least-squares regression with a
quadratic polynomial using JMP 9 statisticalanalysis software. JMP

is an interactive, spreadsheet-based program that provides a variety

of statistical analysis functions. A backward elimination procedure

based on t-statistics is used to discard terms and improve the pre-
diction accuracy. The t-statistic, or t-ratio, of a particular coefficient

is given by the value of the coefficient divided by the standard error
of the coefficient. The quality of fit between different surfaces can

be evaluated by comparing the adjusted rms error defined as

aa =¢Ee2/(n--np) (1)

where or, is the adjusted rms error incurred while mapping the sur-
face over the data set. The measure of error given by _,, is normalized

to account for the degrees of freedom in the model. This rms error,

thus, accounts for the nominal effect of higher-order terms providing
a better overall comparison among the different surface fits.

In the current study, it is desirable to simultaneously maximize

ERE and minimize Q. One method of optimizing multiple responses

simultaneously is to build, from the individual responses, a compos-
ite response known as the desirability function. The method allows

for a designer's own priorities on the response values to be built

into the optimization procedure. The first step in the method is to

develop desirability function d for each response. In the case where

a response should be maximized, such as ERE, the desirability takes
the form

dj = [(ERE - A)/(B - A)] s (2)

where A is the lowest acceptable value such that d = 1 for any

ERE > B and d = 0 for ERE < A. The power values s is a weighting

factor, which is set according to one's subjective impression about

the role of the response in the total desirability of the product. In the

case where a response is to be minimized, such as Q, the desirability
takes on the form

d2 = [(Q - E)/(C - E)]' (3)

where E is the highest acceptable value such that d = 1 for any
Q < C and d = 0 for Q > E. Choices for A, B, C, and E are made

according to the designer's priorities or, as in the present study,

simply as the boundary values of the domain of ERE and Q spanned

by the points in Tables 2-4. Values of s and t are set based on

which response has higher priority. A single composite response

is developed that is the geometric mean of the desirabilities of the

individual responses. The composite response defined as

D = (dl . d2 . d3...d,,) l/m (4)

which for the present case is

D = (d, - d2) _" (5)

This is then submitted to an optimization toolbox to be maxi-

mized. Solver, an optimization tool available as part of Microsoft
Excel I° package, is used in this effort. This tool uses the GRG2

nonlinear optimization code developed by Lasdon et al.H

C. NN

NNt2, _3have received much attention in engineering applications
in the last decade because they are hihgly flexible and have the abil-

ity to be trained, using user-supplied data, to map complex surfaces.

The NN can be trained with data from any source: empirical, experi-
mental, or analytical. Training is accomplished by adjusting weights

on the internal connections of the network through defined training

algorithms. The training is a cyclic process in which the weights and
biases are repeatedly adjusted until an accurate mapping of the re-

sponse data is obtained. Once trained, the NN is then able to predict

the responses for other points in the design space. The NN toolbox
_]4

available in MATLAB is used in the current work. A two-layered

radial basis network is used to provide the mapping between the in-

put parameters (independent variables) and the output parameters

(dependent variables). The network in this effort is designed with
the function Solverbe and simulated with Simurb, both of which

are contained in the MATLAB NN toolbox. Solverbe designs the
network with zero error on the training vectors. It uses the known set

of inputs and target vectors along with a quantity called the spread

constant to generate the weights and biases for the exact mapping
of the network. The designed network has two layers: an initial ra-

dial basis layer and a final linear layer. In the initial layer, Solverbe

creates as many radial basis neurons as there are input vectors. Each

neuron is assigned a weight that is set to the transpose of a given

input vector. By design, each neuron detects and responds to a differ-
ent input vector. Hence, there are as many neurons as input vectors.

The radial basis function (radbas) has a maximum output of 1 when

the input is 0. The radial basis output a is given by

a = radbas{dist(w, p) x b} (6)

where radbas is the transfer function, dist is the vector distance be-

tween its weight vector w and the input vectorp, and b is the bias.

The bias controls the sensitivity of the neuron. The output has an

inverse relationship with the distance between the vectorsp and w.

Any neuron in the network with input identical to its weight vec-

tor has an output value of 1. For an input of 0.8326, radial basis

produces an output of 0.5. To obtain an output of 0.5 or more, the
vector distance between an input vector and its weight vector must

be 0.8326/b or less. Each bias is set to a value of 0.8326/sc, where

sc is the spread constant. The sc, therefore, defines the range within

which the input vector has to lie relative to the weight vector to pro-
duce an output of 0.5 or more from the radbas. For Iarge values of sc,

neurons should respond strongly to the overlapping regions of the

design space. Note that caution must be used regarding selection of

values for sc. If the sc value is too large, all neurons may respond to a

given input. This creates an erroneous signal, which may adversely

affect the network's ability to predict new design points. As dis-
cussed in a later section, a study has been conducted to estimate the

best value ofsc for the present work on injector optimization. Based

on the output from the radbas, the second linear layer of the network

attempts to map it to the output while minimizing the sum-squared
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error. Weights and biases are assigned to each neuron based on its

output from the radial basis layer such that the network yields a value

sufficiently close to the target vector. After the weights and biases

have been generated, the MATLAB function Simurb is employed.

This function uses the weights and biases generated by Solverbe

during the training period to predict the output for new sets of
inputs.

The values of independent and dependent variables in Tables 2-4,

which constitute the original data set, are used as the inputs and

outputs to train the NN. This trained network is then used to generate

other design points as required for the enhanced data set.

The design function and design parameters have been found to

play an important role in the design of an efficient network. An at-

tempt was made to study the effect of design function. In addition

to Solverbe, another MATLAB design function, Solverb, was used

to repeat the training/prediction procedure described. A significant

difference was noticed in the prediction capabilities of the two func-
tions. As compared to Solverbe, Solverb adds one neuron at a time

instead of adding as many neurons as the number of inputs. It is
an iterative procedure, and neurons are added until the error dur-

ing training is less than the user-defined error goal. This iterative

procedure of adding neurons one at a time may result in a smaller

network, but it takes a longer time to train than Solverbe. It also

requires more design parameters than Solverbe.
More detailed discussion of the basic concepts and practical im-

plementation of both RSM and NN, directly relevant to the present
effort, can be found in Ref. 13.

IV. Results and Discussion

A. Polynomial Fits on the Original Data Set

According to the injector model developed by Calhoon et al., 7
injector performance, as measured by ERE depends only on the

velocity ratio V//Vo and combustion chamber length Lcomb. Exam-
ination of the original data set in Tables 2-4 indicates 15 distinct

design points for ERE. Because chamber wall heat flux is dependent
only on velocity ratio Vf/Vo and oxidizer to fuel ratio O/F, there
are nine distinct design points for Q. The design space for this effort
is shown in Fig. 1. For ERE, the five distinct chamber lengths offer
the potential for a fourth-order polynomial fit in Lcomb, whereas the
three different velocity ratios limit the fit in Vy/Vo to second order.
Quadratic and cubic response surfaces for both EREand Q has been

generated for evaluation. These noted limitations on the data cause
the cubic surfaces to be third order in Lcomb only.
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1. Quadratic Re._porLreSurJace

The quadratic response surfaces on the original data set con-
structed by JMP are given by

ERE = 70.43 + 1.580V[/Vo + 6.208Lcomb

-- O.190( Vf / Vo) Lco,,b - 0.331 (Lcomb) 2

and

(7)

Q = 0.479 - 0.0460/F + 0.191 Vf/Vo + 0.0094(0/F) 2

-O.028( O / F)Vf/ Vo (8)

These response surfaces represent reduced models accomplished

by term elimination from the full surface using t statistics as de-

scribed earlier. These are identical to reduced surfaces generated
previously by Tucker et al. 6

2. Cubic Response Surface

Cubic models for ERE and Q have also been generated for the

analysis. The full ERE and Q response surfaces are

ERE = 50.060 + 3.759Vf/Vo + 14.574Lcomb -- 0.05(Vf/Vo) 2

-- 0.777 (V f /Vo)Lcomb - 1.459(Lcomt,) 2 + 0.0025 (Vt /Vo)2 Lct_rnb

"Jc 0.0464Vf/V0(Lcomb) 2 q- 0.0472(Lcomb) 3 (9)

and

Q = -0.566 - 0.3580/F + 0.383 Vj/Vo - O.O191(O/F) 2

- O. 107(O/F)Vy/Vo - 0.0028(Vf/Vo) 2

+O.O048(O/F)2Vf/Vo + O.O019(O/F)(Vf/Vo) 2 (10)

Reduced cubic surfaces for both ERE and Q were also obtained. As

discussed later, shortcomings were encountered with these surfaces.

3. Comparison Between Cubic aluJ Quadratic Response Surfaces

The quadratic and cubic fits for both surfaces are plotted along

with the actual data from the injector model in Fig. 2. NN and injector

model data are the same points in the graph. Quadratic and cubic

are predicted by RSM. Based on the adjusted rms error, the cubic

fit is more accuratethan the quadratic fit for ERE. The adjusted rms

error for the quadratic and cubic response surfaces of ERE are 0.211
and 0.083, respectively. The cubic fit, by this measure, is superior

for ERE. However, the error is almost identical in the case of Q for

both the quadratic (0.039) and cubic (0.040) surfaces. This maybe

due to the very small number of points available for the curve fit.

The additional terms in the cubic fit relative to the quadratic fit do

not improve the mapping of the response surface for Q.

In the report by Tucker et al 6 an optimization was done for three
different ranges of the independent variables using the quadratic

fit shown in Eqs. (7) and (8). The three cases analyzed differ

only in the constraints implemented on the design parameters. The

a)

101

100

99

98

97

96

95

94

93

92

Comparison of cubic and quadratic with injector model

........ V......

I t

__ _,#' . ,,t,/,,,_"
,e.

e,'

_o

......... F

... .-:'-.--..z -. 55-2 ......

4 4_ 5 5.5 6 6.5 7 7.5 8

Lcomb

Cubic.oh: 0.083

Quad. o, :0.21

O injector
mt,'del

..... cubic

--- quad.

O Opt (cubic'_

Opt (quad.',

Fig. 2

points.

1.2 Comparison of cubic and quadratic with injector model Cubic. o.: 0.040

I ,_. Quad o'_ : 0.039

i.yf/'Vo=6

0.8 _,,V._&_. " "_ :'_: "_""'_

": :'-'-"-'_--4."t_.'_'_k :_ -__-, ....... q Injector

0.6 . ."r--..z¢._._ , ._ -- -_t model

: ...... cubic
0.4.

-- - -- qua&

0.2

o Opt

0 (cubic)

X Opt
4 4,5 5 5.5 6 6.5 7 7.5 8

(quad.)

b) O_

Assessment of performance of cubic and quadratic response surfaces of a) ERE, 15 training/mapping points and b) Q, 9 training/mapping



396 SHYY,TUCKER, ANDVAIDYANATHAN

Table 5 Optimum values obtained with cubic and quadratic for case Ia

Cubic Quadratic

WERE, WQ, Lcomb, ERE, Q, Lc,,mb, ERE, Q,
(s) (t) O/F V//Vo in. % Btu/infl-s O/F Vf/Vf_ in. % Btu/in.2-s

1 10 6.0 5.41 7.0 99.02 0.664 6.0 6.00 7.0 99.17 0.669

(99.00) b (0.654) (99.20) (0.642)
1 1 6.0 6.00 7.0 99.15 0.669 6.0 6.00 7.0 99.17 0.669
10 1 6.0 6.00 7.0 99.15 0.669 6.0 6.00 7.0 99.17 0.669

aConstraints:4 _<0/F<6.4< Vf/V o 5 6, and L¢omb(in.)< 7. b(Exactresponse of the injector model.)

Table 6 Optimum values obtained with cubic and quadratic for case 2a

Cubic Quadratic

WERE, WQ, Lcomb, ERE, Q, Lcon_b, ERE, Q,
(s) (t) O/F Vf/Vo in. % Btu/in.2-s O/F Vf/Vo in. % Btu/infl-s

1 10 6.0 5.41 7.0 99.02 0.664 6.0 6.52 7.0 99.31 0.684

(99.00) t' (0.654) (99.10) (0.716)
1 1 6.0 6.34 7.0 99.21 0.674 6.0 7.00 7.0 99.42 0.702

(99.20) (0.691) (99.30) (0.728)
10 1 6.0 7.00 7.0 99.32 0.690 6.0 7.00 7.0 99.42 0.702

aConstraints: 4 < O/F < 6, 5 < Vf/V 0 _<7, and Lcomb(in.) < 7. b(Exactresponse of the injector model.)

Table 7 Optimum values obtained with cubic and quadratic for case 3_

Cubic Quadratic

WERE, WQ, Lcomb, ERE, Q, L_,mb, ERE, Q,
(s) (t) O/F VI/Vo in. % Btu/in.2-s O/F V//Vo in. % Btu/in.2-s

1 10 6.0 6.00 7.0 99.15 0.669 6.0 6.52 7.0 99.31 0.684
l l 6.0 6,34 7.0 99.21 0.674 6.0 8.00 7.0 99.67 0,753
lO l 6.0 8.00 7,0 99.42 0.728 6.0 8.00 7.0 99,67 0.753

_Constraints:4 _<O/F < 6, 6 < Vf/V0 < 8. and Lco,_l,(in.) _<7.

constraints are as follows:case 1,4 < O/F < 6, 4 < V:/Vo < 6, and

L¢omb < 7; case2, 4 < O/F < 6, 5 < V//Vo < 7, and Lcomb < 7; and
case 3,4 _<O/F< 6, 6< V//Vo < 8, and L¢omb _<7.

In the current effort, the optimization is repeated using the cubic

fits in Eqs. (9)and (10). The combinations of weights for ERE (s)
and Q (t) used are (1,10), (1,1), and (10,1) for each of the three

cases. The optimum has been evaluated and tabulated for each case

for each of the three weightings. Tables 5-7 show the results for the

18 resulting optimization exercises. Recall, that in this effort, injec-

tor element optimization means maximizing the performance while

minimizing heat flux and chamber length. The optimum value for

V//Vo obtained on the cubic response surface is quite different than
that found on the quadratic surface for some cases (these particular
cases are noted in bold face in Tables 5-7). Also, for selected cases

where there are discrepancies between the quadratic and cubic re-
sults, the exact values from the injector model have been included

in parentheses in Tables 5-7 for comparison. In these cases, the cu-

bic fit more closely matches the exact data than does the quadratic

fit. Sample results for ERE plotted in Fig. 3a clearly show the data

are better fit by the cubic surface for the case shown. Figure 3b
shows that the response surface predicted by cubic fit for Q has a

noticeable dip that is completely missed by the quadratic fit. This

discrepancy results in the optimum for the cubic fit being consider-

ably lower than that for the quadratic surface. The prediction from

cubic fit agrees well with the exact data, which also has a dip for

this specific case. NN and injector model data are the same points
in Fig. 3. Quadratic and cubic are predicted by RSM.

The injector model was also used to produce additional design

points to assess the capability of the different response surfaces to

match the exact data. In Figs. 4a and 5a, the actual data obtained
from the injector model for all of the design points are shown. The

cubic and quadratic response surfaces obtained based on the original
data is also shown. The rms error a for the test data is given by

a = _ (H)

In this equation, n is the number of test points. The rms error for

predicting the new ERE data is 0.270 and 0.205 for the quadratic

and cubic surfaces, respectively. For Q, it is 0.025 and 0.016 for the

quadratic and cubic surfaces, respectively. Again, the performance

of the cubic surface is superior to that of the quadratic surface.
A reduced cubic model was also obtained, but the difference in

the adjusted rms error was small as compared to the full model.

It was found to be 0.077 for ERE and 0.042 for Q as compared
to the value of 0.083 for ERE and 0.040 for Q for the full model.

Despite being comparable to the full model from the standpoint of

the adjusted rms error, it was found that the rms error in predicting
the new data was significantly degraded for Q. The rms error in

predicting the new data was 0.203 for ERE and 0.038 for Q for the

reduced models as compared to 0.205 for ERE and 0.016 for Q for
the full cubic model. Accordingly, the full model was preferred to
the reduced one.

B. RBNN

RBNN are trained by both Solverbe and Solverb for each injec-
tor design response, ERE and Q, using the original data set of 45

design points. Solverbe trained the network for ERE with an error

to the order of 10 -_3. The network trained by Solverbe for Q has

an error on the order of 10 -16 . Both networks represent the respec-

tive design spaces essentiallyexactly. Solverb, with an error goal of

0.001, trained networks for both responses to represent the original
data set adequately. Because the size of the data set considered for

training the network is fairly modest, the number of neurons gen-

erated by Solverbe is also small. Solverb would have been suited

better for a larger data set, where a reduction in the number of neu-

rons might have appreciably reduced the computation time. The
networks trained using Solverbe have been used for this study. The

ability of the RBNN to fit the design data and generate additional

data is discussed in the following sections.

1. Comparison Between Solverbe and Solverb

Because Solverbe trains with the same number of neurons (45 in

this case) as data points, as seen earlier, it fits the training data set
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with negligible error. However, it can also create erratic behavior

because it makes no attempt to filter noise generated by excess neu-
rons in the network. Solverb, on the other hand, tends to reduce the

potential for noise by controlling the number of neurons in the net-

work. Table 8 shows that in the present study, for the spread constant
value of 1.00, Solverb performs slightly better than Solverbe based

on the nominal error measure. However, when judged by the level

of errors associated, both RBNNs are satisfactory from a practical
standpoint. As expected, Sol verb uses fewer neurons than Sol verbe,

in this case three less. Note that, as investigated in detail by Papila
et al., is the relative performance between Solverb and Solverbe is

case dependent.

2. Comparison of RBNN Predictions with RSM

Figures 4b and 5b show that the RBNN trained by Solverbe

is able to generate more accurately additional design data than
either quadratic or cubic polynomial (shown for comparison in

Figs. 4a and 5a). In Fig. 4a, the ERE surface trained with the origi-

nal data set is shown. The l0 extra design points calculated with the

injector model for Vy/Vo of 5.00 and 7.00 are shown. The ability

of the RBNN to generate accurately new design data can be seen by
comparing the fit for ERE in Fig. 4b to that for the polynomials in

Fig. 4a. RBNN trains the network with more flexibility and learns

the data trend, whereas polynomials provide only an approximate
fit on the given data. Regarding the rms error a, for ERE, it is 0.152

for RBNN predictions as compared to the values of 0.270 and 0.205

for quadratic and cubic surfaces, respectively. The four extra design

Table 8 RMS error in the prediction of ERE and Q.
Different values of SC

sc

S olverbe Solverb _

rms error rrns error rms error rms error No. of

(ERE, %) (Q, Btu/in.2-s) (ERE,%) (Q, Btu/mfl-s) neurons

0.50 1.493 0.179 1.733 0.287 44
0.75 0.745 0.135 0.675 0.135 44
1.00 0.152 0.022 0.153 0.017 42
1.05 0.190 0.011 0.128 0.012 44
1.25 0.316 0.010 0.267 0.022 44
1.50 0.336 0.022 0.309 0.030 44
1.75 0.369 0.022 0.310 0.021 44
2.00 0.308 0.016 0.296 0.019 41
2.25 0.279 0.020 1.846 0.045 43
2.50 0.325 0.017 0.744 0.025 43

aError goal used for Solverb is 0.001.

points generated for Q, also at VI/Vo of 5.00 and 7.00, are shown

compared to the polynomial surface in Fig. 4b and compared to the

RBNN surface in Fig. 5b. The rms error in the case of Q is 0.022

for RBNN as compared to 0.025 and 0.016 for quadratic and cubic
surfaces, respectively. Here the performance of the RBNN is better

than the quadratic but slightly poorer than the cubic fit. Examina-

tion of Table 8 indicates it may be possible that using Solverb with

a spread constant of 1.05 could further reduce the rms for Q. How-

ever, the errors for Q are low enough that further reduction may not
be practical.
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C. RBNN-Enhanced Response Surface

It has been demonstrated that the RBNN can be used to gen-

erate confidently additional design points. Additional design points

generated by the RBNN are added to the original data set to form the

enhanced data set. This enhanced data set is used for further analysis

to evaluate the performance of the RSM with the larger number of

design points. The enhanced data set for ERE has 15 points from the

injector model and 10 from the RBNN, for a total of 25 points. The

enhanced data set for Q has 9 points from the injector model and

4 from the RBNN, for a total of 13 points. The entire optimization

analysis was redone with the enhanced data set. On this enhanced

data set, the full quadratic response surface seems already appropri-

ately constructed, and invoking the statistical analysis generates no

reduced model. With the added data in the enhanced data set, it is

now possible to obtai n a fit for ERE that is fourth order in V; / Vo and

fourth order in Lcom b. Q can now be fit with a cubic in V//Vo and

a quadratic in O/F. This is now possible because a combination of

three different values of O/F, five different values of Vy/Vo, and

five different values of Lcumb are available. The cubic fit for ERE

and Q obtained from JMP are

ERE = 48.813 + 4.807Vf/ Vo + 14.274L_omb - O.141(V//Vo) 2

- 0.930(Vt/V0)Lcomb -- 1.352(Lcon, b)2

b O.O003(Vf/Vo) 3 + 0.0154(V//V0)2Lcomb

+ 0.0463 V:/Vo(L_omb) z + 0.042(L_b) 3 (12)

and

Q = -0.301 + 0.3230/F + 0.285 Vy/Vo - 0.0189(0/F) 2

- 0.094(0/F) Vf/V o + 0.00475 (If/Vo) 2

+ O.O0474( O / F)2V/ / Vo + O.O008( O / F)( Vf / Vo):

+o.oooo58(vjvo) 3

The quadratic fits from JMP are

ERE = 69.68 + 2.088 V/ / Vo + 6.024L_omb -- O.042( Vf / Vo) _

(13)

- O. 190(VJVo)L_omb - O. 139(L_ombf (14)

and

Q = 0.812 - 0.0450/F + 0.067V:/Vo + 0.0097(0/F) _

- O.028(O/F)V//Vo + O.Ol05(V//Vo) 2 (15)

1. Comparison of Fits with the Original Respor_e Surfaces

Comparison of the enhanced response surfaces with the original

response surfaces indicates that the extra data produced with the

RBNN generally improve the quality of the curve fit. The adjusted

rms errorforEREon the original set is 0.211 and 0.083 for quadratic

and cubic fits, respectively. On the enhanced data set, it is 0.179

and 0.100 for the quadratic and cubic fits, respectively. The slight

increase in the error in the case of the cubic fit may be due to
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Table 9 Optimum values obtained with cubic and quadratic for case 1 (enhanced data set)_

Cubic Quadratic

WERE, WQ, Lcom b, ERE, Q, Lcomb. ERE, Q,

(s) (t) O/F Vf/VO in. % Btu/in.2-s O/F Vf/Vo in. % Btu/in?-s

1 10 6.0 5.54 7.0 99.02 0.654 6.0 5.01 7.0 98.96 0.644

(98.90) (0.658) (98.70) (0.664)
1 1 6.0 6.00 7.0 99.12 0.658 6.0 6,00 7,0 99.25 0.658
10 I 6.0 6.00 7.0 99.12 0.658 6.0 6.00 7.0 99.25 0.658

ZConstraints: 4 _< O/F <_ 6, 4 < Vf/Vo .5<6, and Lc_b (in,) < 7. Compare with Table 5.
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noise related to the oversensitivity of the polynomial. However, this

phenomenon may reflect that the level of the rms is low enough
in either case so that no further improvement is accomplished. The

adjusted rms error for Q with the original set is 0.039 and 0.040

for the quadratic and cubic fits, respectively. On the enhanced set it

was 0.027 and 0.026 for the quadratic and cubic, respectively. With
the exception of the cubic fit for ERE, the fits from the enhanced

surface are improved over those from the original surface. Also,

when optimum design points are examined, there is less difference

between the quadratic and cubic fits on the enhanced surfaces than

there is on the original surfaces.

2. Comparison of Optimal Design Points

The analysis for the three cases of optimization over the same

three ranges of independent variables has been redone. The results

of the optimization on surfaces generated from the enhanced data

set are given in Tables 9-11. The predicted optimal design points
using cubic and quadratic fits are generally close to each other. They
are closer to each other on the reduced data set than on the surfaces

generated using the original data set. One case where the cubic

and quadratic optimum points are somewhat different is analyzed
further. The results shown in Fig. 6 confirm the optimum value of

velocity ratio on the quadratic fit to be lower than the cubic fit in this
case. The enhanced set includes model data and RBNN predicted

data. Quadratic and cubic are predicted by RSM. Given the weight-

ings of 1.0 for ERE and 10.0 for Q, the optimizer has selects the
minimum of Q for both fits. Because the curves exhibit different

minimum points, the weightings force the selection of different op-
timum points. As already discussed, for the polynomial fits on the

RBNN-enhanced data sets, the error of both quadratic and cubic
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Table 10 Optimum values obtained with cubic and quadratic for case 2 (enhanced data set) a

Cubic Quadratic

WER E, WQ, Lcomb, ERE, Q, Lcomb, ERE, Q,

(s) (t) O/F Vf/V 0 in. % Btu/in.2-s O/F V//Vo in. % Btu/in.2-s

1 10 6.0 5.54 7.0 99.02 0.654 6.0 5.01 7.0 98.96 0.644

(98.90) (0.658) (98.70) (0.664)

1 1 6.0 6.33 7.0 99.18 0.663 6.0 6.04 7.0 99.26 0.659

(99.10) (0.666) (99.20) (0.642)

10 1 6.0 7.00 7.0 99.30 0.681 6.0 7.00 7.0 99.46 0.693

=Ce_straints: 4 < O/F < 6, 5 < Vf /Vo < 7, and Lcomb (in.) < 7. Compare with Table 6.

Table 11 Optimum values obtained with cubic and quadratic for case 3 (enhanced data set) j

Cubic Quadratic

WERE, WQ, Lcomb, ERE, Q, Lcomb, ERE, Q,

(s) (t) O/F Vf/Vo in. % Btu/in.Z-s O/F Vf/Vo in. % Btu/in.2-s

1 10 6.0 6.00 7.0 99.12 0.658 6.0 6.00 7.0 99.25 0.658

1 1 6.0 6.33 7.0 99.19 0.663 6.0 6.04 7.0 99.26 0.659

10 I 6.0 8.00 7.0 99.42 0.725 6.0 7.95 7.0 99.57 0.746

aConstraints: 4 _< O/F <_ 6, 6 < Vf/V0 5 8, and Lcornb (in.)_< 7. Compare with Table 7.
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polynomials are more comparable than in the original analysis. At

the upper limit of available data for combustor length, 8 in., the ERE

curves tend to flatten out. This causes some difficulty in locating the
optimum and may cause more noticeable differences between the

different polynomials. However, different optimal designs selected

by different polynomials under such a circumstance are not impor-

tant because these yield very similar injector performance.

