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Our progress over the last year has been along several dimensions.

a. Exploration and understanding of Earth Observatory System (EOS) mission
with available data from NASA

b. Comprehensive review of state of the art techniques and uncovering of

limitations to be investigated (e.g. computational, algorithmic ...)

c. Preliminary development of resolution enhancement algorithms

1) Background

s Radiometry

With the advent of well-collaborated satellite microwave radiometers, it is now possible to

obtain long time series of geophysical parameters that are important for studying the global

hydrologic cycle and earth radiation budget.

Over the world's ocean, these radiometers simultaneously measure profiles of air temperature

and the three phases of atmospheric water (vapor, liquid, and ice). In addition, surface

parameters such as the near surface wind speed, the sea surface temperature, and the sea ice

type and concentration can be retrieved.

The special sensor microwaves imager SSMfl has wide application in atmospheric remote

sensing over the ocean and provide essential inputs to numerical weather-prediction models.
SSM/I data has also been used for land and ice studies, including snow cover classification

measurements of soil and plant moisture contents, atmospheric moisture over land, land

surface temperature and mapping polar ice.

The brightness temperature observed by SSM/I is function of the effective brightness

temperature of the earth's surface and the emission scattering and attenuation of the

atmosphere. Advanced Microwave Scanning Radiometer (AMSR) is a new instrument that
will measure the earth radiation over the spectral range from 7 to 90 GHz. Over the world's

ocean, it will be possible to retrieve the four important geographical parameters SST, wind

speed, vertically integrated water vapor, vertically integrated cloud liquid water L.

Resolution Enhancement

Due to the diffraction of differences in antenna pointing directions, microwave radiometer

antenna gain patterns of different frequency may differ in size or location on the earth surface

while physical inversion algorithms may assume that observations describe consistent

locations. Therefore, the mismatch in the resolution becomes a critical problem when

observations at many different frequencies must be combined to retrieve single parameters,

which requires that the area on the surface imaged by different channels be the same.

The obvious solution to this problem is to average the high-resolution measurements to

match the lower resolution data. However, this solution is not recommended due to the non-

linearity in the physical model that relates the measured brightness temperature to the

geophysical parameters. A much more desirable solution, is to enhance the low- resolution



datato matchthe higher resolutiondata.Thetheoryis basedon the fact thatthe densityof
themeasurementsmadeby the spaceborneradiometeris higher than the resolution of the

instrument, which means that it is possible to take advantage of over sampling to reconstruct

a higher resolution image from low-resolution data.

2) Survey of Image Restoration Techniques

The purpose of image restoration is usually formulated as the estimation of an improved

image S of the original image S when a noisy blurred version Z given by:

Z=HS+V (1)

is observed, where the blurring matrix H is known and some statistical knowledge about V

and S is assumed to be available. Specifically, we will assume that the image model

S=AS+ W is feasible. The direct inversion of the matrix H does not lead to useful restoration

because of the ill conditionedness of H.

Procedures to stabilize the inversion of an ill conditioned matrix are called regularization

methods and make nearly always use of a priori knowledge about the original image and the

noise.

The main objective in solving ill posed problems is the construction of physically acceptable

and meaningful approximation of the true solution that is sufficiently stable from a

computational point of view. If we are to obtain a useful approximate solution to (1), we

must modify the problem in such a way that the solution becomes less sensitive to noise in

the observed image (well posed problem). At the same time the solution of the modified

problem must be close to the solution of the original problem. The process of achieving a

compromise between these conflicting goals is referred to as regularization and is typically

controlled by one or more regularization parameter. Nearly, all concepts used in

regularization are based on incorporating a priori knowledge about either the true solution or

the noise into the algorithm which solves the image restoration problem

2-1) Tikhonov-Miller Regularization:

The idea is to define a criterion to select an approximate solution from a set of feasible

solutions. On the basis of the observed model (1) it is plausible that the class of feasible

solutions is described by :

.<s): IIz- HsII<--Ilvll: (2)

The bound _ is related to uncertainty or noise in the observed image Z and can usually be

estimated from smooth image region. Tikhonov defined the regularized solution as the' one

which minimizes the stabilizing functional _(S) in the set of feasible solutions. Although a

wide class of different stabilizing functionals is available, including for example the max



power and max entropymeasures,usually a stabilizingfunctional of the following form
chosento facilitatethemathematicalanalysisof theproblem

n(s) =Ilcs[I o)

Here C is a real valued matrix of size MxN known as the regularizing operator. The

computation of the regularized solution now reduces to the minimization of (2) subject to (3).

