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Abstract

The impact of an isolated vortex in a compressible Keplerian disk is examined using higher order
numerical solutions of the Euler and entropy-conserving Energy equations. The vortex is
stretched by the background shear flow with longer lasting anticyclonic vortices persisting for
about 10 vortex revolutions. Simultaneously, the vortex emits transient radial waves consisting
mainly of axisymmetrical weak shock waves and a slower, nonaxisymmetric Rossby wave.
These waves may contribute to certain transient events in protoplanetary disks. The vortex
stretching and waves were found to have little long-term feedback on the baseline “standard solar
nebula” disk structure and confirm the extremely stable structure of non self-gravitating disks.

I Introduction

Light, cool disks with approximately Keplerian rotation curves are common models for
protoplanetary disks. Such gaseous disks form the background for solid body accretion and gas
dynamic processes that no doubt plays a critical role in the planet formation process
(Weidenschilling & Cuzzi 1993, Beckwith et al. 2000). Earlier work on idealized infinitely thin
disks (Lynden-Bell & Pringle 1974, Adams et al. 1989) has evolved to investigations of multi
dimensional disks with vertical and radial mean flow structure. (Klahr et al. 1999) There is now
an extensive literature base concerning the dynamical properties of such disks. Furthermore, a
number of disk-related wave systems were identified as being relevant to the solar nebula. A
survey of the field to the mid 1990s by Papaloizou & Lin 1995 emphasizes the role of the
underlying gas and seriously consider wave motion as one option for mass and momentum
transfer.

The strong synergy between geophysical and astrophysical problems was recognized decades
ago. In particular, coherent vortices as an important flow structure in protostellar disks was
advocated by v. Weizacker 1945 and examined in some detail by Adams & Watkins 1995.
Bracco et al. 1998, 1999 consider transport properties of vortices in barotropic fluids using
spectral-based finite-difference techniques with direct application to protoplanetary disks. They
showed that coherent vortices last long enough to form “lumpy structures” that may concentrate
solid objects and accelerate planetesimal formation. Recently, Godon & Livio 1999 extended the
work to a compressible viscous nebula by simulating discrete vortices in a viscous accretion disk
using related pseudo-spectral numerical methods. Using a polytropic gas model they find that
anticyclonic vortices last from 10 to 100 revolutions depending on the chosen viscosity. No
acoustic or shock wave motion is reported, but their equations clearly support such waves. Barge
& Sommeria 1995 investigate long-lived vortices in a disk and predict that particles may migrate
to the center of a vortex after a few vortex revolutions so the issue of vortex dynamics in the
particle accumulation process is of current interest. This paper will consider vorticies in gaseous
disks and the dual role of the underlying disk medium in propagating a variety of wave systems
throughout the disk and in simultaneously stretching the vortex by localized velocity shear.
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Sheehan et al 1999 examine the analogy between meteorological and cosmological wave
motions in some detail, emphasizing the role of Rossby waves. They argue that vortices and
Rossby waves probably play a role in the protoplanetary nebula. Davis et al 2000 (hereafter
DSC) further investigate the role of vortices and Rossby waves in a model solar nebula They
consider the evolution of a compact region of coherent vorticity using an incompressible flow
model and the vorticity transport equations. They found that compact vortices induce weak
Rossby waves that slowly radiate over the entire disk. The vortices ultimately dissipate, but
anticyconic vortices were shown to be more persistent than cyclonic vortices.

In this paper we expand the analysis of vortices to compressible disks and show how a vortex,
once formed, can generate disturbances that propagate to the outer reaches of the disk. We use a
standard model of the solar nebula with a variable thickness and power-law radial variations of
the equilibrium variables. We show that discrete vortices evolve in two directions: first into a
ring structure at the radial location of the vortex and second into two separate wave packets. One
is a fast wave based on the acoustic time scale and the second a slower Rossby wave motion. The
fast wave evolves into a weak cylindrical shock that envelops the entire disk. We find that no
instability mechanisms are activated and the waves have little impact on the underlying disk
structure once they traverse the disk.

A third order in space/ fourth order in time explicit numerical algorithm is developed to solve the
“column averaged” Euler and Energy equations. The equations are cast in a semi-conservative
form designed to exploit the underlying eigenvalue structure. The base flow assumes mechanical
equilibrium with assumed density, pressure, and local disk height based on standard solar nebula
models. A seeded compact vortex is chosen whose circulation is approximately the rotation rate
of Jupiter and diameter appropriate for the thin disk approximation.

