A Framework for Distributed Rover Control
and Three Sample Applications

Steve MeGaire
Autonomy and Robotics Area
NASA Ames Research Center, MS 269-73
Moffett Field, CA. 94035-1000

Abstract

In order to develop quality control software for mul-
tiple robots, a common interface is required. By de-
veloping components in a modular fashion with well-
defined boundaries, roboticists can write code to pro-
gram a generic rover, and only require very simple
modifications to run on any robot with a properly im-
plemented framework. The proposed framework ad-
vances a GenericRover that could be any rover, from
Real World Interface’s All Terrain Robot Vehicle Jr.
series. to the Fido-class rovers from the Jet Propul-
sion Laboratory, to any other research robot. Using
these generic hardware interfaces, software designers
and engineers can concentrate on the actual code, and
not have to worry about hardware details. In addition
to the hardware support framework, 3 sample applica-
tions have been developed to demonstrate the flembility
and ertensibility of the framework.

1 Introduction

Every robotic rover architecture relies on some dis-
tributed mechanism to share rover data and to issue
commands. However, these independent architectures
are very hardware dependent and are not easily ex-
tensible to different rover platforms. The proposed
framework allows high-level software to be written to
support a reference rover. Through the use of well-
defined features and interfaces, high-level controllers
need not be concerned with hardware dependencies.
To support this framework, a foundation layer is re-
quired ro transform high-level commands into the re-
quired hardware interface for the rover.

The proposed tranework wis designed to support
Read World Interface’s (RWI) All Tecrain Robot Vehi-
cle {ATRV)-Jr. robot, but could be easily extended to
any coutrol interfuce. Every detail of the rover is hier-
archically descended from . basic rover object. Follow-

ing previous work in the group. commands may be sent
to the physical hardware via standardized messages:
for convenience, the K9 rover messages were used as
templates. In the case of the ATRV-Jr., the hardware
framework is responsible for translating these high-
level messages into Common Object Request Broker
Architecture (CORBA) operations. CORBA is used
as an object transport by defauit: the commercially
supported control system aboard the ATRV-Jr. com-
municates via CORBA. By using asvnchronous com-
mand queues to process rover requests. most frame-
work calls return to their calling function very quickly,
generally only requiring a memory copy.

Distributed operation is handled transparently by
the CORBA object transports. concurrently allowing
multiple disparate clients to issue requests to the rover
and observe the state. Much of the work of the base
class involves translating robot data to appropriately
standardized common output values. For example,
the CORBA components for the Inertial Measurement
Unit (IMU) provide one integration step of accelera-
tion data; the framework then interpolates the second
required integration to provide a rough estimate of

position.

2 Hardware Support
2.1 Hardware to CORBA Interface

Because of the modular design of CORBA, certain
components can be replaced with higher-performance
implementations. In the ATRV Jr.. the only com-
ponents that are not driven by serial port are the
stereo framegrabbers, which connect via two Periph-
eral Cotponent [nterconnect (PCD bas slots. These
framegrabbers are commercially available Hauppauge
Win TV NTSC cards that utilize a Brookrree 373
chipset. The original code provided by RWT used o
single-threaded, single butfering caprure scheme which

as coutrols on rotation aad teanstiviion. The results of

Siway he nsetul ro inkegrate into the base coutroller,
as the sensors aviulable on K9 e very similae to the
seusors of the XICRV-Jr.

3.2 Resolution

The calibration setup wis needed to correct for a
problem that was only observed in field rests that re-
lated to the difference between a turn command and
the actual result of the command. These commands
were given by hand and thus were directly observable;
the same class of commands is used by the sample
tracker described below and thus need o become more
accurate. The model of the base drivetrain that is ex-
posed by RWT's software does not expose raw wheel
counts, and appeared calibrated for non-ablative sur-
faces such as solid floors. On such surfaces, turns are
much more accurate than for turns on gravel.

A basic calibration is proposed to determine linear
coefficients of the rotational and translational veloci-
ties to characterize a surface’s requirements for accu-
rate motion. Also, because the work of [5] is available
for integration into the base controller, a combination
approach might give the best results.