V. Summary and Conclusions

RSM and NN techniques have been applied to the optimization
of a simple rocket injector. Injector performance, as measured by
ERE and chamber wall heat flux, has been modeled as a function
of propellant velocity ratio, oxidizer to fuel ratio, and combustor

length. An empirical injector model was used to calculate45 design
points in the design space. The responses in these original data were
fit to the input variables using both quadratic and cubic polynomials
using RSM as embodied in the JMP software package. The fits
were evaluated relative to each other using the adjusted rms error

and the ability of the fit to predict additional data from the empirical

model. Optimization studies were conducted using each fit over
three ranges of independent variables for different weightings, or
desirability, of the responses. Optimum points were located for each

of 18 combinations of data range, curve fit, and response weighting

using Microsoft Excel-SOLVER. These optimum points were then

compared to exact values calculated from the empirical model.
RBNN were trained on the original data set using functions from

the MATLAB-NN toolbox. Issues relevant to obtaining satisfactory
RBNN performance and to enhancing the RSM for the current prob-

lem were investigated. An RBNN was trained on the original data

set. The RBNN was compared to the RSM in terms of ability to

predict additional data in the design space. The RBNN was then
used to generate new data, which were combined with the original
data set to form an enhanced data set. The optimization procedure
was repeated using the enhanced data set. Quality of fit and location
of optimal points were used to compare the fits from the enhanced

surface with those from the original data set.

Based on the effort described, the following observations are
made for the present injector design system.

1) The cubic fit was superior to the quadratic fit on the modest-
sized original data set by each measure investigated: first, in terms

of adjusted rms error, second, in that the optimal design points were
closer to the data from the empirical model, and finally, in terms
of the rms error relative to predicting additional data in the design
space.

2) There was not a significant difference in the performance of
Solverbe and Solverb in terms of generating the RBNN on the orig-
inal data set.

3) The RBNN was able to generate additional design data for
ERE with better accuracy than either the quadratic or cubic fit. For
Q, the RSM error from both polynomials on the original data set
and for the RBNN were all very low. The rms error for the RBNN
fell between that of the two polynomials.

4) Comparison of the quality of polynomial fits on the original
and RBNN-enhanced data sets indicated generally better fits on the

enhanced surface. The only exception was that the cubic fit for ERE

was slightly poorer on the enhanced surface. However, the error was
already small.

5) The optimal points located on the quadratic and cubic surfaces

generated from the enhanced data set were, for the same case, con-

sistently closer to each other than were the fits from the original data

set. Also, the original data set cubic fit was closer to the enhanced

data set cubic fit than were the quadratic fits for the two data sets.

The preceding observations, taken together, indicate that RSM,

when used in conjunction with NN, is capable of producing mean-

ingful optimization studies with modest amounts of data. NN can be

used to produce data of sufficient accuracy to actually improve the

quality of polynomial fit in the RSM. Because accurate data (either

from physical tests or CFD analysis) are time consuming and expen-

sive to obtain for rocket engine injectors, the technique of coupling
RSM with NN holds significant potential for their optimization.
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ABSTRACT

A sensitivity analysis is done for turbulent cavitating flows with the aid of

response surface methodology. A pressure-based Navier-Stokes solver using a finite

volume approach is coupled with a volume transport equation to obtain a cavitation

model. The parameters influencing the turbulence and cavitating models are identified.

Firstly, a non-cavitating flow over a backward-facing step is analyzed. A non-equilibrium

model of the k-e model is used. The sensitivity of the CFD solutions to the parameters

regulating the production and dissipation of the turbulent kinetic energy is evaluated.

Secondly, using the information from this study, cavitating flows around a hemispherical

and a blunt fore-body are analyzed. Sensitivities of the additional tuning parameters

arising from the source terms in the transport equation are also evaluated. In this study,

design of experiments is used to select the design space for these parameters. A response

surface is created based on the CFD solutions and a search for the region with best

performance is carried out. Comparison with experimental results has been done to judge

the performance of the CFD solutions. This study intends to come up with a general

scheme, which can aid in the selection of the tuning parameters for identical cavitating
flows.

INTRODUCTION

The inception of cavitation occurs due to the drop in pressure of the flow below

the vapor pressure of the liquid l' 2, 3, 4. This kind of situation is noticed in liquid flows,

which would involve rotating flows like in pumps, nozzles, etc, and around underwater

bodies. These flows are highly turbulent and involve the physics of multiphase flow.

Cavitation results in structural damage to the body on which it occurs, along with a

decrease in their performance. On the other hand it has also been an interesting topic of

research due to the reduction in drag on the body when it is completely covered with a

cavity, a flow termed as supercavitating flow.

Recent years have seen a significant progress in computational modeling of

cavitation. Reynolds averaged Navier-Stokes equations have been applied along with

physical models to represent the cavitation process. The existing studies have shown that

modeling of cavitation is a complicated task, as one has to address the physical modeling,

the numerical algorithm and turbulence modeling adequately such that any of these three

subtasks do not mask or interfere the performance of others. In the context of physical

modeling a transport equation model have been proposed 5' 6. Volume or mass fraction

transport equation with source terms is solved to generate the cavitating regions.

Basically the source terms regulate the rate of evaporation and condensation. Different

studies have proposed different source terms along with empirical constants used to

adjust the rate of the processes 5' 6, 7. The choice of these empirical constants is mainly

guided by physical intuition and may depend on the geometry considered 8' 9,. It has also



been shown that once a proper combination of the empirical constants is found,
increasingtheseconstantsby an order of magnitudehas little affect on the pressure
distributionwhereasthedensitydistributionexperiencesasignificantchanges.

Numerical algorithms have also been improved and developedfor turbulent
cavitatingflows. Thedensity-basedtechniquehavebeenappliedby severalresearchers6'
7,9, 10. In these studies the artificial compressibility method is used and a special attention

has been given to the preconditioning technique to handle the multiphase nature of

cavitating flows. Recently Senocak and Shyy s have proposed a pressure-based method

for turbulent cavitating flows along the lines of well-established SIMPLE method 11. In

this study, it has been demonstrated that the pressure correction equation exhibits a

convective-diffusive character in regions of cavitation. So far both pressure-based and

density-based techniques have been successful in matching the experimental data for the
cases studied.

Since cavitation is generally considered as a high Reynolds number phenomenon,

turbulence modeling plays a key role and must also be addressed adequately in addition

to the physical modeling and numerical algorithm. Most of the recent research has

focused on physical and algorithmic issues and a standard k-e model have been used for

turbulence closure in these studies. Senocak and Shyy s have investigated the effect of

turbulence modeling in the context of nonequilibrium k-e model 12. In this study, it has

been demonstrated that for cavitating flows with large streamline curvature and

recirculation zones the turbulence model can influence the performance of cavitation

modeling and the issue needs an in depth study.

The original k-e turbulence model, which is based on equilibrium assumptions,

needs to be modified for a flow with rotation, recirculation and large streamline

curvatures. The modeling parameters, Cel and Ce2, which control the production and

dissipation of the turbulence kinetic energy, respectively, has to be properly regulated. A

volume fraction transport equation model is included to account for the cavitation

dynamics. In this model there exists two empirical parameters, namely Cdest and Cprod, to

regulate the phase change process. The sensitivities of these four parameters are

evaluated with the aid of design of experiments and Response Surface Methodology 13.

To facilitate the evaluation of a turbulent cavitation model, we have adopted a

two-stage process. Firstly we evaluate the performance of the nonequilibrium k-e

turbulence model under non-cavitating conditions with the aid of a flow over a backward-

facing step. The goal is to identify the interdependency of the key parameters, namely,

Cel and C_2, so as to narrow down the range of variations of these parameters.

Secondly, cavitating flow analysis is done for axisymmetric cylindrical

geometries. Two geometries with a hemispherical and a blunt fore-body are used with

different cavitation numbers. Cavitation number 1"2 is used to judge the likelihood of the

inception of cavitation. It is defined as

2(P_ -P)

cr- U 2 (1)P

Chances of cavitation are more for lower values of or. This is a measure which gives an

idea of the nature of the flow for a given reference pressure or when the flow velocity is

2



changed.For the samecavitationnumbera considerabledifferencecanbenoticedin the
cavitatingcharacteristicsfor differentgeometries.

A ResponseSurfaceMethodology(RSM)is usedto evaluatethesensitivityandto
identify the optimized model parameters,basedon the selectedflow conditions and
geometries.The RSM approachis to conduct a seriesof well-chosenexperiments
(empirical,numerical,physicalor somecombinationof thethree)anduse the resulting
information to constructa global approximation(responsesurface)of the measured
quantity(response)overthe designspace.A standardconstrainedoptimizationalgorithm
is thenusedto interrogatetheresponsesurfacefor anoptimumdesign.

Our goalsin this studyare:
i) Assessthe sensitivityof theselectedturbulentcavitatingflow model to the

modelingparameters.
ii) Probe the impact of the individual and collective behaviors of the

modelingparameters.This wouldhelp in gaininganinsight into the range
of predictionsthatwecanexpectwith thesemodels.

iii) Proposea combination for the set of parametersthat gives optimum
predictivecapabilities.

In thefollowing sections,thegoverningequationsusedin thestudyarepresented.
The turbulence modeling parametersare studied separatelyby computing a non-
cavitatingflow over a backward-facingstep.Following this, cavitatingflow analysisis
done for axisymmetriccylindrical geometries.The insight obtainedon the turbulence
modelingparametersis usedto reducethedesignspacefor this study.The inclusion of
the transport equation for cavitation introduces additional parameters,which are
addressedwith theaidof theflow overthementionedgeometries.

GOVERNING EQUATIONS

The Reynolds averaged Navier-Stokes equations in their conservative form is

used. The equations are presented below in Cartesian coordinates.

OPm () ( PmU ) )
t- =0

Ot Oxj

0 0 Op oF

_(PmU,)+-_xj (PmU,U,)= -_Xi +--_Xj L(,U + _, )

(2)

(3)

where the mixture density and turbulent viscosity are defined as

Pm =Pl_, "_ pv (1--_l) (4)

PmCuk z
_1 =

E

The k-e turbulence model used is given by

3



Opmk _p,,,ujk
--+ - p - p,,,_ +

8t Oxj

Op_E OPmUje

Ot Oxj

E. 2E

- CEl--P-CE2P,,, ---_
k k

Oxj

Oxj

(5)

(6)

where Gel regulates the production term

turbulent production term is defined as

Ou_
P = --72ij

c3xj

where the Reynolds stresses are given by

720 = -pulu' j

and Co regulates the dissipation term. The

(7)

(8)

The volume fraction transport equation is given as

Oat_)t + (ajuj) = (rh + +rh-) (9)

where the evaporation of the liquid phase is given by

• - Cd_s,Pv%MIN[O,P- Pv] (10)m =

and the condensation of the vapor phase is given by

rh+ = CPr°ePva_ 0-at ) (11)

Ptt.

where Cae,t and Cp_oa are the empirical parameters to be tuned depending on the flow. A

value of 1000 is taken as the nominal density ratio, which is the ratio between

thermodynamic values of density of liquid and vapor phases at the given flow conditions.
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APPROACH

Flow Solver

The present Navier-Stokes solver employs a pressure-based algorithm and the

finite volume approach 12, 14, _5. The governing equations are solved on multiblock

structured curvilinear grids in 2D and 3D domains. To represent the cavitation dynamics

a transport equation model is adopted along with the particular source terms as suggested

by Kunz et al v. For turbulent cavitating flow computations the pressure-based method of

Senocak and Shyy 8 is used. One of the key features of this method is to reformulate the

pressure correction equation to exhibit a convective-diffusive nature. This is achieved

through the inclusion of the following pressure-velocity-density coupling scheme into the

pressure correction equation.

p' = C(1-O_,)P' (12)

where C is an arbitrary constant of O(1). This scheme combines the incompressible and

compressible formulations, so as to preserve the incompressibility of the liquid phase and

it also takes into account the pressure-density dependency in the cavitating regions.

Density is also upwinded both in pressure correction and momentum equations in order

to improve the mass and momentum conservation in the vicinity of sharp density

gradients. The convective terms of momentum and volume fraction transport equations

are discretized using the second-order controlled variation scheme (CVS) 16, 17. For more

details of the pressure-based method for turbulent cavitating flows the reader is referred

to Senocak and Shyy s.

Sensitivity Analysis

The sensitivity of the objective function to the variation in the design parameters

is evaluated with the aid of design of experiments and response surface methodology.

Design of experiments is used to select the set of design variables, which are then used

for CFD computations. These design variables are selected such that maximum amount

of information about the design space can be obtained.

In this study for two design variables, design points are selected at equal intervals

for each variable within the design space. For the four variables, full factorial design 18 is

used to select the design points. Intervals of each design variable are divided into one or

more subintervals, which mark the number of levels. For example, a two level design

involves only the upper and lower limit of the design variables. A three level design

variable will include an additional point in between. These points are usually evenly

spaced. Full factorial design contains all the combinations of the levels of all the design
variables.

A response surface (RS) is then generated using the CFD solutions for these

design points. A polynomial-based RSM, in which the design space is represented with a

quadratic polynomial, is used in this study. The polynomial coefficients are obtained by

linear regression. The maximum or the minimum of the surface can then be located using

a gradient search method. The RSM is effective in representing the global characteristics

of the design space and it filters noise associated with design data. Depending on the



orderof polynomialemployedandtheshapeof theactualresponsesurface,theRSM can
introduce substantial errors in certain regions of the design space. Generationof
polynomialbasedsurfacescanbecostly for casesinvolving manydesignvariablesdueto
the amount of data required to evaluate the coefficients. In fact, the number of
coefficientsincreasesrapidly with the order of polynomial.For example,a complete
second-orderpolynomial of N design variables has (N+l)(N+2)/(2!) coefficients. A

complete cubic model has (N+l)(N+2)(N+3)/(3!) coefficients. The choice of order of the

polynomial and the terms to be included depends on the design problem. The response

surfaces were generated using JMP 18, a statistical analysis software package. JMP is an

interactive, spreadsheet-based program having a variety of statistical analysis tools.

Once the response surface is generated it is submitted to an optimization toolbox

to maximize/minimize the objective function. Solver 19, an optimization tool available as

part of Microsoft Excel package, is used in this effort. This tool uses the Generalized

Reduced Gradient (GRG2) nonlinear optimization code developed by Lasdon et al 2°.

RESULTS AND DISCUSSION

Non-Cavitating Flow - Backward-Facing Step Flow

In flows with recirculation, the equilibrium between the turbulent production and

dissipation does not exist. Hence a non-equilibrium model is used for the present

computation. The solution of this model is compared with the solution obtained using the

original k-e turbulence model. Referring to eqns 4 and 5, the constants are defined as:

Model

Original k-e
Non -

equilibrium

k-6

Table 1: Empirical

C#

0.09

0.09

Ce/

1.44

a/+ (1.40 -

al)(P/e)

Ce2

1.92

constants used in k-e turbulence model.

1.0

0.8927

ere

1.3

1.15

To estimate the sensitivities of al and fll and hence Gel and Ca, flow over a

backward facing step is considered. Geometry of length to step height ratio of 10 is used.

The inlet to step height ratio is 2. A uniformly distributed grid of 121 x 91 is used.

Calculations are carried out for Reynolds number of 10 6. Experimental results 21 predict

the reattachment for such a flow as 7 + 1. The comparison of CFD computations is made

with a reattachment length of 7.

The design space for the two parameters, obtained from the turbulence model, al

and/31 is selected based on past experience and the trend noticed in similar situations.

The design space is as shown in the fig 1.

Computations are carried out on this backward facing step case with different

values of al and/31. The reattachment length is obtained by tracking the grid point where

the u-velocity becomes positive. This is done along the grid points closest to the bottom

surface. The objective function for the sensitivity analysis is the absolute amount by

which the reattachment length differs from a value of 7. Figure 2 gives the objective

6



functionasseenfor thedifferentcombinationof a_and/3/.In fig 2, thecircled valuesare
for thosedesignswhich haveareattachmentlengthwithin 7 + 1.

The CFD simulations suggest that the best values of al and/31 lies within 10%

variation on either side of the diagonal of the selected design space (Fig. 2). This agrees
well with the observation that the turbulence model tries to maintain a balance between

the production and dissipation of turbulence kinetic energy. The solutions also show that

there are more than one optimum combination of _/and/3/in the region mentioned.

1.75

1.60

i 1.45

1.30

Design Space

1.15

0.775 0.850 0.925 1.000 1.075 1.150 1.225

Figure 1" Design space for al and/31.

Objective Function !

1.75 _, 1.54 Al.13

160 il.88 1.38 ( [0.04_ (0._ (

1.0 5 1.150 1.2_,5

Figure 2: Objective function for different al and/31.
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A quadraticresponsesurfaceis generatedusing the dataobtained from CFD
calculationsthat hasthe value of the objectivefunction below 1. The responsesurface
hasan adjustedR 2 error of 0.916 and an estimated variance, ffa, of 0.083. Viewing the

plot between the predicted and actual values of the objective function, i.e., the error, it

can be seen that the fit is good.

0.8

=_o.6

<

0.2

J./7"

I I I I I

.0 .2 .4 .6 .8 1.0

error Predicted

/

.2

Figure 3: Comparison of response surface prediction of the objective function to the
actual values.

In fig. 3, the dots represent the data. The continuous line represents the perfect

model possible. The dashed lines represent the confidence limits pertaining to 95%. From

the plot it is clearly seen that the fit is good as most of the points lie within the confidence

limits. The values in the plot are not normalized.

The obtained response surface is

error = 0.4227-3.5038a t +1.9300fl] +36.1131a] 2 - 46.2841a]fl] + 14.9684fl] 2 (13)

In fig. 4, the values in the parenthesis are obtained from the response surface.

They agree closely with the CFD solutions. Using this response surface a search for

optimum values of at and fit is carried out. The optimization problem is set up as
follows:

Objective function: error = ICFD solution - 7]

Design variables: at, fit

Constraints: 0.775 - al < 0;

al - 1.225 < 0;

1.150 -/31 _<O;

_1 -- 1.750 < 0.



Theoptimumvalueof the objectivefunctionis obtainedfor c_1 = 0.7855 and 131=

1.150. The value of the objective function, error, is equal to 0.1583, as predicted by the

response surface. CFD computation for the same values of the design parameters, give a

value of 0.0417 for the error, which is the minimum among all the CFD runs made. The

same value is also found at a different design point, suggesting that there are multiple

optimum designs.

i

1.75

1.60

1.45

0.62
1.30

(0.57)

0.13
1.15

0.775

.0.71

(0.76)

10.21

(0.20)

Objective Function

!0.96 .0.46

(0.99) (0.38)

,0.29 _.13

(0.27) (0.19)

0.21 0.71

(0.23) (0.67)

0.79

,o 4,
0.04 0.46 10.96

(0.19) (0.40) I(1.03

0,63

(0.51)

0.925 1.000 1.075 1.150 1.225

Ctl

Figure 4: Comparison between CFD and response surface (in parenthesis) predictions of

the objective function.

As noticed by this study, the best combination of al and 131 is one that balances

the production and dissipation of turbulence kinetic energy. Hence the design space is

reduced within a 10% variation on either side of the diagonal of the design space. It

would save a lot of computation during the cavitating flow studies by concentrating on

the reduced domain. Moreover there are multiple optimum values available in the domain

and hence different choices of the modeling parameter will lead to the same value of the

objective function.

Cavitating Flows

Computations for turbulent cavitating flow over two axisymmetric geometries

have been performed. One of them has a hemispherical fore-body and the other has a

blunt fore-body. Both the geometries have cylindrical aft-bodies. A steady state

computation of cavitating flows is carried out with a Reynolds number of 1.36 x 105. As

already mentioned the value of the cavitation parameter is different for the two

geometries.

The performance of the cavitation model is evaluated by comparing the pressure

coefficient on the surface of the body as obtained through CFD computations with those

measured during experiments by Rouse and McNown 22. As seen from eqns 9 and 10, two

tuning parameters, namely, Cdest and Cprod, are involved. These parameters along with al
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and/3: arethe designparametersfor this study.The sensitivitiesof theseparametersare
estimatedfrom the cavitatingflows over the mentionedgeometries.A singleblock grid
of 119x 65nodesis usedfor thehemisphericalfore-body.For theblunt fore-bodya grid
systemwith two blockshaving55x 55and255x 85nodesis used.

Hemispherical Fore-body

The upper and lower limits of the 4 design variables are selected based on

experience.

Variable Lower limit

0.775
Upper limit

1.15

Level

4

131 1.15 1.75 4

Cdest 8 X 105 1 × 106 3

Cprod 2 x 104 4 × 10 4 3

Table 2: Design space for the cavitating problem with hemispherical fore-body.

Using the full factorial design in the design of experiments, a design space of 144

design points is obtained. The design space is reduced to 81 with the aid of the trend

noticed between c_1 and /31 in the analysis of the backward-facing step case. The CFD

computations are carried out for this set of design points. The objective function, error,

based on the distribution of Cp along the surface of the cavitating body is measured as

12

EICFD--Expt[
et'ror(Cp)- i 12 (14)

The comparison is done with the Cp values measured at 12 points along the

surface of the body during experiments. The CFD computation using the original k-e

turbulence model along with the cavitation model parameters defined in Senocak and

Shyy 8 (Caes: 9 x l0 s and Cproa: 3 x 104) will be considered as the baseline case. Cae_t and

Cproa values are normalized with respect to these baseline values. The cavitation number

for all these CFD computations is 0.40. Based on the CFD computations the best and
worst results obtained are:

Case or1 /31 Cae,t Cproa error

(normalized) (normalized)

Best 0.90 1.15 0.889 1.333 0.0390

Worst 1.15 1.75 1.0 0.667 0.0699

Baseline 1.0 1.0 0.0420

Table 3: Best and worst results for the hemispherical fore-body based on comparison

between CFD computations and experimental results.

From these results it can be seen that the best case lie at al - 0.9 and/31 = 1.15.

The error for the baseline case is 0.0420. Table 4 gives the cases, which have an error

values within 10% of the best value. This shows that the best design points are located

10



closeto al = 0.9 and/31 = 1.15. Figure 5 shows the sensitivity of Cd,,_t and Cprod for al =

0.9 and fll = 1.15. It shows that the best cases are towards the lower limits of Cdest and

upper limits of Cprod of the chosen domain. Figure 6 shows the distribution of pressure

coefficient as suggested by the best solution from CFD computations. The results

confirms well with the experimental measurements. There is slight discrepancy at the

closure region of the cavity.

O_1 Cdest

(normalized)

1.35

0.9 1.15 0.889

0.775 1.15 0.889

0.9 1.15 0.889

0.9 1.15 1.111

0.9

Cprod

(normalized)

error

1.333 0.0390

1.333 0.0399

1.0 0.0410

1.333 0.0412

0.889 1.333 0.0418

1.025 1.35 0.889 1.333 0.0422

0.775 1.15 1.0 0.667 0.0425

0.775 1.35 1.0 1.0 0.0427

0.9 1.15 1.151.0 1.333 0.0427

1.15 1.75 1.0 1.333 0.0427

)_ed to the best case.(i.e, withinTable 4: Cases within 10% variation of error as com

error = 0.0428).

Based on the CFD results, a quadratic response surface is generated using the

Iteratively Re-weighted Least Square method. The plot (fig. 7) between the predicted and

the actual value of error, suggest a good fit.

Objective function; Error (alpha1 = 0.9, beta1 = 1.15)

1.05

0.9 0.92 0.94 0.96 0.98 i

Cd_,,(normalized)

Figure 5: Sensitivity of Cdest and Cp_od for al = 0.9 and fll = 1.15 for the

hemispherical fore-body.
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Figure 6: Comparing the Cp values for the best CFD case with the CFD baseline

and experimental results for the hemispherical fore-body.

O. 0506,

ERROR (Cp)

0.0486 •

0.0466

0.0446
O

O. 0426

0.0406

0.0386

0.0386 0.0406 0.0426 0.0446 0.0466 0.13486 0.0506

Response Sufface

Figure 7: Comparison of response surface prediction of the objective function to the
actual values.

In fig. 7, the line indicates the perfect model. The distribution of data around the

ideal model suggests a good fit. The best fit is circled. This is identified accurately by

both the response surface and CFD computations. In table 5, the optimum as predicted by
the response surface is shown in the second row. Third row shows the best case as
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noticedfrom the CFD runs.Thesetwo identify different optimum combinationsof the
parametersbut in thenearvicinity of eachother.

OE1 /31 Cdest Cp,.oa error error

(normalized) (normalized) (CFD) (RS)

1.012 1.15 0.889 1.333 0.0411 0.0387

0.9 1.15 0.889 1.333 0.0390 0.03 89

Table 5: Optimum values of the parameter obtained from response surface and CFD
computations.

To check how the sensitivity of these design parameters change with the

cavitation number, few CFD runs were done with a cavitation number of 0.3. As seen

from table 6, the performance is good as compared to the error value of 0.0548 obtained

for the baseline case with a cavitation number of 0.3. It is also seen that al -- 0.9 and/31 =

1.15 gives good performance, which suggests that this is a good choice for the turbulence

modeling parameters.

0_1 /31 Cdest Cprod error

(normalized) (normalized)

0.9 1.15 0.889 1.333 0.0504

0.775 1.15 0.889 1.333 0.0502

0.9 1.15 0.889 1.0 0.0524

0.9 1.15 1.111 1.333 0.0520

Table 6: CFD computations for the hemispherical fore-body with cavitation number

equal to 0.3.

Blunt Fore-body

Based on the results obtained from the hemispherical fore-body studies, the CFD

computation on blunt fore-body is done for c_/= 0.9 and/31 = 1.15. The values of Cde_t

and Cproa are varied as shown in table 7.

Variable Lower limit

0.8 X 10 4

Upper limit
2.8 x 104

Level

Caest 3

Cprod 5.0 X 103 7.0 X 103 3

Table 7: Design space for cavitating problem with blunt fore-body.