Using the method of undetermined Lagrange multiplier we need to minimize the objective
function:

• <s)=llz-HslI'+ llcsIl' (4)

with respect to S. The regularization parameter a is chosen so that (2) is satisfied with

equality. [1] proposed a empirical criterion based on CRESO (composite residual and

smoothing operator) for finding the optimum value of a °p' which gives the solution S closest

to its initial value. According to this criterion a °p' is the value a that gives the first local

maximum of the function:

d 2

C(a) = [[S[[2 + 2a _-a ]]SII (5)

Among the solutions satisfying a reasonable choice is the one which minimizes _(S)called

the Yikhonov Miller regularized solution. This minimization is straight forward and leads to

the following solution:

(H'H + a'C'C)-'S = H'Z (6)

provided that (H' H + a'C'C) -_ is invertible.

lterative Solutions

Iterative solutions offer the advantage that no matrix inverses need to be implemented and

that additional deterministic constraints can be incorporated into the solution algorithms.

To derive the iterative Tikhonov Miller regularized restoration algorithm, many methods

were proposed [2].

• Steepest Descent Method:

The steepest descent method is used to minimize the objective function _(S) by using the

following iteration:

S TM = S k + fir k

= s - Is,

= S k - fl((H'H + a'C'C)S k - HZ)



= (I - aflC'C)S k + flH'(Z - HS k ) .......................................................... (7)

This iteration reduces the to Van Cittert iteration if a =0 which is the case of no

regularization.

S k÷' = S t + fill' (Z - HS k) (8)

The term (I- aflC'C) in O behaves like a low pass filter suppressing the noise in the

iterates. The characteristics of this term are obviously related to the properties of the original

image because the regularizing operator C is closely related to the image model A.

Analysis of Convergence Speed

The convergence speed of an iterative algorithm towards its limiting solution can be

quantified by its convergence rate. An iterative scheme converges geometrically with order R

if the error IISk - S _° for k sufficiently large can be given as

(9)

A large value of K corresponds to a slow convergence while a small value indicates fast

convergence. Further, the larger the convergence order is, the faster the algorithm converges.

For R=I, the process is said to converge linearly in which case (9) is conveniently written as:

sk _ s °° < Kk[Is° _ s® R (10)

and 0 _<K < 1. For K=0, the convergence is said to be superlinear or in other words the

iterative process terminates within a finite number of iterations. While for K=I, the

convergence is sublinear.
Iterative schemes which minimizes a quadratic objective function _(S) by the method of

steepest descent can all be regarded as members of the following generic iterations

S _÷'= St + p((h - BSk) (11)

for nonsingular matrix B, we have

established:

S k+l __ s _ = (I - pB)S k + ph - S _

= (I - flB)S _ + fiBS_ - S_

= (I-flB)(S k -S _)

S _ = B-1H. The following relation can then be

(12)



s, _s lli-  BIIs*- R (13)

Here 111- flBl[ denotes the norm of the matrix which is given by its largest eigen value. Thus,

if we let Prom be the eigen value of B with smallest norm then (13) becomes •

s' -s <[1--Ppm,.[S* R (14)

Hence, iterative schemes of the type (12) converges linearly with a convergence rate of

[1-tiP,n,.[. For the iteration (12), we have (I-fiB)= I-fl(H'H+aC'C) and p,n,, is the

smallest eigen value of (H'H + a,C'C).

Since the smallest eigen value is nearly always close to zero in an image restoration

application, the iteration (12) converges slowly.

In general, the convergence rate depends on the regularization parameter a because Pm_, is a

function of a. If a is increased, i.e. if the restoration problem is regularized more strongly,

Pm_, attains a larger value by which the speed of convergence increases as well. Also, fl was

assumed to have fixed value satisfying the condition:

2

0 < fl < Pma,,'l (15)

where Pm_, is the largest eigenvalue of the matrix (H'H + aC'C).

But since fl controls the convergence rate as follows from 0, it is desirable to optimize its

value at each iteration step.

