VIPER: Virtual Intelligent Planetary Exploration Rover

Laurence Edwards

Lorenzo Fliickiger® Laurent Nguyen'

Richard Washington?

Autonomy and Robotics Area, NASA Ames Research Center, Moffett Field. CA 94035
{ edwards | lorenzo | nguyen | richw } Qartemis.arc.nasa.gov

Keywords: Simulation, 3D visualization, plan ex-
ecution. planetary rovers.

Abstract

Simulation and visualization of rover be-
havior are critical capabilities for scientists
and rover operators to construct, test, and
validate plans for commanding a remote
rover. The VIPER systein links these capa-
bilities. using a high-fidelity virtual-reality
(VR) environment. a kinematically accu-
rate simulator. and a flexible plan execu-
tive to allow users to simulate and visualize
‘———possible executionr outcomesofaplarurde
development.

This work is part of a larger vision of a
science-centered rover control environment,
where a scientist may inspect and explore
the environment via VR tools, specify sci-
ence goals, and visualize the expected and
actual behavior of the remote rover.

The VIPER system is constructed from
three generic systems, linked together via a
minimal amount of customization into the
integrated system. The complete system
points out the power of combining plan ex-
ecution, simulation, and visualization for
envisioning rover behavior; it also demon-
strates the utility of developing generic
technologies. which can be combined in
novel and useful ways.

1 Introduction

Imagine trying to drive when your vehicle only does
approximately what you command, you only catch
occasional glimpse of your environment, 20 minutes
pass between your command and the vehicle's re-
sponse, and to top it off, you don't really know how

*NASA contractor with QSS.

TAuthor's current address is LightLogic, Inc., 8674
Thornton Avenune, Newark, CA 94560.

ENASA contractor with RIACS.

vour vehicle works. This is the world of scientist-
directed planetary rover exploration.

Planetary rovers are scientific tools for exploring
an unknown world. One focus of the Autonomy and
Robotics Area (ARA) at the NASA Ames Research
Center is to design and develop the tools and tech-
niques that allow scientists to control a rover effi-
ciently and effectively. This presents challenges both
in the user interface and in the underlying rover con-
trol methods.

One important element of the planetary rover con-
trol is the ability to simulate and visualize possible
execution outcomes of a plan under development.

— —-—We-have-developed the VIPER system,~which links

plan execution, rover simulation, and a high-fidelity,
realistic virtual-reality (VR) environment. This sys-
tem is one part of a larger architectural design under
development that includes tools for science goal spec-
ification and plan generation.

The ultimate vision for the overall architecture is
that scientists at “mission control.” and potentially
elsewhere in the world. will both specify and ob-
serve the rover's operation as wel!l as science prod-
ucts through the VR environment. The scientists can
examine physical features of the environment (dis-
tance, volume, cross-sections) and specify science-
level goals, for example to go to a rock and drill a
small sample. These goals are then interactively re-
fined at mission control with the help of a planning
and scheduling system, adding constraints of rover
motion. resources, and time to arrive at a final plan.
Once the plan is ready, it is communicated to the
rover.

On board the rover, the plan is executed by testing
and monitoring conditions on time, resources, and
rover and environmental state. The same plan ex-
ecuted multiple times may produce many different
behaviors, based on the initial conditions and the
variability of the rover's interactions with the envi-
ronment.

The VIPER system allows users to simulate and
visualize possible execution outcomes of a plan un-
der development. We have developed a kinematically
accurate simulator of the rover that allows the sci-

Kinematic Simulator
{VirtualRobot)

t o R,

Conditional Executive

T e el e B

Figure 2: Overview of VIPER plan execution, simulation and visualization.

to MarsMap. initially deployed during the Mars Po-
lar Lander mission ﬁ\fguyen et al, 2001]. Viz im-
plements an architecture that allows a flexibility
and customizability similar in spirit to VEVI and

~ " presents the User with a highly interacfive iffimer-

sive environment as in MarsMap.

Robot Behavior Simulation The behavior of
the mechanism is reproduced by the VirtualRobot
simulator. VirtualRobot was initially developed at
the Swiss Federal Institute of Technology, Lausanne
(EPFL) by the Virtual Reality and Active Interfaces
Group (VRALI) as an interactive tool to control and
study any kind of robot manipulator [Fliickiger et al,
1998; Fliickiger, 1998]. VirtualRobot was based on
a generic kinematic generator. The collaboration of
the VRAI Group with the Autonomy and Robotics
Area of NASA Ames led to extensions of Virtual-
Robot that enable the simulation of rovers in addi-
tion to robot manipulators.

Plan Execution The plan execution component
of this work was inspired in part by work on the Re-
mote Agent (RA), an integrated agent architecture
developed for spacecraft control and deployed as an
experiment on the Deep Space One mission (Bernard
et al., 1998; Muscettola et al., 1998]. The rover exec-
utive demonstrates advances in conditional execution
compared to the RA executive: the language of the
RA executive does not accept conditional sequences,
which are critical to the success and effectiveness of
@ rover mission. given the highly variable interac-
tions of the rover and the environment. The current
unplementation of the rover executive does not, how-

ever, attempt to reproduce all of the capabilities of
the RA; in particular. multiple concurrent activities,
model-based state reconfiguration, and run-time re-
source selection for state variables are not currentlyv

included in our executive. y

VIPER system organization The VIPER sys-
tem comprises the plan execution, simulation, and
visualization subsystems (see Figure 2). These com-
ponents allow the scientists to explore different pos-
sible plans and the expected behavior of the robot in
the virtual environment.