This gives 9 design points. The baseline case used for comparison has Ca_,t

(normalized): 0.02 and Cproa (normalized): 0.2 along with the original k-e turbulence

model. The same measure of error is used for comparison in this case. In this case the

number of experimental points available is 20. The cavitation number for these cases is
0.5.

Based on the CFD computations the best and worst results obtained are:
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Case o_1 fll Caes, Cprod error

(normalized) (normalized)

Best 0.90 1.15 0.0312 0.167 0.0907

Worst 0.90 1.15 0.0089 0.234 0.1608

Table 8: Best and worst results for the blunt fore-body based on comparison between

CFD computations and experimental results.

Figure 8 shows the sensitivity of Caest and Cproa for c_1 = 0.9 and/31 = 1.15 in the

case of the blunt fore-body. It shows that the best cases are towards the upper limits of

Cae_,tand lower limits of Cproa of the chosen domain.

Comparing the distribution of pressure coefficient along the surface of the body,

gives an idea of the performance of the models. Figure 9 compares the performance

between the best CFD case mentioned in table 8 with the CFD case using the original k-e

turbulence model and the experimental results. The best case performs better than the

baseline case, although there is a slight discrepancy as compared to the experimental

results. This shows that the CFD computation can benefit if modeling parameters are

appropriately selected.

Objective function; Error (alpha1 = 0.9, beta1 = 1.15)

0.18

0.175

0.022 0.024 0,026 0.028 0.03

Cae,,(normalized)

Figure 8: Sensitivity of Cdest and Cprod for c_1 = 0.9 and/31 ---- 1.15 for the blunt

fore-body.

CFD computations are done on the hemispherical fore-body with the design

parameters of the best CFD case of the blunt fore-body. Figure 10 shows the results. With

these values of Cdest and Cprod, the evaporation and condensation of the phases are not

balanced. The CFD computations have a problem converging. This suggests that the

steady state assumptions may not be valid for this case. The cavitation number is 0.4.

Using a cavitation number of 0.5 results in the same problem. Further study has to be
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doneto addressthe unsteadycavitatingmodelandthe influenceof the geometryof the
bodyoncavitation.

1.s!
f

0.5

-0.5

-1

Comparison between experiment and baseline & best cases (CFD)

t

IN • _!

-1.5

0 1 2 3 4 5 6

s/d

• Expt

-- Baseline case

- x - Best case

Figure 9: Comparing the Cp values for the best CFD case with the CFD baseline

and experimental results for the blunt fore-body.
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Figure 10: Comparing the Cp values for the CFD computation on the

hemispherical fore-body (using the best parameters of the blunt fore-body) and

experimental results.
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CONCLUSION
This studygivesaninsight into thetrendof thedifferent importantparametersof

turbulenceandcavitationmodels.It clearlydefinestheregion to concentrate,in termsof
their ideal values.

The backwardfacing stepcaseclearly points out the trend of the turbulence
parameters.It is asexpectedbasedon theoreticalarguments.TheparametersC_1 and CE2,

regulate the production and dissipation of turbulent kinetic energy respectively. Hence

when one increases the other has to increase. This is clearly seen from the computational

results where an almost linear relationship between al and fll is noticed.

The cavitating cases offer a clear picture into the other design parameters

encountered in their modeling. The cavitation model for hemispherical fore-body

performs better with low values of Cdest and high values of Cprod within the selected

design space. The cavitating model for the blunt fore-body performs better with high

values of Cae, t and low values of Cprod within the selected design space.

The convergence for the cavitating cases requires different values of Cdest and

Cprod. The values required for the hemispherical fore-body geometry are an order higher

than those required for the blunt fore-body geometry. This suggests that these parameters

maybe highly case dependent.

This study gives a method for selecting the tuning parameters for non-cavitating

and cavitating flows, which can improve the performance. This also brings to notice, the

fact that unsteady issues needs to be addressed to improve the performance. Future

studies intend to come up with a general scheme that may be able to aid the modeling of
identical flows over geometries.
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Abstract

Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage
where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized

to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering

demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety
while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied
on gradient-based search algorithms. Global optimization methods can utilize the information collected from various

sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design

points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in

filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global
optimization method needs to address issues related to data requirements with an increase in the number of design

variables, and methods for predicting the model performance. In this article, we review recent progress made in

establishing suitable global optimization techniques employing neural-network- and polynomial-based response surface

methodologies. Issues addressed include techniques for construction of the response surface, design of experiment
techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and

assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynam-
ics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues

involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design practices

and the need for future research are identified. © 2001 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction and scope

Modern computational and experimental fluid dy-
namics tools have matured to a stage where they can

provide substantial insight into engineering processes

involving fluid flows. This can help analyze the fluid

physics as well as improve the design of practical devices.
In particular, rapid and continuous development in the

technology of fluid machinery demands that new design

concepts be regularly proposed to meet goals for in-
creased performance, robustness and safety while concur-

rently decreasing cost.

Most aerospace system and component designs are

conducted as open-loop, feed-forward processes. For

example, for rocket engines, currently, one design iter-
ation for a given set of engine balance conditions takes

up to several weeks with the blade geometry design

sub-iteration phase taking several days each. The quest
for an acceptable blade surface velocity distribution is

accomplished with many ad hoc rules in what is essen-

tially a manual trial-and-error process. A systematic ap-
proach capable of identifying optimum design and

comparing possible trade-offs can significantly improve
the productivity and shorten the design cycle.

Objective and efficient evaluation of advanced designs

can be facilitated by development and implementation of

systematic optimization methods. To date, the majority
of the effort in design optimization of fluid dynamics has

relied on gradient-based search algorithms ['1-3]. These

methods work iteratively through a sequence of local
sub-problems, which approximate objective and con-

straint functions for a sub-region of the design space, e.g.,

by linearization using computed sensitivities. Major chal-
lenges for these optimization approaches are the robust

and speedy computation of sensitivity coefficients [4,5].
Local optimization methods based on derivatives are

also commonly used in engineering system design optim-
ization problems [6]. On the other hand, global optim-

ization techniques also have been commonly used for

engineering design optimization problems especially for

multidisciplinary ones. In its current practice, the global

design optimization method involves three primary steps
(Fig. 1): (a) generation of individual data sets within the

design space; (b) interpolation among these data sets via

some continuous functional representation; and (c) op-
timization of the objective function via a certain search

strategy. Yet despite recent research advances, formal

design optimization has yet to see practical use in real
design scenarios. The reasons are four-fold:

(1) Engineering design, even within a single discipline,

typically involves many parameters (and hence
many degrees of freedom) rather than the handful

demonstrated in most research papers. This renders
unrestricted "brute force" search schemes too re-
source-intensive.

(2) The objective functions are likely to be multi-modal

or discontinuous over the broad design space, ren-
dering gradient search methods insufficient by them-

selves. Furthermore, the usual practice to combine

multiple goals into a single quantitative objective
function is too restrictive. Qualitative goals are often

required to correctly characterize a problem (e.g.,

maximizing a turbine blade's aerodynamic efficiency

with a smooth, monotonic surface velocity distribu-
tion, while spreading heat load as uniformly as pos-

sible). Furthermore, these goals may have arisen

from diverse disciplines and are usually treated se-
quentially by different groups.

(3) It is inadequate to think of the final product of

a design process as a mere geometry. A "design"

really encompasses a whole set of operating, manu-
facturing and project level decisions.

(4) As the interaction between numerical simulation

and physical test data becomes stronger, the future
engineering knowledge base is likely to consist of all
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sorts of heterogeneous data sources including test

data, experimental data, past product experiences,
semi-empirical modeling, and high fidelity simula-

tions. Some data are anecdotal; others cover only
small "patches" of the physical domain but are still

useful for "reality checks". A unified framework

needs to be constructed for representation, captur-
ing and mining of all these data types so the re-

sponse functions can be continuously improved.

With the above observations, global optimization

methods are attractive because they have several advant-

ages when compared to local gradient-based methods [7]:

(i) They do not require calculation of the local sensitiv-

ity of each design variable,

(2) They can utilize the information collected from vari-

ous sources and by different tools,
(3) They offer multi-criterion optimization,

(4) They can handle the existence of multiple design

points and trade-offs,

(5) They easily perform tasks in parallel, and
(6) They can often effectively filter the noise intrinsic to

numerical and experimental data.

Among global approximation techniques, the response
surface methodology (RSM) has gained the most attention

since it consists of a simple way of connecting codes from

various disciplines [6]. The RSM is a collection of math-

ematical and statistical tools used in investigative experi-

mentation by scientists and engineers [8-1. The RSM
approach replaces the objective and constraint functions

by simple functions, often polynomials, which are fitted

to the carefully selected points. Since RSM can utilize

information collected from various sources and by differ-

ent tools, it can also offer multi-criterion optimization,
handle the existence of multiple design selections and
related trade-offs, and address the noises intrinsic to

numerical and experimental data. A main advantage of
RSM is its robustness and intelligibility. Robustness and

the smoothness of approximations in noisy environments

are achieved by performing extra analyses, compared to
the number of regression coefficients. This is a distinct

advantage over derivative-based search algorithms,

which may encounter difficulties in the presence of spuri-

ous local optima [9].

1.1. Scope

In this article, we first review the basic concepts and

methodologies, then assess the current status, via case

studies, of the global optimization techniques. Particular

attention is paid to two different techniques used to
generate information to construct the response surface

(RS) namely; neural-network (NN)- and polynomial-

based RSM. NNs are models that contain many simple
linear and non-linear elements operating in parallel and

connected in patterns [10]. Polynomial-based RSM
models the system with polynomials of assumed order
and unknown coefficients. The solution for the set of

coefficients that best fits the training data is a linear

least-squares problem, making it trivial compared to the
solution for NN, which often involves a non-linear train-

ing process. In this article, two neural network types,
namely, back-propagation NN (BPNN) and radial basis

NN (RBNN), are investigated.

The BPNN consists of multi-layer networks with dif-
ferentiable activation function. The BPNN is the most

employed NN type in the optimization literature

[10-333.

The RBNN is a more recently developed multi-layer

network, based on a linear regression process, which
makes the mathematics simpler and computational costs

lower [34-36]. The RBNN tends to have many more
neurons than BPNN but can be configured faster for the

same training data. The basic reason for this is that

back-propagation neurons can have outputs over a large



62 W. Shyy et al. / Progress in Aerospace Sciences 37 (2001) 59-118

Table 1

Comparison of NN and polynomial-based response surface (RS) techniques

NN-based RSM Polynomial-based Comments
RSM

Computational effort Disadvantage Advantage
and cost

Noise Disadvantage Advantage

Handling complex Advantage Disadvantage
functions

Finding the weights associated with the neurons is a non-linear
regression process for all of the NN types other than RBNN.
Whereas, finding the polynomial coefficients requires solution of
a linear set of equations
The cost increases if the regression process is non-linear which
makes NNs other than RBNN more expensive than
polynomials

Ability of filtering noise from experimental data is possible with
polynomial-based RSM. However, if the number of neurons
used to design the NN is not the same as the data, then, by
definition, filtering is also possible for NN-based RSM

NNs are more suitable for multi-dimensional interpolation of
data that lack structure since they are much more flexible in
functional form especially when dealing with design in the
context of unsteady flows, partial and/or complete data sets

region of the input space, while radial-basis neurons

respond to relatively small regions of the input space.
Thus, larger input spaces require more radial-basis neur-

ons for training. More detailed evaluation of RBNN and

BPNN will be given in the following sections.

Polynomial-based response surfaces and linear regres-
sion techniques were originally developed to filter noise

from experimental data. Sophisticated statistical tools

are available for these purposes. One class of tools, design

of experiments, is often used to select points for training
that minimize the effect of noise on the fitted polynomial.

A second set of tools, analysis of variance, is routinely
used to identify polynomial coefficients that are not well

characterized by the data, and are therefore overly sensi-
tive to noise. Analysis of variance helps to avoid overfit-
ting of the data, which otherwise would result in the

mapping of the noise. On the other hand, neural net-

works are much more flexible in functional form, which

means that they can be better suited to fit complex
functions that are not easily approximated by poly-

nomials. For example, when the physical system changes

from one regime to another due to the presence of critical
parameters, NN performs better than RSM. This advant-

age is particularly useful when there is very little numer-

ical noise, and it is possible to obtain very accurate
approximations to the underlying function [37]. The

relative strengths and weaknesses of NN- and poly-
nomial-based RSM are summarized in Table 1.

Table 2 summarizes the existing literature evaluating
the relative performance of NN- and polynomial-based

RSM approximation. For example, Carpenter and

Barthelemy [Ii] used NN- and polynomial-based
approximations to develop RS for several test problems.

It is demonstrated that two methods perform

comparably based on the number of undetermined

parameters. Rai and Madavan [27] investigated the
feasibility of applying neural networks to the design of

turbomachinery airfoils. The NN approach is used for

both function approximation and prediction. It is found

that NNs are quite efficient in both tasks. An aerodynam-
ic design procedure that employs a strategy called para-

meter-based partitioning incorporating the advantages
of both traditional RSM and NNs to create a

composite response surface is described by Rai and
Madavan [28,29]. It is shown that such method can

handle design problems with higher-dimensional prob-
lems than would be possible using NN alone. Nikolaidis

et al. [25] used NNs and response surface polynomials to

predict the performance characteristics of automotive
joints using geometrical parameters. It is shown that

both methods performed comparably. NN-based aero-

dynamic design procedure is applied to the redesign of

a transonic turbine stage to improve its unsteady aerody-
namic performance by Madavan et al. [22]. It is illus-

trated that using an optimization procedure combining

the advantages of NN- and polynomial-based RSM can
be advantageous. Papila et al. [37] investigated the rela-

tive merits of polynomial-based RSM, RBNN and
BPNN in handling different data characteristics. It is

demonstrated that using RBNN rather than BPNN has

certain advantages as data size increases. Also, it is
shown that RBNN gives more accurate results than

polynomial-based RSM as the nature of the experimental
data becomes complex. Shyy et al. [38] have employed

neural network techniques and polynomial-based RSM
to obtain improved optimization tools. In Rai and

Madavan [29], a composite NN and polynomial-based

RS methodology is applied for a transonic turbine and it
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Table 2

Literature review on NN and polynomial-based RS techniques comparison

63

Authors No. of data No. of input No. of output NN-type Activation No. of neurons Polynomial

(2-layer) function degree

Carpenter and 36 2 l BPNN Sigmoid 1, 2, 4 1-4

Barthelemy [11]

961 2 l 3, 5, 7 2-5

81 4 1 1,2,3 1-2

300 15 1 2, 4, 6, 8, 10 1-2

1-2

Madavan et al. [22] -- 13 1 BPNN Sigmoid 15 & 7 1-2

(3-layer)

Nikolaidis et al. [25] 400 50 1 BPNN Sigmoid a of NN is 2

insensitive to no.

of neurons

Papila et al. [37] 9 2 1 RBNN Radbas 8, 9 4

& BPNN & Sigmoid

15 2 l 12, 15 4

25 2 1 20, 25 4

255 2 l 253, 255 --

765 2 1 765

Rai and Madavan [28] 3 & 5 1 1 BPNN Sigmoid 1 & 2

(3-layer)

27 3 1 7&3

-- 15 1

Shyy et al. [38] 45 3 2 RBNN Radbas 42 and 45

Vaidyanathan et al. [39] 45 3 2 RBNN Radbas 42 and 45

76 6 2

2-5

2-5

2-5

2-4

1-2

1-2

2-3

2-3

is demonstrated that a systematic application of such

method can enhance the effectiveness of the overall op-

timization process. In the study by Vaidyanathan et al.

[39], the application of NN- and polynomial-based RSM

in preliminary design of two rocket engine components,

gas-gas injector and supersonic turbine, with modest

amounts of data are discussed and it is demonstrated that

NN- and polynomial-based approximations can perform

comparably for modest data sizes.

In this article, we focus on the recent efforts in develop-

ing and improving appropriate techniques for design

optimization of airfoils and rocket engine components

capable of being used in applications like reusable launch

vehicles. Some of the physical components used as case

studies are low Reynolds number aerodynamics, 2-D

turbulent planar diffuser, the injector and the supersonic

turbine for rocket propulsion.

Specifically, the following issues are discussed:

(1) The capability of the NN- and polynomial-based

RSM for handling data with variable sizes and

noise.

(2) The selection of NN configuration that is suitable

for given design problems.

(3) The effect of the design parameters on the perfor-

mance of the NN.

(4) The effect of distribution of the data over the design

space in the construction of the global model.

(5) The merit of employing a multi-level optimization

strategy to perform the task adaptively and efficiently.

(6) Possible trade-offs between capacity design objec-

tives and their impact on design selections.

2. Review of methodologies

In response-surface-based global optimization, there

are several key technical elements:

(1) Response surface with polynomials and statistical

analysis.

(2) NNs with BPNN and RBNN.

(3) Design of experiments with face centered composite

design (FCCD), orthogonal arrays (OA) and D-opti-

mal designs.

(4) Optimization procedure including the multilevel ap-

proach.

In the following, we review these elements in sequence.
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2.1. Response surface method (RSM)

The approach of RSM is to perform a series of experi-

ments, based on numerical analyses or physical experi-

ments, for a prescribed set of design points, and to

construct a global approximation of the measured

quantity over the design space (Fig. 1). The polynomial-
based RSM, used in all the case studies referred to,

construct polynomials of assumed order and unknown

coefficients based on regression analysis. The number of

coefficients to be evaluated depends on the order of

polynomial and the number of design parameters in-

volved. For instance, a second-order polynomial of N de-
sign variables has (N + 1)(N + 2)/(2!) coefficients.

A cubic model has (N + 1)(N + 2)(N + 3)/(3!) coeffi-

cients. In this article, the polynomial approximations are

constructed by standard least-squares regression using
JMP [40], a statistical analysis software that provides

a variety of statistical analysis functions in an interactive
format.

In the practical application of RSM, it is necessary to
develop an approximate model for the true response

surface. The second-order (quadratic) response surface
model is the most frequently applied one because it is
the most economic non-linear model. Such a model for

response variable y with k regressors can be written as

k k k-I k

Y = flo + _ fl_xi + _ fl.xZi + _ _ flijxixj -4- _., (i)
;=1 i=1 i=i j=2

The above equation can be written in matrix notation as
follows:

y = X[_ + _, (2)

where y is the (n x 1) vector of observations, X the (n x np)
matrix of the levels of the independent variables, II the

(np x 1) vector of the regression coefficients, e the (n x i)
vector of random error, n the number of observations,

and np the number of terms in the model.

The purpose is to find the vector of least-squares
estimators, b, that minimizes

L = _ e/z = eve = (y - Xll)V(y - XII) (3)
i=1

which yields to the least-squares estimator of I1

b = (XTX)- 'XTy. (4)

The global fit and prediction accuracies of the response
surfaces are assessed through statistical measures such as

the t-statistic, or t-ratio, root-mean-square error (rms-

error), variation 1-41]. The t-statistic is determined by

bj

t = se(bj-----)' (5)

where bj is the least-squares estimators of thejth regres-

sion coefficient and se(bj) is the standard error ofbj and it

is given by

se(bj) = aa_/Cjj, (6)

where Cjj is the diagonal element of (xTx) - _correspond-
ing to bj. Here aa is the adjusted rms-error (or rms-error

predictor) incurred while mapping the surface over the

data set. The quality of the fit of the different surfaces can

be evaluated by comparing the adjusted mas-error value
that is defined as

= /_Ze 
aa X/n _" np (7)

where el is the error at ith point of the training data.

The accuracy of the models in representing the design

space is gauged by comparing the values of the objective
function at test design points, different from those used to

generate the fit, with the empirical solution. The predic-

tion rms-error, a, for the test set is given by

G = /_ (8)
_/m'

In this equation e_ is the error at the ith test point and m is

the number of test points.
The coefficient of multiple determination R 2 measures

the proportion of the variation in the response around
the mean that can be attributed to terms in the model

rather than to random error and it is determined by

R2 = SSR SSE
SSy---7 = 1 --- (9)SS.'

where SSE is the sum of squares of the residuals

( = _7= 1(yi - _i) z) where 3' is the predicted value by the
fitted model. SSR is the sum of squares due to regression

( = _7= 1(Yl - _;)2) where )7 is the overall average of Yl.

SSyr is the total sum of squares about the mean given by

SSyy = SS_ + SSR = _ (Yi - y)2, (10)
i=1

where y is the overall average of y;.

R_ is an R 2 value adjusted to account for the degrees of

freedom in the model and is given by

SS_/(n - p) (n -1_
R_ = 1 SSyy/(n 1) = 1 - (1 - R2). (11)- \n - p�

Since R z increases as terms are added to the model, the

overall assessment of the model may be better judged
from R 2.

The polynomial-based response surface techniques are

effective in representing the global characteristics of the
design space. It can filter the noise associated with design
data. Since, the solution for the set of coefficients that

best fits the training data is a linear least-squares prob-
lem, it is trivial compared to the solution for the NN

coefficients, which is often a non-linear least-squares
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problem. The linearity of the polynomial-based RSM

also allows us to use statistical techniques known as
design of experiments (DOE) to find efficient training sets.

On the other hand, depending on the order of poly-
nomial employed and the shape of the actual response
surface, the RSM can introduce a substantial error in

certain region of the design space. An optimization
scheme requiring large amounts of data and a large

evaluation time to generate meaningful results is hardly
useful.

2.2. Neural networks (NAt)

Neural networks are massively parallel computational
systems comprised of simple non-linear processing ele-

ments with adjustable interconnections. Neural networks

simulate human functions such as learning from experi-
ence, generalizing from previous to new data, and ab-

stracting essential characteristics from inputs containing

irrelevant data [I0]. The processing ability of the net-
work is stored in the inter-unit connection strengths or

weights obtained by a process of adaptation to, or learn-

ing from, a set of training patterns. Training of a network

requires repeated cycling through the data, each time

adjusting the values of the weights and biases to improve
performance. Each pass through the training data is

called an epoch and the NN learns through the overall

change in weights accumulating over many epochs.
Training continues until the error target is met or until

the maximum number of neurons is reached. In Fig. 2,
a neuron model with multiple inputs and bias is shown.

Accordingly, the input is transmitted through a con-

nection that multiplies it with the weight related to that
connection. The bias is similar to a weight except that it

has a constant input of 1. The effect of the product weight

and input and the bias are added at the summing junc-

tion to form the net input for the transfer (or activation)
function. In Fig. 3, a multi-layer network is shown.

A layer of network includes the combination of weights,

the multiplication and summing operations, the biases

and the transfer functions. In a layered neural network,
neurons in every layer are associated with neurons in the

previous layer in such a way that the outputs of an

intermediate layer are the inputs to the following layer.
The layer that produces the network output is called an

output layer. All other layers are known as hidden layers.
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Even though research on neural network started in
early 1940s, NN became quite popular around 1980s

with the introduction of multi-layered NN [42] in a wide

range of disciplines, including engineering. Over the last

decade, NN approach has been used in the aerospace

related industry. Illi et al. [171 examined the application

of NN technology to an automated diagnostic and prog-
nostic system for turbine engine maintenance. Prelimi-

nary results indicated that using NN to maintain diag-

nostics saves time and improves performance. Kangas

et al. [18] used back-propagation NNs (BPNN) to moni-

tor turbine engine performance and diagnose failures in
real time. The application of NN technology appears to

hold great promise for enhancing the effectiveness of

army maintenance practices. Huang et al. [16] developed

and evaluated a multi-point inverse airfoil design method

using NNs. It is shown that neural network predictions
are acceptable for lift and moment coefficient predictions.

Time-dependent models that predict unsteady boundary

layer development, separation, dynamic stall and reat-
tachment are developed by Failer and Schereck [12]

using NNs. It is demonstrated that NNs can be used to

both predict and control unsteady aerodynamics effec-
tively. Fan et al. [13] introduced a new approach for

active laminar flow control that incorporates BPNN into

a smart wall interactive flow control system. Conver-

gence of the BPNN is investigated with respect to the

complexity of the required function approximation, the
size of the network in relation to the size of optimal

solution and the degree of noise in the training data by

Lawrence et al. [20]. The techniques and principles for

the implementation of neural network simulators are
also presented by Lawrence et al. [21]. Methods for

ensuring the correctness of results avoiding duplication,
automating common tasks, using assertions liberally,

implementing reverse algorithms, employing multiple

algorithms for the same task, and using extensive

visualization are discussed. Efficiency concerns,
including using appropriate granularity object-oriented

programming, and pre-computing information whenever

possible, are also studied. Norgaard et al. [26] used
BPNN for more effective aerodynamic designs during

wind tunnel testing. Four different NNs are trained to

predict coefficients of lift, drag, moment of inertia, and lift
drag ratio (Cz, Co, CM and L/D) from angle of attack and

flap settings. Hybrid neural network optimization

method is successfully applied to produce fast and re-
liable predictions of aerodynamic coefficients and to find

optimal flap settings, and flap schedules. Ross et al. [30]

applied BPNN to minimize the amount of data required

to completely define the aerodynamic performance of
a wind tunnel model. It is shown that the trained NN has

a predictive accuracy equal to or better than the accuracy
of the experimental measurements using only 50% of the

data acquired during the wind tunnel test. BPNN is

employed for rapid and efficient dynamics and control

analysis of flexible systems by Sparks and Maghami [31].
It is demonstrated that NN can give very good approxi-

mations to non-linear dynamic components, and by their

judicious use in simulations, allow the analyst the poten-

tial to speed up the analysis process considerably once

properly trained. The high-lift performance of a multi-

element airfoil is optimized by using neural-net predic-
tions by Greenman [10].

BPNN have been successfully integrated with a gradi-

ent-based optimizer to minimize the amount of data

required to completely define the design space of a three-
element airfoil. It is shown that using NN reduced the

amount of computational time and resources needed in

high-lift rigging optimization. Greenman and Roth [14]

also applied BPNN for high-lift performance of a multi-
element airfoil and it is demonstrated that the trained

NN predicted the aerodynamic coefficients within an
acceptable accuracy defined to be the experimental error.

Stepniewski and Jorgenson [32] used a singular-value

decomposition-based node elimination technique and
enhanced implementation of the Optimal Brain Surgeon

algorithm to choose a proper NN architecture. It is
demonstrated that combining both methods creates

a powerful pruning scheme that can be used for tuning

feed-forward connectionist models. Maghami and

Sparks [23,24] also demonstrated that the methodology

they developed based on statistical sampling theory
guarantees that the trained networks provide a designer-

specified degree of accuracy in mapping the functional

relationship. The BPNN is used to fill in a design space of

computational data in order to optimize flap position for
maximum lift for a multi-element airfoil by Greenman

and Roth [15]. A genetic algorithm (GA) and gradient-

based optimizer are used together with NN and it is
found that the demonstrated method has a higher fidelity

and a reduction in CPU time when compared to an

optimization procedure that excludes GA. Approxima-
tion abilities of BPNN is addressed by Lavretsky [19].

