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Ten Years in the Making - AUSM-family 
l\Ieng-Sing Liou 

National Aeronautics and Space Administration 
Glenn Research Center 
21000 Brook park Road 
Cleveland, Ohio 44135 

We begin by describing the motivations that gave birth to the original AUSM scheme 
and then focus on the ingredients that has spurred its growth and acceptance by the world 
of computational fluid dynamics. As it has played out more in the field, weaknesses have 
also surfaced. Hence, nutrients and supplements are prescribed to help it grow and stay 
strong and robust. In this paper, We will describe the saga of efforts owing to researchers 
who have contributed to building up the AUS:\1-family for the CFD community. It is 
hoped that a healthy scheme will contribute to the accurate and robust solution of prob­
lems encountered in a wide range of disciplines. We analyze numerical mass fluxes with 
an emphasis on their capability for accurately capturing shock and contact discontinu­
ities. We will present a new scheme for the pressure flux, along with results for a host of 
test problems. 

Introduction 

C O'.'JSIDERABLE progress in CFD has been made 
in solving equations of conservation laws overt he 

last t\vo decades, particular!>· in devising accumte and 
rvbust schemes for capturing shock and contact discon­
tinuities. The ability to predict shock and contact dis­
continuities can be considered a prerequisite for a reli­
able and accurate solution to both inviscid and viscous 
problems. The 1980s \Vitnessed an explosive interest 
and research in upv>lind schemes for their capability of 
achieving high accuracy over a wide range of problems 
described by Euler or :'\avier-Stokes equations. Toda>', 
upwind schemes undoubtedly have become the main 
spatial discretization techniques adopted into near!>· 
all major research and commercial codes. Yet some 
deficiencies or failures have been experienced by' some 
upv.rind schemes, such as shock instability in multidi­
mensions, creation of traveling \Vaves in slmvly moving 
shock, 1 and violation of positivity-preserving.2 As 
CFD is being used more routinely and extended to 
more complicated systems of flow equations, the need 
for maximizing accuracy', efficiency and robustness for 
a \vide variety of problems still remains the foremost 
concerns. Hence, the quest for the ultimate numerical 
flux scheme continues. 

Since the inception of the AUS\I scheme in 1990,3 

it has been adopted by researchers world\\ride. It 
has been proven to be accurate, simple, robust. and 
easy to extend to other t)'pes of conservation laws, 
thus providing an attractive alternative to the existing 
schemes. In spite of the enormous progress achieved, 
deficiencies have been experienced, typically the post­
shock overshoots and pressure oscillations along the 
transverse direction in the boundary layers, as sum­
marized previously.4 Several attempts have been made 
over the last ten years, e.g., Refs.[1,4-10] to improve the 
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original scheme:i and in general, some successes have 
been achieved. \"ow various versions oft he Al ~S:i\ 1-family 
schemes have been incorporated into both research and 
commercial codes. In this paper, we will shm\· some of 
those results, including low \Jach number flows, mul­
tiphase flows, and DNS calculations. 

As evident in this paper and others, the numerical 
inviscid flux (which for the sake of simplicit:-.· we will 
hereafter refer to as numerical flux) pla>·s a central role 
in effecting the suffess of a calculation, especial!>· with 
regard to robustness and accuracy. Furthermore, \Ve 
show in Ref. 2 that the mass flux plays the central role 
in the construct ion of a robust and accurate numerical 
flux that is simultaneous!)· free of anomalies such as 
the odd-even dPcoupling and "carbuncle" phenomena. 
This becomf' d1•ar hY n•alizing that the mass flux is 
common to till' nim·Pctive part of every conservation 
equation of th1· fluid flo\\·s. 

This paper is organized as follows. First, we will 
take a broad approach to constructing the AUS:i\I 
schemes. be)'OlHi the original one. \Ve \Viii examine 
in turn the mass flux and the pressure flux. ?\ext, 
we will present the recentl)·-introduced concept of a 
numerical speed of sound, which allows for a unified 
formula valid for the entire speed regime. It also lends 
itself conveniently to the extension of the schemes to 
deal with multiphase/multifluid flows. Examples of 
applying the AUSl\I-farnil:-.' schemes to various types 
of flows will be shown. Finall:-.·, we will propose a fur­
ther development in regard to pressure flux, along with 
validation tests to demonstrate its effectiveness. 



Equations of Conservation Laws 
A set of equations of general conservation laws is 

considered: 

(I) 

\\'p will denote b~· an overhead arrow ·· ~ ,. the vectors 
associated with the Cartesian coordinates in three di­
mensiom. The conserYative variables are given in Q(A·i 

\vherP the superscript k( = I, 2, ... ) is introduced to in­
clude rnultifluid modt>ls, often adopted for describing 
nntltiphase flows. 11 · 12 The inviscid and viscous fluxes 
are denoted respectively b~· FlA·J and Fv(kJ, whose 
definitions are omitted herein since they are rather 
standard. However. the source terms are dependent 
upon the physical problems studied. For multiphase 
flows, the~· can contain terms describing interfacial bal­
ances of mass. momentum, and energ~· transfers due 
to phase differences/changes. \\-<, include this option 
because examples \viii be giwn later in the paper. 

During the 90s, a great deal of interest has been 
focused upon tlw development of a (local) precondi­
tioning method to improve tlw convergence rate in the 
low l\lach number regime. This is accomplished by 
premultiplying the time-derivative term with a rondi­
tioning matrix r. 

rQ- (A·)_._ d. ·(F1A· 1 - F(A·J) = s 
I , n (vi ' 

- (k) . ~ T Q =(pk, h·, TA-) . 