With respect to the question of vortex generation in a protostellar disk Li et al 2000 derive
dispersion relations for unstable Rossby wave phenomena induced by a strong local entropy
(temperature) gradient. Li et al. 2001 simulates this instability and subsequent anticyclonic
vortex formation using numerical solutions of the Euler and energy equations. The standard solar
nebula model used in this paper does not include mean variations in entropy and, as a result, only
globally stable wave systems were found.

In section II the numerical problem is formulated based on a thin disk flow model that is initially
in mechanical equilibrium. A new derivation of the three-dimensional equilibrium flow and the
definition of the column-averaged quantities are presented in an Appendix. A semi-conservative
form of the Euler and Energy equations is described and used to develop a high-resolution flux-
biased finite difference algorithm. In Section III the vortex evolution is examined using
instantaneous and azimuthally averaged flow quantities. Finally, the relevance of this model to
some open questions regarding disk evolution is discussed.

II Problem Formulation

(a) The equilibrium flow
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The equilibrium surface density and pressure from given distributions on the central-plane are
derived in the Appendix. These column-averaged thermodynamic quantities define a fictitious
polytrope (Hunter, 1972) that is related to the physical gas by the parameters in Table Al. The
temperature of the disk is conveniently defined from the column-averaged perfect-gas equation
of state in terms of the column pressure P and the surface density 6: P/Py = (6T)/(c¢To). The
initial central-plane thermodynamic quantities po. Tp, n and y are all given constants. Here we
will take values representative of a “standard solar nebula.” Letrobe 1 AU andn=-3 as
recommended by Weidenschilling 1977. Cuzzi, et al, 1993 used po= 1.4x 10° g/cm3 and Tg= 280
K at ro = 1. From the perfect gas equation of state (assuming a molecular weight of 2.34 g/mole),
po = 13.83 dynes/cm’. The specific heat ratio v is taken as 1.5 and the value of GM appropriate
for the solar nebula.

It is useful compute the dependent variables in astronomical units as the compressible flow
equations contain a number of thermodynamic quantities that are not conveniently
nondimensionalized. In addition, the key role played by the sound speed is expressed in a more
physical context. Length, mass, and time are taken as AU, solar mass (SM), and years (yr).
Certain parameters become extremely simple in this system. For example, G = 4n* and M = 1.
Table 1 indicates the major equilibrium flow parameters at several radial locations using the data
in the Appendix.

TABLE 1
Equilibrium Flow Parameters
r,AU H,AU o, SM/AU> P, SMar T,K a, AU/yr

1 0.082  2.05E-04 7.73E-06 180 0.274
5 0409 4.11E-05 3.09E-07 36 0.123
10 0.817  2.05E-05 7.73E-08 18 0.087
15 1.226 1.37E-05 3.44E-08 12 0.071
20 1.634 1.03E-05 1.93E-08 9 0.061

The second column is the half height of the nebula using formulas in the Appendix. The
computed wave motions should have wavelengths larger that these values to avoid three-
dimensional effects. The surface density, pressure, and temperature decrease %uite rapidly. The
last column is the local sound speed which decays in this particular case as r'"’?; the same decay
rate as the basic Keplerian flow so the azimuthal Mach number stays constant at about 23. The
entropy is conveniently measured by the polytropic “constant” K’ = P 6. It is initially a global
constant of about 183 in astronomical units. The ratio of gravitational (GM/r) to thermal (P/G)
energy, which governs the disk thickness, is also constant and approximately equal to 1050.

(b) Equations of motion and solution method
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The equations of motion can be written in a variety of ways. Analytically based asymptotic
methods were very popular in the 1950s and 60s and used conventional non-conservative
equation sets. In the continuing search for effective numerical methods, the conservative form of
the equations seems preferable. Unfortunately, astrophysical problems include gravitational
body-force terms that upset the symmetry of the classical conservation equations. In addition,
when expressed in non-Cartesian coordinates the fully conservative equations become quite
complex. Davis 2001 compares straightforward use of the classical conservation equations in
curvilinear coordinates and showed that the effect of rotation could be significant. The numerical
error when computing a simple Keplerian flow in polar coordinates was examined and traced to
an incompatible finite-differencing sequence.

