An Overview of Advanced Data Acquisition System (ADAS)

Carlos T. Mata, Ph.D., Dynacs Inc.

NASA, Kennedy Space Center

September 11, 2001
Aerospace industry requires highly reliable data acquisition systems. Traditional systems employ end-to-end hardware and software redundancy, typically, redundancy adds weight, complexity, and cost, a single component failure may render the redundant path useless.
What is ADAS?

- ADAS is an intelligent, self-calibrating, self-healing, highly reliable, and cost effective multi-channel data acquisition system
- Reliably maintains data integrity at a reduced weight, size, and cost
- The architecture provides a "spare part toolbox" approach for identified critical components
- Number of spare components in the toolbox is based on their proneness to failure
R & D Status

- Development stage
 - Architecture was defined
 - First prototype built
 - System components, component interfacing, and user interface tested
 - Preliminary software developed
 - System demonstration

- Technical considerations
 - Hardware limitations
 - Reliability optimization is based on application specifics
 - Reliability/flexibility vs. complexity trade-offs
Reliability/Cost Examples (1)

One channel, non-redundant

IN → Signal Cond. 0.98 → OUT

Reliability = 0.99 * 0.98 * 0.96 = 0.9314
Cost = 1X, failure rate = 6.86%

One channel, traditional end-to-end redundant

IN → Signal Cond. 0.98 → Signal Cond. 0.98 → OUT

Reliability = (1 - (1 - 0.9314)^2) = 0.9953
Cost = 2X, failure rate = 0.47%
Improvement factor = 14.57

*Component reliability factors for demonstration purposes only
Reliability/Cost Examples (2)

Novel ADAS approach (single channel)

Reliability = 0.9979
Cost = 2X, failure rate = 0.21%
Improvement factor = 32.68

Reliability = 0.9994
Cost = 2X+, failure rate = 0.06%
Improvement factor = 121.66
Reliability/Cost Examples (3)

Eight-channel Traditional end-to-end redundancy

Eight-channel ADAS redundancy
What's New?

- Redundancy at the component level minimizes component count (toolbox approach)
- Enhanced flexibility
- Autonomously re-configurable
- Higher reliability at a reduced weight, size, and cost
- Smart power management will minimize unnecessary power consumption
What's New?

- Redundancy at the component level minimizes component count (toolbox approach)
- Enhanced flexibility
- Autonomously re-configurable
- Higher reliability at a reduced weight, size, and cost
- Smart power management will minimize unnecessary power consumption
Technical Advantages

- Fault tolerant system
 - Fast recovery
 - Minimal data interruptions
- System health monitoring and management
- Detection of system degradation (proactive prevention of failures)
- Optimized power consumption
■ Long duration flight instrumentation
■ Automated remote system operation
■ Higher reliability at a reduced weight, size, and cost
■ Lower maintenance cost
■ Critical data availability
NASA Plans/Options

- Internal development
- Partnering for commercial development
- Patent/licensing of technology
Remaining R&D

- Embedded-distributed redundant intelligence
- Digital and control lines redundancy
- Assessment of reliability vs. complexity
- Smart power management
Applications

- Industrial and manufacturing process monitoring
- Rocket launch facilities and test stands
- Crash test facilities
- Aerospace vehicles
- Medical equipment
- Remote systems
- ???
Product Benefits

- Maintains signal integrity (improved reliability)
- Reduces weight, size, and cost
- Self-calibration assures accuracy even in extreme environmental conditions
- Smart power management optimizes energy consumption
Commercial Advantages

- Dictates new trends for highly reliable electronic circuits
- Supersedes the traditional end-to-end hardware and software redundancy approach
- Higher reliability at a reduced cost
- Lower maintenance expense
Intellectual Property

- NASA case number KSC-12301
- Patent pending
- Technology available for licensing
Short-Term

For further information contact...