(2) 
SPveral forms of the local preconditioning matrix r 
have been proposed in the literature, e.g., Refs. 13-lG. 

The discretization of viscous terms is rather stan­
dard and is generally done with centered schemes. On 
the other hand. treatment of the source terms varies 
rnnsiderably and this subject is not so easy because 
it is quite problem-dependent and the terms can be 
extremely complicated. See for example the ones in­
volved in the fluidized bed. 1i The subject is beyond 
the scope of this paper and will not be dealt with 
here. \\:e shall restrict ourselves instead to the numer­
ical representation of inviscid fluxes, which has been 
a subject of intensive effort b>'· many researchers over 
the past three decades. 

Numerical Flux: AUSM-Family 
How It Began 

The 80s saw the rise of two classes of upwind 
schemes, namely the flux-vector and flux-difference 
schemes. The van Leer scheme belongs to the former 
and is perhaps the most robust one among all for the 
Euler equations, aside from a slight disadvantage in the 
shock resolution compared to the latter. Especially, it 
endures the positivity test and is free from shock in­
stabilities, in addition to its algorithmic simplicity and 
generality. Interesting!~·, these properties served well 
during the era of revived interest in the hypersonic 
flight, e.g., the .'.'\ASP program in the US and similar 
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programs in the other countries. As more confidence 
has been gained by the CFD community in dealing 
with complexities in flow fields as well as in geome­
tries, CFD has flourished and naturally Navier-Stokes 
solutions nmv have taken the center stage. The paper 
by Van Leer et al. 18 points out that the flux-vector 
schemes are diffusive for the '.'\ayier-St.okes calcula-
1 ions, as illustrated in the 1 D rnnical viscous flow 
where an incorrect wall temperature \Vas predicted 
along with a thicker boundar~· la>·er. SPe Fig. ( 1 a). 
This spelt the downfall oft he flux-wet or schemes. 

In an attempt to resuscitate his scheme for the 90s, 
Van Leer injected the flavor of flux-difforcncP split­
ting, as first suggested b~' Hanel and Sd1wane,rn in 
the CFD symposium held at '.'\ASA Lewis Center in 
1990.1 The improYement due to this new idea is clearly 
demonstrated in Fig. (lb). showing the wall kmper­
ature close to the correct value of 13.7 (Pr = 1.0), 
but unfortunate!~· afflicted with pressure irregularit~' 
at the edge of the boundary layer. It appeared that 
the flux-vector scheme was a phoenix. the catal:vst for 
its rebirth being the combination \Vith flux-split.ting 
scheme. So \'an Leer asked the question: Can pure 
flux-vector splitting be saved? The key word is '·pure" 
and the answer ma~· bP still up in the air. But the ques­
tion can be rephrased as: Can the Van Leer splitting be 
engineered so that good ''genes" are kept'? The answer 
is very likely. Hence, research started and the original 
A l1Sl'vl scheme3 (presented in this rnnference the first 
time in 1991 20

) began to take shape. As a result of 
this quest, the Al:S'.'vl scheme gives the temperature 
profile in excellent agreement with the solution h~' the 
Godunov scheme. 21 

How it is shaping up 

In this section, we will look at the algorithm in­
volved in the AUSl\f-famil~· scliemes and the new de­
V('lopments. For more details and other numerical 
properties, the reader should consult with the cited 
references. 

As a first step common in the ACSM schemes, we 
explicitly split the inviscid flux (written in three di­
mensions) into two parts: 

- ~ ) - . -F = F(c --+- P = m'lf,1 -i- P, (3) 

where 

• - T - 7-t-T m=pF, 'lj,·=(l,u,v,w,H), P=(O,pt,pJ,pk,O). 
(4) 

1 This occasion brought together the fathers of two flux-vector 
splittings, Joe Steger and Bram van Leer. although .Joe talked 
about an entirely different subject--the chimera method. l\ly 
family and I had a great deal of fun with them in my home that 
evening; the fun of course was heightened with Bram's playing 
piano, especially performing .Joe's favorite piano and orchestral 
piece, Symphonic \"ariations by Cesar Franck. 
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Fig. 1 Hypersonic conic flow, Alxo = 7.95, Bcone/l = 
10° and Reoc = 4.2 x 105

• 

The first term in F is the convective flux ~I c), indi­

cating the convection of 'It' by the mass flux;,, and the 
second term is the pressure flux P, containing nothing 
but the pressure. It is noted that the conservation of 
the total enthalpy· is guaranteed if H, instead of to­
tal internal energy (E), is contained in 'I/'. Halt and 
Agarwal22 split H into E and p/ p and put them re­
spectively in the 'l/J and P terms and called it the WPS 
scheme. 

In terms of the component fluxes in the directions 
of x, y, and z, we have 

\vhere 

m1 = pu1, P1 = (O,p81x 1 P81y 1 p81z, O)r, I= x, y, z. 
(6) 

• In a control volume, the mass flux mn through a 
control surface element having a unit normal vector 
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fi = (nx, ny, nz) is given by 

. - . . . 
nin= p'V · fi = nx rnx -r-n 11 ni 11 _;__n= ni: (7) 

And the associated flux becomes, 

Formally, this equation looks the same as that along 
an individual Cartesian coordinate direction. Hence, 
at each control surface. the mass flux is treated in an 
one-dimensional fashion. At the discrete level, this 
is also \vhat one needs to do for defining the flux at 
the interface in a finite volume. Hereafter, we will as­
sume that this local orientation has been accomplished 
and the velocity vector (hence mass flux) has been de­
rnmposed into components normal and parallel to the 
surface vectors fi. Therefore, the subscript ''n'' denot­
ing the normal component \vill be dropped. 