The alternate form of the Euler/Energy equation is shown below. It is based on the fact that
astrophysical flow fields are driven by differences between two large quantities (gravitational
and centrifugal forces). If these relatively large quantities can be expressed as source terms,
incompatible discretization errors will not occur. If u; and ug are polar velocities, €, the total
energy, p the pressure, and p the density, then

rp P, rpu, 0
i rpug +i p+ pug +i rp“ourz + pus;"r W =0
ot{rpu, | 00| pugu, or|rip+pul)| |—pP-pus+p—

re, (e, + pPlu, r(e,+ plu, p-cifiu,

where the dependent variable Q = [p, pus, pue, €] and the second and third vectors are fluxes.
This equation has two important properties. First, a baseline Keplerian flow is satisfied exactly
by the undifferentiated source terms. Second, the (r, 6) eigenvalues can be shown to be [u;, u;,
utc, u-c] and [ug, ug, ug+c, ug-c] where c is the local sound speed. This makes it easier to
construct wave-following algorithms in direct analogy with Cartesian systems. The physical
nature of the solar nebula is such that perturbation radial velocities are close to sonic while the
baseline azimuthal velocity is at quite a high Mach number (ug/c ~20). This form of the Euler
equations has been presented previously (Mair et al 1988; Godon 1997) but the favorable
properties mentioned above seem not to have been utilized.

The equations are integrated in time using an explicit numerical algorithm. Higher order methods
are necessary when computing evolving waves on reasonably sized grids. A critical feature is the
need to transmit waves with minimal phase error (dispersion). The change in Q over a small time
increment is computed using a fourth-order Runge-Kutta method. Spatial derivatives are
computed with a third-order biased upwind scheme (a five-point stencil with three upwind and
one downwind mesh point). The spatial stencil was applied to a flux-split form of eq (1). The
two flux vectors can each be decomposed into the product of a 4x4 “Jacobian matrix” and the
vector of dependent variables Q. The Jacobian matrix, in turn, can be converted by a similarity
transformation into a product of three 4x4 matrices consisting of a pre-matrix, a diagonal matrix,
and a post-matrix. The elements of the diagonal matrix corresponding to 8 and r are
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[y, 1y U, +C 1y —cland [u,,u,,u, +c,u, —c] respectively. These are the allowable propagation

speeds of the waves at each point in space-time. In the former case ue will dominate c since the
azimuthal flow is highly supersonic. The radial velocities are approximately sonic so they will be
more sensitive to the ambient sound speed. The sign of each of these speeds is examined and
those of like sign are combined in each coordinate direction. The matrices are then recombined
into two flux vectors that reduces to the matrix equation:

3 2 3 3 d
= F*+=—F" ' “+R=0
ey Ty e

where derivatives with superscript + (-) are backward (forward) biased. The most
computationally extensive part of the algorithm is computing the flux vectors which is required
at each stage of the Runge-Kutta time advancement algorithm (four times per time step for each
coordinate direction). This finite difference scheme is contrasted with other conservation-law-
based schemes aimed at precise shock wave resolution. They are usually not of high-order
accuracy away from shock waves which is the trade-off for highly resolved shock waves. The
development of higher order algorithms with precise shock resolution is the subject of intense
current research.

Appropriate boundary conditions for this class of problems is formidable. These highly sheared
flows propagate waves whose wavelength is comparable with the shear rate and commonly used
radiation boundary conditions are not applicable. Considering the lack of reliable and robust
numerical radiation boundary conditions, a second order boundary extrapolation was used. This
simple approach was appropriate for this problem. Wave reflection from the inner boundary was
not a problem. (However, disturbances seem to focus on the boundary, which is probably a
numerical artifact.). The outer boundary was taken far enough away so that reflections did not
yet interfere with the outwardly moving wave. Periodic boundary conditions were imposed in the
azimuthal direction.

Mechanical equilibrium was disturbed by a vortex placed at 4 AU. Vortex parameters were
chosen to satisfy the thin disk approximation. The vortex is distorted by the local equilibrium
flow and simultaneously transforms some of its energy into an outwardly propagating trailing
spiral. The computational domain consists of a disk ranging from I to 24 AU using (6, 1) =
(65,300) mesh points. Additional computations were made on (125,300) and (65, 600) point
grids with no significant changes to the flow. Both cyclonic and anticyclonic vortices were used
as initial flow perturbations.