• Conjugate Gradient Method

Motivated by the desire to achieve more rapid convergence, the method of conjugate

gradient has been successfully used in optimization theory. Conjugate direction methods

which were originally introduced for purely quadratic problems, can be viewed as special

orthogonal expansion of the solution of the minimization problem. This expansion is

generated by making use of information from previous iteration steps. One advantage of this

method is its convergence in a finite number of iterations steps when exact arithmetic is used

(no rounding errors) the convergence is superlinear. When nonexact arithmetic is used or the

problem is non quadratic, the method will no longer converge in a finite number of iterations

because the conjugacy condition will no longer holds.

It has been experimentally shown, however, that the conjugate gradient method converges

always faster than the method of steepest descent, while the computational complexity is not

significantly increased. The basic form of the conjugate gradient algorithm which thus

represents an alternative to the iteration (12) is given by:

6



r _ = -1Vsq)(S ) Is= -(H'H+a,C'C)S k + H'Z
2

Pk = rk + YkP_

Sk+1 = S_ + PkPk (16)

In this scheme, S k is modified in the direction of the vector pk instead of the steepest

descent direction r k . The parameter 7 k controls the conjugacy of the subsequent direction

pk. For yk __+0, the iterations reduce to (7). It can be shown that the values 7k and flk are

given by:

llr ll (17)

Y' IIr,_,II2

flk = r;Pk (18)
IHP,2+ 2

The conjugate gradient method converges linearly with a convergence rate given by:

(19)

Although (19) is rather upper bound to the convergence rate of the conjugate gradients

iterations (for example, it does not show that the method of conjugate gradient converges

within a finite number of iterations, it is still has a higher convergence speed than the method

of steepest descent. In addition to this, experimental results exhibit a convergence speed

much larger than indicated by the bound (15).

Observe that the difference in computational complexity between the method of steepest

descent and the conjugate gradients algorithm merely consists of the computations of pk and

yk which is insignificant compared with the other computations required within a single

iteration step.

• Preconditioned Conjugate Gradient Methods

The convergence rate of iterative methods depends on the spectrum of matrix H. Generally

speaking, the method converges faster if H has smaller condition number or clustered eigen

values. In order to accelerate the convergence rate we may consider the solution of a new

equivalent system of equations:

P-_ Z = p-1HS (20)



insteadof the original one where P can be easily interpreted and P-_H has better spectral

property than H. the matrix P is usually called the preconditioner of the matrix H. To

impalement preconditioning, the matrix vector product P-Iv for a certain vector v is

performed at each iteration. Various preconditioning techniques have been introduced in

solving elliptic partial differential equations and Toeplitz systems of equations.

Preconditioned CGN method was introduced in [4], where the conjugate gradient methods is

applied to the normal equations H'Z = H'HS when the matrix H is not symmetric positive

definite since H'H is symmetric.

Consider the model:

Y=As (21)

Where A is a block Toeplitz matrix (symmetric positive semi definite). A good

preconditioner for A is a matrix P that approximates A well in the sense that the spectrum of

the preconditioned matrix P-_A

is clustered around 1 or has small condition number and that can be inverted efficiently.

One preconditioning technique has been generalized from point to block Toeplitz matrices by

Ku and Kuo [3]. They proposed to use a block circulant matrix as a preconditioner for the

block Toeplitz matrix since the block circulant matrix can be easily inverted via 2-D FFT.

Let A be a block Toeplitz matrix containing NxN blocks with MxM elements per block:

,4o A_t
A = At

LAu_, AN-2

A2_,v AI-N

ao

(22)

Where An with InI < N-1 are MxM Toeplitz matrices with elements

l<i,j<M

We use the following MNxMN block circulant matrix as its preconditioner

[A, ] = a,_j,n,

Where

P" = +=-,,/-'N l<n<N-n

(23)



andwhere fin is circulant matrix with ao,_,a_l, +au__.,,a_2_ , +a_¢_z.., .... ,a__,_, +a__M._ +a_,_ as the

first row.

From the construction, we see that P is an approximation of A and the matrix vector product

P-_v for any v can be computed via 2-D FFT.
The PCGN method is summarized as follows:

Arbitrary x o, ro = y - Ax o, Po = O, ,8o = 0

Iteration k= 1.2 .....

zk_ l = M-I A'rk_l

Pk = Zk-I + flkPk-1

(zk_ l, A'rk_ I)
O(k =

IIAp II=
X k =Xk_ I +t_kp k

rk = rk__ - a kAPk

(z k , A'r k )

ctk (zk_l , A' r__I)
(24)

where M is the preconditioner. M = P'P.