From the above equations, the principal quantities 
in F 11 are again the convective flux and the pressure 
flux. The distinction of these two fluxes gives rise 
to the basis for the development of the ACSl\1-family 
schemes. Since the mass flux appears in all equations, 
its effects will be felt by all the variables. Hence, \Ve 
believe that it is desirable to obserw this fact at the 
discrete level as well when devising a new scheme. Sig­
nificant benefits can be derived as well. For example, 
the numerical dissipation term is scalar even for the 
system of equations; it is just as easy to add more 
conservation equations insofar as the numerical flux is 
concerned. 

It is possible to \vrite a numerical flux, mimicking 
the expression at the continuum level, in terms of a 
common mass flux in the following general upwind 
form. 

• 
=m112 WL/R + P1;2 

• + • -
= m1;2'lf'L-:-- m1;2'1t1R _;__ P1/2· (9) 

Here the contributions of WL and 'll'R are weighted by 
• + • -

the split masses (m 112 , m 1; 2), \'lthich must follow the 
consistency requirement, 

(10) 

This fact is automaticall~' satisfied b~· the first element 
off. One can rewrite Eq. (9), using Eq. (10), as 

1 • 1 
f1;2 = 2 m1;2 ('l,iiL_;__1bn)-2Dm(°lt1R-1/1L)+p1;2, (11) 

The dissipation term, 'Dm, is 

(12) 

The subscripts ''L" and "R" are understood to mean 
the cell centers on either side of the interface at which 



the normal vector is assumed to point from "L" to 
"R''. 

The quantities (17i:12 , 17i~/'i) are required to satisf~' 
these conditions. 

(13) 

so that the>· provide proper upwinding, thus ensur­
ing stability. In the AUSl\1-family schemes, these two 
variables are rnutuall:-.· exclusive. i.e., 

( 14) 

It must be noted that the flux expressed in the form 
of Eq. (9) implies that the numerical dissipation is 
of the scalar, rather than the matrix form. because 

.+ . 
t hP same factors m 1i 2 are applied throughout for all 
conservation equations. The flux difference splitting 
schemes are known to belong to the category of matrix 
dissipation. On the other hand, the categor:-.· of scalar 
dissipation encurnpass<'s Sf'veral existing schemes other 
than the A CS\ I-family schemes, such as central dif­
ferencing with artificial damping, the Van Leer flux 
vector scheme. the HLLE scheme. IndPed, there are 
several attractive properties associated with the scalar 
form of dissipation. From the algorithmic viewpoint, 
it offers simplicit>\ efficiency, and generality allowing 
for an eas» extension to other systems of equations. 

The 1991 ACS:\1 scheme has served well by laying 
out the basis for further developments. One of the im­
portant developments is the concept of common speed 
of sound, which makes an accurate resolution of con­
tact and shock discontinuities possible for both steady 
and unsteady flows. As a result, two new members 
of the A US\J-famil~· \\·en' generated, We shall in this 
paper. specificall>· concentrate on a unified formula­
tion encompassing both the ACSl\1+ and AUSl\JDV 
schemes. 

In what follows, we will give some basic formulas 
used to define the mass flux. To facilitate the discus­
sion, we first define the following split functions. 

M(±;)(M) = ~(M ± IMI), 
.\.1~)(M) = =:::t(M :±: 1)2 

if IMI 21, 
otherwise, 

(15) 

(lG) 

For t lw A US!\f+: we first define the interface \fa ch 
number 

then 
± 1 

l\11/2 = 2(llf1/2:::: IM1/21). (19) 

~ow for the ACS1\1DV: \Ve first define the interface 
split Mach numbers, 

M~2 = [w02 .1\.1~ 1 (Mr/R)..;.. (1 - c..1~12 )."'1 1i)11hrn)], 
( 20) 

together v.rith the blending functions. 

+ 'Jf//R 
W1;2=j -j · f=p/p. (21) 

I. H 

Then, the interface \Iach number is 

(22) 

It is noted that the construction of the interface split 
!\Iach numbers M(;2 in the ACSMDV scheme is some­
what similar to that in the Van Leer's flux scheme, 
one might then wonder if the ACS\1DV would be also 
afflicted with the same shortcomings. To the cred­
its of the variables, w+ varying with flow variables, 
the:v make ACS:\JDV an accurate scheme for capturing 
contact discontinuities, hence appropriate for viscous 
solutions. 

\Ve stress again that a common speed of sound 
a 1 ; 2 = a(U L. UH) is used in the formulation in defin­
ing the "L'' and "'R" \Jach numbers and in Eq. (9). 
In Ref. 6. we give a special formula for a 112 so that 
an f~xact capturing of a stationary normal shock is 
achieved. Ot hen,·ise. anr averages of the "L" and "R" 
states should lw appropriate. :\fore importantly, this 
possibility of flexibl.'· allowing other definitions of the 
common spc<'d of sound opens a very rewarding op­
portunity, as "·ill be discussed later. 

;\'ow the mass flux is immediately available by using 
the quantities M02 : 

• rn = ~1dPrM02 - PRM1/2) 
= 2a112fM112(PL-:- PR) - Dp(PR - pL)] 

(23) 

and 

\Ve remark that a clear difference between the ACS­
MDV and ACSl\J+ schemes, insofar as r~2 is concerned 

. is in the definition of 111~2 . ' 

if IMI 2 1, It is easy to show that: 
othenvise. 