III Analysis of Vortex-induced Waves

The imposed vortex is a transient event and induces an excess velocity field upon the slightly
modified mean Keplerian flow of eq (A5). This excess flow is shown in Figure 1 along with the
initial patch of vorticity (maximum value about -1.0 yr'') in the third quadrant. Its core diameter
is about 1 AU and peak azimuthal velocity of about .14 AU/yr. This corresponds to a circulation
(T = 27rvon Vovor) about S0 times that of Jupiter which represents a relatively strong event in the
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protoplanetary nebula. The local sound speed, and disk thickness at this radius are about 3.14
AU/yr and 0.3 AU respectively. The vorticity is quite compact, but note the large extent of the
vortex-induced flow including significant radial velocities. The vortex imposes a thermodynamic
(pressure, density, and temperature) response on the disk. The entropy (s =P c)is initially
constant everywhere except for a small region near the vortex. Subsequently, the flow evolves by
redistributing the initial circular vortex into a sheared vorticity patch and a variety of propagating
waves. Unlike the incompressible disk considered by DSC, the compressible disk supports a
much more varied and complex flow structure.

Early (a few vortex revolutions) and later (many vortex revolutions) flow fields are expected to
be associated with different physical effects. The former event is a relatively rapid relaxation and
redistribution of the vortex caused by the dominating Keplerian shear at 4 AU. Wave radiation
processes are expected to dominate later. A very important parameter relating to wave systems is
the smaller flow-induced radial velocity. In the remainder of the paper we will consider both
effects. These flow events are illustrated using contour diagrams and instantaneous flow patterns
in sec ITI(a) and with azimuthally averaged quantities in sec ITI(b).

(a) Instantaneous Flow Patterns

Figure 2 compares perturbed vorticity contours (scaled on the instantaneous peak vorticity) for
cyclonic (initial vorticity aligned with the Keplerian vorticity) and anticyclonic vorticity. The
horizontal scale represents angular position (0 < 0 < 360) and the vertical scale is the physical
radius (3 <r, AU < 10). The first pane] in each part of Figure 2 corresponds to the vortex in
Figure 1. The cyclonic vortex in Figure 2(a) shears away quite rapidly (note contours at the
radius of the initial vortex) and simultaneously emits a vorticity wave that propagates radially at
the local sound speed. This axisymmetric wave is still in the field of view at 8 revs but by 12
revs it has moved beyond 10 AU. The initial vortex has almost completely dissipated by 12 revs.
In contrast, the anticyclonic vortex maintains it coherence for a much longer time span (Figure
12(b)). The vortex is still coherent, but it also emits a vorticity wave into the outer disk. The
contours in Figure 2 are drawn relative to the peak vorticity at each time (much larger in the
latter case) so the propagating waves are actually of comparable amplitudes to those in part (a).
This is clarified in Figure 3 with instantaneous radial vorticity profiles at 4 revs. The peak
anticyclonic vorticity is larger than the cyclonic vorticity. The propagating waves, on the other
hand, have similar amplitudes. These results show that the compressible disk responds in two
ways; first a local flow subject to intense velocity and secondly a wave field that is relatively
insensitive to source details.

Compressible and incompressible simulations are compared in Figure 4. Part (a) shows contour
maps for an anticyclonic incompressible vortex from DSC with similar characteristics to that of
Figure 2(b). The same contour lines are used and the stretched vorticity near the source relative
to the compressible flow is apparent. (The incompressible Rossby waves studied in DSC are very
low level and do not appear with this choice of contours.) Even after 4 revolutions the
incompressible vortex has stretched well beyond that of its compressible counterpart indicating
that vortices in compressible flows retain coherence for longer times. The difference between the
extended vorticity fields in incompressible and compressible flow can be explained by the fact
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that vorticity is not a conserved quantity in the latter case. However, the potential vorticity
(called generalized vortensity by Adams & Watkins 1995), defined by the ratio of vorticity to
surface density is a conserved quantity. Figure 4(b) shows contours of the compressible potential
vorticity using the same progression of contour values. It is much more compact and is a closer
analog to the incompressible vorticity. The role of potential vorticity in particle accumulation in
the protoplanetary nebula is a subject for future study.