The plan execution component interprets the com-
mand plan. checking conditions and monitoring run-
time requirements of the plan. It sends commands to
the rover simulation component and receives state in-
formation back. The rover simulation component, in
turn, simulates the kinematics of the rover and its in-
teractions with che terrain. The simulator sends pose
information to the visualization component, which
continually updates its environment model and ren-
ders the scene for the viewer.

3 Underlying Technologies

The VIPER system is built on generic technolo-
gies for each of its subsystems, which are special-
ized with data or configuration information to work
with the particular robotic platform and environ-
ment. This allows the system to be used for visual-
ization, test, and design of different, novel, and even
imaginary robotic platforms. In particular, parts of
this technology have been used to model and sim-
ulate the Pathfinder environment. the Mars Polar
Lander robotic arm and camera, the NASA Ames

Figure 4: Simulation of K9 rover driving over a rock.

existing science toolset interface providing manual
control of the rover and its image sensors — this is
used for sequence construction. ‘In addition, a but-
ton was added to launch the VirtualRobot simulator.
The total effort required was a few days.

3.2 VirtualRobot Simulation
VirtualRobot was initially developed as an interac-
tive tool to control and study any kind of robot ma-
nipulator [Fliickiger et al.. 1998; Fliickiger, 1998].
The design of VirtualRobot was driven by the fol-
lowing requirements:

e no code writingnor kinematic model is neves=—

sary to describe the kinematic behavior of the
robot,

e the program is able to handle the kinematics of
any robot manipulator structure in real-time!,

e an intuitive user interface allows both novices
and experts to easily manipulate robots in a vir-
tual environment.

For these reasons VirtualRobot was based on a
generic kinematic generator: after reading a text file
describing the geometry of the robot, the program
builds a numerical solver which computes the di-
rect and inverse kinematics of the robot. The robot
structure can be serial (as most industrial robots),
parallel (as a Stewart platform) or hybrid (mix of
the previous two). A robot model is created in a
virtual environment and the user is able to interact
with the robot using intuitive 3D input devices (like a
Space-Mouse) or 6 degree-of-freedom force-feedback
devices.

VirtualRobot has been extended to enable the sim-
ulation of rovers in addition to robot manipulators.
The same kinematic solver can now also accommo-
date multi-wheeled rovers with passive suspensions
driving on uneven terrains (see Figure 4). In addi-
tion, rather than being controlled by user input, the
kinematic solver responds to inputs coming from any
other program through the network.

Lwe consider real-time from a human point of view:
refresh eate in the cange of 20Hz to 200Hz

covac Kby =
B (A oraiguaal Cotat.on ot nha covar !
> 37 S SETS JE T S I
BTSSR B N VR L)
])
wiodciver "3, .5 how =ne r=57e¢ i3 <oncralled |
1
Ceame L1 | 20¥.1%.0n the f:ic31" Hoogia ’
pos (-0.L17 -7 215). 20% ! I
act (930.0 7 3 0.9
pred 39
| |
link 1§ afin zight bogie i
pacimeters ‘ Tsezy 1.} r I) alpha 7.9 d 2.9 L I
t/pe 2 reavo.uta jounc '
pred U1l © awacarzhy 1 i3 cthild of "Ll
cange { -4%.7 13 1 ¢ Lumiz3 3¢ che joint
3rapnis object t> represdent thiz link
tilename (“ri3nC_ma.n_bogias wrl-.
! :
PN I
wheel 1 { + rear right wheel :

type 1 type of wheel (gecmetry)
pos { 0.9 0.7 3.2}
ori (90.0 0.0 5.0 |
pred 13
tilename (°right_vwheel.wrl-”)
)

constraint { 7+ the end-effeczor '3’
frame $ -7 must follow the input
sengor (& 1 1 // described as sensor °1°

}

) // end of rover Zescripcicn

- —Figure 57 Exceérpts of a robot file description used by

VirtualRobot to build and simulate a rover

The following two sections briefly review the robot
description file and the kinematic solver used in Vir-
tualRobot.

Robot description file

Any robot manipulator, rover or combination of both
can be described in a human readable text file which
is parsed by VirtualRobot. This file contains all the
geometric properties of the mechanical structure to
be simulated. The robot structure can be expressed
with the Khalil-Kleinfinger formalism [Khalil and
Kleinfinger, 1986] (which is also usable for multi-
branch structures, unlike the well known Denavit-
Hartenberg [Denavit and Hartenberg, 1955] nota-
tion) or by using regular reference frames (3 transla-
tions + 3 rotations). The robot is defined as a tree
structure from the base up to each end-effector or
wheel. For robots with kinematics loops, the desired
chain is closed by defining an additional constraint
between two branches of the tree. Similarly, declar-
ing a constraint between any body of the structure
and an input (3D device, network, etc.) will make
the VirtualRobot program compute the appropriate
inverse kinematic behavior of the structure to satisfy
these constraints.

