Behavior of Three Metallic Alloys Under Combined Axial-Shear Stress at 650 °C

Jason F. Colaiuta
Pennsylvania State University, University Park, Pennsylvania

Prepared under Cooperative Agreement NCC3-597

National Aeronautics and Space Administration

Glenn Research Center

October 2001
Acknowledgments

First and foremost, I want to thank my thesis advisor, Dr. Cliff Lissenden for all of his assistance and guidance throughout the course of this project. Also, I want to thank Dr. Bradley Lerch of NASA Glenn Research Center for his guidance throughout the experimental portion of this project. I also want to express my gratitude for the financial support of the NASA Glenn Research Center provided under Cooperative Agreement NCC3-597. Furthermore, I must acknowledge everyone that I worked with at NASA GRC for the technical support they provided. In addition, I would like to thank the members of my thesis reading committee, Dr. Charles Bakis and Dr. Francesco Costanzo for reviewing my thesis.

Trade names or manufacturers’ names are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov/GLTRS
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 General Introduction and Objectives</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Plasticity Theory</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Yield Functions</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2 Loading Criteria</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3 Flow Laws</td>
<td>5</td>
</tr>
<tr>
<td>1.2.4 Hardening Laws</td>
<td>6</td>
</tr>
<tr>
<td>1.2.5 Distortional Hardening</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Overview of Viscoplasticity</td>
<td>11</td>
</tr>
<tr>
<td>1.3.1 Thermodynamic Basics of Unified Viscoplasticity</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2 State Law</td>
<td>12</td>
</tr>
<tr>
<td>1.3.3 Dissipation Potential</td>
<td>13</td>
</tr>
<tr>
<td>1.3.4 GVIPS Unified Viscoplasticity Model</td>
<td>14</td>
</tr>
<tr>
<td>1.3.5 The Bodner Partom Model</td>
<td>16</td>
</tr>
<tr>
<td>1.4 Yield Surface Experiments</td>
<td>17</td>
</tr>
<tr>
<td>1.4.1 The Definition of Yielding</td>
<td>18</td>
</tr>
<tr>
<td>1.4.2 The Yield Surface</td>
<td>20</td>
</tr>
<tr>
<td>Chapter 2: Experimental Methods</td>
<td>29</td>
</tr>
<tr>
<td>2.1 Materials</td>
<td>29</td>
</tr>
<tr>
<td>2.1.1 Haynes 188</td>
<td>29</td>
</tr>
<tr>
<td>2.1.2 316 Stainless Steel</td>
<td>30</td>
</tr>
<tr>
<td>2.1.3 Inconel 718</td>
<td>31</td>
</tr>
<tr>
<td>2.2 Test Specimen</td>
<td>31</td>
</tr>
<tr>
<td>2.2.1 Specimen Dimensions</td>
<td>31</td>
</tr>
<tr>
<td>2.2.2 Specimen Preparation</td>
<td>32</td>
</tr>
<tr>
<td>2.3 Test Equipment</td>
<td>33</td>
</tr>
<tr>
<td>2.4 Strain Controlled Load Paths</td>
<td>35</td>
</tr>
<tr>
<td>2.5 Yield Loci</td>
<td>36</td>
</tr>
<tr>
<td>Chapter 3: Data Analysis</td>
<td>44</td>
</tr>
<tr>
<td>3.1 Mathematical Representation of Yield Surfaces</td>
<td>44</td>
</tr>
<tr>
<td>3.2 Yield Surface Representation</td>
<td>46</td>
</tr>
<tr>
<td>3.3 Parameter Determination for the Voyiadjis Model</td>
<td>47</td>
</tr>
<tr>
<td>3.4 Goodness of Fit Statistics</td>
<td>50</td>
</tr>
<tr>
<td>3.5 Yield Surface Fitting Methodology</td>
<td>51</td>
</tr>
</tbody>
</table>

NASA/CR—2001-211162 iii
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical Composition of Tested Materials</td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanical Properties of Tested Materials</td>
</tr>
<tr>
<td>2.3</td>
<td>Dimpling torque</td>
</tr>
<tr>
<td>2.4</td>
<td>Yield surface probing stress rates</td>
</tr>
<tr>
<td>A.1</td>
<td>Specimen dimensions and test matrix</td>
</tr>
<tr>
<td>B.1</td>
<td>Haynes 188, Path I, HYII-89</td>
</tr>
<tr>
<td>B.2</td>
<td>Haynes 188, Path II, HYII-86</td>
</tr>
<tr>
<td>B.3</td>
<td>Haynes 188, Path III (First Run), HYII-90</td>
</tr>
<tr>
<td>B.4</td>
<td>Haynes 188, Path III (Second Run), HYII-82</td>
</tr>
<tr>
<td>B.5</td>
<td>316 Stainless Steel, Path I, 610-01</td>
</tr>
<tr>
<td>B.6</td>
<td>316 Stainless Steel, Path II, 610-04</td>
</tr>
<tr>
<td>B.7</td>
<td>316 Stainless Steel, Path III, 610-05</td>
</tr>
<tr>
<td>B.8</td>
<td>Inconel 718, Path I, IN-16</td>
</tr>
<tr>
<td>B.9</td>
<td>Inconel 718, Path II, IN-23</td>
</tr>
<tr>
<td>B.10</td>
<td>Inconel 718, Path III, IN-27</td>
</tr>
<tr>
<td>B.11</td>
<td>Inconel 718, Path IV, IN-11</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Relative difference between yield surfaces predicted by von Mises and Tresca yield criteria</td>
</tr>
<tr>
<td>1.2</td>
<td>The effects of isotropic and kinematic hardening on an initial yield surface</td>
</tr>
<tr>
<td>1.3</td>
<td>Change in curvature of the backside of a yield surface due to an axial prestrain</td>
</tr>
<tr>
<td>1.4</td>
<td>Change in curvature of the backside of a yield surface due to an axial prestrain with added cross effects</td>
</tr>
<tr>
<td>1.5</td>
<td>Difference between the direction of the strain rate and stress rate during a strain controlled nonproportional loading</td>
</tr>
<tr>
<td>1.6</td>
<td>Yielding definitions used in yield surface experiments</td>
</tr>
<tr>
<td>2.1</td>
<td>Specimen geometry, 2-inch specimen and 1-inch specimen</td>
</tr>
<tr>
<td>2.2</td>
<td>Axial-Torsional test machine and MTS 458 analog controller</td>
</tr>
<tr>
<td>2.3</td>
<td>Gripped 1-inch specimen with mounted biaxial extensometer and induction heating coils</td>
</tr>
<tr>
<td>2.4</td>
<td>Strain controlled paths, (a) pure axial Path I, (b) pure shear Path II, (c) combined axial-shear Path III</td>
</tr>
<tr>
<td>2.5</td>
<td>Additional In 718 strain paths, (a) Path IV, (b) Path V, (c) Path VI</td>
</tr>
<tr>
<td>2.6</td>
<td>Example of probing order after a torsional prestrain</td>
</tr>
<tr>
<td>3.1</td>
<td>HN 188 Path II, Point C, Cycle 1 showing how the intersection of two lines between yield points gives the center of probing</td>
</tr>
<tr>
<td>3.2</td>
<td>Size change of a yield surface with changing a</td>
</tr>
<tr>
<td>3.3</td>
<td>Distortion of a yield surface with changing d ranging from 0.0 to −0.2</td>
</tr>
<tr>
<td>3.4</td>
<td>Distortion of a yield surface with changing d ranging from 0.0 to 0.01</td>
</tr>
</tbody>
</table>
4.1 Stress-Strain, (a), and Offset Strain-Axial Strain, (b), response for
an individual yield probe... 69
4.2 Initial yield surface for SS 316 showing model fit and parameters........70
4.3 Initial yields surfaces for HN 188, SS 316, IN 718.......................... 71
4.4 Examples of HN 188 yield surfaces...72
4.5 Examples of SS 316 yield surfaces... 73
4.6 Examples of IN 718 yield surfaces.. 74
4.7 Cyclic evolution of HN 188 at selected points.................................... 78
4.8 Cyclic evolution of SS 316 at selected points.................................... 76
4.9 Cyclic evolution of IN 718 at selected points.................................... 77
4.10 Strain paths produced by Path I, (a), Path II, (b), and Path III, (c).....78
4.11 Axial Stress-Axial Strain response for Path I..................................... 79
4.12 Voyiadjis model parameter evolution for HN 188, Path I, HYII 89....80
4.13 Voyiadjis model parameter evolution for SS 316, Path I, 610-01........81
4.14 Voyiadjis model parameter evolution for IN 718, Path I, IN-16........82
4.15 Shear Stress-Shear Strain response for Path II................................83
4.16 Voyiadjis model parameter evolution for HN 188, Path II, HYII-86....84
4.17 Voyiadjis model parameter evolution for SS 316, Path II, 610-04........85
4.18 Voyiadjis model parameter evolution for IN 718, Path II, IN-23........86
4.19 Axial Stress-Axial Stress and Shear Stress-Shear Strain response
for Path III... 87
4.20 Voyiadjis model parameter evolution for HN 188, Path III, HYII-90.....88
4.21 Voyiadjis model parameter evolution for HN 188, Path III, HYII-82.....89
4.22 Voyiadjis model parameter evolution for HN 188, Path III
for runs 1 and 290.. 90
4.23 Voyiadjis model parameter evolution for SS 316, Path III, 610-05...........91
4.24 Voyiadjis model parameter evolution for IN 718, Path III, IN-27...........92
4.25 Voyiadjis model parameter evolution for IN 718, Path IV, IN-11..........93
4.26 Evolution of a versus plastic work for HN 188.................................94
4.27 Evolution of a versus plastic work for SS 316.................................95
4.28 Evolution of a versus plastic work for IN 718.................................96
4.29 Evolution of a_{11} versus stress times total strain squared...............97
4.30 Evolution of a_{12} versus stress times total strain squared...............98
A.1 Haynes 188, Path I, Points A-I, Cycle 1, HYII-89............................111
A.2 Haynes 188, Path I, Point C-I, Cycle 2, HYII-89............................112
A.3 Haynes 188, Path II, Points A-E, Cycle 1, HYII-86........................113
A.4 Haynes 188, Path II, Points F-H, Cycle 1, HYII-86........................114
A.5 Haynes 188, Path II, Points B-E, Cycle 2, HYII-86........................115
A.6 Haynes 188, Path II, Points F-I, Cycle 2, HYII-86........................116
A.7 Haynes 188, Path II, Points B-E, Cycle 3, HYII-86........................117
A.8 Haynes 188, Path II, Points F-I, Cycle 3, HYII-86........................118
A.9 Haynes 188, Path III, Points A-F, Cycle 1, HYII-90.......................119
A.10 Haynes 188, Path III, Points B-F, Cycle 2, HYII-90.....................120
A.11 Haynes 188, Path III, Points A-F, Cycle 1, HYII-82.....................121
A.12 Haynes 188, Path III, Points B-F, Cycle 2, HYII-82.....................122
A.13 316 Stainless Steel, Path I, Points A-E, Cycle 1, 610-01...............123
A.14 316 Stainless Steel, Path I, Points F-I, Cycle 1, 610-01...............124
A.15 316 Stainless Steel, Path I, Points B-E, Cycle 2, 610-01...............125
| A.16 | 316 Stainless Steel, Path I, Points F-I, Cycle 2, 610-01 | 126 |
| A.17 | 316 Stainless Steel, Path I, Points B-E, Cycle 3, 610-01 | 127 |
| A.18 | 316 Stainless Steel, Path I, Points F-I, Cycle 3, 610-01 | 128 |
| A.19 | 316 Stainless Steel, Path II, Points A-E, Cycle 1, 610-04 | 129 |
| A.20 | 316 Stainless Steel, Path II, Points F-I, Cycle 1, 610-04 | 130 |
| A.21 | 316 Stainless Steel, Path II, Points B-E, Cycle 2, 610-04 | 131 |
| A.22 | 316 Stainless Steel, Path II, Points F-I, Cycle 2, 610-04 | 132 |
| A.23 | 316 Stainless Steel, Path II, Points B-E, Cycle 3, 610-04 | 133 |
| A.24 | 316 Stainless Steel, Path II, Points F-I, Cycle 3, 610-04 | 134 |
| A.25 | 316 Stainless Steel, Path III, Points A-F, Cycle 1, 610-05 | 135 |
| A.26 | 316 Stainless Steel, Path III, Points B-F, Cycle 2, 610-05 | 136 |
| A.27 | 316 Stainless Steel, Path III, Points B-F, Cycle 3, 610-05 | 137 |
| A.28 | Inconel 718, Path I, Points A-I, Cycle 1, IN-16 | 138 |
| A.29 | Inconel 718, Path I, Points C-I, Cycle 2, IN-16 | 139 |
| A.30 | Inconel 718, Path II, Points A-I, Cycle 1, IN-23 | 140 |
| A.31 | Inconel 718, Path II, Points A-I, Cycle 2, IN-23 | 141 |
| A.32 | Inconel 718, Path III, Points A-D, Cycle 1 | 142 |
| A.33 | Inconel 718, Path IV, Points A-E, Cycle 1 | 143 |
Chapter 1
Introduction

1.1 General Introduction and Objectives

Structural components used in aero-propulsion applications are often subjected to complex multiaxial stress states while at high temperatures. Under such demanding conditions materials can incur permanent deformations and changes in material state. When faced with such a difficult situation the engine designer would be greatly aided by a viscoplastic multiaxial deformation model that could accurately describe the material response over a wide range of conditions. Viscoplastic models such as the GVIPS developed by Arnold et al.[15] or Bodner-Partom [18] models can perform this task. Unfortunately, these models have yet to be validated under complex service conditions. This is due to the fact that experiments used for validation must subject the material to multiaxial stress states as well as elevated temperature. In short, the testing is very complex, expensive, and time consuming.

The work presented here is an extensive study of the evolution of yield surfaces after axial-torsional prestraining. It consisted of two phases, the experimental research conducted at NASA Glenn Research Center (NASA-GRC), and data analysis conducted at Penn State University. The goals of the study were: (1) build a library of yield surface data for Inconel 718, Haynes 188, and 316 stainless steel, (2) mathematically fit the yield
surface data with a model incorporating yield surface distortion effects, and (3) use the model parameters to construct evolution equations describing the yield surfaces.

1.2 Plasticity Theory

Classical plasticity is a mathematical theory that describes permanent time-independent deformation of materials, such as metals at room temperature. Such mathematical theories are phenomenological in nature and are based on experimental observations. Classical plasticity theories have three distinct parts, a yield criterion, a plastic flow rule, and a hardening rule. The current section will discuss these three topics as well as loading criteria and will then introduce viscoplasticity.

1.2.1 Yield Functions

Yield functions are used to separate elastic stress states from those where plastic deformation occurs. For an isotropic metal under isothermal conditions the general form of the yield function can be written as,

\[f = F(\sigma_{ij}) - k = 0 \] \hspace{1cm} (1.1)

where \(F(\sigma_{ij}) \) is a function of the current stress state and \(k \) is a constant based on the initial tensile yield strength of the material. Yielding initiates when \(f=0 \) and the surface defined by this condition is known as the yield surface. All stress states inside of the yield surface are elastic and stress states outside of the yield surface are not permitted unless a viscoplastic model is being used. As a result, the yield surface must evolve as plastic deformation occurs in order to insure that the stress state remains on the yield surface.
The two most popular yielding criteria are associated with Tresca [1] and von Mises [2] criteria. Both of these theories are for isotropic materials and are deviatoric in nature.