The evolution of the wave radiation processes is shown in the following figures. Figure 5 shows
vorticity and surface density contours superimposed on perturbed velocity vector after 1.33
revolutions. The perturbation vorticity has stretched significantly from its initial value and is now
in the fourth quadrant in part (a) of the figure. During this early phase the flow is rapidly and
continuously sheared by the baseline Keplerian flow. A positive induced radial velocity (note the
velocity vectors on the outermost spiral) indicates an outward moving wave. The trailing spiral
moves clockwise and outward under the influence of the baseline Keplerian flow and the induced
velocities. The leading edge of the spiral is in the first quadrant at this instant. A coherent
overdensity (which grew from an initially insignificant value) is visible in part (b) at the same
location as the vorticity. At the same time, there is a strong density wave forming in the second
and third quadrant. This strong density wave is the result of nonlinear distortion of the transient
pressure and is the first indication of shock wave formation.

Readjustment of the density wave from an isolated disturbance to an axisymmetric shock wave is
shown in the density contours of Figure 6. The sequence illustrates the tendency of a supersonic
Keplerian shear flow to “circularize” isolated disturbances. The flow evolves as a system of
trailing spirals that move very rapidly in the azimuthal direction (close to Keplerian speed, above
Mach 20) and with a radial speed close to the local sound speed (Mach 1). The outermost spiral
is a precursor compression wave (light spirals in the outer disk) followed by a pair of shock
waves. The precursor evolves radially near the local sound speed, but the shock wave moves
faster since it is continuously overtaking slower moving material. Beyond the shock wave the
low level precursor wave is starting to be reflected by the imposed boundary conditions at 24
AU. Behind the shock wave is a slower wave system with a nonsymmetrical amplitude
distribution. This wave system is identified as a Rossby wave based on its similarity (generation
time and radial wave speed) with those computed in DSC. Of these three waves, the main
disturbance is confined to the pair of shock waves steadily moving outward. By 12 revolutions
the wave system has enveloped almost the whole disk. A perspective view of the entire density
field at this time is shown in Figure 7. The two shock waves are readily apparent along with the
slower Rossby waves. There is also a residual density collar surrounding at the initial vortex
radius. Space-time features of these waves are further analyzed into component azimuthal
modes.

(b) Averaged Flow Variables

A finite Fourier series representation is used to define azimuthal averages. For example, the
mean surface density (m = 0 mode) and fundamental (m = 1 mode) are:



N
O, (r,t) = %}-E[G(r,tﬂj)—a(r,t =0)]

j=

N

o,(r,t)= %;a(r,t,gj)elei
where N is the number of azimuthal grid points and 6; = 27(j-1)/N. Nonlinear evolution of the m
= 0 mode is the main pathway for radial transmission of information while the m=1 mode with a
cos 0 dependence is useful for characterizing the slower Rossby wave component. The
axisymmetric perturbations of surface density and entropy characterize the wave field. The
quantities Go(r, t) and so(r, t) are shown in Figures 8 and 9 at selected times to 100 yrs. These
waves characterize the fastest signals emitted by the deforming vortex. The time scale for
information transfer is directly related to the sound speed; it takes about 12 revolutions of the
vortex at 4 AU to affect the region out to 20 AU.

The surface density in Figure 8 evolves from essentially no disturbance to a propagating density
wave in about 10 yr. The evolving wave consists of a precursor compression/expansion followed
by two sharp compressions and a decaying wave packet. The precursor wave decay is probably
governed by geometrical spreading in the cylindrical disk. The compressions evolve into shock
waves that maintain their amplitude. The stronger shock separates a weak leading shock and the
trailing wave packet. This discrete wave system is the only long-range signal emitted by the
continuously decaying vortex. A persistent nonlinear density remnant remains at 4 AU.
Differences between rapid compressions and shock waves are not easily discernable from density
profiles, but entropy changes are sensitive indicators. Figure 9 clearly shows the formation,
growth, and decay of the shock waves as measured by the entropy. The first jump appears after
20 yr. at 6 AU, grows to 60 yr., and then begins to decay. Meanwhile the second stronger shock
forms behind the first and feeds on its predecessor. The entropy signal is slightly contaminated
by a numerical artifact from the finite difference equations but does not affect the physical nature
of the evolving flow. The leading shock move at a speed ranging from .14 AU/yr at 38.4 yrs to
.10 AU/yr at 96 yrs, both values being greater than the local mean sound speed. The two shock
waves at 96 yrs possess temperature jumps of .003 and .873 deg K respectively, a fraction of the
_ambient temperature of approximately 12 deg K. Also note steadily falling entropy in the region
of 4-6 AU. This is where the slower Rossby waves appear and an azimuthal average smears out
the discrete nature of these disturbances.