A novel matrix method for multi-input-multi-output NN

is introduced and it is shown that by allowing inner layer
connections as well as connections between any layers,

ordered NN has superior interpolation ability when

compared to conventional feed-forward NN. Stepniewski
et al. [33] presented a new hybrid method that combines

a bootstrap technique and a collection of stochastic op-

timization method such as GA for designing a NN. The

method minimizes generalization error. It is demon-
strated that the solutions produced by this method im-

prove the generalization ability on the average of five to

six times when compared to pruned methods.

All of the above-listed references preferred to use
BPNN among the other NN choices [43-45]. This is due
to the fact that BPNN strives to use a smaller number of

neurons when compared to the other NNs. However,

since BPNN is usually slower because at each step the

error is propagated back to all the weights in the system,
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Fig. 4. (a) Back-propagation neural network architecture, (b) back-propagation transfer function, tansig.

other NNs could be more efficient than BPNN for speci-

fic problems. This article reviews the works focusing on

radial-basis NN (RBNN) and BPNN models developed
by using Matlab [43]. A comparative study for radial-

basis and back-propagation approaches is also included.
Brief summaries of the two approaches are given in the

following sections.

2.2.1. Back-propagation neural networks (BPNN)

Back-propagation neural networks are created by
generalizing the Widrow-Hoff learning rule [43,44] to

multiple-layer networks and non-linear differentiable

transfer functions. These networks are multi-layer net-
works with hidden layers of sigmoid transfer function

and a linear output layer. The transfer function in the

hidden layers should be differentiable and thus, either

log-sigmoid or tan-sigmoid functions are commonly
used. In this article, a single hidden layer with a tan-

sigmoid transfer function, tansig (Fig. 4), given as tanh(n),

is considered if n is the input. The maximum and min-

imum outputs of the function are 1 and - 1, respectively.
The output of the function is given by

a = tansig(w x X + b), (12)

where tansig is the transfer function, w is the weight

vector, X is the input and b is the bias. For BPNN, the

initial weights and biases are randomly generated and
then the optimum weights and biases are evaluated

through an iterative process. The weights and biases are

updated by changing them in the direction of down slope

with respect to the sum-squared error of the network,
which is to be minimized. The sum-squared error is the

sum of the squared error between the network prediction

and the actual values of the output. In BPNN (Fig. 4a)
the weights, w_, and biases, bl, in the hidden tansig layer

are not fixed, as in the case of RBNN. Hence, the weights

have a non-linear relationship in the expression between
the inputs and the outputs. This results in a non-linear

regression problem, which takes a longer time to solve

than RBNN. Depending upon the initial weights and
biases, the convergence to an optimal network design

may or may not be achieved. Due to the randomness of

the initial guesses, if one desires to mimic the process

exactly for some purpose, it is impossible to re-train the
network with the same accuracy or convergence unless

the process is reinitiated exactly as before. The initial

guess of the weights is a random process in Matlab.
Hence to re-train the network the initial guess has to be
recorded.

The number of neurons in the hidden layer of a back-
propagation network is a design parameter. It should be

large enough to allow the network to map the functional

relationship, but not too large to cause overfitting. As
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a rule of thumb to choose the number of neurons in the

hidden layer, Greenman [10] used 2s + 1 where s is the

summation of total number of inputs and total number of
outputs and Carpenter and Barthelemy [11] used m + 1

where m is the number of nodes in the output layer. Once

the number of neurons in the hidden layer is decided, the

network design is reduced to adjusting the weighting

coefficient matrices and the weighting bias vectors. These

parameters for BPNN are usually adjusted using a gradi-

ent method such as the Levenberg-Marquardt technique
[10,26,30,31,33]. In Matlab, BPNN can be trained by

using three different training functions, trainbp, trainbpx

and trainlm. The first two are based on the steepest

descent method. Simple back-propagation with trainbp
is usually slow since it requires small learning rates for

stable learning. Trainbpx, applying momentum or adap-

tive learning rate, can be a considerably faster method
than trainbp but trainlm, applying Levenberg-Mar-

quardt optimization, is the most efficient since it includes

improvement techniques to increase the speed and relia-
bility of simple back-propagation networks. The Leven-

berg-Marquardt update rule is

AW = (jTj +/_I)- 1JVe, (13)

where AW is the change in weight, J is the Jacobian

matrix of the derivatives of each error with respect to

each weight, i.e., c3ej_3wi, I is the identity matrix, /t is
a scalar and e is the error vector. If the scalar/_ is large,

the above expression approximates the steepest descent,
while if it is small then the method reduces to the

Gauss-Newton method. The Gauss-Newton method is

faster and more accurate near an error minimum, so the
aim is to shift towards the Gauss-Newton method as

quickly as possible. Therefore, IL is decreased after each

successful step and increased only when a step increases
the error. The design parameters for trainlm are the
number of neurons in the hidden layer, St, a user-defined

sum square error goal, and the maximum number of

epochs. The training continues until either the error goal
is reached, the minimum error gradient occurs, the max-

imum value of # occurs, or the maximum number of

epochs has been met.

2.2.2. Radial-basis neural networks (RBNN)

Radial-basis neural networks are two-layer networks

with a hidden layer of radial-basis transfer function and

a linear output layer. The main advantage of this ap-

proach is the ability of keeping the mathematics simple
and computational costs low due to linear nature of

RBNN [34]. Outline of supervised learning, main ap-

plication area for RBNNs and the least-squares method
used together with supervised learning with linear mod-

els are explained in detail in [34]. Optimum of the regu-

larization parameter of RBNN is also searched in this
paper. A computational method for re-estimating the

regularization parameter of RBNN, based on generalized

cross-validation, is explained by Orr [35]. The RBNN is
designed in such a way that it can adapt the width of the

basis function, and it is found that it can predict better
than a similar RBNN with the fixed width basis function.

Orr [36] explains improvements made for to forward

selection and ridge regression methods. A methodology
that is a cross between regression trees and RBNN is

described. The size of RBNN is also optimized based on

regularization parameter in [35].
The transfer function for radial-basis neuron is radbas,

_n 2

which is shown in Fig. 5. radbas, given as e , where n is

the input, has maximum and minimum outputs of 1 and

0, respectively. The output of the function is given by

a = radbas(dist(w, X) × b), (14)

where radbas is the transfer function, dist is the vector

distance between the network's weight matrix, w, and the

input vector, X and b is the bias. Radial-basis transfer
function radbas calculates its output according to
a = e -n2.

In a radial basis network (Fig. 5a) each neuron in the

radbas hidden layer is assigned weights, w_ which are

equal to the values of one of the training input design
points. Therefore, each neuron acts as a detector for

a different input. The bias for each neuron in that layer,

bl is set to 0.8326/sc, where sc is the spread constant,
a value defined by the user. The spread constant defines

the region of influence by each neuron. The training

process is then reduced to the evaluation of the weights,

wz, and biases, b2, in the output linear layer, which is

a linear regression problem. If the input to a neuron is
identical to the weight vector, the output of that neuron

is 1, since the effective input to the transfer function is

zero. When a value of 0.8326 is passed through the
transfer function the output is 0.5. For a vector distance

equal to or less than 0.8326/b, the output is 0.5 or more.
The spread constant defines the radius of the design

space over which a neuron has a response of 0.5 or more.

Small values ofsc can result in poor response in a domain
not closely located to neuron positions; that is, for inputs

that are far from the training data as compared to the

defined radius, the response from the neurons will be
negligible. Large values will result in low sensitivity of

neurons. Since the radius of sensitivity is large, neurons

whose weights are different from the input values by

a large amount will still have high output thereby result-
ing in a flat network. The best value of the spread con-

stant for some test data can be found by comparing a for

networks with different spread constants.
In Matlab, radial-basis networks can be designed

using two different design procedures, solverbe and

solverb. Both procedures require a spread constant, sc, as

a design parameter; i.e., the radius of the basis in the
input space to which each neuron responds. Solverbe
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Fig. 5. (a) Radial basis neural network architecture, (b) radial-basis transfer function, radbas.

designs a network with zero error on the training vectors

by creating as many radial-basis neurons as there are

input vectors. Therefore, solverbe may result in a larger

network than required and may fit the numerical noise.
A more efficient design in terms of network size is ob-
tained from solverb, which creates one neuron at a time

to minimize the number of neurons required. At each

epoch, neurons are added to the network until it satisfies

a user-specified error goal. The design parameters for
solverb are the spread constant, error goal, and the

maximum number of epochs. The spread constant is the

only network design parameter for solverbe.
Radial-basis networks may require more neurons than

a comparable BPNN. However, RBNN can be designed
in a fraction of the time it takes to train the standard

BPNN due to non-linear regression process of back-
propagation networks. Therefore, RBNN are more effi-

cient to train when a large amount of training data is

available. In [37], an effort is made to compare the
accuracy and computing requirements between the

radial-basis and back-propagation approaches with dif-

ferent sizes of training data. Vaidyanathan et al. [39] also

investigated relative performances of RBNN and BPNN
for gas-gas injector and supersonic turbine. As will be

discussed in the following sections, among all the NN
configurations, RBNN designed with solverb seems to be

more consistent in performance for different data sets

and RBNN, even when designed efficiently with solverb,

tend to have many more neurons than a comparable
BPNN with tan-sigmoid or log-sigmoid neurons in the
hidden layer. The basic reason for this is the fact that the

sigmoid neurons can have outputs over a large region of

the input space, while radial-basis neurons only respond

to relatively small regions of the input space. However,
configuring an RBNN often takes less time than that

required for a BPNN because the training process of
RBNN is linear in nature.

2.3. Design of experiments (DOE)

In RSM, selecting the representation of the design
space is a critical step because it dictates the distribution

of the information available for constructing the response

surface. It is well established that the predictive capabil-
ity of RSM is greatly influenced by the distribution of

sampling points in design space [46,47]. In order to select

design points for training that minimizes the effect of

noise on the fitted polynomial, design of experiment
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(DOE) techniques can be applied. There are different

types of design of experiments techniques in the literature
as reported by Haftka et al. [48]. For example, Unal et al.

[47] discussed the D-optimal design for the representa-

tion of the design space for a wing-body configuration of

a launch vehicle. They showed that D-optimal design
provides an efficient approach for approximating model

building and multi-disciplinary optimization. Papila and

Haftka [49] also applied face centered composite design
(FCCD) to select the experiment points in the design

space when approximating wing structural weight. Unal

et al. 1-46,50] studied response surface modeling using

orthogonal arrays (OA) in computer experiments for
reusable launch vehicles and illustrated that using this

technique can minimize design, development, test and

evaluation cost. Unal and Dean [51] studied the robust

design method based on the Taguchi method [52,53] to
determine the optimum configuration of design para-

meters for performance, quality and cost. They demon-

strated that using such a robust design method for
selection of design points is a systematic and efficient

approach for determining the optimum configuration.

Brief summaries of FCCD, OA, and D-Optimal designs
are given below.

2.3.1. Face centered cubic design (FCCD)
Face centered cubic design (FCCD) creates a design

space composed of eight corners of a cube, centers of the

six faces and the center of the cube. Fig. 6 shows FCCD

selections for three design variables. The FCCD yields
(2N + 2N + I) points, where N is the number of design

variables. It is more effective when the number of design
variables is modest, say, not more than 5 or 6. The FCCD

is used for fitting second-order response surface.

(j = 1, 2,..., n,) and i denotes the column (i = 1, 2,..., n,)

that a,_ belongs to, supposing that each a]eQ =

{0,1 ..... q-1}. A is called an orthogonal array of

strength t <_n, if in each nr-row-by-t-column sub-matrix
of all q' possible distinct rows occur ,t times [54]. Such an

array is denoted by OA(n,, no, q, t) by Owen [54].

Since the points are not necessarily at the vertices, the

OA can be more robust than the FCCD in interior design

space and are less likely to fail the analysis tool. Based

on the design of experiment theory, orthogonal arrays

can significantly reduce the number of experimental
configurations.

2.3.3. D-optimal design
A D-optimal design minimizes the generalized vari-

ance of the estimates, which is equivalent to maximizing
the determinant of the moment matrix, M [41]

IXTXi
IMI- n"'' (15)

where n is the number of observations and np is the
number of terms in the model.

The D-optimal design approach makes use of the
knowledge of the properties of polynomial model in

selecting the design points. This criterion tends to em-

phasize the parameters with the highest sensitivity [48].

2.4. Optimization process

2.4.1. Search procedure
The entire optimization process can be divided into

two parts: (1) RS/NN phase for establishing an approxi-

mation, and (2) optimizer phase.

In the first phase, polynomials or NN models are
generated with the available training data set. In the

second phase the optimizer uses the RS/NN during the

search for the optimum until the final converged solution
is obtained. The initial set of design variables is randomly

selected from within the design space. The flowchart of
the process is shown in Fig. 7.

The optimization problem at hand can be formulated

as min{f(x)} subject to Ib _<x _<ub, where lb is the lower

boundary vector and ub is the upper boundary vector of
the design variables vector x. If the goal is to maximize

the objective function thenf(x) can be written as - 9(x),

where 9(x) is the objective function. Additional linear or

non-linear constraints can be incorporated if required.
The optimization toolbox in Matlab used here employs

a sequential quadratic-programming algorithm.

2.3.2. Orthogonal arrays (OA)
An orthogonal array (OA) is a fractional factorial

matrix that assures a balanced comparison of levels
of any factor or interaction of factors. Consider A,

a matrix with elements of a,_where j denotes the row

2.4.2. Objective function
When attempting to optimize two or more different

objective functions, conflicts between them arise because

of the different relationships they have with the indepen-

dent parameters. An equation expressing the relationship
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between opposing effects of performance and weight
can be employed as a criterion to guide the optimization

task. Both NN and polynomial-based RS techniques

can handle such multi-criteria optimization tasks in

a straightforward manner by building a composite
response surface from individual response surfaces. Such

a task would have been impossible without response

surface. This composite response surface is referred to as
the desirability function. The maximization of the

composite function effectively provides a compromise

between the individual functions. An average of some

form is normally used to represent the composite func-

tion. A geometric mean is a solution, which gives a com-
posite function of the form

)1.D = dj , (16)
i=l

where D is the composite objective function, dj's are
normalized values of the objective functions and l is

the number of objective functions. Each of the d_ are
weighted depending upon the importance of the specific

objective function. Fig. 8 shows a typical trend for a

desirability function with respect to the weighting factors.

Another way of constructing a composite function is to
use a weighted sum of the objective functions. The com-

posite function can then be expressed as

l

D = Z _ifi, (17)
/=l

where D is the composite objective function and fi's are
the non-normalized objective functions. The cq's are

dimensional parameters that control the importance of
each objective function.
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Fig. 8. Desirability function for various weight factors, s.

3. Description of the case studies

3.1. Gas-gas injector element for rocket propulsion

Development of an optimization scheme for injector
design called methodology for optimizing the design of
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Fig. 9. Schematic of shear co-axial injector element.

injectors (method i) has been reported by Tucker et al.

[55,56]. Method i is used to generate appropriate injector

design data and then guide the designer toward an opti-
mum design subject to his specified constraints. As re-

ported, method i uses the polynomial-based RSM to

facilitate the optimization. The RSM approach is to

conduct a series of well-chosen experiments (empirical,
numerical, physical or some combination of the three)

and use the resulting information to construct a global

approximation (response surface) of the measured

quantity (response) over the design space. A standard
constrained optimization algorithm is then used to inter-

rogate the response surface for an optimum design. Neu-

ral network was also used in the design of shear co-axial
injector element by Shyy et al. [38], and Tucker et al.

[55,56] along with the polynomial-based RSM. Three

different injector types are considered, namely, shear

co-axial injector element, an impinging injector element,
and swirl co-axial injector element.

3.1.1. Shear co-axial injector element
The initial demonstration of method i by Tucker et al.

[55] focused on a simple optimization of a shear co-axial

injector element (Fig. 9) with gaseous oxygen (GO2) and

gaseous hydrogen (GH2) propellants. The goal is to
maximize the energy release efficiency, ERE while minim-

izing the chamber wall heat flux, Q. This is achieved by

maximizing a composite objective function given by

D = (dzRzdQ) 1/2, (18)

where the normalized functions are defined as in Eqs. (19)

and (20). In the case where a response should be maxi-
mized, such as ERE, the normalized function takes the
form

= (E_RE- A)'dERE \ B--A forA _<ERE_<B, (19)

where B is the target value and A is the lowest acceptable

value. Here, dERE is set to 1 for any ERE > B and
dERE = 0 for ERE < A. The choice ofs is made based on

the subjective importance of this objective in the com-

posite desirability function. In the case where a response

is to be minimized, such as Q, the normalized function
takes the form

de \E - C ] for C _ Q _< E, (20)

where C is the target value and E is the highest accept-

able value. Here, dQ is set to 1 for any Q < C and do = 0
for Q > E. A, B, C, and E are chosen according to the

designer's priorities or, as in the present article, simply as

the boundary values of the domain of ERE and Q. The

value oft is again chosen to reflect the importance of the
objectives in the design. In the study carried out, A and

B are equal to 95.0 and 99.9, respectively. The values of

C and E are equal to 0.48 and 1.1, respectively.

The design data was generated using an empirical
design methodology developed by Calhoon et al. [57].

These researchers conducted a large number of cold-flow

and hot-fire tests over a range of propellant mixture
ratios, propellant velocity ratios and chamber pressure

for shear co-axial, swirl co-axial, impinging, and

premixed elements. The data were correlated directly

with injector/chamber design parameters, which are rec-

ognized from both theoretical and empirical standpoints
as the controlling variables. For the shear co-axial ele-

ment, performance, as measured by energy release effi-

ciency, ERE, is obtained using correlations taking into

account combustor length, Lcomb (length from injector to
throat) and the propellant velocity ratio, Vf/Vo. The

nominal chamber wall heat flux at a point just down-

stream of the injector, Q.... is calculated using a modi-
fied Bartz equation and is correlated with propellant

mixture ratio, O/F, and propellant velocity ratio, Vr/Vo

to yield the actual chamber wall heat flux, Q. The objec-
tive in the initial demonstration of method i was to

maximize injector performance while minimizing cham-
ber wall heat flux (lower heat fluxes reduce cooling re-

quirements and increase chamber life) and chamber

length (shorter chambers lower engine weight). The data
used to generate the polynomials and train the network

are given in Tables 36-38. The quality of the response

surface and neural networks are evaluated using 20 addi-

tional design points different from those used to generate
the models (Table 39).

3.1.2. Impinging injector element
The empirical design methodology of Calhoon et at.

[57] uses the oxidizer pressure drop, APo, fuel pressure

drop, APt, combustor length, Lcomb , and the impinge-
ment half-angle, _ as independent variables. For this

injector design, the pressure drop range is set to 10-20%
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of the chamber pressure due to stability considerations.

The combustor length, defined as the distance from the
injector to the end of the barrel portion of the chamber,

ranges between 2 and 8inches. The impingement half

angle is allowed to vary from 15 to 50°. Dependent

variables include ERE (a measure of element perfor-

mance), wall heat flux, Qw, injector heat flux, Qi,j, relative

combustor weight, Wr,t, and relative injector cost, Crew.

The conditions selected for this example are:

P_ = 1000 psi,

MR =6,

moo, = 0.25Ibm/s,

mon2 = 0.0421bros. (21)

The gaseous propellants are injected at a temperature

of 540R. As noted above, the empirical design methodo-

logy used to characterize the ERE and Qw was developed

by Calhoon et al. [57]. This methodology uses a quantity
called the normalized injection momentum ratio to cor-

relate the mixing at the different design points for the

triplet element. They define this quantity as

2.3mou0

MRni = mruf sin e (22)

The maximum mixing, and thus maximum ERE,

occurs at an MRnl of 2.0. Since the propellant mass flow
rates are fixed, only the propellant velocities and the

impingement half-angle influence the normalized injec-

tion momentum ratio. The velocities are proportional to

the square root of the respective pressure drops across
the injector, APo and AP_.. For the flow conditions and

variable ranges considered in this problem, MR,i ranges

from 3.2 to 17.8. Accordingly, lowering APo, raising APt,
increasing c_,or some combination of these actions will
increase ERE. The wall heat flux is correlated with the

propellant momentum ratio as defined by

19'101,/0

MR = --. (23)
Ftlf U f

For the F-O-F triplet element, i.e. the impingement

injector element, the maximum wall heat flux occurs at
a momentum ratio of approximately 0.4. High heat flux is

the result of over-penetration of the fuel jet, which pro-

duces a high O/F in the wall region. For the flow condi-
tions and variable ranges considered in this effort, MR

ranges from 1.06 to 2.11. Hence, increasing the value of

this ratio by either increasing AP° or decreasing APt
lowers the wall heat flux.

The heat flux seen by the injector face, Q_nj, is qualitat-

ively modeled by the impingement height, H_mp_,ge. Here
the notion is that, as the impingement height decreases,

the combustion occurs closer to the injector face, causing

a proportional increase in Q_,j. Thus, for the purposes of

,I------

Fig. 10. Schematic of impingement injector element.

this exercise, Qini is modeled as the reciprocal of the
H_,p_,ge. Impingement height is a function of c_and APr.

Fig. 10 shows that as c_is increased, H_mp_ngeis shortened.

The dependence of H_mpi,g, on the fuel orifice diameter,
dr, and thus, APf, results from making the freestream

length of the fuel jet, L,, a function of dr. For each APf,

Lc, was set to six times df for an impingement half-angle

of 30 °. So, as df increases (corresponding to decreasing

APt), Lf_ increases, as does Himping e.

The models for Wr,_ and C_et are simple but represent

the correct trends. W,_ is a function only of L_omb, the
combustor length from injector face to the end of the
chamber barrel section. The dimensions of the rest of the

thrust chamber assembly are fixed. So, as L¢o_b increases,
W_ot increases accordingly. The model for C_¢_is based on

the notion that smaller orifices are more expensive to

machine. Therefore, C_,t is a function of both propellant
pressure drops. As the AP increases, the propellant velo-

city through the injector increases and the orifice area
decreases. So, as either, or both, APo and APf increase,

Cr_ increases.

The system variables given above and independent

variables (constrained to the previously noted ranges) are

used to generate the design data for element optimization
studies. Since propellant momentum ratio is an impor-

tant variable in the empirical design methodology,

a matrix of momentum ratios was developed over the
100-200 psi propellant pressure drop range. The matrix

of 49 combinations of fuel and oxidizer pressure drops is

shown in Table 40 where momentum ratios range from

1.06 to 2.11. Nine pressure drop combinations, eight
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Fig. 11. Swirl co-axial injector element schematic.

around the border and one in the middle, were selected

for use in populating the design database. These nine

points are highlighted in Table 40 in bold type.
Detailed design results for the case with both APo and

APf at 200 psi are shown in Table 41. Similar data was

generated for the other eight pressure drop combina-
tions. There are 20 combinations of L_omb and e for each

AP combination, making a total of 180 design points
selected. Seventeen of these were outside the database

embodied by the empirical design methodology, resulting
in 163 design points actually being evaluated. The data

trends are as expected. ERE, for a given AP combination,

increases with increasing Lcomb and 0c. The increased

Lcomb provides more residence time for the propellants to

mix and burn. Increasing c_increases the radial compon-
ent of the injected fuel, thus providing better mixing. The

wall heat flux is constant for a given AP combination.

Impingement height increases with increasing c_.Relative

combustor cost increases with increasing Loor_b and
the relative injector cost is constant for a given AP
combination.

3.1.3. Swirl co-axial injector element

The chamber pressure, mixture ratio, and propellant
flow rates selected for this example are:

Pc = 1000psi,

MR = 6,

mco2 = 0.25 Ibm/s,

morn = 0.0421bros. (24)

The gaseous propellants are injected at a temperature
of 540R. Fig. 11 shows that the GO2, flowing in the

center post of the element, exits the element with both

radial and axial velocity components. This effect is

achieved by introducing the GO2 tangentially into the
center post through small slots. When the GO2, under

hydrostatic head, is forced through the tangential slots,

part of the pressure head is converted into a velocity
head, causing a rotational velocity in the element. For

a specified APo and swirl angle, ®, the number and size of

tangential slots, the discharge coefficient, the GO2 center

post diameter, do, and the radial and axial GO2 velocity

components, Vo, and Voa are calculated. These quantities

are then used to determine the dependent variables for
each design condition.

The element ERE, calculated according to the empiri-

cal design methodology of Calhoon et al. [57], is a func-

tion of all four independent variables noted above. A cold

flow mixing efficiency, E_,9o, for ® = 90 °, is correlated
by

g_

Era,90 = 100 - 5 In --: .
LLoo,o/_o/

(25)

The cold flow mixing length, Lcotd, is correlated from

a known chamber length, Lcomb- The GO2 post diameter,
do, is a function of APo and ®. Smaller values of

do correspond to large values of APo and smaller swirl
angles. The empirical swirl factor, Ks, is a function of the

normalized differential injection velocity, (Vf - Vo)/Vo.
Ks increases with increasing normalized differential in-

jection velocity for the range of propellant velocities

considered in this effort. For fixed propellant mass flow
rates, the velocities V® and Vf are functions of their

pressure drops across the injector, APo and APf, respec-
tively. For a given APo, V® also depends on the swirl

angle. Lower Vo'S are a product of higher swirl angles.

Cold flow mixing is thereby enhanced with higher values

of V® (i.e. APo) and L_omb- Lower values of Vt (i.e. APf)

and ® also tend to enhance cold flow mixing.
A fractional factor,f_, is applied to Era.9® to account for

the lower levels of cold flow mixing found with swirl

angles less than 90 ° . The resultant measure of cold flow
mixing, Er,,o, is a product of Em.9O andf_. This factor, for

a given design, is a function of the normalized differential

injection velocity and the ratio of radial to axial GO2

velocity, Vo,/Voa. Increasing values of both quantities
increase f_, with a value of f_ = 1 being found at

Vo,/Vo_ = 1 (® = 90°) for all values of(Vr -- Vo)/Vo. Lar-
ger values offs increase cold flow mixing. These values

are found at low APo and high APf and ®. There is no
dependency off_ on chamber length. These trends are

opposite those noted above. Finally, ERE is proportional

to Era, o.