The Tresca, or maximum shear stress criterion is based on the assumption that a material will yield if the maximum shear stress exceeds the critical shear strength, τ_y. The critical shear strength is defined as $\tau_y = \sigma_Y/2$ where σ_Y is the tensile yield strength. In terms of the principal stresses the Tresca yield condition takes on the following form,

$$f = \max\left(\left|\sigma_1 - \sigma_2\right|, \left|\sigma_2 - \sigma_3\right|, \left|\sigma_3 - \sigma_1\right|\right) - \sigma_y,$$ \hspace{1cm} (1.2)

where σ_1, σ_2, σ_3 represent the principal normal stresses and σ_y the tensile yield strength. Equation 1.2 assumes a fully three-dimensional stress state, however the work in this study involves only stress states in the axial-shear stress plane. Consequently, there are only two non-zero stress terms: axial stress, σ_{11}, and shear stress, σ_{12}. Therefore, the Tresca yield function reduces to,

$$\sigma_{11}^2 + 4\sigma_{12}^2 = \sigma_y^2$$ \hspace{1cm} (1.3)

The Tresca yield criterion is very easy to apply, however it often provides a conservative estimate of the yield stress.

The von Mises yield criterion often agrees better with experimental results than the Tresca criterion. This criterion is also known as the distortion energy criterion because it predicts yielding to occur when the maximum distortion energy exceeds the energy required to cause yielding under pure tension. The von Mises theory can be expressed as,

$$f = \sqrt{3J_2} - \sigma_y = 0$$ \hspace{1cm} (1.4)
where J_2 is the second invariant of deviatoric stress given by,

$$J_2 = \frac{1}{2} s_{ij} s_{ij}$$ \hspace{1cm} (1.5)$$

and deviatoic stress, s_{ij}, is defined as,

$$s_{ij} = \sigma_{ij} - \frac{1}{3} \sigma_{kk} \delta_{ij}$$ \hspace{1cm} (1.6)$$

where δ_{ij} is a second order identity tensor. When expressed in the axial-shear stress plane the von Mises yield criterion becomes

$$\sigma_{11}^2 + 3\sigma_{12}^2 = \sigma_Y^2.$$ \hspace{1cm} (1.7)$$

Figure 1.1 shows the relative size of yield surfaces predicted by the Tresca and von Mises yield criteria. Also note from Eq. 1.7 that if the shear stresses are multiplied by $\sqrt{3}$ the von Mises ellipse becomes a circle. This characteristic will be used extensively in later analysis.

1.2.2 Loading Criteria

In order to discuss plastic flow it is first necessary to present a formal definition of loading. There are three different types of loading that can occur in a work hardening material when the stress state is located on the current yield surface. If an infinitesimal stress increment is added to the stress state directed outside of the yield surface then the loading condition becomes,

$$f = 0 \text{ and } \frac{\partial f}{\partial \sigma_{ij}} d\sigma_{ij} > 0.$$ \hspace{1cm} (1.8)$$

However, a stress state located outside of the yield surface is not permitted therefore the yield surface must evolve to accommodate the new stress state.
The second loading condition is one where the stress increment is directed such that it moves the current stress state inside of the yield surface. This is called unloading and is given by,

\[f = 0 \text{ and } \frac{\partial f}{\partial \sigma_{ij}} d\sigma_{ij} < 0. \] (1.9)

The final loading type is called neutral loading, which occurs when the infinitesimal stress increment is directed tangent to the yield surface. This type of loading causes no evolution of the yield surface and can be represented by

\[f = 0 \text{ and } \frac{\partial f}{\partial \sigma_{ij}} d\sigma_{ij} = 0. \] (1.10)

1.2.3 Flow Laws

As already stated, when a material reaches a stress state where \(f = 0 \) it ceases to behave in a linear elastic manner and incurs permanent deformations. Because of this permanent deformation the material is said to undergo plastic flow. This plastic flow changes the material state, which drives the evolution of the yield surface. Since plastic strain is path-dependent, it must be computed in an incremental form, \(d\varepsilon_{ij} \).

It is often convenient to define the flow law in terms of a plastic potential function such as the one presented by von Mises [3],

\[d\varepsilon_{ij}^p = d\lambda \frac{\partial \Omega}{\partial \sigma_{ij}} \] (1.11)

where \(\Omega \) is a plastic potential function that is a scalar function of stress, \(d\lambda \) is a nonnegative scalar that is zero unless the stress state is on the yield surface and the loading criteria is satisfied. It can be shown that \(\frac{\partial \Omega}{\partial \sigma_{ij}} \) is normal to the plastic potential.
function, \(\Omega \), therefore the plastic strain increment is always normal to the plastic potential function. Consequently, Equation 1.11 is known as the normality flow rule.

If the potential function in Equation 1.11 is a yield function then the flow law becomes an associated flow law. If the von Mises yield criterion is used (Equation 1.4) then Equation 1.11 is known as the Prandtl-Reuss flow law (Prandtl [4] and Reuss [5]), given by,

\[d\varepsilon^p = d\lambda s \]. \hspace{1cm} (1.12)

1.2.4 Hardening Laws

Hardening occurs when the conditions in Equation (1.8) are met. Since the stress increment tries to push the stress state to fall outside of the yield surface the surface must evolve. This evolution is called hardening. There are three types of hardening that are relevant to this study. They are isotropic, kinematic, and distortional hardening.

Isotropic hardening occurs when the yield surface increases in size without a change in shape or translation of the center point. This type of hardening implies an overall increase in the yield strength of the material. In contrast, kinematic hardening is a change in the location of the center of the yield surface without a change in size or shape. The Bauschinger effect results from kinematic hardening. Figure 1.2 shows changes in the yield surface due to isotropic and kinematic hardening effects. Distortional hardening is more difficult to represent mathematically than the other two types. It is a change in the overall shape of the yield surface. This often involves a change in the curvature of the yield surface, usually an increase in the front and a decrease in the back. An example of curvature change after an axial prestrain is shown in Figure 1.3. Another distortional
effect is known as a cross effect which is a change in the size of the yield surface normal
to the direction of prestraining. Positive cross effects are shown in Figure 1.4.

A general yield function, such as the one in Equation 1.1 can be easily altered to
incorporate isotropic hardening effects. This is accomplished by making \(k \) a function of a
state variable \(q \) that accounts for the material loading history. As the total plastic strain
impacted on the material increases, \(k(q) \) increases, resulting in an overall increase of the
material yield strength in all loading directions.

The yield function in Equation 1.1 can also be altered to represent kinematic
hardening as follows,

\[
f = F(\sigma_y - \alpha_y) - k
\]

(1.13)

where \(\alpha_y \) is known as the back stress tensor. The back stress describes the translation of
the yield surface with respect to the plastic deformation history of the material. Note that
\(k \) is a constant.

It follows that these two hardening types can easily be incorporated into a single
model to describe both isotropic and kinematic hardening as shown,

\[
f = F(\sigma_y - \alpha_y) - k(q)
\]

(1.14)

This mixed hardening model often better predicts yield surface evolution than either of
the previous two, however, it still does not account for any change in the shape of the
yield surface.

1.2.5 Distortional Hardening

Being a change in shape, distortional hardening is not easily described
mathematically. The change in shape is greatly influenced by the direction of loading. In
order to discuss distortional hardening, a preloading direction must first be defined. The
direction of the plastic loading is known as the preloading direction and dictates the
nature of the distortional effects seen in the subsequent yield surface. Figure 1.3 shows
yield surfaces with a tensile preloading direction.

An important point is that the prestrain and prestress directions are not always
coincident. This is particularly true for nonproportional loadings. For example, let a
specimen be loaded in tension into the plastic regime under strain control. If loading is
then continued, under strain control, in the shear direction the stress will not follow the
same path as the strain. Once shear straining is initiated the axial stress will begin to
reduce due to plastic coupling effects. However, the axial strain does not change when
shear strain is applied. This is illustrated in Figure 1.5, where figure (a) shows the strain
path followed while figure (b) shows the response of the stress. The arrows show the
direction of the change in stress at the given point.

There have been many approaches used to describe distortional hardening effects.
One approach, by Ortiz and Popov [6], uses trigonometric functions. The yield function
that they used is,

\[f = \|s_{ij}\| - \sigma_y \left(1 + \rho_2 \cos 2\theta_2 + \rho_3 \cos 3\theta_3 \right) \] \hspace{1cm} (1.15)

where \(\|s_{ij}\| \) is the norm of the effective deviatoric stress defined as \(\Sigma_{ij} = (s_{ij} - \alpha_{ij}) \), \(\sigma_y \) is the
initial tensile yield strength, \(\rho_2 \) and \(\rho_3 \) are model parameters that describe cross effects
and changes in curvature respectively, and \(\theta_2 \) and \(\theta_3 \) give the angle between the effective
deviatoric stress tensor and the phenomenological internal variables \(\beta_2 \) and \(\beta_3 \). These
internal variables are unit tensors that define the direction of the yield surface.
characteristic being modeled by that term. For example, since the term with subscripts 3 represent distortion, β_3 would represent the direction in which the distortion occurs. This model has the ability to represent isotropic, kinematic, and distortional hardening, however the model parameters have little physical meaning.

Another model developed by Eisenberg and Yen [7] uses a second order tensor to describe distortion effects. The yield function for this model is,

$$ f = \frac{1}{2} (s_{ij} - \alpha_{ij} + R_{ij}) (s_{ij} - \alpha_{ij} + R_{ij}) - k^2 $$ \hspace{1cm} (1.16)

where R_{ij} is a tensor that describes distortion. The model was shown to accurately reproduce isotropic, kinematic, and distortional hardening effects. The parameter R_{ij} models both distortional and isotropic hardening of the yield surface. The rate equation for R_{ij} is,

$$ \dot{R}_{ij} = -\lambda u_{ij} $$ \hspace{1cm} (1.17)

where u_{ij} is a unit tensor describing the direction of distortion and $\dot{\lambda}$ describes the magnitude of distortion. Isotropic hardening is handled by defining R_{ij} as proportional to the initial yield stress.

Zyczkowski and Kurtyka [8-10] constructed a model to describe yield surface distortion based on geometric arguments. The foundation of the model is based on the ability to describe a closed surface from two circles with different radii and center locations. The model is given by,

$$ \sigma_j = Q_{ij}^{-1} \left[d_{ijkl} t_k + \left[d_{ijkl} d_{ijkl} + R_{ij}^2 \right]^{1/2} \right] t_j + \alpha_j $$ \hspace{1cm} (1.18)
where \(Q_{ij} \) is a direction tensor, \(R_i \) is a vector containing the initial radii of the yield surface in the 5 independent dimensions, \(d_k \) measures the amount of distortion in each dimension, and \(t_k \) gives the direction of the distortion. It should first be noted that the subscripts \(i, j, \) and \(k \), range from 1 to 5 due to the use of Ilyushin’s 5-dimensional stress space. This model also does not follow the normal format of using a yield function, instead it directly calculates stresses at yielding. This means it does not follow with normal assumptions made in plasticity theory.

Rees [11] also developed a distortional model that uses up to rank six tensors to fully describe material hardening. One form of this model is given by,

\[
f = C_{ij} \sigma_{ij} + C_{ijkl} \sigma_{ij} \sigma_{kl} + C_{ijklmn} \sigma_{ij} \sigma_{kl} \sigma_{mn} - k
\]

where \(C_{ij}, C_{ijkl}, \) and \(C_{ijklmn} \) are tensors whose parameters are characterized from experimental data. Consequently the model becomes very cumbersome to use.

A much more manageable tensor-based distortion model was developed by Voyiadjis et al. [12-13]. This model uses a rank four distortion tensor following Hill [14] and requires only four parameters for characterization. The model is defined as follows,

\[
f = M_{ijkl} (s_{ij} - a_{ij}) (s_{kl} - a_{kl}) - k^2
\]

where,

\[
M_{ijkl} = \left(\frac{1}{4} + \frac{a}{2} \right) \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} + v_{ij} v_{kl} \left[c \cdot H^{(1)} + d \cdot H^{(2)} \right] \bar{u}_n (s_{kn} - a_{kn})
\]

where \(a_{ij} \) is the deviatoric back stress defined as,

\[
a_{ij} = \alpha_{ij} - \frac{1}{3} \alpha_{kk} \delta_{ij}
\]
In the model, a is a parameter defining isotropic hardening, c and d define front and back distortion respectively. The tensor ν_{ij} is a unit tensor providing the preloading direction, where a unit tensor is given by $\|\nu_{ij}\| = 1$. Furthermore, $H^{(1)}$ and $H^{(2)}$ represent Heaviside functions which are defined as,

$$H^{(1)} = H\left(\nu_{rs} \left(s_{rs} - \alpha_{rs}\right)\right)$$
$$H^{(2)} = H\left(-\nu_{rs} \left(s_{rs} - \alpha_{rs}\right)\right)$$

(1.23)

where the Heaviside function is defined as,

$$H(x) = \begin{cases}
1 & \text{if } x \geq 0 \\
0 & \text{if } x < 0
\end{cases}$$

(1.24)

This model has the capability to be linearized which makes it very useful for this work. This feature allows the model parameters to be found using linear regression. This process will be discussed further in section 3.3.

1.3 Overview of Viscoplasticity

Time-dependent material response can occur in nearly all structural materials, but it is especially important at elevated temperatures. As a result, a model used to describe deformation in time-dependent material must be able to handle the effects of phenomena such as creep and stress relaxation. Models based on classical time-independent plasticity often have separate equations for time-independent and time-dependent strains. Making them seem like completely unrelated mechanisms. However, unified viscoplasticity models attempt to include all permanent deformations into a single inelastic strain term. The following sections briefly discuss the thermodynamic
framework that can be used to develop viscoplasticity models. Two viscoplasticity models are then summarized.

1.3.1 Thermodynamic Basics for Unified Viscoplasticity

Elastic and inelastic deformations in materials can also be thought of as reversible and irreversible processes. From this, the material response can be represented in a thermodynamic framework. When constructing a viscoplasticity model from thermodynamic arguments the basic principals must be obeyed.

- Conservation of Mass
 \[\rho dV = \text{constant} \] \hspace{1cm} (1.25)
 where \(\rho \) is density and \(dV \) is an infinitesimal volume element.

- Conservation of Linear Momentum
 \[\int_R \rho b_i dV + \int_{\partial R} \sigma_{ij} n_j dS = \int_R \rho a_i dV \] \hspace{1cm} (1.26)
 where \(b \) are body forces, \(a \) are accelerations, \(dS \) is an infinitesimal area, and \(n_j \) are the components of a unit vector normal to the surface.

- Conservation of Angular Momentum
 \[\int_R \rho e_{ijk} x_j b_k dV + \int_{\partial R} e_{ijk} x_j \sigma_{ki} n_j dS = \int_R \rho e_{ijk} x_j a_k dV \] \hspace{1cm} (1.27)
 where \(x_j \) is a position vector and \(e_{ijk} \) is the permutation tensor.

- Conservation of Energy
 \[\rho \dot{u} = \sigma_{ij} \dot{e}_{ij} + \rho r - q_{i,i} \] \hspace{1cm} (1.28)
 where \(\dot{u} \) is the internal energy density, \(r \) is heat supplied, and \(q_{i,i} \) heat flux.