(17) 

The numerals in the subscript of .M~J' M~)' .M~J' 
and P0) indicate the degree of polynomials. 

Using a common speed of sound a 1 ; 2 to define 1\h = 
u 11 L/a1;2 and l11R = u 11 R/a1;2. 
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and 

AUS\J+ 
AVSMDV 

AUSM+ 
ACSl\fDV 

(24) 

(25) 



The dissipation coefficient in the convective flux, in 
Eq. (11), is now explicitly given as 

(26) 

\Ve can also rewrite the mass flux in the most general 
form, 

• • l 
m 1.12 = (m) - 2D(UL, UR)· (27) 

where (171) is a sort of centrally weighted aYer­
age, but the detail is not import ant for our discus­
sion. Hmvever. \Ve shall focus on the dissipative t('rm 
D(U L. UR) ,,·hid1 can be further expanded in 1 errns 
of differences of prirnitiw wuiables U = (f!, (,p)T as 
follows. 

D = D(P)(U)~(J + L D(ui)(U)~tt/ - D(P)(U)~p, 

(28) 
where U(Ur.UR) are some mean quantities, and 

the difference operator is~(•)= (•)R - (•)L. 
It is shown in Ref. 2 that the fad whether tlw 

pressure dissipation coefficient D(P) vanishes for all 
conditions plays a decisive role in determining the oc­
currence of the anomalies in shock instabilities. 

Finall:-;, another important variable is the pressure 
flux, which ma~· be written as 

T P, 12 = P,.1 2 (0,ni::ny,n 0 ,0) . (29) 

Clearly, all one needs in the pressure flux p 1 /
2 

is simpl_v 
the definition of P1;2· 

In all the ACS?vI-famil:v schemes, the interface pres­
sure has been simply given by 

As simple as it may seem, there apparently are 
enough opportunities to further enhance the AUS\'1-
family. A new version of the pressure flux will be 
presented later. 

The accuracy of the AUSJl.1+ scheme was thor­
oughly established by Darracq et al. in Ref. 23 
in which they have done studies of grid refinement 
and spatial order of accuracy for several airfoil flows, 
against the measured data. Tables 1 and 2 present 
the comparisons of calculated results for 2D and 3D 
turbulent flm•.rs. They concluded that "for all runs the 
ACS:r-.,1+ predictions agree better with the experimen­
tal data than results obtained with the Roe scheme." 
In general, the differences between predictions from 
these two schemes become more apparent in the pre­
diction of flmvs near the leading edge on the suction 
side. It also shmvs that AUS:-.f+ solutions converge to 
the grid independent solution faster than those of the 
Roe splitting. 

These results, along with those from my own and 
others, seem to suggest that the ACS'.\I schemes (es­
pecially AUSM+ and AUSMDV) yield little numerical 
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Table 1 Comparison of lift and drag coefficients for 
the RAE-2822 airfoil, Mx =O. 73, a=2. 79°, Rex = 
6.5 x 106 ,Baldwin-Lomax model. (Ref. 23) 

j Scheme I Order Mesh Cotot I 
Roe 2nd coarse 0.7755 0.0153 0.0209 
ACSM+ 2nd coarse 0.7931 0.0144 0.0200 
Roe 3rd coarse 0.7814 0.0136 0.0192 
AlJSl\f+ 3rd coarse 0.7961 0.0133 0.0188 

Roe 2nd fine 0. 7916 0.0133 0.0189 
ACSM+ 2nd fine 0.8046 0.0132 0.0187 
Roe 3rd fine 0.7927 0.0131 0.0187 
AUSM+ 3rd fine 0.8064 0.0131 0.0187 

Expt. 2
" 0.803 0.0168 

Table 2 Comparison of lift and drag coefficients for 
the ONERA-M6 airfoil, Mx =0.84, o=3.06", Rex = 
l.749 x 107

, Baldwin-Lomax model. (Ref. 23) 

j Scheme I Order Mf'sh C1. Cop Co1 0 1 I 
Roe 2nd coarse 0.25;)8 0.0168 0.0220 
ACSM+ 2nd coarsf' 0.26ii5 0.0164 0.021,'J 
Roe 3rd coarse 0.2604 0.0141 0.0192 
AUSM+ 3rd coarsf' 0.2667 0.0138 0.0189 

Roe 2nd fine 0.2782 0.0137 0.0188 
Al;Sl\J+ 2nd fine 0.2819 0.0138 0.0188 
Roe 3rd fine 0.2791 0.0132 0.0183 

AUSl\J+ 3rd fine 0.282,'J 0.0132 0.0182 

dissipation. Hence attempts have been made recently 
for simulations touted as demanding high accuracy, 
such as Large Eddy Simulation (LES), and Direct Nu­
merical Simulation (DNS). 

Recently, Billet and Louedin25 combined the AlJSM 
scheme \vith a very interesting adaptive limiter (named 
triad limiter, 'Ptriad) to gain high accuracy for Dl'\S­
type simulations of unsteady flows. The limiter is still 
built upon the third-order accurate MUSCL formula­
tion, but the accurac:v of the results rivals that of the 
higher-order schemes. Advection of a Taylor vortex is 
simulated using the AUSM-'Ptriad scheme.25 and the 
velocit>' and pressure profiles, shown in Fig. 2, are 
in excellent agreement with those from a sbrth-order 
accurate Hermitian scheme. Also Fig. 3 displays the 
time development of a 3D mixing la>'er using the same 
scheme, showing a nearly identical result as that from 
the D'.'JS. 