The wall heat flux curve from the Calhoon et al. [57]
methodology is fairly fiat, varying only about 10% from

high to low for the range of pressure drops considered in

this effort. Qw decreases with increasing V® (high APo and

low 19) and decreasing Vr (low APf). That Q, would
decrease with increasing 1/"ois counter to intuition. It

seems that high values of Vo, for any ®, would result in

higher mixture ratios in the wall region, as is the case for
liquid 02. Calhoon et al. [57] do not discuss this effect.

The heat flux seen by the injector, Q_nj, is actually
modeled by the distance from the injector at which
the propellant streams intersect. This axial distance is
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measured at the radial position corresponding to the

center of the co-axial fuel annulus, or gap. It is here that
the streams begin to mix and burn. This measure is

qualitative, but captures the trend for injector design.

The axial distance is affected directly by the swirl angle,

and indirectly by the propellant pressure drops. Qi,j de-
creases with decreasing swirl angle, increasing GO2 pres-

sure drop and decreasing GH2 pressure drop. Swirl angle

has the largest effect, while APo is the least significant
factor.

The relative combustor weight, Wret, is simply a func-

tion of the combustor length, Lcomb, the distance from the

injector to the end of the barrel portion of the chamber.
The longer the combustor, the more it weighs.

The relative injector cost, Crel, is a function of the fuel

gap width and the width of the tangential slots used to

induce the swirl in the GO2 center post. Larger values of
both variables result in lower machining costs, and thus

lead to lower injector cost. The fuel gap width increases

with increasing APo, and decreasing values of APf and ®.
Swirl slot width increases with lower values of APo and

0. Overall, Cret decreases with increasing APo and de-

creasing APf and 0. Fuel pressure drop and swirl angle

are the most significant factors.

A matrix of propellant pressure drop combinations
was developed and nine combinations were selected for

use in populating the design database. There are 20
combinations of Lcomb and ® for each AP combination,

making a total of 180 design points selected.
In the work by Tucker et al. 1-55,56], method i uses the

response surface method (RSM) to find optimal values of

ERE, Qw, Qi,j, wr_i and Cro_ for acceptable values of

APo, APf, Lcomb and ®. Five full quadratic response
surfaces are constructed by using JMP.

In the current case, it is desirable to maximize ERE

and while simultaneously minimizing Qw, Qinj, Wrel and
Crel •

3.2. Supersonic turbine for reusable launch vehicles

Supersonic turbines that drive fuel or oxidizer turbo-
pumps in rocket engines are of great interest to the next

generation space propulsion industry, including the reus-

able launch vehicles (RLV). They are complex, high-speed

devices that produce shaft power by ducting the flow of
hot gasses over specially shaped blades on a wheel. For

rocket engine applications, maximizing the vehicle

payload for a given turbine operating condition is the

ultimate goal. The flow path should be designed in such
a way that it wastes less energy so that turbine temper-
atures or the mass flow rate can be reduced, or the

turbine can be made smaller, increasing the efficiency (or
specific impulse) of the rocket engine. Any gain in turbine

efficiency will be reflected in reduced propellant

consumption, resulting in an increase in the payload.

However, higher turbine performance usually entails

multistage designs, which are heavier. The design of

a supersonic turbine often involves a considerable num-

ber of design variables with structural and aerodynamic

constraints. With the number of design parameters
involved, the overall procedure of design optimization of

supersonic turbines becomes a challenging task.

Papila et al. [58] have conducted a global optimiza-

tion investigation to perform the preliminary design of

the supersonic turbines, including the selection of the
number of stages and design variables. From one- to two-

to three-stage turbines, the number of design variables

increases substantially. In shape design, from vane to

blade, from stage to stage, and from 2-D to 3-D, not only

does the number of design variables increase, but also the
interactions among design variables become more com-

plicated. Papila et al. [58] intended to investigate

the individual, as well as collective effects of design

variables by varying the design scope systematically.
Vaidyanathan et al. [39] have used the data of the

one-stage turbine to conduct a comparative study be-
tween RSM and NN.

For the preliminary design stage, single-, two- and
three-stage turbines are considered. The design variables

can be separated into two categories, one related to

geometry and the other to performance. They are sum-
marized as follows:

(1) Geometric inputs: The geometric inputs are needed

to layout the turbine meridional geometry, e.g., mean

diameter, last rotor annulus area, blade height ratio
between the first vane and the last rotor blade (linear

distribution of blade heights is assumed between the first

vane and the last rotor blade), vane and blade axial
chords.

(2) Performance inputs: The performance inputs are
needed to calculate the turbine efficiency, e.g., speed

(RPM), number of stages, blade row reaction, and work
split (if more than 1 stage is investigated).

For single-stage turbine, six design parameters

(Table 3) are selected. These are (1) the mean diameter, (2)
speed (RPM), (3) exit blade annulus area, (4) vane axial

chord, (5) blade axial chord, (6) stage reaction.

For two-stage turbine, there are 11 design parameters
(Table 3), namely, (1) the mean diameter, (2) RPM, (3) exit

blade annulus area, (4) first blade height (% of exit blade),

(5) first vane axial chord, (6) first blade axial chord,
(7) second vane axial chord, (8) second blade axial chord,

(9) first stage reaction, (10) second stage reaction, and

(11) first stage work fraction. Note that second stage

work fraction is not a design parameter since it can be
calculated by using first stage work fractions, i.e.,

Wf2 _ 1 -wfl.

There are 15 (Table 3) design parameters for three-

stage turbine. These are (1) mean diameter, (2) speed
(RPM), (3) exit blade annulus area, (4) first blade height

(% of exit blade), (5) first vane axial chord, (6) first blade

axial chord, (7) second vane axial chord, (8) second blade
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axial chord, (9) third vane axial chord, (10) third blade

axial chord, (11) first-stage reaction, (12) second-stage

reaction, (13) third-stage reaction, (14) first-stage work
fraction, (15) second-stage work fraction. Note that

third-stage work fraction is not a design parameter since

it can be calculated by using first- and second-stage work

fractions, i.e., wf3 = 1 - (Wfl -_" Wf2 ).

The composite objective function chosen by Papila

et al. [58] for design optimization corresponds to the
payload increment, Apay, versus turbopump efficiency

and weight. The relation between Apay and these two

parameters can be developed as follows based on mission

profile studies, engine balance perturbation and some

detailed turbopump layout and stress information gained
from other proprietary programs:

Apay = cl x (r/- r/b) X 100 -- (W -- Wb), (26)

where r/b is the baseline efficiency and Wb is the baseline
weight. The constant cl indicates that for every point in

efficiency gained, the amount of payload capacity of the

RLV is increased cl per turbopump. Therefore, Apay

function represents the amount of increase in payload
capacity. The results of both payload increment based

and composite desirability function-based optimization

are illustrated for one-, two-, and three-stage designs. The

results of both payload increment based- and composite
desirability function-based optimization are illustrated

for one-, two-, and three-stage designs in the following

chapters.

Two structural constraints are considered by Papita
et al. [58]. In axial turbines the product of the blade exit

annulus area and the RPM square, i.e., AN z is an indica-

tion of the blade centrifugal stress, which should bound
the speed of the turbine. In addition, the disk stresses are

also a restriction. In the turbomachinery industry, the

maximum stress value due to disk burst is often repre-

sented by a pitchline velocity limit, i.e., Vpltch. The pitch-
line velocity can be calculated by multiplying RPM and
the mean radius.

3.3. Turbulent planar diffuser

The goal was to accomplish maximum pressure recov-
ery by optimizing the wall contours. The flow is incom-

pressible and fully turbulent with a Reynolds number of
105, based on the inlet throat half-width, D. The overall

geometry is defined by the ratio of inlet and outlet areas,

and the diffuser length-to-height ratio. In this study the
length-to-height ratio is fixed at 3.0, and the area ratio at

2.0. The shape of the diffuser wall is designed for opti-

mum performance, with five design variables represented
by B-splines. The CFD model is based on the full

Reynolds-averaged Navier-Stokes equations, with the
k-e two-equation turbulence model in closure form. At

the inlet of the flow domain, a uniform flow distribution

is specified. Detailed discussion of this study can be found
in [59].

3.3. I. Objective

The dimensionless pressure recovery coefficient Cp is
introduced as the objective function to be maximized:

Ap

F = C, - 1/2 push," (27)

Here Ap is the static pressure difference between channel

cross sections up- and downstream of the diffuser, respec-

tively, p is the fluid density, and u_o_ is the inlet mean

velocity. Inlet and outlet static pressures are averaged,
even though the pressure distribution is nearly uniform

due to well-developed flow at the considered cross sec-

tions. The CFD model uses a symmetry condition along
the channel center axis, and has a computational mesh

consisting of 120 x 50 cells including a long outlet section

to establish a fully developed exit profile. The overall
geometry of the two-dimensional planar diffuser, see

Fig. 12, is defined by the ratio of inlet and outlet areas,

AR, and the diffuser length/height ratio, L = D, where

L is the axial length of the diffuser. In this study the ratio
of L to D is fixed at 3.0, and the area ratio AR at 2.0.

Expressed in terms of the inlet half-width D, the horizon-

tal position of the inlet is 1D, while the horizontal posi-

tion of the outlet is 10D. The shape of the diffuser wall is
designed for optimum performance, and to this end two

separate cases of wall parameterizations were evaluated

by Madsen et al.: (1) a two design variable case, where

a polynomial describes wall shapes, and (2) a five design
variable case that uses B-splines. Even though two differ-

ent curve descriptions are used in the two cases, the most

noteworthy difference seen from the point of view of the

RSM lies in the problem size.

3.3.2. Geometric representation

For shape parameterization in more variables, B-

splines were preferred to natural splines (piecewise poly-

nomials), although the latter technique is closer to the
polynomial representation. B-splines excel in the predict-

able way that control points influence curve shape, and in
the local control, which prevents small changes in a con-

trol point position from propagating over the entire

curve. Combined with low computational cost, these

advantages have contributed to B-spline curves becom-
ing a standard geometric modeling technique in com-

puter-aided design.

A B-spline is given in a parametric form as p(u):

n

p(u) Ly(u)J ,=
(28)

A set of blending functions N_:k combines the influence of

n + 1 control points P;, over the range of the parametric
variable u. The blending functions Ni:k are recursively
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Fig. 12. Two-dimensional symmetric diffuser subjected to shape
optimization in terms of pressure recovery measured between in-
and outlet.

determined polynomials with degree k- 1, where the

parameter k dictates the order of continuity of the curve,
and thus how many control points influence a curve

segment. In this work k is 8, which corresponds to C 6-

continuity. The number of control points is 8 as

well--two endpoints, five design variables and one point
used for prescribing the inlet slope.

B-splines have an approximating nature, in that they

do not necessarily pass through control points, except for
fixed curve endpoints. The slope at a curve endpoint is

tangential to a straight line connecting the endpoint and

the first control point, and may be prescribed by placing

an additional fixed control point near the endpoint.
Experimental and numerical evidence indicates that

maximum pressure recovery in diffusers occurs at the

border of appreciable flow separation. For this reason,

strongly separated diffuser flows should be avoided,

making it reasonable to restrict the design space to
monotonic wall shapes. While the approximation accu-

racy does of course benefit from the reasonable design

space approach, it is equally important in the present
example that monotonicity constraints eliminate conver-

gence problems associated with CFD-analysis of odd,

non-monotonic designs.
The parametric form in which B-splines are defined

makes it non-trivial to derive monotonicity constraints

analytically, so instead a constraint approximation
C was set up in the form of a response surface for the

minimum wall slope G. Then, observing the inequality

constraint G _> 0 implies a positive wall slope and thus
monotonicity throughout. Since B-splines are inexpen-

sive to generate, 9 s (59049) B-splines were computed

(requiring only seconds to generate) and used for fitting

a quadratic response surface. The approximation to the
monotonicity constraint precludes some designs that sat-

isfy the exact monotonicity requirement. However, the

effect of these inaccuracies on the solution of the opti-

mum design problem is negligible.

The regression analysis, to find 21 polynomial coeffi-

cients in five dimensions, is based on a 35-point

D-optimal design. The surplus of analyses is generally
required for reducing the sensitivity to numerical noise

and to errors due to the simplified representation as

a quadratic polynomial. Again, a pool of candidate

points was created, this time using nine levels for each
variable (values ranging from 0.0 to 1.0), and then check-

ing the monotonicity of the B-splines for each of the

95 = 59049 designs. It should be noted that limiting the

y-coordinate of the control points to a variation in the
range [0:0; 1:0] is a somewhat artificial requirement, as

monotonic shapes exist with coordinates slightly outside

this range. A total of 20 864 points are monotonic in wall
shape. This relatively large percentage of acceptable cases

reflects the smoother nature of approximating curves.

Had a non-segmented polynomial curve representation

been used, the condition of monotonicity in the control
points would alone have reduced the number of feasible

design points to less than 1% of those inside a five

dimensional box. As in the two-design-variable case, the

subset of D-optimal points was found using the JMP.

3.4. Low Reynolds number wing model

3.4.1. Training data

The aerodynamic model, a rectangular wing with
a NACA 5405 airfoil cross-section (Fig. 13) is designed

for low Reynolds number (Re = 10'*-106) flows. Since

airfoil performance decreases at low Reynolds number
flights, attempts to shrink the overall aircraft size while

trying to keep sufficient lifting areas result in low aspect

ratio wing planforms. As aspect ratio decreases, the per-
centage of the wing area affected by the tip vortices
increases, creating a 3-D flow field over most of the field.

Therefore, the analysis of such flows should consider the

effects on performance and the effects of both the airfoil

geometry (such as maximum camber) and the wing

0.15

0.1

o

_, o.0s

0

NACA 5405

0 o.I 0.2 0.3 0.4 0.s 0.s 0.7 o.s o.g 1

xtc

Fig. 13. NACA 5405 profile.
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Fig. 14. Design space for the shear co-axial injector: (a) ERE (15 original points, 10 test points), (b) Q (9 original points, 4 test points).

geometry (such as aspect ratio). In this study, the aerody-

namic analysis is based on a 3-D potential flow solver,
PMARC, and a 2-D coupled inviscid-viscous flow solver,

XFOIL-. The lift coefficients, CL, and drag coefficients,

Co, for various maximum camber, Yc, aspect ratios, AR,

and angles-of-attack, c(, at fixed Reynolds number,
Re = 2.0 x 105, and thickness ratio, y, = 5%, are used to

correlate the aerodynamic performance, measured by the

power index, C3/2/CD, which appears explicitly in steady

flight required-power equation. Aspect ratio and max-
imum camber form the input vector, p and C3:2/C_ forms

the target output vector, a, as shown below:

p = a = [CL /CD]lxR, (29)
Yc 2 ×R

where R is the number of input vectors of the training
data.

For the 3-D wing case, the maximum camber varies

between 0.0 and 0.1 and the aspect ratio varies between
one and five. Three different training data sets are used
out of the available data as shown in Table 34. Table 35

summarizes the test data sets used for prediction for this
case. A simulation, referred in these tables, consists of two

input variables: AR and Yc and the output variable:
C_/2/CD.

4. Assessment of data processing and optimization
capabilities

Of all the cases considered in this article, the impinge-

ment injector element, swirl co-axial injector element,
two-stage supersonic turbine and turbulent flow diffuser

help elucidate the effectiveness of using polynomial-

based RSM. The shear co-axial injector element, one-
stage turbine and two-dimensional wing model are used

to carry out a comparative study between RSM and NN.

Tile size of the data sets used in these studies varies from

very modest to large (from 9 to 2235 data points).
In the following, we synthesize the studies of Papila

et al. [37,58], Madsen et al. 1-59], Shyy et al. [38], Tucker

et al. ]-55,56] and Vaidyanathan et al. [39]. We first

review the data processing capabilities then evaluate the
performance of the optimization techniques. For both

NN and polynomials, one needs to first decide the most

appropriate constructions for a given data set. For the
NN, the choices are usually (1) the number of neurons,

and (2) the error goals. Furthermore, the spread constant

(for RBNN) and the number of hidden layers (for BPNN)

can be specified. In this article, the BPNN and RBNN

will be limited to the two-layer form.

4.1. Shear co-axial injector

4. I. 1. Polynomial fits

According to the injector model developed by Calhoon

et al. [57], injector performance, as measured by ERE
depends only on the velocity ratio, Vf/Vo, and combustion

chamber length, Lcomb. Examination of the original data

set in Tables 36-39 indicates 15 distinct design points for
ERE. Since chamber wall heat flux is dependent only on

velocity ratio, Vf/Vo, and oxidizer to fuel ratio, O/F, there

are nine distinct design points for Q. The design space for
this effort is depicted in Fig. 14. For ERE, the five distinct

chamber lengths offer the potential for a fourth-order

polynomial fit in Lcomb , while the three different velocity
ratios limit the fit in Vr/Vo to second order. Quadratic and

cubic response surfaces for both ERE and Q have been

generated for evaluation. These response surfaces repres-

ent reduced models accomplished by term elimination
from the full surface using t-statistics as described earlier.
The above-noted limitations on the data limit the cubic

surfaces to be third order in Lcomb only.
Based on the adjusted rms-error, Vaidyanathan et al.

[39] have concluded that the cubic fit is more accurate
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Fig. 15. Comparison of a for different NN designed with solverbe for shear co-axial gas-gas injector: (a) ERE (%) and (b) Q (Btu/in 2s).

than the quadratic fit for ERE. The adjusted rms-error
for the quadratic and cubic response surfaces of ERE are

0.211 and 0.083, respectively. The cubic fit, by this

measure, is superior for ERE. However, the error is

almost identical in the case of Q for both the quadratic

(0.039) and cubic (0.040) surfaces, apparently due to the
very small number of points available for the curve fit.
The additional terms in the cubic fit relative to the

quadratic fit do not improve the mapping of the response
surface for Q.

4.1.2. Construction of RBNN

In the case of the injector design there are two objec-

tives, namely ERE and Q. Fig. 15 gives the variation of

for the network designed with solverbe for these objec-
tive functions. In case of solverb the error goal during

training also defines the accuracy of the network. An
objective of fitting a numerical model is to remove the

noise associated with the data. A model, which maps
exactly as solverbe does, will not eliminate the noise,
whereas solverb will. Fig. 15 shows that for low values of

spread constant, the NN has a poor performance. As the

spread constant increases a asymptotically decreases.
However, as demonstrated by Fig. 15a the performance

of the network can deteriorate for higher values of the

spread constant. The region with a large variation in a is

highly unreliable because this indicates a high sensitivity
of the model to a small variation of spread constant and

possibly the test data, in this region. Hence the desirable
spread constant is selected from the region where the

performance of the network is relatively consistent.

Fig. 16 gives the variation of a for the network de-

signed with solverb for the objective functions of ERE
and Q. It also shows the influence of error goal on the

network. Generally if a network maps the training data

accurately it can be expected to perform efficiently with
the test data. However, accurately mapping noisy data

may result in poor prediction capabilities for the net-

work. The variation in the performance is not significant

except for the ERE and Q network (Fig. 16), where the

poor performance of the network at high values of spread
constant improves for a larger error goal. This may

indicate the presence of noise in the data for ERE, which

solverb is able to eliminate with an appropriate error
goal. Fig. 17 shows variations in number of epochs and

cr with the variation of error goal for a given spread

constant when RBNN is designed with solverb. The
number of neurons in the network is one more than the

number of epochs. One expects that as the error goal
increases the number of epochs becomes smaller and the

network performs less accurately as in Figs. 17a and b.

When choosing an appropriate network the above-

mentioned features must be considered. The performance

of the constructed NN is best judged by comparing the
prediction error as given in Eq. (8) for different networks.

Using solverbe, networks are designed with varying
spread constants and the one that yields the smallest

error is selected. When solverb is used, networks are

designed for different spread constants and error goals.
The network that gives the smallest error for the test data
is used. The details of the networks selected are discussed
in later sections.

4.1.3. Evaluation of polynomial and NN for data

processing
The polynomial- and NN-based RSM are constructed

using the training data. The test data is then employed to

select the best polynomial or NN. Specifically in poly-

nomial-based RSM, the difference between the poly-
nomial and the training data, as given by a,, is normally

used to judge the performance of the fit. The additional

use of the test data helps to evaluate the performance of

different polynomials over design points not used during
the training phase. This gives a complementary insight

into the quality of the polynomial model over the design

space. For example, Tables 4 and 5 compare the perfor-
mance of different polynomials used to represent the two

objective functions of the injector case, ERE and Q, for
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Fig. 16. Comparison of _rfor different NN designed with solverb for shear co-axial gas-gas injector: (a) ERE (%) and (b) Q (Btu/in z s).

the shear co-axial injector. Starting with all the possible
cubic terms in the model, revised models are generated by

removing and adding terms. Similar kind of analysis is

also done for the turbine case. The best polynomial
is selected based on a combined evaluation between

aa and a.

For the NN, the test data helps evaluate the accuracy

of networks with varying neurons in BPNN and varying

spread constant in RBNN. Thus the test data are part of
the evaluation process to help select the final NN. Based

on the RSM or NN model, a search for optimum design

is carried out using a standard, gradient-based optimiza-
tion algorithm over the response surfaces represented by
the polynomials and trained neural networks.

A reduced quadratic and an incomplete cubic response
surfaces are used for the two objective functions. The first
model in Table 4 and the sixth model in Table 5 are the

selected cubic models for ERE and Q, respectively. There
is no noticeable improvement amongst the remaining

cubic models for ERE. For Q, the selected model is the
best in terms of aa although there are other models with
identical values of a.

The radial basis networks designed with solverbe are

the largest with 15 neurons in the hidden layer for ERE
network and nine neurons for the Q network. Solverb

designs a network for ERE with 14 neurons in the hidden

layer and a network for Q with eight neurons. Compared
to RBNN, BPNN has fewer neurons, the number of

neurons in the hidden layer are eight and four for the

ERE and Q networks, respectively. Details of the net-

works used are listed in Table 6. The spread constant

used for RBNN and the error goal of the training data is
also given in this table. The spread constant values are

selected from the region where the performance of the
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Table 4

Different cubic polynomials for ERE (dependent variables: VdVo and Lcomb , 15 training points, 10 test points)

Model # Coefficient = 0 Terms removed Terms included an (%) a (%)

1 Vr/V 3 0.09 0.21

2 Vt/V3o Vr/V2Lc,,,_b 0.08 0.21

3 Vf/V2,,Lco,,b, Vf/V3,, 0.08 0.21

4 Vf/V2L,o,,,b, Vf/V 3 L_o,,,b 0.09 0.21

5 Vf/V2Lcamb, Vf/V 3 L_omb , Vf/V2oL2mb 0.09 0.21

6 Vf/V2,,Lcomb, Vf/V 3 L'comb, Vf/V2L2omb, Vf/VoLcornb 0.10 0.21
T

network is consistent with the variation of spread con-
stant (Figs. 15 and 16). The error goal, in the case of
solverb, is selected based on the network with the best

performance for the ideal spread constant (Fig. 17).

The error in predicting the values of the objective
function by different schemes is given in Table 7. Several

observations can be readily made:

(1) Both NNs perform better than the RSM for this
data set.

(2) Both solverbe and solverb are of comparable perfor-
mance.

(3) The BPNN helps generate smaller networks and

hence performs at par in comparison to RBNN.

(4) The cubic polynomial is more accurate than the
quadratic one.

The various models generated are compared with test

data shown in Figs. 18 and 19. The curves representing
the NN predictions are closer to the data obtained
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Table 5

Different cubic polynomials for Q (dependent variables: O/F and V_/Vo, 9 training points, 4 test points)

83

Model # Coefficient = 0 Terms removed Terms included a, (%) a (%)

1 Vf/V3,O/F3 5.58 2.23
2 O/F3 Vf/V2o 5.58 2.09
3 Vf/V2o,O/F3 5.58 2.09
4 Vf/V3, O/F3 5.58 2.23
5 Vr/V3,o/r 3, Vf/V2o 3.96 2.09
6 Vr/V3o, O/F3, Vf/V2 Vf/V2,O/F2 5.58 2.09

Table 6

Neural network architectures used to design the model for shear co-axial injector element {sc = spread constant}

Scheme # of layers # of neurons in # of neurons in

the hidden layer the output layer

Error goal aimed for during training

ERE Q ERE Q ERE Q

RBNN (Solverbe) 2 15 9 1 1 0.0 {sc = 3.25) 0.0 {sc = 1.20}

RBNN (Solverb) 2 14 8 1 1 0.001 {sc = 1.05} 0.001 {sc = 1.05}
BPNN 2 8 4 1 1 0.01 0.0l

Table 7

rms-error in predicting the values of the objective function by

various schemes for the shear co-axial injector element

Scheme a for ERE (%) a for Q (%)

RBNN (Solverbe) 0.20 1.40

RBNN (Solverb) 0.13 1.53

BPNN 0.18 0.83

Partial cubic RS 0.21 2.23

Quadratic RS 0.28 3.49

from the injector model than the RS thereby demon-

strating that NN models are able to predict better than

the RS. The BPNN performs as well as RBNN but tends

to be flat. Due to its lower order, the quadratic poly-

nomial is flat. The cubic polynomial is able to perform

better than quadratic.

4.1.4. Polynomial-based RSM for design optimization

This case study is used to perform a complete com-

parative study between polynomial and NN-based RSM.

The comparison is carried out in three ways. Firstly, the

predictive capabilities of the different models are com-

pared. Secondly, NN is used to increase the population of

the design space, which is then used for mapping by

polynomial-based RSM. Thirdly, polynomials and NN

are used individually to represent the design space and

help in the optimization of the design.

An optimization was done for three different ranges of

the independent variables using the quadratic fit. The

three cases analyzed differ only in the constraints imple-

mented on the design parameters. The constraints are

Case 1:4 _< O/F <_ 6, 4 _< Vr/Vo <<.6, Lcomb _ 7.

Case 2:4 _< O/F <_ 6, 5 _< Vf/Vo <_ 7, Lcomb _ 7.

Case 3:4 _< O/F <_ 6, 6 <_ Vf/Vo _< 8, Lcomb _ 7.