- Clausius-Duhem Inequality
\[\rho \dot{s} - \rho \frac{r}{T} + \left(\frac{q_i}{T} \right) \geq 0 \]

(1.29)

where \(\dot{s} \) is the specific entropy and \(T \) is the absolute temperature.

1.3.2 State Law

In viscoplasticity the material state is more complex to define than in rate-independent plasticity. It is common to not only define the stress state \((\sigma_{ij})\), but also the absolute temperature \((T)\) and an array of internal variables \((\xi_{\alpha})\) to characterize the material state. Note, \(\xi_{\alpha}\) can be a combination of vectors and tensors. The thermodynamic potential is given by the Gibbs free energy,

\[G = \sigma_{ij} \varepsilon_{ij} - H \]

(1.30)

where \(H(\varepsilon_{ij}, T, \xi_{\alpha})\) is the Helmholtz free energy given by,

\[H = u - Ts \]

(1.31)

where \(u\) is the specific internal energy and \(s\) is the specific entropy. The Gibbs free energy can be differentiated to give the following,

\[dG = \frac{\partial G}{\partial \sigma_{ij}} d\sigma_{ij} + \frac{\partial G}{\partial T} dT + \frac{\partial G}{\partial \xi_{\alpha}} d\xi_{\alpha} \]

(1.32)

such that,

\[\varepsilon_{ij} = -\frac{\partial G}{\partial \sigma_{ij}}, \quad s = -\frac{\partial G}{\partial T}, \quad p_{\alpha} = -\frac{\partial G}{\partial \xi_{\alpha}} \]

(1.33)

where \(p_{\alpha}\) is a generalized force term. From this the total strain rate is given by,

\[\dot{\varepsilon}_{ij} = \frac{d}{dt} \left(-\frac{\partial G}{\partial \sigma_{ij}} \right) = -\frac{\partial^2 G}{\partial \sigma_{ij} \partial \sigma_{kl}} \dot{\sigma}_{ij} - \frac{\partial^2 G}{\partial \sigma_{ij} \partial T} \dot{T} - \frac{\partial^2 G}{\partial \sigma_{ij} \partial \xi_{\alpha}} \dot{\xi}_{\alpha} \]

(1.34)

Under isothermal and linear elastic conditions the second and third terms go to zero.
1.3.3 Dissipation Potential

With the material state defined it is now possible to derive a flow law for viscoplasticity. In rate-independent plasticity the flow law was written in terms of a plastic potential function. Here a similar potential function is used, called the dissipation potential, $\Omega(\sigma_{ij}, T, \xi_\alpha)$. As a result the flow law can be written as,

$$\dot{\varepsilon}_{ij}^m = \frac{\partial \Omega}{\partial \sigma_{ij}},$$

(1.35)

It is clear from this definition that the dissipation potential evolves as inelastic strain is accumulated. The evolution equation can be expressed in terms of the internal state variable such that,

$$\dot{p}_\alpha = -\frac{\partial \Omega}{\partial \xi_\alpha},$$

(1.36)

where \dot{p}_α is the first derivative of p_α with respect to time. When isothermal conditions are considered, Equation (1.29) can be given in terms of the Gibbs free energy,

$$\dot{p}_\alpha = -\frac{\partial^2 G}{\partial \xi_\alpha \partial \xi_\beta} \dot{\varepsilon}_\beta,$$

(1.37)

1.3.4 GVIPS Unified Viscoplasticity Model

The Generalized Viscoplasticity Model with Potential Structure (GVIPS), developed by Arnold et al. [15-17], provides a good example of a model derived from the method discussed in section 1.3.1-1.3.3. This model uses a yield criterion, one internal variable (back stress, α_i), and an evolution law to account for nonlinear hardening.

For the GVIPS model the Gibbs free energy is given by,
\[G = G_E + G_f + G_A = -\frac{1}{2} C_{ijkl} \sigma_{ij} \sigma_{kl} - \sigma_{ij} \varepsilon_{ij}^m - B_0 \left(g + B_1 g^p\right) \]

(1.39)

where \(\varepsilon_{ij}^m \) is the inelastic component of strain. The dissipation potential is,

\[\Omega = \frac{\mu f^{n+1}}{n+1} + \frac{R_a B_0 g^{q+1}}{q+1} \]

(1.40)

For the GVIPS model the internal state variable is the back stress, \(\alpha_{ij} \), which has the conjugate \(A_{ij} \). The model is governed by three basic equations: the flow law,

\[\dot{\varepsilon}_{ij}^m = \dot{A} \Sigma_{ij} \]

(1.41)

the evolution law,

\[\dot{A}_{ij} = \begin{cases} Q_{ijkl} C_{klpq} b_{pq} & \text{if } a_{ij} \Sigma_{ij} < 0 \\ b_{ij} & \text{if } a_{ij} \Sigma_{ij} \geq 0 \end{cases} \]

(1.42)

and the internal constitutive rate law,

\[\dot{a}_{ij} = L_{ijkl} \dot{A}_{kl} \]

(1.43)

where

\[\dot{\lambda} = \sqrt{\frac{\dot{\varepsilon}_{ij}^m \dot{\varepsilon}_{ij}^m}{2J_2}} \]

(1.44)

\[L_{ijkl} = Q_{ijkl}^{-1} = K_1 \left(I_{ijkl} + K_2 a_{ij} a_{kl}\right) \]

(1.45)

\[b_{ij} = \dot{\varepsilon}_{ij}^f - K_3 a_{ij} \]

(1.46)

\[f = \left(\frac{3J_2}{\kappa} - y\right) \]

(1.47)

\[y = \left(1 - \beta \sqrt{g}\right), \quad g = \frac{3a_{ij} a_{ij}}{2\kappa_0^2} \]

(1.48)
\[J_2 = \frac{1}{2} \Sigma_{ij} \Sigma_{ij} = s_{ij} - a_{ij}. \]

(1.49)

In the above equations, \(f \) is the yield function, \(y \) defines the stress below which only elastic strain exists, \(I_{ijkl} \) is the fourth order identity tensor, \(\Sigma_{ij} \) is the effective stress, \(J_2 \) is the second invariant of deviatoric stress, and \(\langle \ \rangle \) are the MacCauley brackets, defined as,

\[\langle x \rangle = \begin{cases} 0 & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases} \]

(1.50)

The constants \(K_1, K_2, \) and \(K_3 \) contain the model parameters \((B_0, B_1, R_0, \kappa_0, \kappa, \beta, n, p, q) \).

1.3.5 The Bodner Partom Model

The Bodner-Partom model (Bodner and Partom [18-19]) is presented as an example of a viscoplasticity model that does not follow a thermodynamic framework. Instead the model is based on dislocation dynamics and no formal yield function is used.

The Bodner-Partom model allows inelastic strains under any loading condition. However, there are many loading conditions where the inelastic strain is insignificant compared to the elastic term. A basic outline of the model is provided below, for more information see Bodner and Partom [18].

The total strain rate is first broken down into an elastic and inelastic part,

\[\dot{\varepsilon}_{ij} = \dot{\varepsilon}_{ij}^e + \dot{\varepsilon}_{ij}^\text{in} \]

(1.51)

where \(\dot{\varepsilon}_{ij}^e \) and \(\dot{\varepsilon}_{ij}^\text{in} \) are the elastic and inelastic strain rates, respectively. The elastic strain rate is given by the time derivative of Hooke's law and the inelastic strain rate is given by the Prandtl-Reuss flow law (Equation 1.12). In this case the constant \(\lambda \) accounts for isotropic hardening and is given by,
\[
\lambda = \frac{D_0}{\sqrt{J_2} \exp \left[\left(\frac{Z^2}{3J_2} \right)^n \left(\frac{n+1}{2n} \right) \right]}
\]

(1.52)

where \(D_0, Z,\) and \(n\) are model parameters. Kinematic hardening is represented by using an effective internal variable,

\[
Z_{\text{eff}} = Z_0 + q \int_0^r Z(r) \, d\tau + (1-q) \int_0^r \dot{Z}(r) \, d\tau
\]

(1.53)

where

\[
r_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}
\]

(1.54)

are the current stress direction cosines and the evolution equation is given by,

\[
\frac{dZ}{dt} = m(Z_1 - Z)\dot{W}_m
\]

(1.55)

where \(\dot{W}_m = \sigma_{ij}\dot{\epsilon}_{ij}^{\text{in}}\) is the inelastic power. The parameters that must be determined are \(Z_0, Z_1, D_0, m, n,\) and \(q.\)

1.4 Yield Surface Experiments

There have been many experimental studies on the yield characteristics of metals. In this section, an attempt is made to review previous yield surface work that most closely pertains to the current study. Excellent review papers on yield surface experimental studies were written by Hecker [20] and Michno and Findley [21].
1.4.1 The Definition of Yielding

In most yield surface experimental studies the specimen of choice is the thin-walled tube. This type of specimen can easily be subjected to various ratios of axial and shear stress in order to map a yield surface in the axial-shear stress plane. In addition, the specimen can be subjected to internal pressure in order to define a three-dimensional yield surface.

When mapping yield loci there are two basic approaches. First, use a separate test specimen for each point on the surface, or use the same specimen to map an entire yield surface. The second approach is the most common because of the cost benefits and the elimination of specimen-to-specimen scatter. However, when using a single specimen to determine multiple yield points the state of the material must not change between each probe. This leads to a careful consideration of the definition of yielding.

There are many different definitions of yielding ranging from the standard 0.2% offset strain rule, which accumulates 2000 \(\mu \varepsilon \) \((\mu \varepsilon = 10^{-6} \text{ m/m}) \) of plastic deformation, to the proportional limit definition, where there is no plastic strain accumulated. The three most common definitions of yielding for yield surface evaluations are the proportional limit definition, the offset strain definition, and the back extrapolation definition. Each of these definitions can produce significantly different test results due to the sensitivity of yield to small amounts of plastic strain. Representations of these yielding criteria with respect to the stress-strain curve are shown in Figure 1.6.

The proportional limit criteria defines yield to occur at the point where plastic strain begins to accumulate. This method requires very precise measurements of strain in order to be sure that yielding is detected as the onset of non-linearity in the stress-strain curve. Phillips et al. [22 - 25] used a version of the proportional limit definition in
combination with a back extrapolation technique in order to define yielding with zero plastic strain. The method used involves first loading until two consecutive data points deviated to the same side of the linear elastic loading line. From here the last three points were fit with a line and yielding was defined as the intersection of this line and the linear elastic loading line.

The offset strain method is considerably easier to implement in experimental investigations. However, the magnitude of the offset strain is largely arbitrary, but different values can be required depending on material and loading rate. When used in multiaxial experiments the offset strain is given by an equivalent offset strain, such as,

$$
\varepsilon_{eq}^{\text{off}} = \sqrt{\frac{2}{3} \varepsilon_{ij}^{\text{off}} \varepsilon_{ij}^{\text{off}}} = \sqrt{(\varepsilon_{11}^{\text{off}})^2 + \frac{4}{3} (\varepsilon_{12}^{\text{off}})^2}
$$

(1.56)

where $$\varepsilon_{ij}^{\text{off}}$$ is the offset strain tensor, and $$\varepsilon_{11}^{\text{off}}$$ and $$\varepsilon_{12}^{\text{off}}$$ are the axial and shear components respectively. Small offset strain values, on the order of 10 \(\mu \varepsilon \), represent the initiation of yielding and are nearly the same as the proportional limit definition of yielding. However, larger offsets, such as the 0.2% offset criterion, give a macroscopic view of yielding and overall plastic flow. Because these large values cause considerable changes in material state the specimens cannot be used to determine multiple yield points in a locus. As a result, small offset strains are often used in yield surface experiments. Target offset values differ between experimental investigations. Some examples are, Helling et al. [26-28] used 5 \(\mu \varepsilon \), Gil et al. [29-30] used 30 \(\mu \varepsilon \), and Nouaihas and Cailletaud [31] used 100 \(\mu \varepsilon \).

The back extrapolation method is probably least used of the methods described because it requires a material with near linear hardening characteristics. In addition, it is
often necessary to strain the test specimen well into the plastic region in order to fit a straight line. As a result, the test specimens can not be used for multiple yield point determinations. This technique was used by Taylor and Quinney [32] to determine the multiaxial yielding behavior of copper, aluminum, and mild steel.

The next question when developing a yield surface testing program is what control method should be used. The two most obvious choices are constant loading rate and constant strain rate. Studies performed by Phillips and Lu [25] and Wu and Yen [33] determined that there was no significant difference between stress-controlled and strain-controlled yield surfaces for pure aluminum specimens tested on a servohydraulic test machine.

Another consideration for yield surface studies is the effect of strain rate on yielding. Ellis et al. [34] performed a study on dependence of probing rate on the small offset yielding behavior of type 316 stainless steel at room temperature. It was found that for strain rates between 100 and 500 με/min there was no significant change in the yield surface. These results agree with classical rate-independent plasticity. However, plasticity is always rate-dependant to some degree and the rate dependence typically increases at elevated temperatures. This is especially true at high stresses. Therefore, the strain rate used during probing will play an increased role at elevated temperature.

1.4.2 The Yield Surface

Investigations of the initial yield surfaces of metals date back to before the aforementioned work of Taylor and Quinney [32]. Their research found that for copper and aluminum the von Mises yield criterion more accurately described initial yielding in

NASA/CR—2001-211162
the axial-shear stress plane than the Tresca criterion. This conclusion has been confirmed by many other researches, such as, Phillips et al. [22], Liu [35], and Helling et al. [26].

The evolution of the yield surface, as a material is subjected to permanent deformation, is also of interest. What these subsequent yield surfaces look like depends on the definition of yielding used. If a large offset is used, such as the 2000 µε used by Hecker [36], the subsequent yield surface appears to be an isotropic expansion of the initial yield surface. However, if a small offset or proportional limit criterion is used the subsequent yield surface exhibits a combination of isotropic, kinematic, and distortional hardening. Experimental work done by Khan and Wang [37] provides a study of the effect of offset strains ranging from 200 to 2000 µε on yield surface shape.

In addition, yield surfaces can also exhibit substantial cross-effects. Positive cross-effects, an increase in the size of the yield surface normal to the prestrain direction, were found in studies performed by Phillips and Tang [23] and Wu and Yen [33]. In contrast, negative cross-effects (decrease in width normal to prestrain direction) were seen by Michno and Findley [21] in mild steels. A study by Williams and Svensson [38] showed that aluminum exhibited large cross-effects when subjected to torsion prestraining, but zero cross-effects after axial prestraining.

When analyzing subsequent yield surfaces it is quickly realized that isotropic hardening, kinematic hardening, and cross effects cannot fully explain experimental results. Subsequent yield surfaces also show considerable amounts of distortional hardening. This is characterized be a decrease in curvature of the yield surface in the direction opposite to the direction of prestraining. The yield surface also continues to exhibit symmetry about the axis of prestraining. These conclusions have been found by
many researches including Phillips et al. [22], Phillips and Moon [24], Helling et al. [26], and Wu and Yeh [33].
Figure 1.1: Relative difference between yield surfaces predicted by von Mises and Tresca yield criteria.
Figure 1.2: The effects of isotropic and kinematic hardening on an initial yield surface.
Figure 1.3: Change in curvature of the backside of a yield surface due to an axial prestrain.
Figure 1.4: Change in curvature of the backside of a yield surface due to an axial prestrain with added cross effects.
Figure 1.5: Difference between the direction of the strain rate and stress rate during a strain controlled nonproportional loading.
Figure 1.6: Yielding definitions used in yield surface experiments.
Chapter 2
Experimental Methods

The yield surface evolution experiments carried out for this study were complex and tedious. The following discussion concerns the methodology used in this study to perform yield surface evaluations and prestraining of the specimens. This chapter will discuss the materials, test specimen, test equipment, and test procedures used. The goal was to apply the same methodology to a wide range of materials in order to develop yield surface evolution equations.