Other DNS/LES calculations, for example, can be 
found in Ref. 26-28. There appears a common strategy 
in the simulation of low speed flows, insofar as using 
the A USM schemes is concerned. That is, the pressure 
term is modified by replacing it with a simple average 
of neighboring pressures. This seems to have worked 
well, giving smooth solutions without even adding nu­
merical dissipations. However, this simple replacement 
gives rise to a smeared shock when applied to super­
sonic flows. '.'Jevertheless, what this indicates is that 
there are still some things to be done in the area of 
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Fig. 2 Taylor vortex advection:longitudinal distribution along the centerline of variables 11 (top) and p 

(bottom). The blow-up view near the extrema are shown on the right. (Ref. 25) 

pressure splitting. This is the new development ~·et to 
be disclosed later in this paper. 

In what follows, we will discuss another important 
chapter about the AUS:'.\I family. This is the extension 
to the low l\fach number flows and something other 
than the aerodynamic flows, for example, multiphase 
flows. 

As it has bernme known during last decade that 
the detrimental deficiencies in forcing the compress­
ible upwind codes onto solving lmv speed flows are : 
( 1) extremely slow or stalled convergence, more so as 
the flow speed decreases and (2) the flow solutions 
can be globally incorrect(rather than just locally as 
in the case of smearing shocks). These two phenom­
ena are not related because the first one originates at 
the continuum le\·el, depending on the form of govern­
ing equations being solved, irrespective of whether the 
scheme is centered or upwind. However, the second 
one is inherently tied to the upwind scheme where the 
eigenvalues, strongly depending on the usage of the 
speed of sound, are employed. 

Tn the 90s, active research has been conducted to 
conquer the first problem, in the name of local pre­
conditioning, such as those by Van Leer et al.,14 

Turkel, 13 and Merkle, 15 and their subsequent publica­
tions. \Vhile there are differences in approaches, they 
all at.tempt to achieve the same objectives of making 
the eigenvalues of the ne\V system of equations, Eq. 
(2), the same order of magnitude. A condition num-
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ber ,., defined as the largest ratio of eigenvalues, 

ju/ ~a , 
I\ = -

1 

-

1

- --+ oo, as lul --+ 0, and a held fixed. 
'/l 

(31) 
is a useful measurement. Clearly there is a large dis­
parity· of wave speeds as lul --+ 0 and as a result. this 
has been identified as the source of slow (or no) con­
vergence. 

In the preconditioning strategy, one can think of 
seeking to modify the system in such a way that the 
corresponding speed of sound would be altered to be­
have like lul as it approaches zero. 

Consequently, we \Viii define the numerical speed of 
sound by 

a= f(M; M*)a, (32) 

where the scaling factor may be of this form, 

V( 1 - A1;) 2 M 2 ...;._ 41\11 
f (M; M.) = , M 2 , (33) 

1' * 

and the reference Mach number, 

M? = min(l, max(Al2
, M-;0 )). (34) 

The cutoff parameter Meo is introduced to prevent a 
singularity at stagnation point. It is a user-specified 
parameter and Af'}

0 
= 10-4 has been used. Details can 

be found in Ref. 29. 
Now the condition number becomes, 

lul +a 
Kr= -

1
u-/---+ 0(1), while ii--+ 0, as juj--+ 0. (35) 
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b) One static pressure surface at t = 46 . 

F ig. 3 30 mixing layer. (Ref. 25) 

T ha t is, the condit ion number remains order of unity 
at low speeds. T he numerical dissipat ion based on this 
new speed of sound now sca les wit h the local speed lu I, 
instead or t he loca l speed of sound a. As a result, the 
acxuracy can be restored as it is applied to low Mach 
Aov.1s. 

Now we can defi ne the new Mach numbers based on 
this numerical speed of sound a as 

- '-'L/ 11 
ML/ Tl = - - ­o 

(36) 

and these would be the entries to the equa tions for 
M\4 ) and P(s)· This version is t hen denoted with suffix 
a, such as AUSM+-a . 

Now we show the results pe rformed by Mary et 
al .30 using the low Mach nu mber version of the 

NASAn-M- 2001-2 10977 7 

a) Snapsho t. o r vor­
t ic ity. 

•+-~~~~~~~~-

• " '" 
b) Tirne h isto ry or vo rtic ity 
thickness. 

F ig. 4 Comparison of sol1.1tions fo r s 1.1bsonic oom­
pressible mixing layer, t hird-order accurate so­
lutions of three diffe re nt tiine ste p s izes (tlt = 
0.03, 0.06, 0.4 (shown by ... ) are compared on the 
same number of grid po ints with that by the sixth­
order Hermitian scheme (denoted by DD). Results 
from two small time ste ps are indistingu.ishable. 
(Re f. 30) 

.. .. .. 

-"!--~ .. ~-~--.. ~~ .. ._~~~~~~~~ 
" " a) lnit.ial setup. b) After interact ion. 