The slower moving Rossby waves are most visible in the potential vorticity, the compressible
counterpart of the conserved vorticity. Figure 10 shows a space-time graph of the fundamental
(m = 1) component of this quantity. The shock wave positions are clearly marked along with a
variable wavelength disturbance that lags the faster moving acoustically generated waves. The
slow waves decay rapidly and are similar in nature to the Rossby waves in DSC.

The computed wave systems are summarized in Figure 11 against a background of characteristic
curves belonging to the undisturbed flow. The family of dotted characteristics correspond to the
trajectories dr/dt = a(r) = const with their slopes proportional to the inverse sound speed. The two
solid lines estimate the shock wave path obtained by fitting a parabola to the density peaks at
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each indicated time. The shock speed decreases due to a combination of its propagating into an
inhomogeneous medium and nonlinear wave interactions. Their slope is always less than the
sound speed indicating a mild local supersonic shock speed. At larger radii the mean vorticity
rapidly decays and acoustically generated waves should be indistinguishable from classical
cylindrical weak shock waves. Considered as an inverse signaling problem, the nature of the
source (as a vortex) cannot be reconstructed from this far field generic signal. The dashed lines
in the figure trace maxima of the fundamental mode potential vorticity (a representative trace
from Figure 10 is redrawn for clarity showing the location of both waves). Their slope is always
greater than that of the background characteristics indicating a much slower phase speed. These
waves remain in the vicinity of the source disturbance about twice as long as the shocks, but
represent a weaker wave system.

Conclusions

Adams and Watkins 1995 present a comprehensive and still relevant overview of the many open
issues related to vortices in protoplanetary disks. Here we address a few of the issues using a
numerical model of the nonlinear evolution of vortices in disks. The main findings relate to
bifurcation of the vortex structure into propagating wave packets and into an axisymmetric ring
structure. In particular the potential vorticity (e.g. vorticity per unit surface mass) emerges as a
useful structure in its own right.

The main conclusions from this investigation are: (1) As a result of Keplerian shearing motion a
vortex persists for about 10 revolutions. Whether or not this is sufficient time for a critical mass
of particles to accumulate needs further investigation. Even though vortex persistence is
dependent on a number of parameters, it is unlikely that vortices of this size could last more than
decades of orbits. However, it is clear that anticyclonic vortices are definitely more robust.

(2) Another outcome of this investigation is the non-participation of the vortex in the baseline
structure of the disk. Consistent with classical notions regarding wave propagation in non
participating media, the wave moves through the disk without materially affecting it. Global
mass accretion and angular momentum transfer in protostellar disks are associated with large-
scale, widely-spaced asymmetrical spirals of matter while the wave packets computed here are
restricted to tightly-wound spirals and axisymmetric shocks.

(3) The response of disks with other equilibrium profiles may be quite different. If self-
gravitating effects are included (heavy disks, e.g. Laughlin et al 1998) vortex-induced
instabilities could “light up” the disk with strong transient signals and drive accretion and
angular momentum transfer processes via gravitational torques. Another possibility is that
thermal instabilities due to thickness gradients or radial entropy gradients could induce
significant transient events. In any event it is hard to see how any of these time-limited effects
could sustain global turbulence in the disk and be active for long epochs. The only possibility
would be an almost continuous barrage of external vortex-inducing events.

Acknowledgments



1

The author would like to thank M. M. Rai for access to his source codes and helpful suggestions,
to Greg Laughlin and Jeff Cuzzi for stimulating discussions on disk dynamics, and to the Ames
Directors Discretionary Fund for supporting this effort.