The convergence rate of the preconditioned iterative method depends on the eigen value

distribution of the preconditioned matrix (P'P)-_.

The preconditioned iterative methods converge faster if (P'P)-_A'A has clustered eigen

values and/or small condition number.

Kuo [3] studied the eigenvalues distribution of the matrices A'A and (P'P)-_A'A with

different values of the image size where they showed that the eigen values of the

preconditioned matrices have much better clustering property that the original ones.

2-2) Algebraic reconstruction techniques ART

ART is a reconstruction technique that was recognized to be identical to the algorithms

of solving the system of liner equations Z=HS where Z, H, S are as defined in (1).

ART are based on an iterative process, which starts from an initial approximation SO to the

image vector. In an iterative step, the current iterates k is refined (or corrected) to a new

iterate S _+_ by taking into account only a single measurement, say the ith measurement and

changing only the image values of the pixels which intersect this measurement. The
N

discrepancy between the measurement Z, and the pseudo projection data __.h,jS_ obtained
J=l

9



from the current imageSk is redistributedamongthe pixels along the ith measurement
proportionallyto theirweightsh,j in the whole measurement.

In this way, the pixel values covered by the ith measurement are corrected to conform with

the ith measurement without changing the rest of the image. Denoting h _ = (h,j)_=_ as a vector

in R" . The following algorithm describes this process:

S O e R N

Typical step

S TM = S* + Z,- < h i , S k > h i (25)

IIh' z

Where: <u,v>=_ujvj and u2=<u,u>.
J=l

and the measurements are chosen cyclically: i = ik = k(mod M) + 1.

Censor [5] investigate the convergence behavior of ART when applied to ill posed and

inconsistent systems of equations and proposed to use relaxation parameters which are a
oo

sequence (2 k),=0 of real numbers usually confined to an interval

c_ <2, <2-E 2, _,,_2 >0

Which appear in the typical step of ART as:

S k÷t = S _ + 2, Zi- < hi, Sk > h i (26)

hi 2

The relaxation parameters allow are to overdo or undo the orthogonal projection prescribed

by ART.

2-3) Block ART

Block ART were first introduced by Eggermont et-al [] to solve the system of ill posed linear

equations Z=HS, where the MxN matrix H may be partitioned in two ways as:

- h', ] - H,

h'2 / H2

H = =

_h 'LgJ _H _,

here h, is an N dimensional vector and its transpose h I constitutes the ith row of H. each

matrix H, is an LxN block of rows of H and assuming there are K blocks of width L

obviously means that M=LK.

10



The M dimensional vector Z is partitioned as

Z' (Z_,Z2,. .... ,Zt. x) (z'_, ' '= = Z2_..._ ZK)

where z, is a block of length L of elements of Z.

The block ART is the following group of iterative variations
Initialization

S O E R x is arbitrary

Typical step:

S k÷l = S* + H_k(Zi - H,S k) (27)

where _k is an LxL matrix called relaxation matrix, H," is the Moore-Penrose inverse of

H, and the blocks with respect to which the iteration is performed are chosen in a cyclic

manner: i = ik = k(mod M) + 1, k=-l,2,...

The case _*= 2,1 with I standing for an LxL identity matrix coincides with ART

algorithm when L = 1.

In addition, Long et-al, showed that block AART is equivalent to a least squares estimate

in the limit of infinite iterations based on the minimization problem:

Minimize [IS 2 subject to Z=HS.

Which is equivalent to Tikhonov regularized solution.

2-4) Entropy Regularization (MART)

The use of entropy is rigorously founded in several areas. In image reconstruction

from projections several authors advocate the maximum entropy approach. From the

standpoint of information theory, this approach is conceptually attractive. It yields the

image with the lowest information content consistent with the available data.

Thus with this approach one avoids introducing extraneous information or artificial

structure. The problem of reconstructing a source from a finite number of views is known

to be indeterminate. A maximum entropy method thus seems attractive for this problem

especially when the available projection data are incomplete or degraded by noise errors.

By Frieden's model [6], the most likely object scene implied by given image data is

found to obey a principle of maximum entropy.