F ig. 5 Inte raction of a Gaussian t:emperature spot 
witb a s hock. Comparison with the 4th order accu­
rate \\'ENO scheme (denoted by DD) with the 3rd 
01'<ier A USM+ solutions with three diffe re nt values 
of the limiter compression parameter e. (Ref. 30) 

AUSi\·f+ scheme with a third-order aocurate spatial 
interpolation. Figure. 4 shows t hat the results of 
a subsonic compressible mixing layer are in exoellent 
agreement "1t h a sixth-order Hermit ia n scheme on t he 
same number of grid points , hence demonstrating t he 
accuracy of the AUSi\·f+ scheme. Another example, 
given in Fig. 5, compares the result "~th t hat of t he 
4th-order accurate WENO scheme for a temperat ure 
spot interacting wit h a shock, again revealing t he rugh 
acxuracy of the AUSM+ scheme. 

Implementing AUSi\·f+-a in t he code results in a 
s ign ificant improvement not only in solut ion accu­
racy1 as seen above, but also in oonvergenoo rate as 
well. Anot her unforeseen but pleasant consequence 
is that the pressure oscillat ions, observed a long t he 
transverse direction in the visoous layer v.1hen using 
AUSl'vf+ scheme, are no longer there. T his results 
from the fact the much reduced numerica l diss ipation 
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a) 

b) 

c) 

Fig. 6 Pressure contours for the shuttle external 
tank problem for •H:x, = 0.01. a): using the standard 
AUSM+ at N=6400 time steps; b): using numer­
ical speed of sound at N=lOOO time steps, ancl c): 
magnified view near the nose. 

now scales properly with the pressure variations, as 
seen in Fig. 6. 

Another case in point is the application to a ;JD 
low speed flow over a high-lift three-element trap­
wing configuration. The flow r.onditionR are: NI,-,:, = 
0.1498, Reoc = 14.7 x 106 and angle of aUack of 20 
degrees. The computa.lional geometry model con­
sists of a body pod, a wing, a full-span slat, a full­
span flap and the tunnel wallR, aR displayed in Fig. 
7. Rogers et aL performed an extensive numerical 
sl udy of Lhe aerodynamic characteristics of this con­
rigural.ion using the preconditioned version of Lhe Roe 

Fig. 7 Trap wing model in a wind tunnel, the 
tunnel grid is plotted every fourth grid point. 

scheme in the OVERFLO\V31 code. The effectiveness 
of the A.USM+ -a Rcherne wa.s tested for this configu­
ration and details will he given in a separate paper.~2 

'The calculalion 2 was also performed with the OVER­
FLO\V code, with lhc Spalarl-Allmaras one-equal.ion 
modeL33 The pressure distributions at various span­
wiRe loc<itions are cornpmed with the experirnent<il 
data in Fig. 8 and they are in excellent agreement. 

The vortices genernted from the wing tips and the 
body pod arc illustrated with Lhe particle traces dis­
played in Fig_ g 

Recently, the Al:-S~l-family has heen extended t.o 
lhe multiphase flow calcula.lions, e.g., in Refs .. 34 36. 
Paillcrc cL al. solved a system of two-fluid models 
with interfacial source terms included. Several fea­
tures that a.re different. from the usual equations for 
aerodynamic flows add complexity significm1tly. That 
is, the system is no longer in conserva.livc form because 
of the presence of the source terms and the system 
is not guaranteed to be hyperbolic because it admits 
complex eigenvalues. Figure 10 displays the computed 
evolution of an initially homogeneouR miJ\.·ture of liq­
uid water and air, under Lhe action of gravity, moving 
toward a complete phase separation at the final steady 
state. The phase separation begins at the both ends 
and gradually migrates towardR the center, as illuR­
lraLed by the evol ul.ion of void fraction or the air , with 
x measured from lhe Lop; the pressure al Lhe steady 
state is essentially constant in the gas region, but in­
creases linearly in the liquid region, as it should . .>J"ext, 
PaillRre et a.L also obtained results for a water/air 
column oscillating under the gravity. 'The solution in­
cludes the dfocl of inLcrfacial drag. The void fraction 
of air and the time variation of liquid velocity at the 

2 Dr. Stuart. Rogern of NASA Ame~ Re~earch Center, kindly 
provided Lhe 11;rid, the post-processing code f"or extracting the 
surf"tice pressure tind consulL<i.tions. 
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Fig. 8 Pressure distributions. 

bottom of the t11h(~ an~ shown i11 Fig. 11, displayin?, a 

cyclic motion. The initially sharp profile of void frar­
tion is now smeared at t = 20, due Lo the int.erfacial 
drag. 

A not.her example of multiphase ftm.vs involves a wa­
ter ftow over n hemisplwrir.al eylirnler. The ftmv enn 
undergo cavitaLion if the pressure difference ( cavita­
tion nnrnher, K = 2(P::::o - p1,)/ Pc,JI;J is low enough. 
Figure 12 shows the ·water density contours in a tur­
bulent. flow under various cavitation conditions. Tt. 
dearly shows the phase transition between the liquid 
and vapor st.ates .. \s K decreases, the pressure in the 
expansion region drops to the vapor pressure, resulting 
in Lhc gcneraLion of a vapor phase and Lhc growLh of 
a cavitation bubble. Pressure recovery fmther down­
stream leads Lo Lhc collapse of Lbc cavity in a "wake'' 
region. The structure of the wake region is strongly 
iniluenccd by both the thermodynamic model and Lhc 
velocity field, which in itself is influenced by t.hc tur­
bulence model. 

Another rer.ent ar.cornplislunent of using the Al:SM 
scheme has been reported in Ref. 17 by De Wilde et 
al. for an extremely complicated sci of equations and 
flow patterns involving solid particles and gas phase in 
an industrial scale riser with a diameter of J .. )6 m and 
a height of 14.4:14 rn. The system is desnihecl by an 

a) Particle traces from the body pod. 

b) Particle traces from the wing. 