4 vSample Applications: Utilities
4.1 grover: A Rover Control Utility

grover was designed to exercise all of the possible
functions of all of the rover extensibilities. The com-
mand line interface is suited to directing the robot
through a series of low-level operations. In essence,
the purpose of this application is a test and utility
driver that can issue specific commands for adjusting
the rover’s state. For example, this utility was used
in the proving tests to issue specific drive commands
and to adjust the pantilt head to specific values. Also,
grover was used to capture imagery used by E. Ban-
dari and E. Ricks of the Autonomy and Robotics Area
{(ARA) to characterize the vision system aboard the

rover.

4.2 panovision: A Telemetry and Imag-
ing Utility

To demonstrate the Hexibility of the framework,
aned to support other researchers in the Autonomy and
Robotics Area, panovision was implemented. A com-
mercially available camera was placed into an optics
packivre manmfactured by Carnegie Mellon University

Figure 2: CMU Omnicam aboard ATRV-Jr.

{CMU) ro provide a full 360 degree field of ~iew. The
complete enclosure was then monnted on the ATRV-Jr
nsing a custom mamitactured monnt. (Figure 2)

The chosen camera ix a Sony EVI-370D block cam-
era that has a serial interface ro adjust camera param-
erers and a NTSC video ourpur. By reviewing tech-
uical material provided by Souy and moditying source
code provided by CMETLE, o library of camera con-
trol fuuctions was developed. Some funerions include
adjustable zoom. focns control, and exposure control,

4.2.1 Telemetry Control

Lo tacilitare orher cesearch rover relemerey had to
he caprueed by interrogating vidons hardware com-
potienfa wirhin o fraane of coterenee. Uhis hardware
requiretnent was oot Dlisbedd by isimg the developed
fromework. Tooadditie g assiming o proper i plemen-
tation was avidlable e anorfee rovers only s pericial

woedilications wonld e pecessary toornn the anage

capture aned teletetes Captire onoworher pearform.

Lo wljust tor patebung tereadn, the onboard pitch
sensor soutilized, oo rhe frimework, o relative Gk s
detined ro be the rilt angle of the pan-tile head with
respect to the rover body: an apparent tilk s defined
to be the angle between the oprical axis of the eameri
atel the surrounding terrain, using a planar assimp-
rion. This apparent rilt can be caleulared by summing
the reading from rhe pitch sensor and the tilt reading
from the pan-tilt head. By using the readings from
rhe pitch sensor, the rover can compensate for uneven
terrain and correct artificially high or low relative tilt.

angles.
5.3 Finish Conditions

Once the tracker could analyze an image and report
on the best possible match of the target, the frame-
work was utilized to center the target in the field of
view and to issue a drive command to the base. In or-
der to determine when the rover has actually reached a
target, the measure of the apparent tilt angle defined
above is used. Presumably, when a target is within
range of an on-board instrument, the pan-tilt will be
"looking” downward beyond a specific, predefined an-

gle.

=

5.4 Role of Subcapture

Using the subcapture capability described above,
the performance of the tracking algorithm was in-
creased by limiting the search space. In every iter-
ation, the rover seeks to minimize the absolute pan
angle and keep the target centered in the image plane.
Onee the rover has met these objectives, the possible
search space is limited to one quarter of the size of the
initial space to increase tracking performance.

Due to the distributed nature of the vision system,
a possible conflict exists where a request to change the
subimage may occur. but does not take effect instan-
taneously. The result of such a conflict is that the
returned imagery is fronl a ditfferent section of the im-
age than the specified coordinates requested. To pre-
vent this conflict, the vision object pauses the tracker
natil the requested image coordinates are available.
The pause operation is transparent to the visual servo-
ing client and is provided by the parcticular framework
implementation. This operation is done at the low-
est possible level to reduce the communications band-
width required by imaging operations.