2.1 Materials

This study consisted of testing three materials with significantly different compositions. The materials tested were Haynes 188, 316 stainless steel, and Inconel 718. By testing such different materials it was hoped that differences in the way the yield surfaces evolve could be seen.

2.1.1 Haynes 188

Haynes 188 (HN 188) is a cobalt-based alloy, see Table 2.1 for the composition given by the manufacturer. Its primary uses include nozzle guide vanes, stator blades, and combustion liners in aero-propulsion systems. The material was tested in a solution annealed state. In this state the microstructure contains second phase carbides that provide an additional hardening component to the material response. The solution annealing process was conducted as follows,
• Anneal at 1175°C for one hour.
• Cool to room temperature in Argon.

The elastic moduli for HN 188 as found from the current study are shown in Table 2.2. All the values in Table 2.2 are averages over each specimen tested from the initial yield surface experiments for each material.

\[
\begin{array}{cccccccccc}
\text{Fe} & \text{Ni} & \text{Cr} & \text{Co} & \text{C} & \text{S} & \text{Mn} & \text{Si} & \text{P} \\
\hline
\text{SS 316} & 67.08 & 10.2 & 17.7 & 0.19 & 0.04 & 0.013 & 1.75 & 0.57 & 0.03 \\
\text{HN 188} & 1.17 & 22.66 & 22.11 & \pm 36.7 & 0.09 & 0.002 & 0.80 & 0.35 & 0.005 \\
\text{IN 718} & \pm 18.6 & 53.58 & 17.52 & 0.39 & 0.034 & 0.002 & 0.12 & 0.07 & 0.006 \\
\hline
\text{Mo} & \text{B} & \text{Cu} & \text{W} & \text{Nb+Ta} & \text{Ti} & \text{Al} & \text{La} & \text{N} \\
\text{SS 316} & 2.08 & - & 0.28 & - & - & - & - & 0.067 \\
\text{HN 188} & - & 0.003 & - & 14.06 & - & - & - & 0.052 & - \\
\text{IN 718} & 2.87 & 0.004 & 0.05 & - & 5.19 & 0.95 & 0.57 & - & - \\
\end{array}
\]

Note: SS 316 heat A12210, HN 188 heat 188061714, IN 718 heat S618

Table 2.1: Chemical Composition of Materials Tested.

\[
\begin{array}{cc}
\text{E (GPa)} & \text{G (GPa)} \\
\hline
\text{HN 188} & 187.0 \\
\text{SS 316} & 171.2 \\
\text{IN 718} & 144.4 \\
\end{array}
\]

Table 2.2: Mechanical Properties of Materials Tested. (Elastic and Shear Modulus)

2.1.2 316 Stainless Steel

Type 316 stainless steel (SS 316) is a stable austenitic alloy with relatively low strength that is primarily used for pressure vessels and piping. The SS 316 specimens were again solution annealed, but with the following procedure.

NASA/CR—2001-211162 30
Anneal at 1065°C for 30 minutes.

Cool to 537°C in 9 minutes.

Furnace cool to room temperature.

The composition of SS 316 is shown in Table 2.1 and the elastic moduli in Table 2.2.

2.1.3 Inconel 718

Inconel 718 (IN 718) is a very high strength nickel-based alloy. It is mainly used in aeropropulsion applications for structural components such as disks, blades, and shafts. IN 718 was tested in an aged state. In order to reach this state the specimens were first solution annealed and subsequently aged. The thermal processing was conducted as follows.

- Anneal at 1038°C for 1 hour.
- Air cool to room temperature.
- Age in vacuum at 720°C for 8 hours.
- Cool to 620°C at 55°C/min and hold for 8 hours.
- Cool in Argon to room temperature.

This heat treatment produces γ" precipitates that significantly increase the hardness of the material. Table 2.1 shows the chemical composition of IN 718 and Table 2.2 gives the elastic moduli.

2.2 Test Specimens

This section details the two different types of test specimen used. It also discusses the procedure for preparing a specimen to be tested.
2.2.1 Specimen Dimensions

All of the test specimens used were of the thin-walled tube type. However, two different size specimens were used. The specimen sizes have no effect on the testing procedure other than the physical setup of the load frame grips and geometric constants used for interpreting the test data. Both HN 188 and SS 316 used the specimen type referred to as the 2-inch specimen due to its two-inch diameter grip section. IN 718 is the specimen referred to as the 1-inch specimen due to its one-inch diameter grip section. The exact dimensions of the 2-inch and 1-inch specimens are shown in Figure 2.1.

2.2.2 Specimen Preparation

Prior to testing each new specimen needed to be dimpled in order to accept the biaxial extensometer and fitted with thermocouples. Dimpling consisted of placing two small indentations in the gauge section of the specimen for the extensometer probes to rest. This was performed by using a dimpling device custom built at NASA GRC. The equipment consisted of a base that firmly held the test specimen in place with a screw used to lower the dimpling tool (supplied with the extensometer) to the specimen. Torque was then applied to the screw via a torque wrench in order to dimple the specimen. This setup allowed the same dimpling force to be applied to each specimen, precisely controlling the size of the dimples. Table 2.3 show the dimpling torques used for each material.

<table>
<thead>
<tr>
<th>Material</th>
<th>Torque (N*m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN 188</td>
<td>2.03</td>
</tr>
<tr>
<td>SS316</td>
<td>1.58</td>
</tr>
<tr>
<td>IN 718</td>
<td>1.81</td>
</tr>
</tbody>
</table>

Table 2.3: Dimpling torque.
The second step in preparing the test specimens was to spot weld thermocouples to the gauge section of the specimen. A total of three thermocouples were applied to each test specimen. The thermocouples were applied at the center and 12.5 mm above and below center on the gauge section. The center thermocouple was used to control the induction heating system. The remaining two thermocouples defined the temperature gradient across the gauge section.

2.3 Test Equipment

All experiments in this study were conducted on a computer controlled MTS biaxial servohydraulic test machine. The machine is pictured in Figure 2.2 and is located in the NASA GRC multiaxial fatigue lab. The maximum capacities of the load frame are ±220,000 N axial loading and ±2,260 N*m twisting moment. The test specimen is held by water-cooled, hydraulically actuated grips. The top grip is fixed while the bottom grip is attached to a hydraulic actuator that is capable of independent vertical translation and rotation. Two MTS 458 analog controllers, one for axial motion and one for torsional motion, control the actuator. Further details about the biaxial test machine are given by Kalluri and Bonacuse [39].

Specimen heating was accomplished by using a closed-loop induction heating system as described by Ellis and Bartolotta [40]. The system consisted of an Ameritherm 15-kW radio frequency induction heating unit and three adjustable, water-cooled copper coils surrounding the gauge section of the specimen. The copper coils could be raised or lowered independently along the gauge section of the test specimen in order to obtain an
acceptable temperature gradient (± 1% of the absolute test temperature). See Figure 2.3 for a photo of the copper coils around a 1-inch specimen.

In order to conduct yield surface studies, strain measurements accurate to the microstrain level are required. This is because loading must be quickly stopped once yield is detected in order to ensure the material state is not significantly disturbed. In addition, the device used to measure strain must also perform on a micro strain level at elevated temperatures. This depends not only on the strain measurement device, but also on the ability of the heating equipment to maintain a constant temperature and the elimination of electronic noise.

This study utilized an MTS water-cooled biaxial extensometer capable of operating over a large temperature range. The extensometer used two alumina rods, spaced 25mm apart to measure axial deformation and twist. The alumina rods fit into the dimples placed in the test specimen as discussed earlier. Lissenden et al. [41] supply further details on the biaxial extensometer. The biaxial extensometer mounted to a specimen is shown in Figure 2.3.

Custom written software and a PC were used to control all experiments. The PC was equipped with analog-to-digital (A/D) and digital-to-analog (D/A) hardware. The D/A hardware sent a command signal from the PC to the load frame while the A/D hardware received test data. Both sampled at 1000 Hz. The test data received by the A/D hardware averaged the data over every 100 points in order to minimize the effects of electronic noise, providing 10 data points per second written to output files.
The test program utilized two separate control programs. One was used to
determined the yield points used to construct the yield loci while the other program
preformed the preloading.

2.4 Strain Controlled Load Paths

All three materials were subjected to a series of three strain controlled load paths. Path I is purely axial strain, Path II is purely shear strain, and Path III is a non-
proportional strain path. A schematic of each load path is shown in Figure 2.4. Along
each load path several stops were made in order to conduct a pair of yield surface
determinations. These points are indicated by letters in Figure 2.4. In addition, each load
path was cycled either two or three times depending on the hardening characteristics of
each material. For each load path the maximum equivalent strain is 15,000 µε, shown by
a dashed circle in Figure 2.4.

Three additional load paths were carried out on IN 718. These paths were not
carried out on the other materials due to time constraints and the lack of success with IN
718. These additional load paths all subject the material to both axial and torsional strain. They are designated Path IV, Path V and Path VI and are shown in Figure 2.5.

All six load paths used an equivalent strain rate of 100 µε/s. For axial-torsional
loading equivalent strain is given by,

\[\dot{\varepsilon}_{eq} = \sqrt{\frac{2}{3} \dot{\varepsilon}_{ij} \dot{\varepsilon}_{ij}} = \sqrt{\frac{2}{3} [(1+2\nu^2)\dot{\varepsilon}_{11}^2 + 2\dot{\varepsilon}_{12}^2]} \]

where \(\dot{\varepsilon}_{ij} \) is the strain rate tensor, \(\nu \) is Poisson's ratio, and \(\dot{\varepsilon}_{11} \) and \(\dot{\varepsilon}_{12} \) are the tensorial
axial and shear strain rates respectively.
2.5 Yield Loci

Each yield locus was constructed by probing for yielding in 16 unique directions in the axial-torsional stress plane. The angles used for probing were identical for each locus, however the order of probing varied depending on the prestrain history of the material. The angles were always setup in such a fashion that the first probe was in a direction normal to the prestrain direction. Furthermore, the order of subsequent probes was chosen in order to minimize the changes to the material state. For example, Figure 2.5 shows the order of probing following a torsional prestrain. In this pattern, the angle between probes was either 180° or 90° in the hopes that the effects of the probes would counteract each other. Minimization of the changes in material state while performing yield surface determinations is further discussed by Hecker [42]. In addition, each yield surface was repeated to verify that the material state was undisturbed.

Each of the 16 individual yield probes can be broken down into the following three step process,

(i) Use a least squares fit to determine the coefficients of the elastic loading line over a predefined stress range within the elastic region. These coefficients include the elastic modulus, E, shear modulus, G, and initial stresses σ_{11}^0 and σ_{12}^0.

(ii) Continuously calculate the offset strain components using the following equations,

\[\varepsilon_{11}^{\text{eff}} = \varepsilon_{11} - \frac{\sigma_{11} - \sigma_{11}^{\text{eff}}}{E} \]

(2.2)
\[\varepsilon_{12}^{\text{eq}} = \varepsilon_{12} - \frac{\sigma_{12} - \sigma_{12}^{\text{off}}}{2G} \]

(2.3)

From this determine the equivalent offset strain (Equation 1.33) and compare it to the target value of 30 \(\mu \varepsilon \).

(iii) Once the equivalent offset strain exceeds the target value unload the probe to the starting position.

The 30 \(\mu \varepsilon \) value for the offset strain was chosen based on previous experience from studies performed by Lissenden et al. [43] and Gil et al. [44]. In order to obtain optimum results with the least scatter each material used a different probing rate. Prior to testing a material a rate study was performed in order to determine the optimum probing rate. This was done by conducting initial yield surfaces tests for each material at various stress rates. Multiple runs of each rate were perform and the rate that showed the best repeatability was used as the yield surface probing rate for that material. The results of these rate studies are given in Table 2.4.

<table>
<thead>
<tr>
<th>Material</th>
<th>Equivalent Stress Rate (MPa/s)</th>
<th>Equivalent Elastic Strain Rate ((\mu \mbox{m}/\mbox{m/s}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN 718</td>
<td>2.07</td>
<td>10</td>
</tr>
<tr>
<td>HN 188</td>
<td>17.9</td>
<td>100</td>
</tr>
<tr>
<td>SS 316</td>
<td>7.24</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 2.4: Yield surface probing stress rates.
Figure 2.1: Specimen geometry, 2-inch specimen (top) and 1-inch specimen (bottom). (All measurements in mm.)
Figure 2.2: Axial-Torsional test machine and MTS 458 analog controller.
Figure 2.3: Gripped 1-inch specimen with mounted biaxial extensometer and induction heating coils.
Figure 2.4: Strain controlled paths, (a) pure axial Path I, (b) pure shear Path II, (c) combined axial-shear Path III.
Figure 2.4: Additional In 718 strain paths, (a) Path IV, (b) Path V, (c) Path VI.
Figure 2.5: Example of probing order after a torsional prestrain.
Chapter 3
Data Analysis

The overall goal of this research was to describe the evolution of the yield surface when subjected to plastic deformation. As a result, an integral part of the data analysis was to find a way to describe the yield surface by a model with parameters that change as the yield surface evolves. The first section of this chapter will discuss some of the attempts made to find such a model. Section 3.2 will discuss how the model developed by Voyiadjis et al. [13] and its parameters were used to reproduce yield surfaces and how the model parameters affect its shape, size, and position. Section 3.3 will detail the steps taken to reduce the model to an axial-torsional form that could be fit using linear regression. Finally, Section 3.4 will discuss the statistical methods used to quantify goodness of fit.

3.1 Mathematical Representation of Yield Surfaces

The first attempts made at fitting a shape to the yield surface data collected in this study applied the simplistic approach of fitting a circle with a flattened backside. The definition of the backside of a yield surface is the portion of the yield surface from approximately 90 to 270 degrees from the prestrain direction. This initial attempt to describe the yield surface was based on two principles; (i) the initial yield surface as well as the front side of the yield surface are circular in the $\sigma_{11}-\sqrt{3}\sigma_{12}$ stress plane, (ii) the backside of the surface flattens compared to the front and can be represented by a straight
line. This representation proved adequate for describing yield surfaces with little or no
distortion, however, it quickly faltered when exposed to highly distorted yield surfaces.
In addition, the backside of the yield surface is not a straight line even when significant
distortion is present.

The second approach involved the regression of polynomials. Since the problem
at hand is highly nonlinear the polynomials needed to be of order 2 or greater.
Furthermore, terms involving both axial and shear stress needed to be included in order
to obtain the distorted shape of the yield surface. As a result, the regression parameter
became very complex. Nonetheless, the major shortcoming of the approach came from
the fact that it was not always possible to obtain a continuous smooth surface. When
used to predict a yield surface, the polynomial regression often produced a cusp when
the curve intersected the axial-stress axis. This was not consistent with any of the
experimental results collected.