The optimization is repeated using the cubic fits. The

combinations of weighting factors for ERE, s, and for Q,

t, are selected as (1, 10), (1, 1) and (10, 1) for these three

cases. The optimum has been evaluated and tabulated for

each case, as detailed in Tables 8-10. In this effort,

injector element optimization means maximizing the per-

formance, while minimizing heat flux and chamber

length. The optimum value for Vf/Vo obtained on the

cubic response surface is quite different than that found

on the quadratic surface for some cases (these particular

cases are noted in bold in Tables 8-10). Also, for selected

cases where there are discrepancies between the quad-

ratic and cubic results, the exact values from the injector

model have been included in parentheses in the tables for

comparison. In these cases, the cubic fit more closely

matches the exact data than does the quadratic fit.

Sample results for ERE plotted in Fig. 20a clearly show

the data is better fit by the cubic surface for the case

shown. Fig. 20b shows that the response surface pre-

dicted by cubic fit for Q has a noticeable dip that is

completely missed by the quadratic fit. This discrepancy
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Table 8

Optimum values obtained with cubic and quadratic for case 1 (constraints: 4 _< O/F <<.6, 4 _< Vr/Vo <_ 6, and L_omb _< 7) {values in the

parenthesis are the exact response of the injector model}

Cubic Quadratic

WERE (S) WQ (t) O/F Vf/Vo Lcomb ERE Q O/F vf/g, Leomb ERE Q

! I0 6.0 5.41 7.0 99.02 0.664 6.0 6.00 7.0 99.17 0.669
(99.00) (0.654) (99.20) (0.642)

1 1 6.0 6.00 7.0 99.15 0.669 6.0 6.00 7.0 99.17 0.669
10 1 6.0 6.00 7.0 99.15 0.669 6.0 6.00 7.0 99.17 0.669

results in the optimum for the cubic fit being consider-
ably lower than that for the quadratic surface. The pre-

diction from cubic fit agrees well with the exact data,
which also has a dip for this specific case.

The injector model was also used to produce addi-

tional design points to assess the capability of the differ-

ent response surfaces to match the exact data. In

Figs. 21a and 22a, the actual data obtained from the

injector model for all the design points has been shown.
The cubic and quadratic response surfaces obtained

based on the original data are also shown. The rms-error
for predicting the new ERE data is 0.270 and 0.205 for the
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Table 9

Optimum values obtained with cubic and quadratic for case 2 (constraints: 4 _ O/F <_ 6, 5 <<.V_/Vo _<7, and Lco,,,b _<7) {values in the

parenthesis are the exact response of the injector model}

Cubic Quadratic

WERE (S) WQ (t) O/F VJVo Leomb ERE Q O/F Vf/Vo Lco,,,b ERE Q

1 10 6.0 5.41 7.0 99.02 0.664 6.0 6.52 7.0 99.31

(99.00) (0.654) (99.10)

1 1 6.0 6.34 7.0 99.21 0.674 6.0 7.00 7.0 99.42

(99.20) (0.691) (99.30)

0.684

(0.716)

0.702

(0.728)

10 1 6.0 7.00 7.0 99.32 0.690 6.0 7.00 7.0 99.42 0.702

Table 10

Optimum values obtained with cubic and quadratic for case 3 (constraints: 4 _<O/F <_6, 6 _< Vr/Vo <_ 8, and Lcomb _ 7)

Cubic Quadratic

WERE (S) WQ (t) O/F Vr/Vo Lcomb ERE Q O/F Vf/Vo Lcomb ERE Q

1 10 6.0 6.00 7.0 99.15 0.669 6.0 6.52 7.0 99.31 0.684

1 l 6.0 6.34 7.0 99.21 0.674 6.0 8.00 7.0 99.67 0.753

10 1 6.0 8.00 7.0 99.42 0.728 6.0 8.00 7.0 99.67 0.753
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quadratic and cubic surfaces, respectively. For Q, it is
0.025 and 0.016 for the quadratic and cubic surfaces,
respectively. Again, the performance of the cubic surface
is superior to that of the quadratic surface.

4.1.5. Radial basis neural networks (RBNN)

Radial basis neural networks are trained by both

solverbe and solverb for each injector design response,

ERE and Q, using the original data set of 45 design

points. Solverbe trained the network for ERE with an

error to the order of 10-a3. The network trained by
solverbe for Q has an error on the order of 10- _6 Both
networks represent the respective design spaces essential-
ly exactly. Solverb, with an error goal of 0.001, trained
networks for both responses to represent the original
data set adequately. Since the size of the data set con-
sidered for training the network is fairly modest, the
number of neurons generated by solverbe is also small.
Solverb would have been suited better for a larger data
set where a reduction in the number of neurons might
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have appreciably reduced the computation time. The

networks trained using solverbe have been used for this

study. The ability of the RBNN to fit the design data and
to generate additional data for constructing a more accu-

rate response surface is discussed in the following sec-
tions.

(i) Comparison between Solverbe and Solverb: Since Sol-

verbe trains with the same number of neurons (45 in this

case) as data points, as noted above, it fits the training
data set with negligible error. However, it can also create

erratic behavior since it makes no attempt to filter noise
generated by excess neurons in the network. Solverb, on

the other hand, tends to reduce the potential for noise
by controlling the number of neurons in the network.

Table 11 shows that in the present effort, for the spread

constant value of 1.00, Solverb performs slightly better
than Solverbe based on the nominal error measure.

However, when judged by the level of errors associated,

both RBNNs are satisfactory from a practical stand-
point. As expected, Solverb uses fewer neurons than

Solverbe; in this case three less. It should be noted that, as

investigated in detail by Papila et al. [37], indicates the
relative performance between Solverb and Solverbe is

case dependent.

(ii) Comparison of RBNN predictions with polynomial-
based RSM: Figs. 21b and 22b show that the RBNN

trained by Solverbe is able to more accurately generate

additional design data than either quadratic or cubic

polynomial (shown for comparison in Figs. 21a and 22a).
In Fig. 21a, the ERE surface trained with the original

data set is shown. The 10 extra design points calculated

with the injector model for Vf/Vo of 5.00 and 7.00 are
shown. The ability of the RBNN to accurately generate

new design data can be seen by comparing the fit for ERE

in Fig. 21b to that for the polynomials in Fig. 21a. The

RBNN trains the network with more flexibility and
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Table 11

The rms-error in the prediction of ERE and Q for different values of spread constant. The error goal used for Solverb is 0.001

87

Sc Solverbe rms-error Solverbe rms-error Solverb rms-error Solverb rms-error Solverb

(ERE) (Q) (ERE) (Q) No. of neurons

0.50 1.493 0.179 1.733 0.287 44
0.75 0.745 0.135 0.675 0.135 44
1.00 0.152 0.022 0.153 0.017 42
1.05 0.190 0.011 0.128 0.012 44
1.25 0.316 0.010 0.267 0.022 44
!.50 0.336 0.022 0.309 0.030 44
1.75 0.369 0.022 0.310 0.021 44
2.00 0.308 0.016 0.296 0.019 41
2.25 0.279 0.020 1.846 0.045 43
2.50 0.325 0.017 0.744 0.025 43

learns the data trend, whereas polynomials provide only

an approximate fit on the given data. Regarding the

rms-error, a, for ERE, it is 0.152 for RBNN predictions as
compared to the values of 0.270 and 0.205 for quadratic

and cubic surfaces, respectively. The four extra design

points generated for Q, also at vf/Vo of 5.00 and 7.00 are
shown compared to the polynomial in Fig. 22a and

RBNN in Fig. 22b. The rms-error in the case of Q is 0.022

for RBNN as compared to 0.025 and 0.016 for quadratic

and cubic surfaces, respectively. Here the performance

of the RBNN is better than the quadratic but slightly
poorer than the cubic fit. Examination of Table 11 indi-

cates it may be possible that using Solverb with a spread

constant of 1.05 could further reduce the rms-error for Q.

However, the errors for Q are low enough that further
reduction may not be practical.

4.1.6. RBNN-enhanced polynomial-based response
Sl._Fface

Additional design points generated by the RBNN are
added to the original data set to form the enhanced data

set. This enhanced data set is used for further analysis to

evaluate the performance of the RSM with the larger
number of design points. The enhanced data set for ERE

has 15 points from the injector model and 10 from the

RBNN, for a total of 25 points. The enhanced data set for

Q has 9 points from the injector model and 4 from the
RBNN, for a total of 13 points. The entire optimization

analysis was redone with the enhanced data set. On this

enhanced data set, the full quadratic response surface

seems already appropriately constructed and invoking
the statistical analysis generates no reduced model. With

the added data in the enhanced data set, it is now pos-

sible to obtain a fit for ERE that is fourth order in Vr/Vo
and fourth order in Lcomb. Q can now be fit with a cubic

in Vr/Vo and a quadratic in O/F. This is now possible

since a combination of 3 different values of O/F, 5 differ-
ent values of Vr/Vo and 5 different values of Lcomb are
available.

(i) Comparison of fits with the original response surfaces:
Comparison of the enhanced response surfaces with the

original response surfaces indicates that the extra data

produced with the RBNN generally improves the quality
of the curve fit. The adjusted rms-error for ERE on the

original set is 0.211 and 0.083 for quadratic and cubic fits,

respectively. On the enhanced data set, it is 0.179 and

0.100 for the quadratic and cubic fits, respectively. The

slight increase in the error in the case of the cubic fit may

be due to noise related to the over-sensitivity of the
polynomial. However, this phenomenon may reflect the

fact that the level of the rms-error is low enough in either

case so that no further improvement is accomplished.
The adjusted rms-error for Q with the original set is 0.039

and 0.040 for the quadratic and cubic fits, respectively.
On the enhanced set it was 0.027 and 0.026 for the

quadratic and cubic, respectively. With the exception of
the cubic fit for ERE, the fits from the enhanced surface

are improved over those from the original surface. Also,

when optimum design points are examined, there is less
difference between the quadratic and cubic fits on the

enhanced surfaces than there is on the original surfaces.

(ii) Comparison of optimal design points: The analysis
for the three cases of optimization over the same three

ranges of independent variables has been re-done. The
results of the optimization on surfaces generated from the
enhanced data set are tabulated in Tables 12-14. The

predicted optimal design points using cubic and quad-

ratic fits are generally close to each other. They are closer
to each other on the enhanced data set than on the

surfaces generated using the original data set. One case

where the cubic and quadratic optimum points are some-
what different is analyzed further. The results shown in

Fig. 23 confirm the optimum value of velocity ratio on

the quadratic fit to be lower than the cubic fit in this case.

Given the weightings of 1.0 for ERE and 10.0 for Q, the
optimizer has selected the minimum of Q for both fits.

Since the curves exhibit different minimum points, the

weightings force the selection of different optimum
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Table 12

Optimum values obtained with cubic and quadratic for case 1 (enhanced data set) (constraints: 4 _<O/F <_ 6, 4 <_ VdVo _<6, and

L_o,nb _< 7) {cf. with Table 8}

Cubic Quadratic

WEaE (S) WQ (t) O/F Vf/Vo Lcom_ ERE Q O/F Vf/Vo Lco,,b ERE Q

1 10 6.0 5.54 7.0 99.02 0.654 6.0 5.01 7.0 98.96 0.644

(98.90) (0.658) (98.70) (0.664)

1 1 6.0 6.00 7.0 99.12 0.658 6.0 6.00 7.0 99.25 0.658

10 1 6.0 6.00 7.0 99.12 0.658 6.0 6.00 7.0 99.25 0.658

Table 13

Optimum values obtained with cubic and quadratic for case 2 (enhanced data set) (constraints: 4 _<O/F <_6, 5 _< Vf/Vo _< 7, and

L_omb _<7) {cf. with Table 9}

Cubic Quadratic

WEaE (S) WQ (t) O/F Vr/Vo Lco,,,b ERE Q O/F Vf/V o Lcomt, ERE Q

1 10 6.0 5.54 7.0 99.02 0.654 6.0 5.01 7.0 98.96 0.644

(98.90) (0.658) (98.70) (0.664)

1 1 6.0 6.33 7.0 99.18 0.663 6.0 6.04 7.0 99.26 0.659

(99.10) (0.666) (99.20) (0.642)

10 1 6.0 7.00 7.0 99.30 0.681 6.0 7.00 7.0 99.46 0.693

Table 14

Optimum values obtained with cubic and quadratic for case 3 (enhanced data set). (constraints: 4 _< O/F <_6, 6 <_ Vf/V,, _< 8, and

Loo,,b _< 7) {cf. with Table 10}

Cubic Quadratic

WERE (S) W o (t) O/F Vr/Vo L_o,,,t, ERE Q O/F Vf/Vo Lcomb ERE Q

1 10 6.0 6.00 7.0 99.12 0.658 6.0 6.00 7.0 99.25 0.658

1 1 6.0 6.33 7.0 99.19 0.663 6.0 6.04 7.0 99.26 0.659

10 1 6.0 8.00 7.0 99.42 0.725 6.0 7.95 7.0 99.57 0.746

points. As already discussed, for the polynomial fits on

the RBNN-enhanced data sets, the errors of both quad-

ratic and cubic polynomials are more comparable than in

the original analysis. At the upper limit of the design

space for combustor length, the ERE curves tend to

flatten out. This causes some difficulty in locating the

optimum and may cause more noticeable differences

between the different polynomials. However, different

optimal designs selected by different polynomials under

such a circumstance are not significant since these yield

very similar injector performance.

The optimum solution obtained from various schemes

is shown in Table 15 and Figs. 24 and 25. The aim is to

maximize ERE and minimize Q. The trend of the objec-

tive functions in the design space is monotonic, hence

every model is able to select identical optimum design for

the given constraints. The flatness of the quadratic poly-

nomial results in less accurate values of the objective

function for the optimum design. However, the cubic

polynomial, while more flexible than quadratic, is not

consistently better in predicting the optimal design point.

For example, a Vr/Vo constraint of 4, the quadratic

polynomial is more accurate but for higher values of

Vf/Vo the cubic polynomial is more accurate. In contrast,

the NN models are able to perform consistently well.

Since the optimum design happens to be the same as one

of the training points, solverbe is able to predict the

values of the objective function accurately. Solverb per-

forms equally well, illustrating the capability of perfor-

mance with fewer neurons. Performance of BPNN is not
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Fig. 23. Assessment of performance of cubic and quadratic response surfaces for case 1 of: (a) ERE for the shear co-axial injector (25

training/mapping points), (b) Q (13 training/mapping points) {Enhanced set includes Injector model data and RBNN predicted data.

Quadratic and cubic are predicted by polynomial-based RSM}.

Table 15

Optimal solutions for fixed values of Vf/Vo and given range of O/F and L¢o,_b obtained with NN and polynomial-based RSM schemes

for the shear co-axial injector element (constraints: 4 _< O/F _< 8, 4 _<L,omb _< 7) (error given in parenthesis for each prediction is in %)

Vf/Vo Scheme OIF L_o,,,b (in) ERE (%) Q (Btu/in2-s)

4 RBNN (SoIverbe) 8.0 7.0 98.60 (0.00) 0.588 (0.00)

RBNN (Solverb) 8.0 7.0 98.60 (0.00) 0.588 (0.00)

BPNN 8.0 6.9 98.64 (0.14) 0.578 (1.70)

Partial cubic RS 8.0 7.0 98.61 (0.01) 0.595 (1.19)

Quadratic RS 8.0 7.0 98.67 (0.07) 0.591 (0.51)

Model 8.0 7.0 98.60 0.588

Model 8.0 6.9 98.50 0.588

6 RBNN (Solverbe) 8.0 7.0 99.20 (0.00) 0.512 (0.00)

RBNN (Solverb) 8.0 7.0 99.20 (0.00) 0.512 (0.00)

BPNN 8.0 7.0 99.18 (0.02) 0.513 (0.20)

Partial cubic RS 8.0 7.0 99.15 (0.05) 0.499 (2.54)

Quadratic RS 8.0 7.0 99.17 (0.03) 0.531 (3.71)
Model 8.0 7.0 99.20 0.512

8 RBNN (Solverbe) 8.0 7.0 99.40 (0.00) 0.493 (0.00)

RBNN (Solverb) 8.0 7.0 99.40 (0.00) 0.493 (0.00)

BPNN 8.0 7.0 99.41 (0.01) 0.500 (1.42)

Partial cubic RS 8.0 7.0 99.42 (0.02) 0,500 (1.42)

Quadratic RS 8.0 7.0 99.67 (0.27) 0.471 (4.46)
Model 8.0 7.0 99.40 0.493

as satisfactory as suggested in Table 7. For lower con-
straints of Vr/Vo, it performs poorly but for higher values
of Vr/Vo it is good. This may be due to the selection of
fewer neurons in the hidden layers of the networks. Over-
all, it is still better than the polynomial-based RSM and
demonstrates the flexibility of NN over polynomials.

As stated by Papila et al. [37-1, when it comes to
choosing between NN and polynomials, polynomials are

easy to compute. The number of coefficients might be
numerous but the linearity of the system expedites the
process of coefficient evaluations. This is also the reason
RBNN train fast. On the other hand, the weights of
BPNN are evaluated through a nonlinear optimization,
which slows the training process. Of all the NN presented
here, the one designed with the help of solverbe is the
fastest to train since the values of the weights are set to
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values of the input dependent variables. Solverb trains

with the addition of one neuron at a time with weights

similar to the input and hence is slower.

4.2. Impinging injector element

4.2.1. Polynomial fits

In [55], method i uses the polynomial based RSM to

find optimal values of ERE, Qw, Qinj, w,c_ and Cr_ for

acceptable values of APo, APf, Lcomb and e. The ap-

proach of RSM is to perform a series of experiments, or

numerical analyses, for a prescribed set of design points,

and to construct a response surface of the measured

quantity over the design space. In the present context, the

five responses of interest are ERE, Qw, Q_.j, wr._ and

Crc_. The design space consists of the set of relevant

design variables APo, APf, Lcomb and cc

(i) Individualpolynomial models: When JMP is used to

analyze the 163 design points, five individual full re-

sponse surfaces for the variables in the design space are

approximated by quadratic polynomials that contain 15

terms each. Using the t-statistics approach noted above

and detailed in [55], unnecessary terms in each equation

can be eliminated to give the reduced quadratic surfaces.

The reduced response surfaces indicates that the equa-

tions reflect the functionality used to construct the mod-

els for the dependent variables.

(ii) Joint response surfaces: In the current article, it is

desirable to maximize ERE and while simultaneously

minimizing Qw, Qinj, Wrcl and Crol. Therefore, composite

response surface for the present case is given by

D = (dEREdQ, dQ,., dw.., de,., )I :s. (30)

4.2.2. Optimization results and discussion

Three sets of results are presented below to demon-

strate the capability of method i for the current injector

design. These three examples illustrate the effect of each



W. Shyy et al. / Progress in Aerospace Sciences 37 (200!) 59-118 91

Table 16

Effect of each variable on the optimization of impingement co-axial element--optimal designs for original constraints and equal weights

Independent variable Constraints Results Case 1 Results Case 2 Results Case 3 Results Case 4

APo 100-200 183 183 179 100
APf 100-200 100 132 149 100
Lcomb 2-8 8.0 8.0 6.6 6.5

15-50 33.1 18.9 22.3 24.0

Dependent variable Desirability limits ERE & Qw ERE, Qw, ERE, Qw, ERE, Qw,
Htmpini, Himplng¢,Wrel Himpini¢, Wr,I, Crd

ERE 95.0-99.9 99.9 98.3 98.0 98.0

Q,, 0.7-1.3 0.74 0.76 0.79 0.86
Himplng ¢ 0.2-1.0 -- 0.75 0.61 0.63
Wr_l 0.9-1.2 -- -- 1.1 1.1
C_ol 0.7-1.1 -- -- -- 0.93

variable on the optimum design, the trade-offs between

life and performance issues, and the effect on the design of

extracting the last increment of performance.

(i) Effect of each variable on the design using original
constraints and equal weights: The results in this section

were obtained by building the joint response surface with

the addition of one dependent variable at a time. The

results are shown in Table 16. Since current non-opti-
mizer-based design methods yield high-performing

injector elements, simply maximizing the ERE is not

a challenge. Accordingly, the initial results (Case 1) are

obtained with a joint ERE and Qw response surface. The
results in Case 2 have the impingement height added,

Case 3 adds the relative chamber weight and the relative

cost is added in Case 4. All results are obtained using the
original independent variable constraints and all depen-

dent variables have equal weights of one. The results for

Case 1 show that ERE is at its maximum and Qw is very
near its minimum desirability limit. Minimizing Qw re-

quires a small APt relative to APo as evidenced by the

values of 100 and 183 psi, respectively. Maximum ERE
values are found at the longest chamber length,

Lcomb = 8inc. Even with the relatively high value of

183psi for APo and low value of APf of 100psi, ERE is

maximized to 99.9% with an impingement half-angle of
33.1 ° .

Addition of the impingement height to Case 2 to model

the injector face heat flux, Qi,j, forces e lower to increase

Himpln_ e and decrease Qi,j. This decrease in the radial
component of the fuel momentum has an adverse affect

on ERE. This effect is mitigated to a degree by increasing
the APt from 32 to 132psi. ERE is still reduced by 1.6%.

Also, the increase in APf causes increased penetration of

the fuel jet, which results in a slightly higher Qw.

Case 3 adds the relative combustor weight to the list of
dependent variables modeled. Since Wr,t is only a func-

tion of Lcomb, minimizing W,,_ shortens the combustor

length from 8 to 6.6in. The shorter Lcomb tends to lower

ERE. This effect is offset to a large degree by increases in

APt and _, both of which increase the radial component

of the fuel momentum. The increase in APt also causes

a slight increase in Qw. The increase in a causes a signifi-

cant decrease in H_mpin_,, which increases the injector face
heat flux. Finally, the relative cost of the injector is added

in Case 5. Since Cr,_ is only a function of propellant

pressure drops, both APo and APt are driven to their
respective minimum values. This and a slight increase in

allow ERE to be maintained at 98%, even with a slight

decrease in Lcomb. The largest effect of this fairly dramatic

decrease in propellant pressure drops is on Qw. Even
though the values for APo and APf fell, AP_ increased

relative to APo causing Qw to increase by almost 9%.

Impingement height and relative combustor weight are
essentially unchanged.

Although several of the variables included in this exer-

cise are qualitative, an important conclusion can still be
drawn. The sequential addition of dependent variables to

an existing design results in changes to both the indepen-

dent and dependent variables in the existing design. The
direction and magnitude of these changes depends on the

sensitivity of the variables, but the changes may well

be significant. The design in Case 4 is quite different that

the one in Case 1. Consideration of a larger design space
results in a different design -- the sooner the additional

variables are considered, the more robust the final design
will be.

(ii) Emphasis on life and performance issues using orig-
inal constraints and unequal weights: The purpose of this

section is to illustrate the effect of emphasizing certain

design criterion on the optimization process. Method i
allows this emphasis via the weights applied to the

desirability functions in the joint response surface. The
results shown in Table 17 facilitate the illustration.

Case 1 (baseline) results are repeated from Case 4 in this
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Table 17

Effect of emphasizing & life & performance issues on the optimization of impingement co-axial injector element--optimal designs for
original constraints and modified weights

Independent Constraints Results Case I Constraints Results Case 2 Constraints Results Case 3
variable

APo 100-200 100 100-200 158 100-200 1O0
APf 100-200 100 100-200 100 100-200 137
L_omb 2-8 6.5 2-8 7.7 2-8 5.2

15-50 24.0 15-50 15.0 15-50 36.0

Dependent Baseline variable Life variable Thrust/weight
variable weight weight variable weight
ERE 1 98.0 1 96.7 5 99.1
Q,_ 1 0.86 5 0.75 1 0.95
Himpinge 1 0.63 5 0.94 1 0.32
W,_z 1 1.10 1 1.14 5 1.05
C,ol 1 0.93 1 0.97 1 0.95

table where the entire design space is considered with the

original constraints and equal weights for the dependent

variables. The results in Case 2 column are obtained by

emphasizing the minimization of the wall and injector
face heat fluxes. Desirability functions for both of these

variables are given a weight of five. Since lower heat

fluxes tend to increase component life, weighting these

two variables is equivalent to emphasizing a life-
type issue in the design. As expected, ct is decreased to

increase Himplngc, thus decreasing Qinj. Since the fuel
pressure drop is already at the minimum, the oxidizer

pressure drop is increased by 58% to decrease Qw. Both
of these changes tend to decrease ERE. While ERE does

decrease, the effect is somewhat mitigated by an increase
in Lcomb. The increases in Lcomb and APo cause increases

in W,,_ and Cr,i, respectively. The emphasis on life

extracts the expected penalty on performance. Addition-
ally, for the current model, there are also weight and cost
penalties.

The results for Case 3 are obtained by emphasizing
maximization of ERE and minimization of Wro_ with

desirability weightings of five. Increased weighting for

these two variables is equivalent to emphasizing a thrust
to weight goal for the injector/chamber. The relative

chamber length is shortened to lower Wren. ERE is maxi-

mized by increasing the radial momentum of the fuel jet.

Both APf and :t are increased to accomplish ERE maxi-
mization. As noted earlier, increasing APf and ct lead to

increased wall and injector heat fluxes, respectively.

Table 17 indicates that to be the case here. For this case,
emphasis on thrust and weight tend to have an adverse

affect on both Qw and Qi,j. Relative cost, for the current
model, is not significantly affected.

(iii) Extraction of last performance and weight increments
(modified constraints and unequal weights): Here, the high

marginal cost of realizing the last increment of thrust to

weight is shown. This section illustrates the capability to

modify the constraints on the independent variables and

use unequal weights on the dependent variables at the
same time. The results for Case 3 in Table 17 are carried
over to Case 1 in Table 18 as the baseline for this

example. Here the original constraints are used but in-

creased weights have been applied to emphasize ERE

and W_,l. Cases 2 and 3 modify the constraints on the

propellant pressure drops, raising the minimum pressure
drop from 100 to 150psi. For Case 2, both APo and AP r

are now at the minimum level for the modified con-

straints. Leomb is increased slightly to maintain ERE. The

decrease of APf relative to APo causes a decrease in Qw.
The slightly higher-pressure drops also cause Cre_ to

increase somewhat. Other variables are not changed
appreciably.

For Case 3, ERE and W_e_ are further emphasized by

increasing their desirability weights to i0 while decreas-
ing the other weights to 0.1. Lcomb is shortened to re-

spond to the increased emphasis on weight minimization.

Maintaining the high level of ERE requires large in-
creases in APt and a to increase the radial component of

the fuel jet momentum. The increase in APf causes over-

penetration of the fuel jet, which results in an increase in

wall heat flux. The large increase in • yields the expected

decrease in Himpinge, which increases the injector face heat
flux. The additional emphasis on ERE and Cro_ yields

essentially no increase in ERE in this range of AP,

although a small weight savings is seen. These marginal
improvements are offset by fairly large increases in

C_ol and Qinj.