Entropy optimization refers to the problem of maximizing the functional
r/

f(S) = -y' S_ in Sj over the constraint Z=HS.
,1=t

11



A typicalproblemwouldbe
n

Maximize: -_-'Sj In Sj subject to Z=HS
j=l

and S >_0

(28)

A variety of iterative algorithms are available to solve 0 but no practical direct form

solutions are known.

Lent [5] suggested the following algorithm and proved that it actually converges under
some reasonable conditions to the solution of the maximum entropy problem.

k+, S k Z, .)_h,, (28)
Sj = ( h,< ,S k >

where 2 k is a relaxation parameter.

Equations are taken cyclically, i.e. i = ik = k(mod M) + 1.

2-5) Variational Methods

In the previous sections we showed that the classic setting for solving the image

reconstruction inverse problem is the least squares minimization. However, regularization

is needed when solving the ill posed problems to neutralize some of the ill conditioning

but it also removes sharp edges and similar distinguishable features. Hence, the choice of

the regularizing function is an issue.

In variational approach, an image is defined as a real function S: S : ff_ _ R, where ff_ is

an open bounded subset of R 2 .

The formulation of the image reconstruction using variational methods is based on

solving the optimization problem

Minimize _(S) subject to Z=HS

i.e.

(29)

The critical issue is the choice of the variational integral. One of the widely used

variational integrals based on geometrical argument is the total variation proposed by

Ruden et-al and defined as follows

vv(s)= j'lvs o (30)
fl

the total variation method basically consists of finding an estimate S for the original

image S with the smallest total variation among all the images satisfying the noise

constraint IlZ-HSI[ =0 -2 where 0-2 is assumed known. Roughly TV permits image

intensity to have sharp jumps, but it limits spurious oscillations. Regularized least

squares, on the other hand, tends to smooth out sharp jumps because it controls the

second derivative of the image intensity.

12



An iterativesolutionfor theoptimizationproblemcanbeobtainedusinggradientdescent
methodasfollows:

S _*' =S _ +,_[V(VS_)-,_(Z-HS_)] (31)

Ben Hamza and Krim [7] introduced an entropic variational approach based on the

concept of negentropy variational integral which is defined as:

H(S)= fH(IVSl)do =flVSlloglVStdo 
fl fa

Then the minimization problem can be written as:

= vsllog(IvsI+

and the iterative solution can be written as:

l+logVSktS k÷t = S k + a V( VSkl

(32)

(33)

(34)

3) Spatial Resolution Enhancement of SSM/I Data

The special sensor microwave imager SSM/I, a satellite passive microwave

radiometer observes a large portion of the earth's surface and measures the top

atmosphere brightness temperature at 19.35,37,85 GHz in both the horizontal and the

vertical polarizations and at 22.235 GHz channel in the vertical polarization only.

The instrument flies at an altitude of 833km and scans the earth in a conical scan 1400km

wide. The SSM/I samples data in seven channels covering four microwave frequencies -

table (1). The lower frequencies of the instrument (19,22,37) are sampled every 25km

along the scan and every 25kin along the track, while the other high frequency is sampled

12.5km.

Due to the physical limitations on the SSM/I antenna size the data have relatively poor

spatial resolution. The spatial resolution of a passive microwave sensor depends both on

the antenna size and frequency. Because the SSM/I instrument uses on parabolic reflector

for all four frequencies, the spatial resolution improves with increasing frequency.

To retrieve geophysical parameters from SSM/I measurements take at different

frequencies requires that the area on the surface imaged by different channels be the same
in order to obtain more accurate measurements of geophysical parameters, it would be

preferable to improve the resolution of data at low frequencies to that of higher

13



frequencies.Table(l) showsthe SSMfl channelsand the correspondingsizesof foot
prints and samplingintervals.Correctiontechniquesfor matchingthe resolutionof all
frequenciesof theSSMAto the25km spatialresolutionof the37GHzwerepresentedin
[8]-[13].