The polynomial approach was extended to include conformal mapping. It was
hoped that a data conversion could be found that would allow the data to be fitted and
then converted back to its original form. This process again produced non-continuous
yield surfaces. In addition, the mapping process increased the error between data and
fit curves resulting in poor yield surface representations.

Finally it was decided that a yield function approach was needed. Several yield
function based distortional models were discussed in Section 1.2.5. Of these, the model
developed by Voyiadjis et al. [12, 13] was chosen for two reason: (1) it produced a
continuous convex yield surface, (2) all of the pertinent yield surface characteristics
could can be controlled by four parameters. From this point this distortion model will be referred to as the Voyiadjis model.

3.2 Yield Surface Representation

The algorithm used to reproduce a yield surface once the model parameters were determined did not require a reduction to the axial-torsional form. The Voyiadjis model was used in the form shown in Equations 1.20 and 1.21 and programmed in to MathCAD. The yield surface was predicted by incrementing stress in the same probing direction used in the experimental portion of this study. First the program automatically found the starting stress point for all probes. To do this, probes 1 and 2 were fit with a line as well as probes 3 and 4. The intersection between these two lines gave the initial stress point for probing, as shown in Figure 3.1 where C represents the center of probing. From this point probing is carried out in all directions. This technique produced yield points in the same directions as the experimentally determined yield points.

Each of the four parameters control a different type of hardening. The parameter \(a \) is related to isotropic hardening. Its value does not have a bound, but \(a=1 \) corresponds to a radius equal to the initial yield strength averaged from all specimens tested, \(k_0 \). Then if \(a>1 \) the yield surface is smaller than the initial surface and if \(a<1 \) the yield surface is larger than the initial surface. This is shown in Figure 3.2. The parameter \(d \) determines the amount of distortion there is in the backside of the yield surface. A value of zero gives no distortion. If the value is greater then zero than the yield surface distorts with an increase in curvature along the backside, as shown in Figure 3.3. If the value of \(d \) is less then zero the yield surface distorts with a decrease in curvature, as shown in Figure 3.4. The backstress parameters, \(a_{11} \) and \(a_{12} \), control the location of the center of the yield
surface. The values of these parameters depend on the properties of the material being tested, but they generally have an association with the maximum stress reached during a preloading.

The value of the directional unit tensor, v_{ij}, was calculated from the prestrain direction. Since all preloadings occurred in the axial-shear strain plane the axial and shear proportions of the loadings could be found from the cosine and sine of the loading angle respectively. If the directional tensor is given as,

$$v_{ij} = \begin{bmatrix} x \cdot \cos \theta & x \cdot \sin \theta & 0 \\ x \cdot \sin \theta & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

where θ is the prestrain direction. By enforcing $||v_{ij}|| = 1$ the value of x can be found from,

$$x^2 \cos^2 \theta + 2x^2 \sin^2 \theta = 1.$$ \hspace{1cm} (3.2)

3.3 Parameter Determination for the Voyiadjis Model

The first step in determining the parameters for the Voyiadjis model was to reduce it to its axial-torsional form by making the appropriate assumptions. Since the entire set of yield surface data is in the axial-torsional stress space the stress and backstress tensors can be reduced to,

$$\sigma_{ij} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & 0 \\ \sigma_{12} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \hspace{1cm} \alpha_{ij} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & 0 \\ \alpha_{12} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$ \hspace{1cm} (3.3)

The deviatoric stress and deviatoric backstress are,
\[s_{ij} = \begin{bmatrix} \frac{2}{3} \sigma_{11} & \sigma_{12} & 0 \\ \sigma_{12} & -\frac{1}{3} \sigma_{11} & 0 \\ 0 & 0 & -\frac{1}{3} \sigma_{11} \end{bmatrix}, \quad a_{ij} = \begin{bmatrix} \frac{2}{3} \lambda_{11} & \lambda_{12} & 0 \\ \lambda_{12} & -\frac{1}{3} \lambda_{11} & 0 \\ 0 & 0 & -\frac{1}{3} \lambda_{11} \end{bmatrix}. \] \hspace{1cm} (3.4)

One additional assumption is that the direction tensor, \(\nu_{ij} \), is also contained in the axial-torsional plane giving,

\[\nu_{ij} = \begin{bmatrix} \nu_{11} & \nu_{12} & 0 \\ \nu_{12} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \] \hspace{1cm} (3.5)

When the above assumptions are made only 25 of the 81 components of the tensor \(M_{ijkl} \) (Equation 1.21) are non-zero. Next, \(M_{ijkl} \) is substituted into Equation 1.20 and the number of non-zero components furthers reduces to 11 for the completed axial-torsional form of the Voyiadjis model.

With the axial-torsional reduction completed, work was initiated to obtain a form that could be used with a regression technique in order to obtain the model parameters. The problem was originally approached with the desire to obtain all four model parameters directly from regression. However, it is assumed that the backstress follows the same direction as the prestrain direction. As a result, it was easier to use an iterative method to find the backstress. An initial guess was input and the value was incremented in the direction of prestrain until the fit no longer improved. The method used to quantify the goodness of fit will be discussed in the next section. Since the backstress was not included in the regression the model reduced to a simple linear problem with the following characteristic equation,
\[Y = \beta_0 k_0^2 + \beta_1 Z \]
(3.6)

where,

\[Y = \frac{2}{3} \sigma_{11}^2 + 2\sigma_{12}^2 - \frac{4}{3} \alpha_{11} \sigma_{11} - 4\alpha_{12} \sigma_{12} + \frac{2}{3} \alpha_{11}^2 + 2\alpha_{12}^2 \]
(3.7)

\[Z = H^{(2)*} W \left[\frac{4}{9} \sigma_{11}^2 \nu_{11}^2 - \frac{8}{9} \sigma_{11} \alpha_{11} \nu_{11}^2 \right. \\
\left. + \frac{8}{3} \sigma_{12} \alpha_{11} \nu_{11} \nu_{12} + \frac{8}{3} \sigma_{11} \sigma_{12} \nu_{11} \nu_{12} - \frac{8}{3} \sigma_{11} \alpha_{12} \nu_{11} \nu_{12} \\
- \frac{8}{3} \sigma_{12} \alpha_{11} \nu_{11} \nu_{12} + \frac{8}{3} \alpha_{11} \alpha_{12} \nu_{11} \nu_{12} + 4\sigma_{12}^2 \nu_{12}^2 - 8\sigma_{12} \alpha_{12} \nu_{12}^2 + 4\alpha_{12}^2 \nu_{12}^2 + \frac{4}{9} \alpha_{11}^2 \nu_{11}^2 \right] \]
(3.8)

\[W = \left(\frac{2}{3} \sigma_{11} \nu_{11} - \frac{2}{3} \alpha_{11} \nu_{11} \right) + 2\sigma_{12} \nu_{12} - 2\alpha_{12} \nu_{12} \]
(3.9)

\[H^{(2)*} = H(-W) \]
(3.10)

\[\beta_0 = \frac{1}{\left(\frac{1}{2} + a \right)} \]
(3.11)

\[\beta_1 = \frac{-d}{\left(\frac{1}{2} + a \right)} = -d\beta_0 \]
(3.12)

and \(k_0 \) is the initial yield strength averaged over all specimens of the same material tested.

Linear regression was applied to Equation 3.6 to obtain following system of equations that can be solved by using matrix inversion,

\[
\begin{bmatrix}
 n \cdot k_0^2 & \Sigma Z \\
 k_0^2 \cdot \Sigma Z & \Sigma Z^2
\end{bmatrix} \begin{bmatrix}
 \beta_0 \\
 \beta_1
\end{bmatrix} = \begin{bmatrix}
 \Sigma Y \\
 \Sigma YZ
\end{bmatrix}
\]
(3.12)

where \(n \) denotes the number of probes in a yield surface. Finally Equations 3.11 and 3.12 are used to solve for \(a \) and \(d \).
The yield surface fits were produced using both repeated yield surfaces at each point along a load path. This provided a maximum of 32 separate yield points in 16 directions for each yield surface. Prior to fitting the data were inspected visually to determine if a set contained outliers. A point was considered an outlier if it clearly did not fit the pattern suggested by the remaining data points. If a point was suspected of being an outlier fits were conducted with and without the data point and the better of the two was accepted. Yield points were excluded on an individual basis. If a yield point was excluded the corresponding point in the repeated surface was not necessarily excluded.

3.4 Goodness of Fit Statistics

The next problem was to quantify the goodness of the fit reproduced by the outlined process. Since linear regression was used the correlation coefficient was found to be sufficient for analyzing the fits. The experimental data and model predictions had to first be converted to fit the form given by Equation 3.6. This was accomplished by substituting the data and model parameters into Equations 3.7 and 3.12. The correlation coefficient statistic in terms of Y and Z is,

$$ R = \frac{\sum ZY - \frac{\sum Z \sum Y}{n}}{\sqrt{\left(\sum Z^2 - n\bar{Z}^2\right)\left(\sum Y^2 - n\bar{Y}^2\right)}} \quad (3.12) $$

where \bar{Z} and \bar{Y} are the average of all Z and Y values respectively. The value of R was then squared to get the coefficient of determination. It is stated by Kiemele et al. [45] that $|R| > 0.7$ represents a good fit. However the yield surface data did not produce R^2 values that large, but still produced good fits in the axial-torsional stress plane. The
actual R^2 values range between 0.4 and 0.15. There is a correlation between R^2 and cycle number such that the R^2 values tend to decrease in the later cycles. This is largely due to an increase in experimental scatter in the later cycles. In addition, the fits used were not always statistically the best fit. This is due to the assumption that $d<0$. All fits used were the best fit where this assumption was satisfied.

3.5 Yield Surface Fitting Methodology

Each yield surface was fit using the same series of steps. First an initial guess for the backstress parameters was made. This was accomplished by fitting a circle to the front side of the yield surface and using the center of the circle as the backstress. This worked very well for initial yield surfaces and for surfaces in the first cycle of a strain path. However, surfaces from later cycles sometimes required the initial backstress to be determined from experience. This was because as the distortion increased in later cycles the backstress no longer corresponded with the center of the front side. Therefore the initial backstress was obtain from the patterns observed in the evolution of the backstress from the initial cycle.

Once an initial backstress was found the yield function was fit to the experimental data. The fitting process produced the isotropic parameter, a, and the distortional parameter, d, for a given backstress. Next, the backstress was incremented in the direction of prestraining. Because of this iterative process it was often desirable to make the initial guess for the backstress slightly under predict the magnitude of the expected final backstress value. This enabled the generation of data on both sides of the optimum fit. The best fit was the one with the largest R^2 statistic and a negative value of d.
Once the best fit was obtained, it was compared to the experimental data in order to search for possible outliers. An outlier was considered to be a yield point that did not follow the pattern given by the other data. Outliers were determined largely by judgment. However, if a yield point was suspected it was removed from the fit and the entire process outlined above was conducted again. The new fit, without the outlier, was then compared to the original. The fit that had the largest R^2 statistic was then chosen as the fit for that yield surface.
Figure 3.1: HN 188 Path II, Point C, Cycle 1 showing how the intersection of two lines between yield points gives the center of probing.
Figure 3.2: Size change of a yield surface with changing a. ($k_0 = 203.1$ MPa)
Figure 3.3: Distortion of a yield surface with changing d ranging from 0.0 to -0.2. ($k_0 = 203.1$ MPa)
Figure 3.4: Distortion of a yield surface with changing d ranging from 0.0 to 0.01.
($k_0 = 84.4$ MPa)
Chapter 4

Results and Discussion

With the amount of experimental data collected it is important that the results be presented in a concise manner. It was decided that the data should be given in a format that handled each strain path separately. This allows for comparison between the three materials for each strain path. Section 4.1 will first introduce some of the experimental yield surface data. Each section from there will briefly discuss the behavior of each material for a given load path and then show summary plots of the evolution of the primary variables. The variables of interest are a, d, a_{11}, and a_{12} because these are the four parameters that describe the yield surface in the Voyiadjis distortion model. After the three primary strain paths are discussed the additional paths applied to IN 718 will be discussed. Note, this section does not try to present all of the yield surface data collected. An entire set of the data and model fits can be found in Appendix A.

4.1 Yield Surface Data

All yield surface tests revolve around the ability to obtain individual yield points from each probing direction. Therefore, it is appropriate to show details of at least one yield probe. Figure 4.1 shows (a) the stress-strain response and (b), the offset strain-total strain response of a 12° yield probe for HN 188. From Figure 4.1 (a) the small offset strain is visible from the separation between the loading and unloading lines of the stress-strain curve. Furthermore, Figure 4.1 (b) shows that the offset strain reached a value of
31.6, slightly overshooting the target of 30. This discrepancy is acceptable and does not constitute a large deviation from the target. In addition, Figure 4.1 (b) shows that the offset value slightly decreases during the unloading of the probe. This decrease can be contributed to vicoplasticity effects due to the elevated temperature of the testing. It could also be the result of a slightly nonlinear elastic stress-strain response.

The first step for all yield surface evolution tests was determining the initial yield surface. The initial yield surface was assumed to be circular in the $\sigma_{11} - \sqrt{3} \sigma_{12}$ stress plane. Therefore, each initial yield surface was regressed to a circle by setting the directional unit tensor, v_{ij}, in the Voyiadjis model equal to zero. This caused the distortion portion of the model to go to zero and produce a circular yield surface. Figure 4.2 shows an initial yield surface and model prediction for SS316, Path I. In this figure there is one yield point that falls well inside of the fitted surface. This is typical of the experimental scatter inherent to this study.

Each of the three materials has considerably different initial yield surfaces. All three have different radii and the initial yield surface for IN 718 is translated in the compressive direction due to its strength differential. More information on the strength differential in IN 718 and other materials can be found in Gil [46] and Hirth and Cohen [46]. Figure 4.3 presents the average yield surface fit for all of the specimens tested. The difference in initial yield strengths and the strength differential are clearly visible.

Different types of subsequent yield surfaces were produced for each of the six prestrain directions included in paths I-III. Figures 4.4-4.6 shows subsequent yield surfaces for each of these prestrain directions for HN 188, SS 316, and IN 718, respectively.
The solid line in each figure represents the initial yield surface. From the graphs it is clear that the kinematic hardening component of the yield surfaces follow the prestrain direction. It can also be seen that the distortion is in the opposite direction of the prestrain. In addition, when compared to the initial surface each subsequent surface shows isotropic hardening. Closer inspection of the data shows that each yield surface has two distinct parts: (1) a well-defined circular front side, and (2) a poorly defined flattened backside. The front side of the surfaces encompasses the yield point within the range of ±90° from the direction of the most recent prestrain direction. The front side is also more-or-less centered with respect to the prestrain direction. Along the backside of the yield surface (approximately 90° to 270°) the curvature decreases. Significant experimental scatter in the yield points along the backside of the yield surface was typically observed. This scatter tended to increase as the specimen accumulated plastic strain as it proceeded through a given load path.