References

Adams, F. C., Ruden, S. P., & Shu, F. H. 1989, AplJ, 347, 959

Adams, F.C. & Watkins, R. 1995, ApJ, 451, 314

Barge, P. & Sommeria, J. 1995 A&A, 295, L1

Boss, A. 1993, ApJ, 417, 351

Bracco, A., Chavanis, P. H., & Provenzale, A. 1999, Phys. Fluids, 11, 2280

Bracco, A., Provenzale, A., Speigel, E. A, & Yecko, P. 1998, in Theory of Black Hole Accretion
Disks, eds. M. Abramowicz et al., (Cambridge: Cambridge U. Press)

Cuzzi, J., Dobrovolskis, T., & Champney, J. 1993, Icarus, 106, 102

Davis, S. 2001a, ApJS (submitted)

Davis, S., Sheehan, D., & Cuzzi, J. 2000, ApJ, 545, 494

Godon, P. & Livio, M. 1999, ApJ., 523, 350

Godon, P. 1997, ApJ, 480, 329

Hunter, C. 1972, “Self Gravitating Gaseous Disks,” in Annu. Rev. Fluid Mechanics 219
Klahr, H., Henning, Th., & Kley, W. 1999, Ap], 514, 315

Li, H., Colgate, S. A., Wendroff, B., & Liska, R. 2001, Apl, 551, 874

Laughlin, G., Korchagin, V., & Adams, F. C. 1998, ApJ, 504, 945

Lebovitz, N. R. 1979, in Annu. Rev. Fluid Mechanics, eds. M. Van Dyke et al. (Palo Alto:
Annual Reviews Inc.), 229-246.

Li, H., Finn, J. M., Lovelace, R. V. E., & Colgate, S. A. 2000, ApJ, 533, 1023

Lovelace, R. V. E., Li, H., Colgate, S. A., & Nelson, A. F. 1999, ApJ, 513, 805

Lowrie, R. B., Morel, J. E., and Hittinger, J. A., 1999 ApJ 521, 432.

Lynden-Bell & Pringle, 1974, MNRAS, 168, 603

Mair, G., Muller, E., Hillebrandt, W., and Amold, C. N. 1988, A&A, 199,114

Papaloizou, J. & Lin, D. N. C. 1995, in Annu. Rev. Astron. Astrophys., (Palo Alto: Annual
Reviews Inc.), 505

Ruden, S., Papaloizou, J. C. B., and Lin D. N. C.,1988, ApJ, 329, 739.

Sheehan, D., Davis, S., Cuzzi, J., & Estberg, G. 1999, Icarus 142, 238

v. Weizsacker, C. F. 1944, Z. fur Astrophys., 22, 319

Weidenschilling, S. J. and Cuzzi, J. N., Protostars & Planets 1, 1993, 1031
Weidenschilling, S. J., 1977, MNRS, 180, 57.



12

Appendix
Mechanical Equilibrium

A polytropic gas rotates only under the influence of a central gravitator. An approximate
equilibrium solution is presented in Ruden et al. 1988 and Boss 1993. Here we will describe the
mechanical equilibrium as a general solution of the governing partial differential equation. In
spherical coordinates the three non-vanishing flow quantities are the rotational velocity Vg, the
density p and the pressure p. All three are independent of the azimuthal coordinated ¢. The
system is closed by a polytropic equation of state p(R,0) =K p(R,8)" where K is the polytropic
constant and 7 is the ratio of specific heats. If the pressure is eliminated, the two remaining
equations that conserve rotational and radial momentum are:

- pV, cot@+ K™ %P _ 0

36
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Eliminate the rotational velocity to obtain a first order partial differential equation for the
quantity p'':
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The general solution of this partial differential equation for p"‘l involves an arbitrary function of
the quantity R sin@ that is just r, the radial distance from the axis of rotation.
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Identify f(r) with the (y-1)st-power of the arbitrary central-plane density pc(r) to complete the
solution. The pressure is easily obtained from the polytropic law and the azimuthal velocity from
the first of eq (A1). The final relation among the three quantities are:
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where a, is the isothermal sound speed defined by the square root of p/p.. A reasonable
approximation to eq (A4) in cylindrical coordinates is to let R ~r and expand 1/r-1/R in a Taylor
series about z = 0. The final mechanical equilibrium state for a thin disk is:

y—16M/r 227"
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r GM dlogr |

The coefficient of the term multiplying *? proportional to the ratio of the local gravitational
potential energy GM/r to the thermal energy squared. For a typical protoplanetary nebula this
ratio is O(10%) so the thermodynamic quantities decrease very rapidly from z = 0. The azimuthal
velocity, on the other hand, depends only on the radius r and is independent of z, which is a
general statement for a barotropic fluid (Lebovitz 1979, p 236). The density and pressure decay
rapidly from the midplane while the rotational velocity remains very close to the Keplerian value
throughout the flow field. (The coefficient of the corresponding term in V, is now the inverse of
the energy ratio mentioned above.) These formulas are the same as those used by other
investigators concerned with vertical equilibrium in polytropic disks.