4.3. Swirl co-axial injector element

Two sets of results are presented below to demonstrate
the capability and flexibility of method i for the current
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Table 18

Effects of realizing the last increments of performance & weight on the optimization of impingement co-axial injector element

--optimum designs for modified constraints and unequal weights

Independent Original Results Case 1 Modified AP Results Case 2 Modified AP Results Case 3

variable constraints constraints constraints

APo 100-200 100 150-200 150 150-200 150

APf 100-200 137 150-200 150 150-200 200

Lcomb 2-8 5.2 2-8 5.4 2-8 4.4

cc 15-50 36.0 15-50 35.6 15-50 44.8

Dependent Variable weight Variable weight (5 : 1) Variable weight

variable (5:1) (100: 1)

ERE 5 99.1 5 99.0 10 99.1

Qw I 0.95 1 0.84 0.1 0.95

Himptng c 1 0.32 1 0.31 0.I 0.21

Wren 5 t.05 5 1.05 10 1.01

C,o_ ! 0.95 1 1.00 0.1 1.07

Table 19

Effect of each variable on the optimization of swirl co-axial injector element--optimal designs for original constraints and equal weights

Independent Constraints Results Case 1 Results Case 2 Results Case 3 Results Case 4 Results Case 5
variable

APo 100-200 200 200 200 200 104

APf 20-200 41 41 42 47 20

L¢omb 2-8 7.2 7.2 7.6 3.2 3.4

O 30-90 81 81 37 47 44

Dependent Desirability ERE ERE & Qw ERE, Qw, Qi,j ERE, Qw, Q_,j, ERE, Qw, Qi,j,

variable limits Wro_ W,,_, C,c_
ERE 92.3-99.0 98.5 98.5 97.2 96.0 95.7

Qw 0.596-0.647 0,596 0.596 0.596 0.596 0.596

Qn,j 6.95-36.59 26.8 26.8 9.1 12.0 10.5

Wren 0.900-1.154 1.13 1.13 1.14 0.97 0.98

C,_j 0.73-1.42 0.98 0.98 0.81 0.84 0.76

injector design. These examples illustrate the effect of

each variable on the optimum design and the trade-offs

between life and performance issues.

4.3.1. Effect of each variable on element design

The results in this section were obtained by building

the joint response surface with the addition of one depen-

dent variable at a time. The results are shown in Table 19.

Case 1 seeks the maximum performance without regard

to the effect on the other dependent variables. ERE is

a fairly strong function of Loomb--longer chamber lengths

allow more residence time for the propellant to mix and

burn. The effect of ® on ERE is strongest at low values of

19. ERE increases with increasing O until about 19 = 80 °

and then fall off slightly due to the competing influences

noted earlier. These competing influences also cause the

effect of both pressure drops on ERE to be somewhat flat,

although since APo affects more variables, its influence is

slightly stronger. Maximum performance is found at high

values of APo, 19, and Lco_,b and at low values of APr.

This trend is consistent with other works for similar

injector elements. The predicted optimal value of 98.5 is

indeed the highest predicted by this model.

The objective of Case 2 is to simultaneously maximize

ERE and minimize Qw. Table 19 shows that the exact

same design point was chosen as for Case 1. Usually, the

design, which yields the maximum ERE, also produces

a high wall heat flux. That is not the case here; this issue

has already been noted. The minimum Qw is found in the

region of high APo and low APr. In this area, Qw is

almost independent of ®. Hence, the minimum Qw can

still be found for a high value of ® required to maximize
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Table 20

Effect of emphasizing life and performance issues on the optimization of swirl co-axial injector element

Independent Constraints Results baseline Constraints Results Case 1 Constraints Results Case 2
variable

APo 100-200 104 100-200 200 100-200 200
APf 20-200 20 20-200 32 20-200 44

L_omb 2-8 3.4 2-8 3.6 2-8 2.9
® 30-90 44.0 30-90 30.0 30-90 72.0

Dependent Baseline variable Life variable Thrust/weight
variable weight weight variable weight
ERE 1 95.7 1 95.3 10 96.7
Qw 1 0.596 5 0.596 1 0.596
Q_nj l 10.5 10 6.9 1 22.6
W,cl 1 0.98 1 0.99 2 0.96
Crcl 1 0.76 1 0.79 1 0.94

ERE. It should be noted that in the low APo, high APt
region, Qw is a function of ®. Here, as ® is increased,

Qw increases since the larger swirl angle forces do to

increase and thus decrease Vo. In the Calhoon et al. [57-]
model, this reduction in GOz momentum causes an

increase in Qw.

The requirement to minimize Qinj is added in Case 3.
In order to minimize Qinj, the swirl angle is decreased

from 81 to 37 °, thus reducing the injector face heat flux
by approximately a factor of 3. This decrease in ® also

lowers ERE which forces use of a longer chamber to

offset some of the loss. Still, ERE is reduced by over one
percent.

Case 4 considers the desire to minimize the chamber

weight, Wro_, in addition to maximizing ERE and minim-

izing Q,,. and Qinj. Since Wrol depends only on Lcomb , the
chamber length is shortened by over half. The weight is

reduced, but so is ERE. To mitigate the adverse effect on
ERE, ® is increased by almost 10 °, simultaneously in-

creasing Q_nj. ERE drops again by over a percent, while
Qw remains constant.

Finally, minimizing the injector cost, Crew,is added in

Case 5. Decreasing each pressure drop approximately

a factor of 2 lowers the relative injector cost. Decreasing

APt results in a larger fuel gap and decreasing APo allows
for a larger swirl slot. These factors combine to lower the
cost by almost 10%.

Although several of the variables included in this exer-

cise are qualitative, an important conclusion can still be

drawn. The sequential addition of dependent variables to

an existing design results in changes to independent and

dependent variables in the existing design. The direction
and magnitude of these changes depends on the sensitiv-

ity of the variables, but the changes may well be signifi-

cant. The design in Case 5 is quite different than the one

in Case 1. Consideration of a larger design space may

result in a significantly different design--the sooner the

additional variables are considered, the more robust the

final design.

4.3.2. Emphasis on life and performance issues
Method i allows this emphasis via the weights applied

to the desirability functions in the joint response surface.
The set of results shown in Table 20 facilitate the illustra-

tion. The baseline results Table 20 (repeated from Case 5

in Table 19) consider the entire design space using the

original constraints and equal weights for the dependent

variables. The results are obtained by emphasizing the

minimization of the wall and injector face heat fluxes for
Case 1. Desirability functions for both of these variables

are given increased weights (5 and 10, respectively). Since

lower heat fluxes tend to increase component life, weight-
ing these two variables is equivalent to emphasizing

a life-type issue in the design. Since Qw is already at its
minimum value, it remains fixed. As expected, ® is de-

creased, which decreases the value of Q_nj by almost 35 %.

The lower value of ® also produces a lower ERE. Both
propellant pressure drops and the combustor length are

increased to mitigate the drop in ERE. The increases in

Lcomb and APt cause increases in Wre I and Crel, respec-

tively. The emphasis on life extracts the expected penalty
on performance. Additionally, for the current model,

there are also slight weight and cost penalties.

The results for Case 2 are obtained by emphasizing
maximization of ERE and minimization of Wr,_ with

desirability weightings of 10 and 5, respectively. In-

creased weighting for these two variables is equivalent to

emphasizing a thrust to weight goal for the injec-
tor/chamber. The relative chamber length is shortened to

slightly lower W_,_. ERE is maximized by increasing the
GO2 swirl angle by a factor of almost 2.5 and also

increasing APr by over 35%. The value of ERE increases
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by over 1%. As noted earlier, increasing ® leads to

increased injector heat flux. For this case, emphasis on

thrust and weight tends to have an adverse affect on Q_,j.
Relative cost, for the current model, is also increased

significantly. Performance and weight trends for the swirl
and impinging injector elements are shown in Fig. 26.

Fig. 27 shows the heat flux and cost trends for the swirl

and impinging injector elements.

4.4. Supersonic turbine for reusable launch vehicles

4.4.1. Polynomial-based RSM results for one-, two-

and three-stage turbines

There are 28-unknown coefficients required for con-

structing the second-order response surface for the

single-stage case, 78 for the two-stage and 136 for the
three-stage case. Different starting points are tried to

avoid local maximum and the optimum values of r/,

W and Apay with the corresponding design parameters

are determined. The results shown are comparable with

the corresponding Meanline runs with the highest error

of 5% for Apay for single-stage turbine. The percentage
error is increased to 13.5% for Apay for two-stage tur-

bine and to 14.6% for the three-stage turbine for Apay

indicating that the accuracies of the response surfaces
constructed are poor for the two- and three-stage.

Papila et al. [58] have reduced the size of the para-

meter space by 80% in each coordinates, based on the

optimal design selected in the original design space, to
improve the accuracy of the response surfaces for these

cases. The intention is to improve the fidelity of the

response surface. With these refined designed spaces,

substantial improvement of the response surface fit accu-

racy is observed for both cases by Papila et al. [58].
Based on the results obtained, the following observa-

tions can be made:

(i) To ascertain required predictive capability of the

RSM, a two-level domain refinement strategy has been
adopted by Papila et al. [58]. The accuracy of the pre-

dicted optimal design points based on this approach is

shown to be satisfactory.

(2) According to the results obtained for z_pay-based
optimization, the two-stage turbine gives the best Apay
result.

(3) As the number of stages increases, it is observed

that efficiency improves while the weight increases, also.

However, the improvement in efficiency cannot compen-
sate for the penalty from higher weight.

(4) As shown in Fig. 28, the mean diameter, speed, and

the exit blade area exhibit distinct trends. Specifically, the
diameter decreases, speed increases, and annulus area

decreases with increasing number of stages. It is interest-

ing to observe that none of these design parameters are

toward the limiting values, indicating that the optimal
designs result from compromises between competing

parametric trends. For such cases, a formal optimizer such

as the present response surface method is very useful.
Table 21 gives a summary of the optimization results

for one-, two- and three-stage turbines for Apay-based

optimization.

4.4.2. Higher-order polynomials and NN-based RSM

for single-stage turbine
The generation of polynomial-based RS model and the

training of the NN are done with 76 design points of the
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Table 21

Optimization summary for one-, two- and three-stage turbine with response surface in original design space (all output parameters are

normalized by the baseline values)

Original design space Refined design space

_opt Wop._ Apayopt _opt Wopt Apayopt

Apay

1-stage 0.77 0.73 - 0.21 0.77 0.73 - 0.21

2-stage 1.10 1.05 0.11 1.13 1.04 0.15

3-stage 1.24 1.62 0.14 1.20 1.54 0.11

single-stage turbine. The analysis was initially done with-
out the constraints and then with the constraints on

(AN) 2 and Vp,ch.

A quadratic polynomial model was initially generated.
Then, cubic terms were included. Cubic terms that are

products of three different variables were included
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Table 22

Values of G and a for different response surfaces of r/and W for the supersonic turbine

97

Scheme G for r/(%) a for t/(%) G for W (%) a for W (%)

Quadratic RS 2.51 0.90 0.82 1.27
Reduced cubic RS 1.95 1.03 0.40 1.22
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Fig. 29. Comparison of a for different NN designed with solverbe for single-stage supersonic turbine: (a) r/(%) and (b) W(lb).

because of the amount of data available and the number

of levels being three. The trend of the design data also

suggests the presence of some of these terms. Therefore,

the initial cubic equation has 45 terms. Reduced third-
order polynomial model for r/and W were selected based

on the relative performances of different polynomials

obtained by removing terms from the initial cubic equa-

tion based on t-statistics. The cubic equation was selected
based on the evaluated value of _r, and a. Table 22

suggests that the reduced cubic polynomial is better than

the quadratic polynomial since or, is better for the former.
The values of a is comparable.

When constructing the NN-based response surface,
the design parameters of the NN should be selected

carefully since the selection of the design parameters

determines the learning characteristics of the NN. For

the single-stage supersonic turbine case, the variation of
a with respect to the only design parameter of solverbe

network, spread constant, is plotted in Fig. 29 for both

objective functions oft/and W. Fig. 30 shows that for low

values of spread constant, the NN has a poor perfor-

mance. As the spread constant increases a asymptotically
decreases. Therefore, the appropriate spread constant is

selected from the region where the performance of the
network is relatively consistent. Fig. 31 shows the influ-

ence of error goal on the network performance. Unlike

the case of injector (Fig. 17), a more stringent error goal

for the training data does not necessarily result in better
predictive capability against the test data for the single-
stage turbine.

The networks designed with solverb have 37 and 75

neurons for r/ and W, respectively, in the hidden layer,

while those designed with solverbe have 76 neurons each.

The BPNN uses significantly less number of neurons by
generating networks with five and 60 neurons for r/and

W, respectively, in a single hidden layer. The NN archi-
tectures chosen are listed in Table 23.

The accuracy of the various models is tested with the
18 additional available data and the error is shown in

Table 24. Solverbe yields a relatively poor prediction for

r/, which might be due to over fitting, but performs well
for W. Solverb is most consistent among all methods
evaluated.

The optimum solutions subjected to the constraints of
(AN) 2 limited to less than 1.132 (normalized with baseline

value) and Vpltch is limited to less than 1.148 (normalized
with baseline value), are presented in Table 25. Since

(AN) 2 is proportional to the product of square of RPM

and A .... and Vpl,ch is proportional to D times RPM, no

NN or polynomial-based RSM is generated for them. By
comparing the predicted optimal design by the various

methods, one observes that solverbe and BPNN yield

noticeably larger error in _/and W, respectively. Solverb
and the response surface are more consistent with both

_/and W. Judged by the error in predicting Apay, it seems

that the polynomial-based RSM is most accurate. How-

ever, since the real goal is to maximize Apay, it is impor-

tant to note that the actual value of Apay for the optimal
design chosen by the RSM is the worst.

From a design perspective, it is interesting to under-
stand the impact of the constraints from A_,, and

Vp_,chon the optimal turbine parameters. Such an assess-
ment is offered in Figs. 32 and 33. As D, RPM and

A_.. decrease, _/, W, Vpiteh, AN / and Apay decrease.
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Cb and Cv are almost constant over the design space and

they do not have any noticeable effect on the objective

functions and constraints. In the case of Cv, the BPNN

shows a small perturbation for the analysis with the

constraint. This might be due to the mapping of some

noise by BPNN. Otherwise it is unaffected by the inclu-

sion of the constraints. The optimum stage reaction, sr, is

zero implying that the optimum design should be that of

an impulse turbine.

4.4.3. Orthogonal arrays for two-stage turbine

Although the majority of the work is based on the face

centered composite design approach (FCCD), ortho-

gonal arrays (OA) are constructed by Papila et al. 1-58] to

investigate the efficiency of orthogonal array designs in

representing the design space for two-stage turbine. A set

of 249 design points is selected using orthogonal arrays.

Table 26 shows the comparison of the quality of the

second-order response surfaces generated for r/, W and

Apay by using 1990-data generated by face centered

composite design and 249-data selected by orthogonal

array method.

The above table illustrates that the fidelity of the

response surface generated for design space of 249 data,

based on orthogonal arrays, are comparable with that of

1990 data based on the face centered criterion. The re-

sponse surface models are also assessed by using 78-test

data to determine the predictive accuracy of these

models. Table 27 presents that the testing adjusted rms-

errors of response surfaces generated are 1.65% for 11and

0.96% for W using 249-data, and 1.67% for r/and 1.21%

for W using 1990-data.
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Table 23

Neural network architectures used to design the models for r/and W of the supersonic turbine (sc = spread constant)

Scheme # of layers # of neurons in the # of neurons in the Error goal aimed for during

hidden layer output layer training

RBNN (Solverbe) 2 76 76 1 1 0.0 {sc = 9.50} 0.0

{sc = 9.45}

RBNN (Solverb) 2 37 75 1 1 0.001 {sc = 6.50} 0.001

{sc = 8.35}

BPNN 2 5 60 I 1 0.001 0.001

Table 24

rms-error in predicting the values of r/ and W by various

schemes for the supersonic turbine

Scheme a for r/(%) a for W (%)

RBNN (Solverbe) 1.25 1.10

RBNN (Solverb) 0.29 1.10

BPNN 0.78 2.56

Reduced cubic RS 1.03 1.22

When these results are compared with the results of

1990-data and it is observed that the optimum r/, W and
Apay are largely consistent. However, it is also observed

from Fig. 34 which shows the comparison of the design
variables for optimization based on (Apay), some of the

design variables are different even though optimum r/,

W and Apay are consistent. This shows that there are

multiple points in the design space, which yield compara-
ble performance. Nevertheless, it remains true that the

two-stage turbine is most suitable from a payload point
of view.
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Table 25

Optimal solutions with constraints on Vp_tchand (AN) 2 for a supersonic turbine (error given in parenthesis for each prediction is
in %) (V_,ch = 1.148 and (AN) 2 = 1.132 in all the cases) (all the variables are normalized by their respective baseline values)

Scheme D (in) RPM A,,, (in 2) Cv (in) Cb (in) sr (%) r1 W (lb) Apay (lb)

RBNN 0.972 1.181 0.811 1.443 0.836 0.0 0.810 0.636 - 0.139

(Solverbe) (5.80) (0.74) (29.80)

Meanline 0.972 1.181 0.811 1.443 0.836 0.0 0.766 0.641 - 0.197
RBNN 0.999 1.149 0.857 1.483 0.792 0.0 0.785 0.653 -- 0.177

(Solverb) (1.75) (0.17) (9.16)

Meanline 0.999 1.149 0.857 1.483 0.792 0.0 0.772 0.654 - 0.194
BPNN 1.024 1.121 0.901 1.168 1.143 0.0 0.793 0.608 - 0.153

(2.49) (8.63) (21.49)

Meanline 1.024 1.121 0.901 1.168 1.143 0.0 0.772 0.666 - 0.195
Reduced 0.903 1.272 0.700 1.706 0.871 0.0 0.758 0.591 - 0.194

cubic RS (1.50) (2.10) (8.40)

Meanline 0.903 1.272 0.700 1.706 0.871 0.0 0.746 0.604 - 0.211

4.4.4. NN-based RSM for two-stage turbine
In order to find the optimum RBNN design for the

design of the two-stage turbine design, the effect of the

spread constant (sc) on the network training error is
determined. Figs. 35 and 36 show the variation of sol-

verbe network error, cr, with respect to spread constant

for the NN designed for FCCD and OA data. The opti-
mum spread constant is determined as 3.2 for 1990-

training data (FCCD) from Fig. 35 and 4.3 for 249-data

(OA) from Fig. 36. In spite of the fact that the spread

constants are larger than 3, the training rms-errors (Ca)
are less than 0.1% for all networks designed for refined

space with 249-data as shown in Fig. 37. Based on this
observation, sc = 4.3 value is used for these cases for

consistency.

After constructing the NN-based response surface, the

NN model is tested by using 78-test data selected along
the main diagonal of the design space to determine the

predictive accuracy of these models. Table 28 presents

the prediction rms-errors (cr) of second-order polynomial
response surfaces, which are 1.65% for r/and 0.96% for

W using 249-data, and 1.67% for r/and 1.21% for W us-

ing 1990-data. Table 28 also presents that the prediction

rms-errors of response surfaces generated by solverbe
RBNN are 1.36% for r/and 1.30% for W, and 2.26% for

r/and 1.56% for W using 249-data.
Fig. 38 summarizes fitting/training and testing results

of the RBNN and polynomial-based Apay approxima-

tions for the two-stage turbine. The efficiency of the

multi-level RSM approach can be observed by compar-

ing the original and refined design space plots. From

these plots, it is also possible to observe that more accu-

rate training is possible with RBNN but testing or pre-
diction accuracies of the RBNN and polynomial-based

approximations are quite comparable.

4. 5. Turbulent planar diffuser

4.5.1. Polynomial fits

Based on the D-optimal set of 35 design points se-
lected, the 21 regressors of a full quadratic polynomial
were fitted resulting in a moderate R2-value of 0.810.

A backward elimination of regressor terms subsequently
led to the removal of five terms and an increase of R 2 to

0.848. The lower values of R 2, in comparison to the
two-design-variable case, reflect the increased difficulties

in obtaining a good fit when moving to higher-dimen-

sional response surfaces. Data on the backward elimina-
tion steps are given in Table 29, which apart from R 2 and
R 2 holds the minimum t-statistic and the number of

uncertain terms with [tol < 2.0 remaining in the model.

From the t-statistics information, it appears that the

backward elimination improved the accuracy of remain-
ing terms.

The next step performed was to investigate whether the
35 applied observations included outliers. A common

(but not necessarily true) assumption, which enables the
statistical treatment of observations, is that errors are

independently and identically distributed according to
a normal distribution with mean zero and variance.
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Thus, the distribution of response surface errors was

plotted and compared to a normal distribution, with

which it is expected to correspond well. From the histo-

gram plot of the error distribution, see Fig. 39, it did not
seem that there are any outliers. Four arbitrary points

away from sampling points were picked to test the pre-

diction accuracy of the polynomial-based RSM. Table 30

compares CFD-results and polynomial approximations
with and without backward elimination of terms.

Again, the predictions of the response surface appear

reliable, except at the last control point. This point is,

however, in the non-monotonic region, so that the ap-
proximation relies on an extrapolation, which was never

intended. The reduced approximation model comes
closer to the CFD-results for two out of the three mean-

ingful test points.

4.5.2. Numerical noise

While noisy data from laboratory experiments is a gen-

erally accepted fact, the presence of noise in numerical
simulations seems much less recognized. Due to the com-

plex numerical modeling techniques of CFD, the exact
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origins of noisy responses may be difficult to pinpoint,

but factors such as turbulence models, incomplete con-

vergence, and the discretization itself are certainly influ-
ential. Here, the presence of numerical noise has been

investigated. The problem of non-smooth or noisy objec-

tive functions has previously been addressed by Giunta

et al. [601, who found RS approximations-based optim-
ization to perform very robustly under such circumstan-

ces, especially when point selection is based on design of

experiment techniques, such as D-optimal designs.
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Table 26

The quality of the second-order response surface obtained for r/,

W and Apay of two-stage turbine for 1990-data (face centered

criterion) and 249-data (orthogonal arrays) (Mean values of r/,

W and Apay are normalized by the baseline values)

W Apay

1990-data

249-data

R 2 0.995 0.996 0.995

R_ 0.994 0.996 0.995

rms-error 1.31% 2.56% 9.58%

Mean 0.78 0.86 - 0.24

R 2 0.995 0.998 0.994

R_ 0.992 0.997 0.992

rms-error 2.128% 0.826% 20.68%

Mean 0.89 0.92 - 0.11

Table 27

Testing of the second-order response surface obtained for r/and

W of two-stage turbine for 1990 data (FCCD criterion) and

249-data (OA) with 78-test data

# of design # oftest data a _r q(%) a _rW(%)

points

249 78 1.65 0.96

1990 78 1.67 1.21

Limitations of the software used were felt during the

application of a wall-shape parameterization in the

investigation of noise. A B-spline curve with two free

control points was used. Again, it was observed that the

objective function oscillated due to numerical noise, but

the amplitude was small. To make the noise more appar-

ent, it was therefore necessary to refine the subdivision of

the discretized line and reduce its length to 20% of the

initial, so that the line spans from (0.3,0.6) to (0.302,0.602).

This yielded the noisy response patterns shown in Fig. 40.

The two topmost curves in this figure were determined

using a relatively tight convergence criterion, and two

different convection schemes--a standard first-order up-

wind differencing scheme (UDS) and a second-order up-

wind differencing scheme (SUDS). The use of different

differencing schemes was carried out to estimate whether

numerical diffusion does significantly dampen the gen-

eration of noise. As discussed in [59], two different CFD

codes were adopted, and one seems less forgiving, in the

sense that it predicts a stronger tendency for flow separ-

ation. This could possibly be explained by factors such as

numerical diffusion, boundary treatments, and mo-

mentum interpolation methods adopted in the two codes.

As expected, switching to a more dissipative differenc-

ing scheme (lower order accuracy) yields a smoother

response. To further illustrate this issue, one more design

line curve is shown in Fig. 40, which arose from using

a relatively loose, yet still reasonable, convergence cri-

terion (using SUDS). The applied convergence criterion

considers summed and normalized (by inlet flux) resid-

uals over the entire mesh, with termination of computa-

tions once the maximum is below a certain small value e.

The loose convergence criterion in Fig. 40 was e = 10 -3,

whereas the tight tolerance was e = 10-5. For compari-

son, a convergence limit of e = 10-'* was applied in the

CFD analyses used for response surface modeling. The

overall conclusion is that the presence of some numerical

noise in CFD-results is practically inevitable, although
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Table 28

Testing the RBNN and second-order polynomial response surface obtained for r/and W for preliminary design of two-stage turbine
(original design space)

Number of Number of test sc o for r/(%) _ for r/(%) a for W (%) a for W (%)
training data data using RBNN using using RBNN using

(Sotverbe) polynomial-based (Solverbe) polynomial-based

249 78 4.3 1.365 1.648 1.305 0.959
1990 78 3.2 2.263 1.672 1.557 1.214

its magnitude depends on choice of code and modeling
techniques. Here, a technique such as polynomial-based

RSM can be effective in smoothing out the undesirable
fluctuations.

4.5.3. Optimum diffuser designs

In the optimum design using B-spline parameteriz-
ation, both the monotonicity constraint and four out of

five side constraints are active. As already mentioned, the

response surface constructed to guarantee wall mono-

tonicity becomes too restrictive. To compensate for this,
a one-dimensional search in the direction of the steepest

gradient was conducted starting at the optimum design
point estimated by RSM:

y = y* + c_VF. (31)

This search is terminated as soon as designs turn

non-monotonic, yielding a new optimum point at the
edge of the true feasible domain and an increase in the

optimum pressure recovery coefficient from 0.7208 to

0.7235. Fig. 41 compares the optimum wall contours

determined by RSM using B-splines and polynomial

shapes. The optimum B-spline shape compares well to
the optimum polynomial one, so it is not surprising that

there is no significant gain compared to this case. The
largest differences in shape are found in the later part of

the expansion, where the shape has less impact on the

overall performance, as separation is small in either case.
Thus, the close resemblance of optimum inlet shapes is

reassuring in terms of the credibility of the optimization

algorithm. A CFD-analysis of the five-design-variable

optimum design yields a pressure recovery coefficient of
0.7193, a little below the predicted value, as in the two-

design-variable case. The improvement from the two
design variable case (0.7185-0.7193) indicates that there

is not much potential for further gains. Furthermore, for

comparison, Fig. 41 also contains the corresponding wall

contour determined using search optimization tech-

niques. The optimum wall shape found by search optim-
ization can be described as truly bell-shaped, without

a "plateau" similar to the one found in the results of

RSM-optimization. There appears to be a distinct differ-
ence in optimum shapes from the two different optimiza-

tion approaches, which must be ascribed to the combina-
tion of optimization accentuating modeling differences

and a relatively small scatter in diffuser performances.