4.2 Effect of Load Path Cycling

Each load path was cycled for two or three cycles. The number of cycles was determined by when the yield surfaces stopped evolving. Each material behaved differently when the load paths were cycled, but in general, HN 188 and IN 718 required 2 cycles and the SS 316 required three cycles for cyclic hardening to stop. In fact, IN 718 stopped evolving by the end of the first cycle, but a second was conducted to confirm this. Figure 4.7 shows the cyclic evolution of the yield surfaces at selected points for HN 188, Figure 4.8 for SS 316, and Figure 4.9 for IN 718. From these figures it can be seen that the yield surfaces changed the most in the first cycle. Each consecutive cycle then
produced less hardening effects. SS 316 continued to harden through all three cycles. HN 188 showed considerable hardening between the first and second cycles, but little between the second and third. As a result, only Path II was carried out for three cycles for HY 188. Path II and Path III were stopped after just two cycles. The hardening of IN718 nearly stopped after just one cycle. The yield surfaces for cycles two virtually overlap those for cycle one. In general, the number of cycles needed for the yield surface evolution to stop was inversely related to the initial yield strength of the material.

4.3 Strain Path I

Strain path I was a purely axial strain path as shown in Figure 2.4 (a). Both HN 188 and IN 718 were subjected to 2 cycles of this path while SS 316 was cycled three times. In addition, time constraints made it necessary to conduct the yield surface determination for HN 188 and IN 718 at only points A, C, E, G, and I. (see Figure 2.4a). Figure 4.10 (a) shows the axial strain paths produced by Path I. Only one example for each load path is shown in Figure 4.10 because the strain paths were well controlled and the results for all materials look identical. All cycles are shown and overlap. Figure 4.11 provides the axial stress-axial strain response of each material for Path I. It clearly shows the relative amount of isotropic hardening each material exhibits. Both HY 188 and SS 316 show a continuous increase in the maximum stress while IN 718 quickly reaches a maximum value. Of primary concern in this section is the evolution of the parameters for the Voyiadjis model. The parameters are shown in Figure 4.12-4.14. The data is presented in the order of the yield surface determinations along the load path. From Figures 4.13 it can be seen that SS 316 has the most isotropic hardening because it has the largest change in the parameter \(a \). SS 316 is also the only material for which \(a \).
becomes negative. HN 188 has the second largest change in \(a \) and IN 718 the least. For each of the three materials \(a \) decreases the most during the first cycle and then begins to level off. This mirrors the observations made about the cyclic evolution of the materials in section 4.2.

The parameter \(d \) does not have a well-defined trend. Since this term measures the distortion in the yield surface it is greatly influenced by the scatter in the data for the backsides of the yield surfaces. The most well behaved test, from the standpoint of the distortion parameter, \(d \), was HY 188 Path 1 (Figure 4.12). It shows \(d \) as nearly constantly decreasing. This indicates an increase in distortion along the backside as the load path progressed. The other two materials show this through roughly the first cycle but then it becomes difficult to see a trend. Most tests included a few yield surfaces that had more distortion than those around them. These yield surfaces often showed considerable experimental scatter and outliers that were not used in the fit.

The axial backstress component, \(\alpha_{11} \), follows the same pattern as the axial stress. It starts at a value of zero for the initial yield surface for both HY 188 and SS 316. However, due to the strength differential shown by IN 719 \(\alpha_{11} \) has a value of \(-145\) MPa for the initial yield surface. After the initial yield surface, \(\alpha_{11} \) takes on the same sign as the maximum axial stress obtained during the prestrain prior to a given subsequent yield surface. In addition, \(\alpha_{11} \) increased in magnitude with each consecutive prestrain in the same direction. The torsional backstress component, \(\alpha_{12} \), is not shown for Path I because it does not evolve during the load path.

It is worth discussing here that IN 718 showed considerably more data scatter than the other materials. The additional scatter did affect the quality of the fits that were
obtained. For some of the IN 718 yield surfaces the front side contained scatter as well as the backside. Several attempts were made during testing to eliminate this problem. The yield surfaces for IN 718 were run at considerably lower stress rates than the other materials (see Table 2.4 for rates). This did reduce the scatter somewhat, but it is present in all IN 718 yield surfaces.

4.4 Strain Path II

Strain Path II is pure shear and is shown in Figure 2.4 (b). IN 718 was subjected to two cycles of this strain path while HN 188 and SS 316 were tested for three. Again, IN 718 was tested only at every other point shown in Figure 2.4 (b). Figure 4.10 (b) shows an example of the axial strain-shear strain response for this load path. The shear stress-shear strain response for each material is shown in Figure 4.15. Figures 4.16-4.18 show the evolution graphs for the Voyiadjis model parameters for HY 188, SS 316, and IN 718 respectively.

In general, the same observations for the evolution of the parameters a and d were found for Path II as Path I. Parameter a again decreased as the strain path proceeded with the same relative changes between materials as seen with Path I. The evolution of a for HN 188 showed more scatter than for Path I. The distortion parameter again provided no definite trend. It again decreased at the start of the load path and then became scattered in later cycles.

Path II involved the evolution of the torsional backstress component, α_{12}. It followed the shear stress as α_{11} followed the axial stress for Path I. The axial backstress component did not evolve during this load path, but for IN 718 it had a non-zero value for
the entire test. This is again a manifestation of the strength differential of IN 718. The axial backstress maintained a constant value of \(-145\) MPa.

4.5 Strain Path III

Unlike Path I and Path II, Path III subjects the test specimen to a nonproportional loading. Points B and F follow prestrains at 45 degrees and point D follows a prestrain at 315 degrees (see Figure 2.4(c)). The axial strain-shear strain response is shown in Figure 4.10 (c). Both the axial stress-shear strain and shear stress-shear strain graphs are shown for each material in Figure 4.19. Figures 4.20-4.24 show the evolution graphs for the Voyiadjis model parameters for HY 188, SS 316, and IN 718 respectively. Note that Figures 4.20 and 4.21 show repeats runs of Path III for HN 188 on separate specimens. In addition, Figure 4.22 shown the two runs of HN 188 overlaid on the same graph.

All four model parameters evolved during this load path. Both \(a\) and \(d\) showed the same response as with the other load paths. The model parameter \(a\) decreased while \(d\) exhibited scatter and showed no real trend. The scatter in \(d\) was particularly evident with the yield surfaces at points C and E. The distortion parameter grew large at these two points. The yield surfaces for Path III showed more experimental scatter than the other load paths. This was due to the fact that Path III imparted more plastic strain on the test specimen per cycle than the other load paths.

The backstress terms both evolved for this load path. Again they closely followed the movement of their stress counterparts. The axial backstress followed the axial stress and the torsional backstress followed the torsional stress, both at a lower magnitude but with the same sign.
Unfortunately the test of Path III on IN 718 was not completed for even one cycle. The test specimen buckled during the prestrain between point D and E. This is likely due to a difference in the heat treatment of the specimen used for the test. The specimen was aged separately from the test specimens used for the other IN 718 tests. The same procedure was followed, but at a different time. For an unknown reason the specimen had a yield strength, in the virgin state, that was higher than the other IN 718 specimens. It is suspected that this increase in initial yield strength also decreased the ductility of the specimen.

4.6 Additional Inconel 718 Strain Paths

For IN 718 three additional load paths were attempted. They were created as an attempt to gain additional data from specimens needed for other studies. See Figure 2.5 for schematics of these additional strain paths. Only Path IV was successfully carried out for an entire cycle. The other two strain paths caused the specimens to buckle during prestraining. The evolution of the Voyiadjis model parameters for Path IV is shown in Figure 4.25.

4.7 Summary of Experimental Results

The materials tests provide a wide range of microstructures, compositions, and material properties. However, the evolution of the yield surface of all three materials can be described by a combination of isotropic, kinematic, and distortional hardening. Therefore, it appears that the same type of hardening laws can be used to describe each alloy. This study also has shown that distortional hardening is difficult to accurately
capture experimentally. The scatter in the backsides of the yield surfaces was relatively small for the first cycle, but became significant in later cycles. This makes it difficult to discuss the evolution of distortional hardening parameter with any confidence. The remaining parameters, \(a, a_{11}, \) and \(a_{12} \), are all well behaved and there is high level of confidence in the results.

4.8 Parameter Evolution

Of the four yield surface parameters in the Voyiadjis model three have regular patterns to their evolution. These are \(a, a_{11}, \) and \(a_{12} \). As a result, it was attempted to find equations to represent this evolution.

This first parameter that was considered was \(a \). It is clear that \(a \) decreases as the material is subjected to more plastic deformation. Therefore, it is logical to assume that it has a relationship to the plastic work where plastic work is defined as,

\[
W_p = \sigma_{ij} e_{ij}^p.
\] \hspace{1cm} (4.1)

When \(a \) was plotted versus plastic work the relationship proved to be of an exponential nature. Because \(a \) is not always positive there was a problem fitting an exponential equation to the data. To eliminate the problem the data was shifted by adding the absolute value of the largest negative value of \(a \) to the data. Figures 4.26-4.28 show the results of exponential fits for each material. For each fit all of the experimental data from each load path was used. The equations of the lines and \(R^2 \) statistics for each material are as follows,

1. HN 188

\[
a = 1.185 \times e^{-0.040t_{10}^p} \hspace{1cm} R^2 = 0.421 \hspace{1cm} (4.2)
\]
2. SS 316

\[a = 1.021 e^{-0.0555 \psi_p} \quad R^2 = 0.465 \] \hfill (4.3)

3. IN 718

\[a = 0.7664 e^{-0.0155 \psi_p} \quad R^2 = 0.7340 \] \hfill (4.4)

The back stress parameters were more difficult to fit to evolution equations. This was because during each load path the sign of the backstress alternated several times. As a result it was necessary to use the sign function to define the evolution of the backstress. The sign of the stress at a given point was taken while the magnitude of the backstress was related to the equivalent total strain. This relationship was used because the sign of the backstress was always the same as the stress, but its magnitude increased as total strain increased. Figures 4.29 and 4.30 show the results of this procedure for HN 188 and the evolution equations obtained are,

\[\alpha_{11} = 113.18 + 3.19Z - 0.035Z^2 + 0.00084Z^3 + 3.22 \cdot 10^{-6} Z^4 \] \hfill (4.5)

\[\alpha_{12} = -67.53 + 3.33Y + 0.89Y^2 - 0.0011Y^3 - 7.86 \cdot 10^{-6} Y^4 \] \hfill (4.6)

where,

\[Z = \sigma_{11} \varepsilon_{11}^2 \]

\[Y = \sigma_{12} \varepsilon_{12}^2 \] \hfill (4.7)

The \(R^2 \) statistics for Equation 4.5 and 4.6 are 0.79 and 0.33 respectively.
Figure 4.1: Stress-Strain, (a), and Offset Strain-Axial Strain, (b), response for an individual yield probe.
Figure 4.2: Initial yield surface for SS 316 showing model fit and parameters.
Figure 4.3: Initial yields surfaces for HN 188, SS 316, IN 718. (Averaged over all specimens tested.)
Figure 4.4: Examples of HN 188 yield surfaces.
Figure 4.5: Examples of SS 316 yield surfaces.
Figure 4.6: Examples of IN 718 yield surfaces.
Figure 4.7: Cyclic evolution of HN 188 at selected points.
Figure 4.8: Cyclic evolution of SS 316 at selected points.
Figure 4.9: Cyclic evolution of IN 718 at selected points.
Figure 4.10: Strain paths produced by Path I, (a), Path II, (b), and Path III, (c).
Figure 4.11: Axial Stress-Axial Strain response for Path I.
Figure 4.12: Voyiadis model parameter evolution for HN 188, Path I, HYII 89.
Figure 4.13: Voyiadis model parameter evolution for SS 316, Path I, 610-01.
Figure 4.14: Voyiadjis model parameter evolution for IN 718, Path I, IN-16.
Figure 4.15: Shear Stress-Shear Strain response for Path II.
Figure 4.16: Voyiadis model parameter evolution for HN 188, Path II, HYII-86.
Figure 4.17: Voyiadjis model parameter evolution for SS 316, Path II, 610-04.
Figure 4.18: Voyiadjis model parameter evolution for IN 718, Path II, IN-23.
Figure 4.19: Axial Stress-Axial Stress and Shear Stress-Shear Strain response for Path III.
Figure 4.20: Voyiadgis model parameter evolution for HN 188, Path III, HYII-90.
Figure 4.21: Voyiadjis model parameter evolution for HN 188, Path III, HYII-82.
Figure 4.22: Voyiadjis model parameter evolution for HN 188, Path III for runs 1 and 2.
Figure 4.23: Voyiadjis model parameter evolution for SS 316, Path III, 610-05.
Figure 4.24: Voyiadjis model parameter evolution for IN 718, Path III, IN-27.
Figure 4.25: Voyiadjis model parameter evolution for IN 718, Path IV, IN-11.
Figure 4.26: Evolution of a versus plastic work for HN 188.
Figure 4.27: Evolution of a versus plastic work for SS 316.
Figure 4.28: Evolution of a versus plastic work for IN 718.
Figure 4.29: Evolution of α_{11} versus stress times total strain squared for HN 188
Figure 4.30: Evolution of α_{12} versus stress times total strain squared for HN 188
Chapter 5

Conclusions and Future Work

This chapter provides a summary of the major conclusions from both the experimental and analysis portions of this study as well as some suggestions for future work.

5.1 Conclusions

This study had two very distinct parts. First was the experimental portion and the other was the data analysis portion. Both has its own set of conclusions.

Experimental

- Plastic flow in Haynes 188, 316 Stainless Steel, and Inconel 718 complicated and highly alloy dependent, with each material exhibiting varying degrees of each of the three components of hardening; isotropic, kinematic, and distortional.
- All subsequent yield surfaces had two distinct parts; a well defined front side and a poorly defined backside. The front side was nearly circular in the axial-shear stress plane and the backside was flattened.
- Subsequent yield surfaces continued to evolve through multiple cycles of a given load path.
• Even thought the three alloys tested were vastly different it appears that
the same type of evolution equations could represent the multiaxial
hardening of each material.

Data Analysis

• The Voyiadjis model adequately describes subsequent yield surfaces with
only four parameters; one isotropic, one distortional, and two backstress
parameters.

• The isotropic parameter, \(a\), and kinematic parameters, \(a_{11}\) and \(a_{12}\), evolve
smoothly though the entire set of yield surface tests.

• The distortional hardening parameter, \(d\), is difficult to describe, partly
because of the large amount of scatter in the yield points on the backside
of the yield surface.

• Evolution of the isotropic hardening parameter and kinematic hardening
parameters can be reasonably well described by simple equations.

5.2 Future Work

The work presented here attempts to quantify the evolution of subsequent yield
surfaces. This process includes many experimental and mathematically difficulties.
However, now that the groundwork is set for determining the necessary parameters for
quantifying yield surfaces there are many areas that require more attention. Of primary
concern is improving the yield surface fits. Some suggestions are,

• Reducing the amount of experimental scatter in the backside of subsequent yield
surfaces. Two approaches would apply,

1. Study the effect of probing rate on backside scatter.
2. Study the effect of the offset strain target value on backside scatter. In either case the sensitivity studies would be carried out for subsequent yield surfaces instead of initial yield surfaces as done with the current study.

- Further investigate the increased yield surface scatter observed in IN 718 as instead of SS 16 and HY 188.

In addition to improving the experimental data further work is needed in developing evolution equations for the yield surface parameters. The ultimate goal is to develop evolution equations to be used in a viscoplasticity model to predict yield surfaces for a given plastic strain value.
References

Appendix A

Catalog of Yield Surface Data

Appendix A begins with a list of all specimens tested and the dimensions of each. The second section contains all yield surfaces collected along with the fit data for each.