5.5 Disparity and Prediction Moeasure

leciuise the rover s moving with neoolv constant
teanshronal speed, o further conbonesment of the
reacker wanld be ro predier the locanen of rhe tae-
oot in rthe next frame. By assuming o linear model of
moventent. the targer dispartty. or rhe disrance from
the rarget to rhe center point of the image. s mea-
stced and recorded. Using a siiple approximation,
rhe nexr locarion of the target in rhie soncee image is
predicted. Due ro insufficient resonrees. rhis informa-
rion 1= cadenlared and stored for further anadysis, but
not inrearated inro the tracker conrrol loop.

5.6 Tracker Performance

An operator selects a target using an initial im-
age at the full working resolution of the camera. The
tracker loop then drives the rover towards rhe target,
logging an image during every iteration. During full
resolution operation, the tracker loop can run at ap-
proximarely 2 Hz. During subimage operation, the
loop speed increases to approximarely 5 Hz.

5.6.1 Laboratory

In laboratory tests, the tracker’s performance is capa-
ble of driving the rover at speeds of up to 20 cm/s.
See Figures 3. 4. and 5 for starting. intermediate, and
ending points. The operator-designated rarget is sym-
bolized by a crosshair in 3: the rover’s estimates are
in 4 and 3. The performance of the rracker in the lab
serring is sufficiently good to warrant furrher investi-
gation: however. the laboratory setting makes use of
controlled lighting and a well-detinerd texrured target.
the phone directory of the Center. '

Fivure 30 Lab Tost Besin

Figure 3: Field Test Complete

an extensible control and reporting interface for any
tvpe of rover that has the same logical functions. For
example, most rovers have capabilities such as moving
a pan-tilt head. moving the drivetrain and chassis. and
retrieving current rover state.

Any software which needs to have access to rover
control need only host a framework object, allow-
ing user interface development to become indepen-
dent from object transport development. Essentially,
the framework establishes a local set of objects that
proxy requests to the rover. hiding the underlying ob-
sect transport from the Jdeveloper. Through the use of
such abstractions, any rover could be supported in a
transparent fashion.

In addition. by using CORBA over Transmission
Control Protocol, Internet Protocol (TCP/IP) as a
Jistributed object transport. any operation can be ini-
tiated by any machine that has [P connectivity to the
rover. As a side benefit, several CORBA implementa-
tions are freely available. negating the direct or hidden
licensing costs associated with other distributed object
wodels.

Many further developments are envisioned. For ex-
ample, a generic simulation rover that conforms to the
framework and provides mockup data and telemetry
would be useful for testing rover control software of-
Hine. in a deviee independent fashion. Control soft-
ware under development can support any rover that
hies basic functions: components that cequire special-
ized control such as arm coutrol or other device control
ean simply extend the framework in the appropriate
direetion for the appropriate hardware platform. [n
this case, only rover-specific code wauld need to be
written: core functionality would be provided by the
frarnework aaud the framework’s anderlying handware

implementation.
Acknowledgments

Many thanks to Mo Bualar, R. Washington, M.
Deans. A. Wright. L. Edwards. K. Bass, M. Fair, E.
Ricks, E. Bandari, and the other mewmbers of the Au-
tonomy and Robotics Area of Code [C tor supporting
this work.

References

[1] A. Schiffler, aschiffler @home.com “libbgrab”
http://www ferzkopp.net/Software/libbgrab/

[2] J. Borenstein, L. Feng, "UMzMBMark - A Method
for Measuring, Comparing, and Correcting Dead-
reckoning Errors in Mobile Robots”, UM-MEAM-
94-22, University of Michigan 1994

(3] D. Wettergreen, H. Thomas. M. Bualat. "Initial
Results from Vision Based Control of the Ames
Marsokhod Rover”. Proceedings IROS 97, pp.
1377-1382.

[4] J. McMahill, jmcm dfrc.ri.cmu.edu "VISCA Cam-
era Interface”, Robotics Institute, Carnegie Mellon
University, 1999.

[5] R. Xu, rxu@andrew.cmu.edu “State Estimation
On K97, NASA Ames Research Center, 2001.