Fig. 42 highlights the use of a response surface approx-

imation for the optimum shape of a two-dimensional
diffuser. As illustrated, within the fidelity of the analysis

tool, there are often multiple design points that meet the

design objectives. It is interesting to note that different

diffuser shapes are found to yield essentially the same
performance. The response surface model is ideally suit-
able for such situations.

4.6. Low Reynolds number wing model

4.6.1. Polynomial fits

For the 3-D wing case, the response is the flight power
index, C3:2/C_, and the design space consists of design

variables maximum camber, Yc, and wing aspect ratio,

AR. Quadratic, cubic and quartic order polynomials are

tested for the best approximations for data sets contain-

ing 9, 15 and 25 simulated data points (see Table 34). The
predicted rms-errors are calculated for each of the model
and are shown in Table 31. As shown in this table,

Model 4 gives the smallest predicted rms-error for the
cases involving 9 and 15 simulated data points, whereas,

Model 12 allows the smallest predicted nns-error for the
case involving 25 simulated data points.

4.6.2. Comparison of radial-basis and back-propagation
networks

The predictive accuracy of neural networks depends

not only on the training data but also on the parameters
used to define the network. The best values for these

parameters cannot be determined by using only training

data, because typically one can obtain very small errors

for the training data with a wide range of these para-
meters. However, the performance of NN can be exam-

ined using test data.

For the radial-basis network, one important issue is to

investigate the magnitude of error in the test data to help
to select the spread constant. For the back-propagation

network, where cost of computation is an issue, the effect

of number of neurons on the cost and accuracy should be

checked. It was noticed that for the back-propagation
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Table 29

Backward elimination procedure for polynomial-based RSM in five variables

107

Terms Min tto[ No. Itol < 2.0 R _ Re Comments

21 0.05 15 0.922 0.811

20 0.23 14 0.922 0.823 Removed y_

19 0.45 12 0.922 0.834 Removed y_

18 0.53 9 0.921 0.841 Removed Yl Y4

17 0.97 8 0.919 0.848 Removed Y2Y5

"16 1.22 6 0.915 0.848 Removed y_

15 1.57 5 0.909 0.844 Removed Yl Ys

Errors histogram Prob.

- 0,75

" 0.50

" 0.25

-0.010 -0.006 -0.00,?. 0.002 0.006 0.010

Error

Fig. 39. Distribution of response surface errors at sampling

points and the corresponding normal distribution curve (same

mean and variance).

network, using four neurons gave a good compromise of

accuracy and cost. For the radial-basis network, it was

found that the error and the number of iteration required

for convergence are extremely sensitive to the value of

spread constant. After extensive experimentation, the

spread constant was chosen as 1.175.

For the 3-D wing case, both radial-basis NN and

back-propagation networks are applied. In order to be

able to make comparisons between these networks, the

training time histories are summarized in Tables 32 and

33. These tables show that both are efficient in the train-

ing of 9-, 15- and 25-simulation training data sets. How-

ever, as the data size increases, the back-propagation

network exhibits a growth rate in terms of the number of

epochs, indicating that it is more CPU time intensive for

1.o00t

1
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0.gggS
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]

yl
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Fig. 40. Normalized Cv-values along a straight line in the design

space. The results are for two different differencing schemes and

two different residual levels used as convergence criterion.

(UDS: upwind differencing scheme and SUDS: second-order

upwind differencing scheme.)

larger data sizes. As far as accuracy is concerned, both

networks perform well exhibiting improved predictive

capabilities as the number of training points increases

from 9- to 25-simulation for Yc interpolations (Fig. 43).

For this case, both methods reproduced the original

9-simulation accurately but both failed to predict accu-

rately the interpolation points at yc = 0.0125, 0.025,

0.075 and 0.0875 with the rms-error of the test data of

Table 30

Comparison between CFD-solutions and polynomial-based RSM-predictions

YI Y2 Ys Y,* Y5 F P (full) P (reduced)

0.5 0.5 0.5 0.5 0.5 0.7171 0.7148 0.7126

1.0 0.5 0.0 0.5 1.0 0.7174 0.7210 0.7174

0.25 0.75 0.25 0.75 0.25 0.7148 0.7185 0.7162

0.0 0.5 1.0 0.5 0.0 0.6943 0.7333 0.7283
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Fig. 41. Comparison of optimum wall shapes using polynomial and B-spline representations, respectively.

1.68 for back-propagation network and 1.04 for radial-

basis network (Fig. 43a). Fig. 43b shows that adding
6 new points at AR -- 2 and 4 at Yc = 0, 0.05 and 0.1

(15-simulation training data set) does not significantly
improve the 6 interpolated values (rms-error values of

1.369 for back-propagation network and 1.029 for

radial-basis network). However, with the addition of 10

new points at yc = 0.025 and 0.075 at AR = 1, 2, 3, 4 and

5 (25-simulation training data set) both the back-propa-
gation network and the radial-basis network can accu-

rately capture the overall behavior of the aerodynamic
data as shown in Fig. 43c. The rrns-error now is 0.141 for

back-propagation network and 0.106 for radial-basis net-

work. For AR interpolations, the back-propagation net-

work resulted in lower rms-error values when compared

to the rms-error values of radial-basis networks (Fig. 44).

For the 9-point simulation training data, the rms-error of

radial-basis network (rms-error = 11.12) is quite high

when compared to the rms-error of back-propagation
(rms-error = 1.172) (Fig. 44a). For this case, adding 6 new

points at AR = 2 and 4 at Yc = 0, 0.05 and 0.1 signifi-
cantly improves the rms-error value for radial-basis

(rms-error = 0.87) as shown in Fig. 44b. With the addi-

tion of 10 new points to 15-simulation data at yo = 0.025
and 0.075 at AR = 1, 2, 3, 4 and 5, the rms-error de-

creases further to 0.7 for radial-basis networks, and 0.026

for back-propagation (Fig. 44c). The results indicate that

the back-propagation network is quite accurate for small

to modest number of data for the cases investigated and
it is also more consistent than that of the radial-basis

network. However, as indicated in Tables 32 and 33. In

terms of computing time or epochs, back-propagation

network scales unfavorably with respect to the number of

data used. In other words, the back-propagation network
is competitive for modest data size while the radial-basis

network is more effective for larger data size. More in-
formation will be presented when the 2-D airfoil case that

involves substantially larger data size is discussed.

4.6.3. Comparison of radial-basis neural network

and polynomial-based techniques

For the 3-D wing model, the outputs of the solverb

radial-basis NN, along with the results of the poly-
nomial-based technique, are compared for different size

of the data. It must be noted that the network parameters
used to obtain radial-basis network results are sc = 1.175

and error goal = 10 -2. Fig. 45 illustrates the comparison

between the NN and polynomial-based outputs based on

the 9-simulation training data set. For this case, both

methods reproduced the original 9-simulation accurately

but both failed to predict accurately the interpolation
points at yc = 0.025 and 0.075 with rms-errors at the test

data of 1.04 for both the NN and polynomial-based
methods. Furthermore, it is seen that the error estimate

of 1.116 of Table 31 is a gross underestimate. Note that

by the time there are 25 data points, Table 31 predicts an
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Table 31

Predicted rms-error,

indicate the best fit)

a, for different polynomial models for 3-D wing model: 9-, 15-, and 25-simulation data sets (the shaded models

Model no. Model o- for 9 data a for 15 data _r for 25 data

1 cIAR 2 + c2AR + c3ARyc + c4yc + csy_ + c6 0.8047 0.5172 0.7800

2 cj AR 2 + c2AR + c3ARyc + c4yc + csy_ + c6 + cvAR 3 0.8047 0.5475 0.8007

3 clAR 2 + c2AR + c3ARyc + c4yc + csy_ + c6 + cry 3 0.8047 0.5172 0.5524

4 c1AR 2 + c2AR + c3ARyc + c4yc + csy_ + c6 + cvARy_ 0.1162 0.0738 0.6590

5 ca AR 2 + c2AR + c3ARyc + c4y C -[- csy 2 + c6 + c7y 3 + caARy_ -- -- 0.3207

6 cIAR 2 + c,AR + c3ARy c + c,,yc + csy_ + c6 + c_y_ -- -- 0.3262

+ csARy_ + cgycAR 2

7 c1AR 2 + c2AR + c3ARyc + c4yc + c_y_ + c6 + cTy_ -- -- 0.6961

+ csARy_ + c9AR 3

8 cIAR 2 + c2AR + c3ARy c + c4yc + csy_ + c6 + cTy 3 -- -- 0.3350

+ csARyc 2 + cgycAR 2 + cloAR 3

9 c1AR + c2ARyc + c3Yc + e4y_ + c5 + c6y 3 + cvARy_

10 c1AR + c2ARy c + c3y C q- c4y_ + c5 + c6AR2yc

11 c1AR 2 + c2AR + c3ARy c + c,_yc + csy_ + c6 + CTy 3

+ caAry_ + cgy_

12 cIAR 2 + c2AR + c3ARyc + c4yc + csyc2 + c6 + cTyc3

+ csAry g + c9Yc4 + c_oARyc 3

0.4248

0,8044

0.2383

0.1073

Table 32

Training history of radial-basis networks with Solverb for 3-D wing model

NNNo. # ofsimulations # ofneurons # ofepochs Steady-state error Spread constant Error goal

1 9 8 7 10 -16 1.175 10 -2

2 15 12 11 10 -4 1.175 10 -2

3 25 20 19 10 -3 1.175 10 -2

Table 33

Training history of back-propagation networks with Trainlm for 3-D wing model

NN No. # of simulations # of neurons # of epochs Steady-state error Error goal

1 9 4 23 4.5 × 10 -'_ 10 -2

2 15 4 12 8.5× 10 -3 10 -2

3 25 4 105 9.96 × 10 -3 10 -2

error of 0.659. The reason for this problem is that rms-

error estimates are not reliable when the number of

coefficients is close to the number of points (7 versus 9 for

this case). In addition, these estimates assume random

noise and that underlying function is quadratic. Fig. 45b

shows that adding 6 new points AR = 2 and 4 at

Yc = 0, 0.05 and 0.1 does not help noticeably to improve

the 6 interpolated values (rms-error values of 1.029 for

both). However, with the addition of 10 new points at

Yc = 0.025 and 0.0075 at AR = 1, 2, 3, 4 and 5 (25-simula-

tion training data set) both the NN and polynomial-

based techniques accurately capture the overall behavior

of the aerodynamic data as shown in Fig. 45c. The

generalization of the NN with 25-simulation is further

assessed by comparing additional interpolated values at

different yc and AR at Yc = 0.0125 and 0.0875 at

AR = 1,2,3,4 and 5. The rms-errors now are 0.142 for

the polynomial and 0.221 for the NN, which are more in

the line with the prediction in Table 31.

These comparisons illustrate that both neural network

and conventional polynomial fitting methods do a good

job as the number of points is increased.
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Fig, 43. Comparison of radial basis network with back-propagation network results for 3-D wing model (for y= interpolation) (design
parameters: sc = 1.175, error goal = 0.1 for radial-basis, and #of neurons = 4, error goal = 0.01 for back-propagation).

5. Conclusion and future directions

Recent experiences in utilizing a global optimization

methodology, based on polynomial and neural network

techniques, for aerodynamics and rocket propulsion

components are summarized. Global optimization

methods can utilize the information collected from vari-

ous sources and by different tools. These methods offer

multi-criterion optimization, handle the existence of mul-

tiple design points and trade-offs via insight into the

entire design space, can easily perform tasks in parallel,

and are often effective in filtering the noise intrinsic to

numerical and experimental data. Another advantage is

that these methods do not need to calculate the sensitiv-

ity of each design variable locally. The global optimiza-

tion method can be particularly effective with either

a polynomial-based response surface or a neural network

when information from different computational, experi-

mental and analytical sources needs to be assembled. In

this article, we present recent experiences in utilizing the

global optimization methodology for tasks related to the

preliminary design of a supersonic turbine, multi-cri-

terion design of three different types of injector element

(shear co-axial, impinging, and swirl co-axial), perfor-

mance of a low Reynolds number wing, and shape optim-

ization of a turbulent flow diffuser. A successful optimal

design technique often needs to address the issues related

to the selection of appropriate training data for con-

structing the global model, employment of the statistical

and testing tools to identify appropriate global models,

existence of multiple design selections and related trade-

offs, and consideration of noises intrinsic to numerical

and experimental data. These issues are discussed. It is

seen that the global optimization method can naturally

take the confidence level of the data into account, offers

a number of designs with comparable performance, and
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parameters: sc = 1.175, error goal = 0.1 for radial-basis, and # of neurons = 4, error goal = 0.01 for back-propagation).

allows designers to make a more informed decision. We
have reviewed direct evidences that demonstrate that

appropriate selection of design points can significantly
reduce the number of data required for constructing the

global model. In particular, while the FCCD approach

can be effective with modest number of design variables,
OA with D-optimal selection criterion seems to be effec-

tive when the number of design variables becomes higher.

Regarding the relative merits between polynomials and
neural networks, based on the results reviewed, we can

make the following summary:

(i) Higher-order polynomials usually perform

better than lower-order polynomials as they have more
flexibility. However, exceptions have been noticed

which demands that appropriate statistical measures be
taken to determine the best terms to include in an

expression.

(2) Both NN and polynomial-based RSM can perform

comparably for modest data sizes.

(3) Among all the NN configurations, RBNN designed
with solverb seems to be more consistent in performance.

(4) Radial basis networks, even when designed effi-

ciently with solverb, tend to have many more neurons

than a comparable back-propagation with tan- or log-
sigmoid neurons in the hidden layer. The basic reason for

this is the fact that the sigmoid neurons can have outputs

over a large region of the input space, while radial basis
neurons only respond to relatively small regions of the

input space. Thus, larger input spaces require more radial
basis neurons for training.

(5) Configuring a radial basis network often takes

less time than that for a back-propagation network

because the training process for the former is linear
in nature.
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Fig. 45. Comparison of radial basis NN results with polynomials for 3-D wing model (design parameters: sc = 1.175, error goal = 0.1
for radial-basis networks).

(6) While the transfer function employed by any neu-
ral network is non-linear in general, the RBNN, with the

combined feature of flexibility and linear regression is

more accurate than BPNN, which requires solution of
non-linear systems.

(7) The comparisons demonstrate that for this case
there are no significant differences between the NN- and

polynomial-based RSM. The results of polynomial-
based methods, though, suggest that when the error is

mostly due to modeling rather than noise, the error

estimates of the polynomial-based technique can be
substantially off.

(8) The NN technique has shown the potential of
fitting the data much better than the polynomial-based

technique. However, this was achieved by using the test
data to select the parameters like spread constant of the

NN which appear to greatly affect the predictive accu-

racy. That is, it was not possible to use only the training

data to select the best set of parameters. This indicates
that because the NNs do not provide the statistical

information given by polynomial-based methods, using

both test data and training data is very important in
designing the network.

(9) With the large number of points, and the high-

order polynomial, the statistical predictions of the poly-

nomial-based results matched very well the error at the
test data.

(10) The neural networks, when trained appropriately,
can be used to generate additional data to enhance the

data set for constructing polynomials. Such a combined

approach has been demonstrated in 1-38-1 for injector
design.

(11) The criteria for selecting the database exhibit sig-
nificant impact on the efficiency and effectiveness of the
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construction of the response surface. For example, effec-
tiveness of using OA to select the database is demon-

strated by Papila et al. [58].

(12) A multi-level approach can be applied to identify

the optimal design points with substantially higher
accu racy.

There are a number of outstanding issues that need to

be addressed. In the following, we list several topics that

we consider important for future research.

(1) Is it possible to develop a comprehensive technique

by combining NN and polynomial-based RS techniques to
help reduce the required data size for optimization?

Specifically, the work done by Rai and Madavan

[-27-29], Madavan et al. [-22], and Shyy et al. [--38] sug-

gests that NN can be effectively used to supplement the
existing training data to help to generate a more accurate

polynomial. The RBNN may lack satisfactory filtering

properties in some cases [37,39]. However, once trained,

RBNN can generate additional design data to feed the
polynomial-based RSM. Polynomials possess the intrin-

sic filtering capability. The evaluation of the nature of the

fluctuations from the data generated by RBNN, and the
investigation into whether polynomials can use the

data effectively, is planned. These features have been
addressed in this article.

(2) What are the keys to develop a more robust and
flexible NN configuration?

This has been a topic of research for a long period of
time. In this article, a review is presented to address the

issues related to the training characteristics of the differ-

ent networks used. There are other important issues,
which needs to be addressed in future research. For

example, the possibility of using a more versatile RBNN
in terms of a variable design parameter, unlike the cur-
rent situation where the variable has the same value

throughout the domain, should be addressed. Objective

means to determine the NNs performance via statistical

tools, especially for RBNN since it employs a linear
model to determine the weight associated with each neur-

on needs to be investigated.

(3) What is the scaling rule between the number of neur-

ons, and computing time, versus number of input/output

variables and the size of the design data?
There are several rules of thumb for BPNN in the

literature (e.g., [10,11,61]) but little information exists for
RBNN.

(4) How can one address the need for generating training

and testing data most economically and effectively?
The effect of the selection of the design points on

accuracy, scaling and performance of polynomial-based

RSM has been addressed. The same has yet to be done
for NN.
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Appendix A. Training data

The results of training data are given in Tables 34-41.
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Table 34

Training data sets for 3-D wing model

Training data set # 1

(9-simulation)
Training data set # 2

(15-simulation)

AR y¢ C_f2/CD AR Yc C3f2/CD AR

Training data set

# 3 (25-simulation)

yo C_/2/Co

1 0 2.0011 1 0 2.0011 1 0.0 2.0011

I 0.05 4.1224 1 0.05 4.1224 1 0.025 4

1 0.1 3.6865 1 0.1 3.6866 1 0.05 4.1224

3 0 5.6398 2 0 4.03 1 0.075 3.99
3 0.05 9.6873 2 0.05 7.12 1 0.1 3.6866

3 0.1 8.6806 2 0.1 6.34 2 0.0 4.03

5 0 7.9413 3 0 5.6398 2 0.025 7.07

5 0.05 14.0942

5 0.1 12.8951
3 0.05 9.6873

3 0.1 8.6806

4 0 6.92
4 0.05 11.99

4 0.1 10.87

5 0 7.9414
5 0.05 14.0942

5 0.1 12.8951

2 0.05 7.12

2 0.075 6.89
2 0.1 6.34

3 0.0 5.6398

3 0.025 9.64
3 0.05 9.6873

3 0.075 9.39

3 0.1 8.6806

4 0.0 6.92
4 0.025 11.86

4 0.05 11.99

4 0.075 11.66

4 0.1 10.87
5 0.0 7.9414

5 0.025 13.83

5 0.05 14.0942

5 0.075 13.73
5 0.I 12.8951

Table 35

Test data sets for 3-D wing model based on AR and y¢

Test set # 1 for y¢ Test set # 2 for y_

AR y_ AR yc

Test set#3 for y_

AR y¢

Test set # 1 for AR

AR y¢

Test set # 2 for AR

AR y¢

1 0.025

1 0.075
3 0.025

3 0.075

5 0.025
5 0.075

1

1

2
2

3

3
4

4

5
5

0.025
0.075

0.025

0.075
0.025

0.075

0.025

0.075
0.025

0.075

1
1

2

2

3
3

4

4

5
5

0.0125

0.0875

0.0125
0.0875

0.0125

0.0875

0.0125
0.0875

0.0125
0.0875

2

2

2
2

2

4

4
4

4

4

0

0.025

0.05

0.075
0.1

0

0.025

0.05
0.075

0.1

2.5
2.5

2.5

2.5

2.5
4.5

4.5

4.5
4.5

4.5

0

0.025
0.05

0.075

0.1
0

0.025

0.05

0.075
0.1
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Table 36

Performance and heat flux responses for O/F = 4 for the

shear co-axial injector element (Tables 36-38 together

contain 45 data points used as the training set)

O/F Vr/Vo Lcomb (in) ERE (%) Q (Btu/in zs)

4.0 4.0 4.0 92.9 0.753

4.0 4.0 5.0 96.0 0.753

4.0 4.0 6.0 97.6 0.753

4.0 4.0 7.0 98.6 0.753

4.0 4.0 8.0 99.0 0.753
4.0 6.0 4,0 95.0 0.928

4.0 6.0 5.0 97.1 0.928

4.0 6.0 6.0 98.5 0.928
4.0 6.0 7.0 99.2 0.928

4.0 6.0 8.0 99.4 0.928

4.0 8.0 4.0 96.6 1.10
4.0 8.0 5.0 98.2 1.10

4.0 8.0 6.0 99.1 1.10

4.0 8.0 7.0 99.4 1.10

4.0 8.0 8.0 99.6 1.10

Table 38

Performance and heat flux responses for O/F = 8 for the
shear co-axial injector element

O/F Vr/Vo Lcomb (in) ERE (%) Q (Btu/in 2s)

8.0 4.0 4.0 92.9 0.588

8.0 4.0 5.0 96.0 0.588

8.0 4.0 6.0 97.6 0.588
8.0 4.0 7.0 98,6 0.588

8.0 4.0 8.0 99.0 0.588

8.0 6.0 4.0 95.0 0.512

8.0 6.0 5.0 97.1 0.512

8.0 6.0 6.0 98.5 0.512
8.0 6.0 7.0 99.2 0.512

8.0 6.0 8.0 99.4 0.512

8.0 8.0 4.0 96.6 0.493
8.0 8.0 5.0 98.2 0.493

8.0 8.0 6.0 99.1 0.493

8.0 8.0 7.0 99.4 0.493
8.0 8.0 8.0 99.6 0.493

Table 37

Performance and heat flux responses for O/F = 6 for the
shear co-axial injector element

O/F Vr/Vo Lcomb (in) ERE (%) Q (Btu/in 2s)

6.0 4.0 4.0 92.9 0.691

6.0 4.0 5.0 96.0 0.691

6.0 4.0 6.0 97.6 0.691

6.0 4.0 7.0 98.6 0.691
6.0 4.0 8.0 99.0 0.691

6.0 6.0 4.0 95.0 0.642
6.0 6.0 5.0 97.1 0.642

6,0 6.0 6.0 98.5 0.642

6.0 6.0 7.0 99.2 0.642
6.0 6.0 8.0 99.4 0.642

6.0 8.0 4.0 96.6 0.741

6.0 8.0 5.0 98.2 0.741
6.0 8.0 6.0 99.1 0.741

6.0 8.0 7.0 99.4 0.741

6.0 8.0 8.0 99.6 0.741

Table 39

Data used to test the polynomials and NN for the shear

co-axial injector element (the table contains 20 data

points used as the testing set)

O/F Vf/Vo Lcomb (in) ERE (%) Q (Btu/in 2s)

4.0 5.0 4.0 94.4 0.812
4.0 5.0 5.0 96.9 0.812

4.0 5.0 6.0 98.1 0.812

4.0 5.0 7.0 99.1 0.812

4.0 5.0 8.0 99.4 0.812
4.0 7.0 4.0 96.0 1.014

4.0 7.0 5.0 97.9 1.014

4.0 7.0 6.0 98.8 1.014
4.0 7.0 7.0 99.4 1.014

4.0 7.0 8.0 99.6 1.014

6.0 5.0 4.0 94.4 0.642
6.0 5.0 5.0 96.9 0.642

6.0 5.0 6.0 98.1 0.642
6.0 5.0 7.0 99.1 0.642

6.0 5.0 8.0 99.4 0.642

6.0 7.0 4.0 96.0 0.691

6.0 7.0 5.0 97.9 0.691
6.0 7.0 6.0 98.8 0.691

6.0 7.0 7.0 99.4 0.691

6.0 7.0 8.0 99.6 0.691
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Table 40

Propellant momentum ratio as a function of propellant pressure drops: shear co-axial injector element

APo
APt 200 180 160 150 140 120 I00

200 1.49 1.42 1.33 1.30 1.25 1.16 1.06

180 1.57 1.50 1.41 1.37 1.32 1.22 1.11

160 1.67 1.59 1.50 1.45 1.40 1.30 1.18

150 1.73 1.64 1.54 1.49 1.44 1.34 1.22

140 1.79 1.70 1.60 1.55 1.50 1.39 1.27

120 1.93 1.83 1.72 1.67 1.61 1.50 1.37
100 2.11 2.00 1.89 1.83 1.77 1.64 1.49

Table 41

Design data for a shear co-axial injector element with APo and APt = 200 psi

APo APf L_o_b _ ERE Qw Himpinge Wrel Cre I

200 200 2 15 NA 0.85 0.84 0.923 1.083

200 200 2 20 85 0.85 0.62 0.923 1.083

200 200 2 30 92.8 0.85 0.39 0.923 1.083
200 200 2 45 95.4 0.85 0.23 0.923 1.083

200 200 2 50 95.8 0.85 0.19 0.923 1.083

200 200 4 15 91 0.85 0.84 1 1.083

200 200 4 20 95.2 0.85 0.62 1 1.083

200 200 4 30 96.8 0.85 0.39 1 1.083

200 200 4 45 98.1 0.85 0.23 1 1.083

200 200 4 50 98.4 0.85 0.19 1 1.083

200 200 6 15 95.6 0.85 0.84 1.077 1.083
200 200 6 20 97.8 0.85 0.62 1.077 1.083

200 200 6 30 98.5 0.85 0.39 1.077 1.083

200 200 6 45 99.2 0.85 0.23 1.077 1.083
200 200 6 50 99.4 0.85 0.19 1.077 1.083

200 200 8 15 98.3 0.85 0.84 1.154 1.083

200 200 8 20 99.1 0.85 0.62 1.154 1.083

200 200 8 30 99.4 0.85 0.39 1.154 1.083
200 200 8 45 99.6 0.85 0.23 1.154 1.083

200 200 8 50 99.7 0.85 0.19 1.154 1.083
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