A.1 Specimen Dimensions

<table>
<thead>
<tr>
<th>Material</th>
<th>Specimen Number</th>
<th>Test Path</th>
<th>Outside Diameter (in)</th>
<th>Inside Diameter (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haynes 188</td>
<td>HYII 82</td>
<td>III</td>
<td>1.0241</td>
<td>0.8669</td>
</tr>
<tr>
<td></td>
<td>HYII 85</td>
<td>I</td>
<td>1.0227</td>
<td>0.8660</td>
</tr>
<tr>
<td></td>
<td>HYII 86</td>
<td>II</td>
<td>1.0238</td>
<td>0.8656</td>
</tr>
<tr>
<td></td>
<td>HYII 89</td>
<td>I</td>
<td>1.0231</td>
<td>0.8663</td>
</tr>
<tr>
<td></td>
<td>HYII 90</td>
<td>III</td>
<td>1.0237</td>
<td>0.8653</td>
</tr>
<tr>
<td>316 Stainless</td>
<td>610-01</td>
<td>I</td>
<td>1.0257</td>
<td>0.8675</td>
</tr>
<tr>
<td></td>
<td>610-04</td>
<td>II</td>
<td>1.0252</td>
<td>0.8678</td>
</tr>
<tr>
<td></td>
<td>610-05</td>
<td>III</td>
<td>1.0257</td>
<td>0.8680</td>
</tr>
<tr>
<td>Inconel 718</td>
<td>11</td>
<td>IV</td>
<td>0.8225</td>
<td>0.6244</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>VI</td>
<td>0.8220</td>
<td>0.6238</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>I</td>
<td>0.8195</td>
<td>0.6245</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>II</td>
<td>0.8230</td>
<td>0.6244</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>III</td>
<td>0.8190</td>
<td>0.6236</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>V</td>
<td>0.8203</td>
<td>0.6242</td>
</tr>
</tbody>
</table>

Table A.1: Specimen dimensions and test matrix.
A.2 Yield Surface Data

All yield surface data are presented here. Figures A.1 through A.12 show HN 188 data, Figures A.13 through A.27 show SS 316 data, and Figures A.28 through A.32 show IN 718 data. The experimental data is represented by plus signs and diamonds (the first and second repeated surfaces), the fits are shown by a solid line, and the initial surface is shown by a dashed line. In addition, the model parameters a and d as well as the R^2 values are shown on each graph.
Figure A.1: Haynes 188, Path I, Points A–I, Cycle 1, HYII-89.
Figure A.2: Haynes 188, Path I, Point C-I, Cycle 2, HYII-89.
Figure A.3: Haynes 188, Path II, Points A-E, Cycle 1, HYII-86.
Figure A.4: Haynes 188, Path II, Points F-H, Cycle 1, HYII-86.
(The data for point I was bad therefore not fit was performed.)
Figure A.5: Haynes 188, Path II, Points B-E, Cycle 2, HYII-86.
Figure A.6: Haynes 188, Path II, Points F-I, Cycle 2, HYII-86.
Figure A.7: Haynes 188, Path II, Points B-E, Cycle 3, HYII-86.
Figure A.8: Haynes 188, Path II, Points F-I, Cycle 3, HYII-86.
Figure A.9: Haynes 188, Path III, Points A-F, Cycle 1, HYII-90.
Figure A.10: Haynes 188, Path III, Points B-F, Cycle 2, HYII-90.
Figure A.11: Haynes 188, Path III, Points A-F, Cycle I, HYII-82.
Figure A.12: Haynes 188, Path III, Points B-F, Cycle 2, HYII-82.
Figure A.13: 316 Stainless Steel, Path I, Points A-E, Cycle 1, 610-01.
Figure A.14: 316 Stainless Steel, Path I, Points F-I, Cycle 1, 610-01.
Figure A.15: 316 Stainless Steel, Path 1, Points B-E, Cycle 2, 610-01.
Figure A.16: 316 Stainless Steel, Path I, Points F-I, Cycle 2, 610-01.
Figure A.17: 316 Stainless Steel, Path I, Points B-E, Cycle 3, 610-01.
Figure A.18: 316 Stainless Steel, Path I, Points F-I, Cycle 3, 610-01.
Figure A.19: 316 Stainless Steel, Path II, Points A-E, Cycle 1, 610-04.
Figure A.20: 316 Stainless Steel, Path II, Points F-I, Cycle 1, 610-04.
Figure A.21: 316 Stainless Steel, Path II, Points B-E, Cycle 2, 610-04.
Figure A.22: 316 Stainless Steel, Path II, Points F-I, Cycle 2, 610-04.
Figure A.23: 316 Stainless Steel, Path II, Points B-E, Cycle 3, 610-04.
Figure A.24: 316 Stainless Steel, Path II, Points F-I, Cycle 3, 610-04.
Figure A.25: 316 Stainless Steel, Path III, Points A-F, Cycle 1, 610-05.
Figure A.26: 316 Stainless Steel, Path III, Points B-F, Cycle 2, 610-05.
Figure A.27: 316 Stainless Steel, Path III, Points B-F, Cycle 3, 610-05.
Figure A.28: Inconel 718, Path I, Points A-I, Cycle 1, IN-16.
Figure A.29: Inconel 718, Path I, Points C-I, Cycle 2, IN-16.
Figure A.30: Inconel 718, Path II, Points A-I, Cycle 1, IN-23.
Figure A.31: Inconel 718, Path II, Points A-I, Cycle 2, IN-23.
Figure A.32: Inconel 718, Path III, Points A-D, Cycle 1.
Figure A.33: Inconel 718, Path IV, Points A-E, Cycle 1.
Appendix B

Yield Surface Fit Data

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Point</th>
<th>σ (MPa)</th>
<th>ε (m/m)</th>
<th>a</th>
<th>d</th>
<th>α_{11}</th>
<th>α_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0.8077</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>314</td>
<td>0.015</td>
<td>0.6428</td>
<td>-6.30E-05</td>
<td>49</td>
<td>-8</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>-348</td>
<td>-0.0013</td>
<td>0.4289</td>
<td>-1.60E-04</td>
<td>-94</td>
<td>-10</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>-422</td>
<td>-0.015</td>
<td>0.2691</td>
<td>-4.10E-05</td>
<td>-120</td>
<td>-8</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>406</td>
<td>0.0013</td>
<td>0.2308</td>
<td>-8.90E-05</td>
<td>73</td>
<td>-14</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>424</td>
<td>0.015</td>
<td>0.202</td>
<td>-9.04E-05</td>
<td>101</td>
<td>-7</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>-445</td>
<td>-0.0013</td>
<td>0.1663</td>
<td>-1.00E-04</td>
<td>-131</td>
<td>-5</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>-489</td>
<td>-0.015</td>
<td>0.1238</td>
<td>-9.80E-05</td>
<td>-176</td>
<td>-11</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>458</td>
<td>0.0012</td>
<td>0.058</td>
<td>-3.21E-04</td>
<td>90</td>
<td>-10</td>
</tr>
</tbody>
</table>

Table B.1: Haynes 188, Path I, HYII-89.
<table>
<thead>
<tr>
<th>Cycle</th>
<th>Point</th>
<th>σ (MPa)</th>
<th>γ (m/m)</th>
<th>a</th>
<th>d</th>
<th>α_{11}</th>
<th>α_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1.044</td>
<td>0</td>
<td>-20</td>
<td>-5</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>169.8</td>
<td>5.41E-03</td>
<td>0.737</td>
<td>-1.30E-04</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>186</td>
<td>1.09E-02</td>
<td>0.664</td>
<td>-3.37E-04</td>
<td>-2</td>
<td>38</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>-175</td>
<td>5.42E-03</td>
<td>0.719</td>
<td>-5.85E-04</td>
<td>-5</td>
<td>-43</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>-185</td>
<td>-7.65E-04</td>
<td>0.628</td>
<td>-2.43E-04</td>
<td>-4</td>
<td>-49</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>-205</td>
<td>-5.45E-03</td>
<td>0.596</td>
<td>-4.36E-04</td>
<td>-10</td>
<td>-53</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>-217</td>
<td>-1.09E-02</td>
<td>0.477</td>
<td>-5.48E-04</td>
<td>-10</td>
<td>-45</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>190.6</td>
<td>-5.47E-03</td>
<td>0.429</td>
<td>-3.68E-04</td>
<td>-5</td>
<td>34</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>220.8</td>
<td>6.91E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>215</td>
<td>5.41E-03</td>
<td>0.351</td>
<td>-2.71E-04</td>
<td>-10</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>231</td>
<td>1.09E-02</td>
<td>0.354</td>
<td>-3.15E-04</td>
<td>-10</td>
<td>59</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>-206</td>
<td>5.42E-03</td>
<td>0.417</td>
<td>-1.51E-02</td>
<td>-10</td>
<td>-52</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>-218</td>
<td>-7.51E-04</td>
<td>0.464</td>
<td>-4.19E-04</td>
<td>-10</td>
<td>-55</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>-229</td>
<td>-5.24E-03</td>
<td>0.189</td>
<td>-3.25E-04</td>
<td>-10</td>
<td>-40</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>-258</td>
<td>-1.09E-02</td>
<td>0.555</td>
<td>-2.36E-04</td>
<td>-10</td>
<td>-99</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>210</td>
<td>-5.47E-03</td>
<td>0.225</td>
<td>-4.49E-04</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>246</td>
<td>-7.05E-04</td>
<td>0.255</td>
<td>-4.79E-04</td>
<td>-10</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>255</td>
<td>5.40E-03</td>
<td>0.223</td>
<td>-4.17E-04</td>
<td>-15</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>256</td>
<td>1.19E-02</td>
<td>0.1556</td>
<td>-4.80E-04</td>
<td>-10</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>-230</td>
<td>6.35E-03</td>
<td>0.1845</td>
<td>-3.40E-04</td>
<td>10</td>
<td>-34</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>-254</td>
<td>7.00E-06</td>
<td>0.4737</td>
<td>-4.80E-04</td>
<td>1</td>
<td>-110</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>-268</td>
<td>-4.50E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>-279</td>
<td>-9.96E-03</td>
<td>0.4391</td>
<td>-1.60E-03</td>
<td>0</td>
<td>-117</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>219</td>
<td>-4.55E-03</td>
<td>0.1385</td>
<td>-7.50E-04</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>267</td>
<td>1.88E-03</td>
<td>0.1318</td>
<td>-6.30E-04</td>
<td>-10</td>
<td>51</td>
</tr>
</tbody>
</table>

Table B.2: Haynes 188, Path II, HYII-86.
<table>
<thead>
<tr>
<th>Cycle</th>
<th>Point</th>
<th>σ (MPa)</th>
<th>ε (m/m)</th>
<th>τ (MPa)</th>
<th>γ (m/m)</th>
<th>a</th>
<th>d</th>
<th>α11</th>
<th>α12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.086</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 B</td>
<td>225</td>
<td>0.0106</td>
<td>105</td>
<td>0.0077</td>
<td>0.7768</td>
<td>-3.90E-04</td>
<td>25.5</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>-364</td>
<td>-0.0106</td>
<td>37</td>
<td>0.0077</td>
<td>0.4822</td>
<td>-3.63E-03</td>
<td>-78</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1 D</td>
<td>305</td>
<td>0.0106</td>
<td>-174</td>
<td>-0.0076</td>
<td>0.3152</td>
<td>-1.16E-04</td>
<td>57.5</td>
<td>-56</td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>-454</td>
<td>-0.0106</td>
<td>-32</td>
<td>-0.0076</td>
<td>0.3105</td>
<td>-3.60E-03</td>
<td>-123</td>
<td>-7</td>
<td></td>
</tr>
<tr>
<td>1 F</td>
<td>322</td>
<td>0.0008</td>
<td>202</td>
<td>0.0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 B</td>
<td>358</td>
<td>0.0106</td>
<td>196</td>
<td>0.0077</td>
<td>0.1219</td>
<td>-4.55E-04</td>
<td>56</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2 C</td>
<td>389</td>
<td>-0.0106</td>
<td>35</td>
<td>0.0077</td>
<td>0.1146</td>
<td>-6.27E-04</td>
<td>-170</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2 D</td>
<td>-572</td>
<td>-0.0106</td>
<td>-40</td>
<td>-0.0076</td>
<td>0.098</td>
<td>-4.87E-03</td>
<td>-210</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>2 E</td>
<td>320</td>
<td>0.0008</td>
<td>209</td>
<td>0.0006</td>
<td>0.081</td>
<td>-4.00E-04</td>
<td>86</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>2 F</td>
<td>384</td>
<td>0.0008</td>
<td>208</td>
<td>0.0007</td>
<td>0.053</td>
<td>-5.38E-04</td>
<td>97</td>
<td>77</td>
<td></td>
</tr>
</tbody>
</table>

Table B.3: Haynes 188, Path III (First Run), HYII-90.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Point</th>
<th>σ (MPa)</th>
<th>ε (m/m)</th>
<th>τ (MPa)</th>
<th>γ (m/m)</th>
<th>a</th>
<th>d</th>
<th>α11</th>
<th>α12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.962</td>
<td>0</td>
<td>-10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 B</td>
<td>227</td>
<td>0.0106</td>
<td>106</td>
<td>0.0077</td>
<td>0.7558</td>
<td>-1.25E-03</td>
<td>22</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1 C</td>
<td>-367</td>
<td>-0.0106</td>
<td>21</td>
<td>0.0077</td>
<td>0.4358</td>
<td>-1.06E-03</td>
<td>-72</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1 D</td>
<td>314</td>
<td>0.0106</td>
<td>-168</td>
<td>-0.0076</td>
<td>0.2746</td>
<td>-1.09E-03</td>
<td>62</td>
<td>-59</td>
<td></td>
</tr>
<tr>
<td>1 E</td>
<td>-446</td>
<td>-0.0106</td>
<td>-23</td>
<td>-0.0076</td>
<td>0.1785</td>
<td>-2.66E-03</td>
<td>-111</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>1 F</td>
<td>320</td>
<td>0.0008</td>
<td>209</td>
<td>0.0006</td>
<td>0.081</td>
<td>-4.00E-04</td>
<td>86</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>2 B</td>
<td>384</td>
<td>0.0006</td>
<td>208</td>
<td>0.0007</td>
<td>0.053</td>
<td>-5.38E-04</td>
<td>97</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>2 C</td>
<td>-546</td>
<td>-0.0106</td>
<td>33</td>
<td>0.0077</td>
<td>0.0283</td>
<td>-1.15E-03</td>
<td>-168</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2 D</td>
<td>416</td>
<td>0.0106</td>
<td>-246</td>
<td>-0.0076</td>
<td>-0.038</td>
<td>-9.86E-04</td>
<td>100</td>
<td>-110</td>
<td></td>
</tr>
<tr>
<td>2 E</td>
<td>-589</td>
<td>-0.0106</td>
<td>-45</td>
<td>-0.0076</td>
<td>0.081</td>
<td>-3.74E-03</td>
<td>-228</td>
<td>-60</td>
<td></td>
</tr>
<tr>
<td>2 F</td>
<td>383</td>
<td>0.0008</td>
<td>270</td>
<td>0.0006</td>
<td>-0.109</td>
<td>-1.37E-03</td>
<td>84</td>
<td>87</td>
<td></td>
</tr>
</tbody>
</table>