Table 1

Channel

Frequency

19.35

22.235

37

85.5

Polarization

V/H

V

V/H

V/H

Resolution (km) along

Track Scan

69

6O

37

15

43

40

28

13

Sampling

interval (km)

Along
track/scan

25

25

25

12.5

Backus & Gilbert first proposed the methodology for the correction techniques. In

essence, the theory contends that if the density of the measurements made by the satellite

is higher than the resolution of the instrument, then it is possible to find a linear

combination of surrounding measurements that yields results at a higher spatial resolution

than the original data. The tradeoff of r higher spatial resolution in this procedure is the

rapid amplification of instrument noise. Other techniques based on algebraic

reconstruction techniques provide an estimate of the brightness temperature of each

element of a rectilinear grid of pixels. The problem reduces to the solution of a system of

linear equations that is ill conditioned by using iterative algorithms. ART requires less

computations than BGI methods, but on the other hand, BGI methods provide a tradeoff
between noise and resolution enhancement.

3-1) BGI Algorithm

An SSM/I measurement can be modeled as a product of the surface brightness

temperature and the antenna pattern. The ith measurement T4 (i) is obtained by

integrating the product of the surface brightness T8 (x, y ) and the antenna at the surface

G,(x,y)

TA(i)= G,,-_ IfG,(x,y)T_(x,y)dxdy (35)

[Io,(x,y ay (36)
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Where integralsover surfaceareaarecorrespondingto he non-negligiblegain of the
antenna.Thedependenceof G on I arises from bore sight pointing of the antenna, which

changes as the antenna scans the surface.

The antenna pattern acts as a low pass filter of the surface brightness limiting the

effective resolution of the measurements. The BGI algorithm is an inversion method for

solving the integrals equations. The algorithm is used to determine surface brightness

from integrated over lapping antenna patterns. When employed for spatial resolution

enhancement, the BGI method produces a weighted least squares estimate of the surface

brightness temperature on a rectilinear surface grid finer than the intrinsic resolution of

the sensor. Given a set of antenna temperature measurements TA(i ) with associated

antenna gain patterns G,(x,y), the algorithm estimates the brightness temperature

TB(x j, yj ) for each pixel (x j, yj ) of the enhanced resolution image.

To estimate Tb for a given pixel, the BGI method uses linear combination of N nearby

measurements
M

T_(x j, yj) = _ a,_T4(i) (37)
t=l

coefficients a,j are determined from measurement geometry and the noise correlation

matrix. These coefficients are different for every pixel due to the varying antenna

geometry over the swath.

T4 (i)

rs_x,.y,)

Figure 1: Reconstructing high-resolution brightness temperature from TA(i) measurements.

Substituting (1) into (3)

Ts(xj,yj)=_a!, _G,(x,y)TB(x,y)= _[a,jG(x,y)_B(x,y)dxdy (38)
t=l

15



If one can find coefficients a,_ such that the bracketed term becomes the dirac_delta

function d(x s -x, yj -y), then (38) would be an exact solution to the problem and (37)

could be used to find the actual scene brightness temperature at any desired resolution. In

practice, however, the finite number of measurements makes it impossible to find such a

set of coefficients a,j.

Instead, we confine ourselves to selecting a set of coefficients a,j which causes the

bracketed term to most closely produce some desired behavior. In particular, we look for

a set of coefficients a,j which make the bracketed term appear like the gain function

G(x,y)of the 37 GHz channel. It must be understood that Ts(xj,yj) is no longer the

true scene brightness temperature but the brightness temperature as it would be seen at

the 37 GHz resolution. By using the actual 37 GHz antenna function as the match

function, no correlation is necessary for the 37 GHz s. The 37 GHz antenna function also

has a footprint which is most similar in size to the 25km spatial sampling distance if the
instrument.

To find the coefficients a,j, consider the quantity:

lQo = a,;G,(x,y)-G3'(x,y) dxdy (39)

Where G 3' (x,y) is the gain function of the 37 GHz channel.

Minimizing Q0 with respect to a o subject to the constraint that proper normalization be

presented.

I£a,jG, (x, y)dxdy = 1 (40)
i=1

should produce the best correlation coefficient possible in the least square sense.
The above treatment assumes the antenna measurements to be exact. In practice,

however, the antenna temperature T4(i ) will not be known exactly, but rather will

contain some random noise whose variance is given by (ATrm._)2

Thus noisy TA(i) can be expressed as

7_A(i) = TA(i) + e, (41)

Where: _4(i) is the mean value of TA(i)

g, : random noise component of zero mean.