The “column-averaged” density (o) and pressure (P) are obtained by integrating the quantities
over a disk whose half-height H is the inverse of the coefficient of z? in the above formulas. The
equations for the surface density and surface pressure are (Hunter, 1972, p 224):

s , - ,
o=p0)[|1-5z| 4= Hp, (r)[[1-x*}"""dx = atip, (r)
-HL . -}
(A6)
HISN l N )
P=p.(r)] -7z dZ=HPc(V)“1"x [ dx = pp.(v)
~HL -1

where o and P are defined by Gamma functions that depend only on the ratio of specific heats Y.

Now let the variation of the central density and pressure be simple power laws of the radial
coordinate; pc(r) = po (r/ro)™ and pc(r) = po (t/ro)". It follows that the variation of H obeys the
power law H(r) = Ho (r/ro)* where Ho = (2y po/po /(y-1)/GM)"”* and p = (3-m+n)/2. The surface
density and pressure now have spatial variations of the form 6(r) = apo Ho (r/r9)™™* and P(r) =
Bpo Ho (1/1o)"™**. This is a parametric representation relating surface density and pressure in terms
of r. Eliminating r implies the relation between ¢ and P:
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ﬁH n+u
0 m+y y T
———5 0" =Ko

(aH 0 )’"*“

P=

which indicates that the surface thermodynamic quantities are also polytropes with a modified K
and a different specific heat ratio. The exponents m and n are constrained so that my-n=0.

In summary, mechanical equilibrium is defined by the given quantities po, po, fo, 0, GM, and Y.
The derived quantities are m, o, B, p, I', and Ho. Table Al shows representative values of those
parameters in terms of ¥ for the case whenn = -3.

TABLE Al

Values of the Equilibrium Parameters (n = -3)

Y m o B M r
1.2 -2.500 0.739 0.682 1.250 14
1.3 -2.308 0.876 0.786 1.154 1.6
1.4 -2.143 0.982 0.859 1.071 1.8
1.5 -2.000 1.067 0914 1.000 2

1.6 1875 1137 0958 0938 2.2
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11.

15
List of Figures

Vortex location and induced velocity field at initial instant of time. The vortex is located at
about 135 deg on the r = 4 AU circle.

Contours of equal strength vorticity relative to minimum (maximum) vorticity at each time
step. Time is measured by vortex revolutions at 4 AU. (a) Initial cyclonic vortex,
perturbation vorticity > 0. (a) Initial anticyclonic vortex, perturbation vorticity < 0.

Vorticity profile along a ray at 163 deg showing decay of initial vorticity at 4 AU and
instantaneous location of the wave field. Shock waves have already formed in the region 6-8
AU.

Contours of (a) vorticity in an incompressible disk model, (b) potential vorticity in a
compressible disk model. Anticyclonic vorticity shown using the same scale as Figure 2.
Contours of (a) vorticity and (b) surface density after 1.37 revolutions of the initial vortex.
Rapid shearing and initial wave systems are apparent.

Evolution of the surface density over the entire simulated disk, 1 <r, AU <24. (a) Initial
flow, (b) 4 revs, (c) 8 revs, (d) 12 revs.

Perspective view of the total surface density at 12 revs. (Note: perturbed density drawn to
twice the scale of the equilibrium density for clarity.)

Profiles of mean perturbation surface density G(r, t) at selected times showing global shock
wave propagation in the disk.

Values of mean perturbation entropy so(r, t) indicating discontinuities at the shock wave
position.

Potential vorticity profiles for the m = 1 mode showing cos 8 dependence of slower moving
Rossby waves.

Space-time diagram of shock wave trajectories (solid), Rossby wave tracks (dashed), and
equilibrium flow characteristic curves (dotted).
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