Table B.4: Haynes 188, Path III (Second Run), HYII-82.
<table>
<thead>
<tr>
<th>Cycle</th>
<th>Point</th>
<th>σ (MPa)</th>
<th>ε (m/m)</th>
<th>a</th>
<th>d</th>
<th>α_{11}</th>
<th>α_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0.8359</td>
<td>0</td>
<td>-4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>130</td>
<td>0.0075</td>
<td>0.7042</td>
<td>-3.49E-04</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>150</td>
<td>0.015</td>
<td>0.482</td>
<td>-9.60E-04</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>-175</td>
<td>0.0075</td>
<td>0.3321</td>
<td>-6.01E-04</td>
<td>-48</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>-195</td>
<td>-0.0075</td>
<td>0.2986</td>
<td>-1.03E-03</td>
<td>-58</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>-209</td>
<td>-0.0075</td>
<td>0.1957</td>
<td>-3.65E-03</td>
<td>-64</td>
<td>-4</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>-221</td>
<td>-0.015</td>
<td>0.083</td>
<td>-1.40E-03</td>
<td>-62</td>
<td>-8</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>206</td>
<td>-0.0075</td>
<td>0.032</td>
<td>-1.60E-03</td>
<td>40</td>
<td>-8</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>216</td>
<td>0.0006</td>
<td>0.0425</td>
<td>-1.66E-03</td>
<td>65</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>231</td>
<td>0.0075</td>
<td>0.094</td>
<td>-1.49E-03</td>
<td>71</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>244</td>
<td>0.015</td>
<td>0.093</td>
<td>-2.96E-03</td>
<td>90</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>-232</td>
<td>0.0075</td>
<td>0.004</td>
<td>-2.00E-03</td>
<td>-100</td>
<td>-4</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>-257</td>
<td>-0.0006</td>
<td>0.1101</td>
<td>-2.70E-03</td>
<td>-120</td>
<td>-11</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>-270</td>
<td>-0.0075</td>
<td>-0.0026</td>
<td>-1.69E-03</td>
<td>-118</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>-269</td>
<td>-0.015</td>
<td>-0.036</td>
<td>-1.40E-02</td>
<td>-120</td>
<td>-11</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>245</td>
<td>-0.0075</td>
<td>-0.114</td>
<td>-1.00E-03</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>269</td>
<td>0.0006</td>
<td>-0.1</td>
<td>-2.00E-03</td>
<td>95</td>
<td>-4</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>275</td>
<td>0.0075</td>
<td>-0.0905</td>
<td>-1.47E-03</td>
<td>100</td>
<td>-4</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>283</td>
<td>0.015</td>
<td>-0.122</td>
<td>-1.02E-02</td>
<td>102</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>-260</td>
<td>0.0075</td>
<td>-0.123</td>
<td>-8.50E-04</td>
<td>-83</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>-294</td>
<td>-0.0006</td>
<td>-0.141</td>
<td>-2.37E-03</td>
<td>-106</td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>-298</td>
<td>-0.0075</td>
<td>-0.131</td>
<td>-2.69E-03</td>
<td>-120</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>-308</td>
<td>-0.015</td>
<td>-0.15</td>
<td>-8.05E-03</td>
<td>-125</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>266</td>
<td>-0.0075</td>
<td>-0.185</td>
<td>-4.31E-03</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>296</td>
<td>0.0006</td>
<td>-0.13</td>
<td>-3.77E-03</td>
<td>114</td>
<td>0</td>
</tr>
</tbody>
</table>

Table B.5: 316 Stainless Steel, Path I, 610-01.
<table>
<thead>
<tr>
<th>Cycle</th>
<th>Point</th>
<th>(\tau) (MPa)</th>
<th>(\gamma) (m/m)</th>
<th>a</th>
<th>d</th>
<th>(\alpha_{11})</th>
<th>(\alpha_{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1.143</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>70</td>
<td>5.40E-03</td>
<td>0.971</td>
<td>-3.28E-03</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>75</td>
<td>1.08E-02</td>
<td>0.8603</td>
<td>-5.02E-03</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>-77</td>
<td>5.40E-03</td>
<td>0.6438</td>
<td>-5.35E-03</td>
<td>-7</td>
<td>-15</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>-87</td>
<td>-4.00E-03</td>
<td>0.5983</td>
<td>-6.82E-03</td>
<td>-1</td>
<td>-23</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>-96</td>
<td>-5.40E-03</td>
<td>0.4182</td>
<td>-6.24E-03</td>
<td>0</td>
<td>-26</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>-100</td>
<td>-1.08E-02</td>
<td>0.3328</td>
<td>-6.16E-03</td>
<td>-3</td>
<td>-28</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>98</td>
<td>-5.80E-03</td>
<td>0.188</td>
<td>-2.84E-03</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>110</td>
<td>5.40E-03</td>
<td>0.131</td>
<td>-2.76E-03</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>120</td>
<td>1.08E-02</td>
<td>0.1743</td>
<td>-2.59E-03</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>-117</td>
<td>5.40E-03</td>
<td>0.121</td>
<td>-2.45E-03</td>
<td>-2</td>
<td>-31</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>-124</td>
<td>-4.00E-03</td>
<td>0.844</td>
<td>-3.11E-03</td>
<td>0</td>
<td>-35</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>-126</td>
<td>-5.40E-03</td>
<td>0.0587</td>
<td>-2.71E-03</td>
<td>0</td>
<td>-45</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>-135</td>
<td>-1.08E-02</td>
<td>0.151</td>
<td>-3.31E-03</td>
<td>0</td>
<td>-46</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>129</td>
<td>-5.80E-03</td>
<td>0.0087</td>
<td>-2.75E-03</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>131</td>
<td>3.00E-04</td>
<td>0.0037</td>
<td>-2.11E-03</td>
<td>-1</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>138</td>
<td>5.40E-03</td>
<td>-0.046</td>
<td>-2.80E-03</td>
<td>2</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>150</td>
<td>1.08E-02</td>
<td>-0.042</td>
<td>-2.20E-03</td>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>-140</td>
<td>5.40E-03</td>
<td>-0.067</td>
<td>-1.19E-03</td>
<td>-10</td>
<td>-42</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>-150</td>
<td>-4.00E-03</td>
<td>-0.115</td>
<td>-2.06E-03</td>
<td>-10</td>
<td>-39</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>-157</td>
<td>-5.40E-03</td>
<td>-0.064</td>
<td>-2.90E-03</td>
<td>-7</td>
<td>-57</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>-161</td>
<td>-1.08E-02</td>
<td>-0.064</td>
<td>-2.73E-03</td>
<td>-7</td>
<td>-62</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>149</td>
<td>-5.80E-03</td>
<td>-0.163</td>
<td>-2.44E-03</td>
<td>-14</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>164</td>
<td>3.00E-04</td>
<td>-0.126</td>
<td>-2.69E-03</td>
<td>-12</td>
<td>53</td>
</tr>
</tbody>
</table>

Table B.6: 316 Stainless Steel, Path II, 610-04.
<table>
<thead>
<tr>
<th>Cycle</th>
<th>Point</th>
<th>σ (MPa)</th>
<th>ε (m/m)</th>
<th>τ (MPa)</th>
<th>γ (m/m)</th>
<th>a</th>
<th>d</th>
<th>α_{11}</th>
<th>α_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.9918</td>
<td>0</td>
<td>-5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>101</td>
<td>0.0106</td>
<td>46</td>
<td>0.0076</td>
<td>0.7812</td>
<td>-5.17E-04</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>-175</td>
<td>-0.0106</td>
<td>-9</td>
<td>0.0076</td>
<td>0.2841</td>
<td>-4.31E-02</td>
<td>-51</td>
<td>-5</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>175</td>
<td>0.0106</td>
<td>-85</td>
<td>-0.0076</td>
<td>-0.0027</td>
<td>-1.73E-04</td>
<td>35</td>
<td>-34</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>-271</td>
<td>-0.0106</td>
<td>-3</td>
<td>-0.0076</td>
<td>-0.0841</td>
<td>-2.53E-03</td>
<td>-104</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>212</td>
<td>0.0003</td>
<td>118</td>
<td>0.0002</td>
<td>-0.172</td>
<td>-1.00E-03</td>
<td>63</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>237</td>
<td>0.0106</td>
<td>121</td>
<td>0.0076</td>
<td>-0.174</td>
<td>-1.25E-03</td>
<td>77</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>-350</td>
<td>-0.0106</td>
<td>17</td>
<td>0.0076</td>
<td>-0.267</td>
<td>-2.32E-03</td>
<td>-113</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>270</td>
<td>0.0106</td>
<td>-147</td>
<td>-0.0076</td>
<td>-0.164</td>
<td>-5.39E-02</td>
<td>114</td>
<td>-81</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>-370</td>
<td>-0.0106</td>
<td>-11</td>
<td>-0.0076</td>
<td>-0.23</td>
<td>-7.01E-03</td>
<td>-168</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>262</td>
<td>0.0003</td>
<td>158</td>
<td>0.0002</td>
<td>-0.159</td>
<td>-1.10E-02</td>
<td>127</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>284</td>
<td>0.0106</td>
<td>146</td>
<td>0.0076</td>
<td>-0.12</td>
<td>-1.04E-03</td>
<td>114</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>-396</td>
<td>-0.0106</td>
<td>17</td>
<td>0.0076</td>
<td>-0.214</td>
<td>-9.08E-03</td>
<td>-160</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>290</td>
<td>0.0106</td>
<td>-160</td>
<td>-0.0076</td>
<td>-0.256</td>
<td>-2.20E-03</td>
<td>111</td>
<td>-73</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>-407</td>
<td>-0.0106</td>
<td>-25</td>
<td>-0.0076</td>
<td>-0.336</td>
<td>-1.83E-03</td>
<td>-120</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>264</td>
<td>0.0003</td>
<td>169</td>
<td>0.0002</td>
<td>-0.246</td>
<td>-1.41E-03</td>
<td>104</td>
<td>89</td>
</tr>
</tbody>
</table>

Table B.7: 316 Stainless Steel, Path III, 610-05.
<table>
<thead>
<tr>
<th>Cycle</th>
<th>Point</th>
<th>σ (MPa)</th>
<th>ϵ (m/m)</th>
<th>a</th>
<th>d</th>
<th>α_{11}</th>
<th>α_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1.12</td>
<td>0</td>
<td>-146</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>796</td>
<td>0.015</td>
<td>0.709</td>
<td>-1.33E-04</td>
<td>221</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>-795</td>
<td>-0.0002</td>
<td>0.666</td>
<td>-6.60E-03</td>
<td>-255</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>-871</td>
<td>-0.015</td>
<td>0.533</td>
<td>-7.00E-03</td>
<td>-380</td>
<td>-25</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>760</td>
<td>0.002</td>
<td>0.269</td>
<td>-1.28E-03</td>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>833</td>
<td>0.015</td>
<td>0.3368</td>
<td>-1.56E-03</td>
<td>144</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>-800</td>
<td>-0.0002</td>
<td>0.152</td>
<td>-2.70E-01</td>
<td>-350</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>-880</td>
<td>-0.015</td>
<td>0.176</td>
<td>-1.56E-01</td>
<td>-376</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>756</td>
<td>0.002</td>
<td>0.25</td>
<td>-3.12E-04</td>
<td>135</td>
<td>0</td>
</tr>
</tbody>
</table>

Table B.8: Inconel 718, Path I, IN-16.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Point</th>
<th>τ (MPa)</th>
<th>γ (m/m)</th>
<th>a</th>
<th>d</th>
<th>α_{11}</th>
<th>α_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0.8914</td>
<td>0</td>
<td>-145</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>535</td>
<td>1.06E-02</td>
<td>0.4399</td>
<td>-1.59E-03</td>
<td>-145</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>-470</td>
<td>-1.70E-03</td>
<td>0.427</td>
<td>-1.60E-03</td>
<td>-145</td>
<td>160</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>-529</td>
<td>-1.06E-02</td>
<td>0.369</td>
<td>-5.55E-03</td>
<td>-145</td>
<td>110</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>474</td>
<td>1.70E-03</td>
<td>0.369</td>
<td>-5.55E-03</td>
<td>-145</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>535</td>
<td>1.06E-02</td>
<td>0.2494</td>
<td>-3.60E-03</td>
<td>-145</td>
<td>140</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>-455</td>
<td>-1.70E-03</td>
<td>0.303</td>
<td>-1.59E-03</td>
<td>-145</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>-527</td>
<td>-1.06E-02</td>
<td>0.249</td>
<td>-2.30E-03</td>
<td>-145</td>
<td>-110</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>466</td>
<td>1.70E-03</td>
<td>0.302</td>
<td>-3.08E-03</td>
<td>-145</td>
<td>80</td>
</tr>
</tbody>
</table>

Table B.9: Inconel 718, Path II, IN-23.
<table>
<thead>
<tr>
<th>Cycle</th>
<th>Point</th>
<th>σ (MPa)</th>
<th>ε (m/m)</th>
<th>τ (MPa)</th>
<th>γ (m/m)</th>
<th>a</th>
<th>d</th>
<th>α_{11}</th>
<th>α_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4032</td>
<td>0</td>
<td>-160</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>760</td>
<td>0.0106</td>
<td>385</td>
<td>0.0077</td>
<td>0.138</td>
<td>-2.22E-03</td>
<td>144</td>
<td>85</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>-1050</td>
<td>-0.0106</td>
<td>127</td>
<td>0.0077</td>
<td>0.2326</td>
<td>-0.99</td>
<td>-418</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>736</td>
<td>0.0106</td>
<td>-470</td>
<td>-0.0077</td>
<td>0.0959</td>
<td>-1.45E-03</td>
<td>-165</td>
<td>-180</td>
</tr>
</tbody>
</table>

Table B.10: Inconel 718, Path III, IN-27.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Point</th>
<th>σ (MPa)</th>
<th>ε (m/m)</th>
<th>τ (MPa)</th>
<th>γ (m/m)</th>
<th>a</th>
<th>d</th>
<th>α_{11}</th>
<th>α_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.999</td>
<td>0</td>
<td>-160</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>740</td>
<td>0.02</td>
<td>245</td>
<td>0.015</td>
<td>0.1732</td>
<td>-4.19E-03</td>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>-585</td>
<td>0.0058</td>
<td>-400</td>
<td>0</td>
<td>0.1239</td>
<td>-2.07E-03</td>
<td>-160</td>
<td>-129</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>-857</td>
<td>-0.002</td>
<td>-128</td>
<td>0</td>
<td>0.186</td>
<td>-8.49E-03</td>
<td>-260</td>
<td>10</td>
</tr>
</tbody>
</table>

Table B.11: Inconel 718, Path IV, IN-11.
Behavior of Three Metallic Alloys Under Combined Axial-Shear Stress at 650 °C

Three materials, Inconel 718, Haynes 188, and 316 stainless steel, were tested under an axial-torsional stress state at 650 °C. The objective of this study was to quantify the evolution of the material while in the viscoplastic domain. Initial and subsequent yield surfaces were experimentally determined to quantify hardening. Subsequent yield surfaces (yield surfaces taken after a preload) had a well-defined front side, in the prestrain direction, but a poorly defined back side, opposite the prestrain direction. Subsequent yield surfaces exhibited isotropic hardening by expansion of the yield surface, kinematic hardening by translation of the yield surface, and distortional hardening by flattening of the yield surface in the direction opposite to the last prestrain. An existing yield function capable of representing isotropic, kinematic, and distortional hardening was used to fit each yield surface. Four variables are used to describe each surface. These variables evolve as the material state changes and have been regressed to the yield surface data.