Fig. 9 Particle t.races. 

unsteady 3D turbulent, two-fluid model. The source 
terms include gravity, buoyancy, and strcssPs d1w to 
gafHmlid internr.tions. The solid part.ides along ·with 
the gas, eni,(~twl al. v<docitics of 6.0 and 12.635 (m/s) 
respectively, in fin inlet at the bottom oft.he riser, an(l 
the mixture exited at Lhe t.op. Due t.o Lhc inelastic 
partide-pnrticle collisions, ftow instability is triggered 
and a periodic slugging ilow pallcrn was obLaincd by 
them. Figure 14 displays the evolution of solid volume 
fraction in one cycle. A perturbation is seen to origi­
naLe at Lhc Lop of t.he riser, grow underneath l.mvards 
the bottom of the riser, and reach the maximum extent 
at abouL 3.2 sec and then move upward Lill H is blown 
out at the top when t=f>.4 sec. Then the r.yde contin-



pure liquid 

initial condi1ioo.1 

a) Physical desc riptio n. 

.. , 
b) Evo lution o f vo id 
fractio n to steady state . 

c) Pressure pro file a t 
steady state. 

F ig . JO Pbase separation test case. (Ref. 34) 

ues. From t he results, one sees a large sca le motion in 
the axial direction together wit h a radial variation in 
each tin1e frarne. Hov.iever1 no circunUerential asyn1-
metry was found for the oondit ions calculated . T he 
a uthors state t hat the oscillation frequency of 0.15 Hz 
is in good agreement with t hat reported in litera ture. 
T he time-averaged result give distinct boundaries of a 
cell-like st.-uct ure. 

T he above has merely capt ured representa tive ad­
vent ures of the AUSM-fam ily schemes beyond aero­
dyna mics. T he DNS/LES calculations demonstra te 
the accuracy inherent in t he AUSIVl-fam ily schemes, 
rivaling that of the higher-order schemes. T he mult i­
phase flow problems are certainly fa r more difficult 
to deal with, not only from t he dosure (modeling) 
point of view, but also from t he algorithmic one. T he 
sow·ce terms strongly oouple varia bles associated with 
all phases and give rise to an ext remely stiff system. 
Robustness of a numerical scheme is the key to the 
capability of simulating these types of flows. 

To add a contribution for t he new millennium, J 
shall present in what follows the result of a recent ef­
fort, with a n a im at further improving the scheme's 
robustness and accuracy. Up to this point, calculat ing 
flows at low speeds often required adding a pressure­
d iffusion term to t he mass flux in order to enhance 
oonvergence. T his has been oommonly done in t he in­
oom pressible code to ensure pressure-velocity coupling. 
Jn spite of its effectiveness, it neverthe less stems purely 
from nu merica l considerat ion . So the questions to ask 
are: (1) whether this (adding the pressure-velocity 
term) is absolutely necessary? (2) if yes, whethe r this 
is the only way? and (3) if not, what t hen? 
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Fig. 11 Oscillating manometer. (Ref. 34) 
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Fig. 12 De ns ity contours of liquid water flow ove r 
hem isphere/cylinde r for various cavitation num­
bers. (Ref. 35,36) 

T he answer to (!), based on my experiences a nd 
those reported in t he literat ure, is that it is desirable 
to have this sort of mecha nism, a lt hough it may not 
be absolutely necessary. T hus, question (2) leads to 
finding an alterna tive, and t he more difficult question 
(3) "; 11 be left a lone for now. 

Jn AUSMDV,' t he convective part of t he momentum 
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4.0E-02
3.9E-02

Time-averaged over 1 cycle.
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Fig. 13 Effect of spatial discretization accuracy on 
surface pressure distribution. (Ref. 35, 36) 

flux consists of blending the flux-difference and flux­
vector procedures (thus denoted with DV). A notable 
advantage of this strategy is that it gives smooth shock 
profiles, e.g., in shock-shock interactions. The not.ion 
was adopted in the AUSM+-W, 4 but its effectiveness 
has never been extensively tested. This blended flux 
can be recast and the extra terms can be reassigned to 
the pressure flux, giving rise to a new pressure flux con­
taining a term proportional to the velocity difference. 
This interpretation, however, has a sound connection 
lo the characteristic equations, 

dx 
dp ± padu = 0, along dt = u ± a. (37) 

An integrated form for the interface pressure for lul < 
a is 

1 
P1;2 = 2((pL ~ Pn) - P112a1;2(un - uJ]. (38) 

Hence, we can beef up the pressure flux, Eq. (30) by 
induding the velocity difference term, 

P1/2 = P~)(!\.h)pL + P(5/MR)Pn 
-P(~l(ML)P<5J(MR)P1;2ai12 (MR - Ah), 

(39) 
where for the interface quantity p1; 2 we may use, e.g., 

P 
-{ (pL +pn)/2 

112 
- JP,Pn 

(40) 

The coefficient involving P(~J(lih) and P(5)(MR) is 
introduced to automatically transition between super­
sonic and subsonic conditions. The pressure now is 
explicitly coupled with the velocity field by the addi­
tion of the velocity difference term. As M tends to 
zero, the pressure flux reduces to a form similar to Eq. 
(38), but with half of its coefficient, 
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AUSM+-u 
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14.0 

~ 13.0 
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Q) 
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:!> 

12.0 

11.0 

Fig. 15 Hypersonic conic flow. 