The high-resolution brightness temperature can be expressed as:

TB, = a'_" A = aITA + ate (42)
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where Te, is a simplified

T A = [TA(1), T_ (2),..., Ta(M)] r .

And the noise variance of T_, is:

= E[(fB,- rB) 2]
= E[(a¢)(a¢)' ]

= E[(aez'a)]

= aE[_' ]a

= a_a

notation of T8 (x j, y j), a' = [aua2j...a_ 0 ]

(43)

Where 3 is the noise covariance matrix of instrument noise process appearing in the

sampled antenna temperature and is a function of system noise temperature, predetection

bandwidth and receiver low pass filter when the noise in each sample is uncorrelated and

equal, then e 2 is proportional to the sum of squares of a,j times the variance of

instrument noise. That is:

(44)

a diagonal matrix.

Because we not only want to increase the resolution but rather to avoid introducing any

drastic increases in the instrument noise. We thus seek a compromise between resolution

enhancement and noise.

Rather than Q0 we minimize:

Q = Q0 cos?' + e2wsin7 (45)

Where w is a scale factor used to make the two terms on the right hand side of (45)

dimensionally and numerically compatible, y can be varied between 0 and L to place
2

various degrees of emphasis on either the resolution enhancement or the noise

suppression in the estimate of T8 (x j, y j).

The coefficients a,_, can now be expressed as:

a = S _ [v cosy - 2u] (46)
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where:

- 1 + uS-_vcosy
2=

uS-_u

S,, = cos y f_G_ G, dxdy + 6,j ( ATr,,,)2w sin y

u = [.,, .2,..., ]T,

v = [v,,v2,...,

u, = _G, dxdy, l,k=1,2 ..... M

6,j is kronecker delta function.

Note that these coefficients are different for every pixel due to the varying antenna

geometry over the swath.

There are two tuning parameters, the dimensional parameter w and noise parameter y.

w is arbitrary. Following [11] w is set to 0.001. The noise tuning parameter y which can

vary from 0 to rc controls the tradeoff between the resolution and noise parameter.
2

y can be subjectively selected to optimize the resulting image. The optimum value for y

is dependent on the value of AT used for the noise level.

In general y is different for each SSM/I channel. [12] developed an objective function

technique for selecting y for the 19, 22 and 37 GHz channels based on maximizing the

correlation between the 85 GHz channels and the particular channel of interest.

Note that when multiple images with exactly the same measurements and pixel locations

are processed, the BGI enhancement coefficients may be stored and reused.

The BGI produced image is affected by the definition of nearby N measurements and the

relative location and gain patterns of the measurements included in the sum (37).

Restricting the size of the local region defining nearby measurements reduces the

computational load at the expense of accuracy. Increasing the size of the local are (and

M) to include additional measurements can improve the accuracy of the resolution

enhancement but may significantly increase the computational load.

Previous investigators have used a fixed range of angles around the antenna pointing

direction to define nearby measurements. This approach can lead to numerical problems

in the matrix inversion step of the algorithm if the angle range is large enough to include

directions with very small region.

Long [14], defined nearby measurements as those measurements that have nonnegligible

gain at the pixel of interest. A threshold is used to determine if the gain is nonnegligible.
The measurement is used in (37) only if the relative antenna gain at the pixel of interqst is

greater than the threshold. Setting a lower gain threshold results in more measurements

being used in () but increases the noise level of the images.
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Theexactnumberof nearbymeasurementsusedat a givenpixel is a functionof the gain
patternandsamplinggeometryandvariesacrosstheswathandfor eachchannel.
The BGI approach produces adequate enhancement of the spatial resolution to make such
a correction worthwhile.

Results obtained in [14] suggests that the BGI technique decreases brightness

temperature differences by over 50% for the low resolution channels with only a modest
increase in random noise.

The correction can also help to better resolve small features which would otherwise be

lost due to the lack of resolution. This can be important in making better retrievals of

atmospheric quantities.

This correction can also be used to average the 85 GHz channels to match the 37 GHz

resolution when uniform spatial resolution is required.

(3-2) Enhancement of SSM/I Images Using Image Reconstruction Techniques:

Problem Formulation and SIR Algorithm

In order to develop a method for estimating the brightness temperature on a higher

resolution grid TB(x, y) from antenna temperature measurements TA(i) .