To denote this new version, we use the suffix "u" (for 
velocity diffusion) and call it AUSM+ -u. Thus, when 

;,,P 29 is also included, the scheme reads A USM+ -up. 
Or if the numerical speed of sound is also activated, the 
version becomes AUS::vf+ -au. Note that if AUSM+ -au 
is used, then the coefficient in Eq. (39) is scaled how­
ever, with the numerical speed of sound a. This is 
just what we want for low Mach number flows since 
a = O(u) as lul -+ O and hence the coefficient is 
scaled by the magnitude of local velocity. =-.fore de­
tails concerning this latest development shall be given 
in a separate paper. 37 

In what follows we shall consider several benchmark 
problems I usually used for testing numerical schemes. 
They represent various facets encountered in typical 
flow prohlems. We shall first mnsider one-dimensional 
problems and use the first-order scheme. 

First, we must require that the new pressure flux be 
capable of correctly predicting viscous flows, such as 
the hypersonic conic flow mentioned in the beginning. 
The new scheme, AUSM+-u, as in the other AUSM­
family schemes, gives the correct solution. as seen in 
Fig. 15. The reason that the velocity difference term 
does not cause adverse effect is that the velocity com­
ponents in Eq. (39) are those normal to thr cell face 
and they arc continuous across the viscous layer. 

The complaint voiced commonly about the 
AUSM+ concerns the overshoots resulting from 
strong shock-shock interactions. Figure 16 shows the 
comparison of results from various schemes. The new 
pressure flux ACSl\f+ -u now gives a significantly im­
proved result and the AUSM+ -up scheme completely 
removes the overshoots, yielding results as good as 
those by the A CSl\fDV, Roe and Godunov schemes. 
It is a major success since the AUS:.\IDV scheme in 
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f} Godunov's scheme. 

Fig. 16 Colliding shock problem 

this regard. This test clearly indicates that the new 
pressure flux formula is a worthy replacement of the 
old one and will be used again in the following tests. 

The second problem concerns a shock moving slowly 
against a flow, as studied in Ref. 38. Figures 17 
shows the strength of linear and nonlinear waves by 
the At:-SM+, AUSM+-u (ACSJ\f+-up is indistinguish­
able and not shown), Roe, and Godunov schemes. It is 
known that the Roe and Godunov schemes produces a 
noticeable long wave trailing the shock, as seen in the 
figure. The AUS'.\I schemes however, perform quite 
well. 

The third problem is a shock moving through a con­
stant area channel in which the grid at the centerline is 
perturbed alternately at odd and even points, as pro­
posed b~r Quirk.39 Figure 18 displays the result from 
the new scheme, it like the AUSM+ is clearly free of 
any shock instabilities. 

Next \Ve will consider two two-dimensional super­
sonic problems using a third-order spatial discretiza-
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Fig. 17 Slowly moving shock problem. 
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Fig. 18 Odd-even problem. 
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Fig. 20 Resiclnal history for the shuttle external 
tank at various Mach numbers. 

lion. :\ supersonic rlow in a ramp-channel is shown 
in Fig. 19. The pressure contours show a smooth be­
havior across shocks and the residual converges mono­
tonkally, again reaffirming the effe<'.tiveness of the new 
pressure rlux. 

Figures 20 display the comparison of' the conver­
gence rates for different flow speeds bet\veen the two 
schemes, AUSrvr+ -ap20 and the present ACSM+ -au. 
The <'.Onvergew'.e history by the new pressure flux is 
essentially the same as the AUS::VI+ -ap ;:wheme up to 
N = 2400, but appears to have slowed down afterward. 
The reason is not clear and will be further investigated 
using different codes and for different problems. How­
ever, it must be noted that the solutions from these 
lwo schemes are not distinguishable. 

The final test is a blunt body problem often used 
by RadespieL40 This problem has several features to 

!~-~,"? 

::~~\ti~ 
a) ~ew pressure flux, h) Blow-up view. 

AUS:\1+-au. 

Fig. 21 Blunt body problem, 1vf= = 10. 

study. The grid3 is clearly for the viscous calculations, 
but is tested here for the Euler solutions_ First, the so­
lution is free of <'.arbunde phenomena, <'.onsistent with 
lhe conjecture given in Ref. 2 since there is no explicit 
pressure diffusion term in the mass flux. Secondly, the 
pressure contours are smooth, not only near the walL 
shown in the blow-up view near the stagnation region, 
but also near the soni<'. line region. 

Concluding Remarks 

We have just seen a brief history of the AUSM­
farnily, having finished the first ten years from its 
inception_ It has seen both triumphs and Retbacks 
while facing realities and difricult tasks. Kevertheless, 
many researchers have contributed in different ways 
towards its growth_ The question is whether it will 
have the longevity to heat the odds in the future, to 
see a even wilder world. I believe that it has the fun­
damentally righl stuff, even though some turns and 
twists are expected every time there is a new fron­
tier to be explored. In this brief tour, we have seen 
the su<'.<'.esses, not only in aerodynamks, hut also in 
lhe areas of DKS/LES and multiphase flows. Further­
more, the new pressure flux boosts the strengths or the 
ACSM-family, having removed the overshoots behind 
the shock-shock interactions-a major success since the 
A"CSMDV sd1eme in this regard. These should give us 
sufTicicnt confidence in its ability to provide needed 
accuracy, efficiency, and robustness. 

3 'l'hc grid was provided by Prof'. Ilolr Il<tdcspicl, nraun­
schwcig 'l'cchnical Univcrsily, Gcrm<i.ny. 
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