We consider the desired resolution grid with pixel values TB(x, y) to be estimated and a

set of measurements TA(i) whose bounding rectangles are completely contained within

the region of interest (figure 2).

Assuming that the brightness temperature is constant within each pixeh

where

1 R T

TA(i)= _fE_'_Ts(x,y)G,(x,Y)
x=L y=B

(47)

G,:ZZG,(x,Y)

and L,R,B,T define a bounding rectangle for the ith measurement.

1

r

_(x,y)

J T A (i)

J

Bounding rectangle of the
ith measurement

19



Figure 2: bounding rectangles that approximate antenna temperature measurements

Denoting the desired resolution brightness temperature value T_ (x, y) by vector S where

S is an N dimensional vector of TB(x,y) in lexicographic order, the radiometer

measurements T4(i) by vector Z of dimension Mxl and let H be an NxM matrix

containing the weighting function of corresponding antenna gain function h,j

Where 0 _<h,j ___1, which are functions of the antenna gain function and location.

Then we obtain a matrix equation relating the measurements in Z to H and S as:

Z:HS+V (48)

Where Vis an Mdimensional vector of the noise terms v,, i=l .... M.

Depending on the resolution element size and the number of measurements Z, H can be

either over or under determined.

The elements of matrix H are computed by determining the intersection of the

measurements and the resolution elements. We can assume that the entries of H are either

1 or 0. The resulting matrix is very sparse though it may be extremely large.

With this formulation, the problem of obtaining estimates of T8 is reduced to the solution

of an ill posed linear system of equations which is similar to classic image reconstruction

problems in signal and image processing.

5) Scope of Current and Future Work

The AMSR instrument was launched in the year 2000 aboard the Japanese ADEOS-II

platform. AMSR observations will be collected in scans of 196 observations over a width

of 1600km. The spacing between observations is approximately 10 km for all but the

highest frequency and approximately 5 km for the highest frequency. Due to the conical

scan geometry, the density of observations increases at the edges of the scan. Table 2

summarizes the range of time integrated AMSR footprint sizes.

The only previous work that has been done to match the resolution of the AMSR

measurements was that of Ashcrofi and Wentz [16], where they used the BGI method to

match the resolution of AMSR channels. Their work didn't not include any enhanced

resolution in order to avoid noise amplification. Instead, each set of actual observations is

resampled to one of several lower resolutions corresponding to that of 6.9 GHz, 10.7,

18.7, 36.5 GHz and 89 GHz channels.

Ashcroft and Wentz [16], have also addressed the artifacts of the BGI method when used

to match the resolutions of AMSR channels. They analyzed the tradeoff between
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resolutionmatchingand noiseamplificationfor one combinationof AMSR channelsat
oneparticularpoint in thescanwheretheyshowthat becausethe scangeometrychanges
across the scan, the precise relationshipbetweensmoothing,noise and resolution
matchingwill alsovary.This problemappearsin choosingtheparametery which trades

off resolution and noise as described in the previous sections.

In addition, they addressed the computationally intensive task of calculating the

weighting coefficients which is considered as a more challenging problem over the

SSM/I case because of the higher density of measurements of the AMSR instruments
which means increased number of calculations.

Table 2

Channel

Frequency

Resolution (km) along

Track Scan

Sampling

interval (km)

Along
track/scan

6.9 70 40 10

10.7 45 26 10

18.6 27 17 10

23.8 20 13 10

19.35 13.5 43 10

36.5 60 11 10

5O.3 9 10.5 10

52.8 9 10.5 10

89 5.3 5.5 5

Motivated by the previous work that has been done for enhancing and matching the

resolution of SSM/I measurements, we are going to introduce a new algorithm for

enhancing the resolution of AMSR images by utilizing the techniques described in the

previous sections taking into account the different nature of the AMSR instrument where

the number of frequency channels used is increased over SSM/I channels and the

different sizes of the footprints in addition to the spacing between measurements and

noise margins introduced by the instrument.

Our new approach uses to advantage the different resolutions from the antenna by

constructing a hierarchy of scales which is in tum used to efficiently compute a model

relating them. This hierarchical structure as shown in Figure 3, lends itself to not only a

parallelization and simple hardware implementation. When resolutions are harmonized

across modalities, in a systematic, and reliable way our next objective will be to develop
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algorithms to fuse

X 3 [1,1]

data.
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