The use of a generic description file (see Figure 5
for an example). to define robots allows rapid sim-
ulation creation for new robot and rover structures

thloce 14 plan
acie-Liar
"ftask 1d irive-la .commeat “drive 2.%a"
actloa Baselrive ‘parmmsters (0.2 0.0 0 1.9))
1 tASk 14 tura-ld commeat “turm right 7§ dage*
| sction basedrive pacsmeters (0.0 6.3 0 1.309))
j ‘task 1d drive-ie :commeat ‘drive 0.%a°
sction bdassdrive ‘paramaters (0.2 0.0 0 0.%))
’ ‘task id sesalc-l comseat “take moeaic of Tog1*
action icmesaic
parapsters (‘uul/m«-/pnl/p:_m'
300 %40 ¢80 3
0.1 0.8 0.7 -0.40.20.3 1))
‘branca 1d drasch-ca-time
compest “chooess route dased da time”
optiens
((optioa :id apti
‘aligidble-conditions ((time 0 60))
rutiliey t.0
: node
(block :td wrasen-{
‘ssde-list
((zask :1d drive-2a
icomment “drive -0.Se"
caction baselrive
‘paremeters (-0.3 0.0 0 0.8))

13}
(optiom :td oped
‘eligible~cenditions
({(sims 60 :plus-iafinity))
iutility 0.8
:nede
(block :id branch-2
:node-lise
<.

M

L NN

Figure 6: Excerpts of a CRL plan.

suspended aned the rover awaits further plans from
mission contronl.

CXand CRL were incorporated into the rover atl-
tonomy architecture used to control the Marsokhod
rover during a February 1999 field test 'Bresina ¢
al.. 1999] and the K9 rover during a May 2000 feld
test [Bresina =t al., 2001].

Customization of CX and CRL for VIPER
The CRL grammar is generic; only the command
and condition names change from one application to
another. The CX+execution semantics rely on the
general CRL properties and not the commaad and
condition names. As such, the central “execution en-
gine” is completely generic. The only specializations
needed are in terms of communication with the exter-
nally controlled rover (or simulation). These are ac-
complished with C++ subclassing that is completely
transparent to the execution engine.

In order to control the K9 rover, the CRL “com-
mand dictionary” was defined, as well as routines
that CX calls to translate CRL commands to mes-
sages to the rover. To incorporate CX and CRL into
VIPER, the same command dictionary was used, but
the translation routines were changed to communi-
cate with the simulation rather than the actual rover.
In all, the total effort was no more than a week. much
of that to separate out the parts common to the ac-
tual and simulated rover to avoid code duplication.

tions are respected. CX can be instructed to wait
for a subset of the preconditions (for example, the
start time window) rather than failing the execu-
tion of the node. CX receives state information from
the low-level rover control (or simulation). In the
envisioned overall rover architecture, CX will also
receive higher-level state information from a state-
identification module and resource information from
a resource manager. It uses this information to check
preconditions and maintenance conditions, as well as
to check the eligibility conditions of the plans in the
alternate plan library.

At each point in time, CX may have multiple
options, corresponding to the eligible options of a
branch point and the enabled alternate plans. CX
chooses the option with the highest estimated ex-
pected utility, computed over the remainder of the
plan. In the current implementation, the utility of
successfully completing an atomic action is fixed and
set by operators at mission control. From this atomic
utility and a model of the probabilities of various
events (such as a traverse taking longer than antic-
ipated), the expected utility of an entire branching
plan can be calculated.

When plan execution fails, CX reacts as specified
in the node, either ignoring the action or aborting
the execution and checking for applicable alternate
plans. If execution is aborted and no alternate plans
apply. CX aborts the eatire plan set and puts the
rover into a stable standby mode: all operation is

4 Illustrative Example

Consider a simulation of a rover moving in the Mars
Pathfinder environment. VIPER presents the viewer
with three main windows that show: 1} a 3D visu-
alization of a mobile robot at the Mars Pathfinder
landing site executing a plan, 2) a display showing
the VirtualRobot parameters, and 3) a 2D text dis-
play of the robot executive status. See Figure 2 for
representative screen images.

4.1 Scenarios

Consider the scenario where the rover is located next
to the lander. as in Figure 7. The next goals to
achieve may include getting a close-up mosaic of
Yogi, the largest rock in the environment, followed by
a traverse around the lander to near the second ramp
(Ramp2). Depending on the data storage available
after the mosaic ends, the rover may decide to tra-
verse via either side of the lander; one has more rocks
that are interesting scientifically, the other has fewer.
In either case images will be acquired of the targets
during the traverse. If the time is too short, the rover
will remain near the first lander ramp (Rampl).

These three main scenarios, shown schematically
in Figure 8 and graphically in Figure 7, are the result
of data, power. and time limitations on plaa execu-
tion,

The first scenario illustrates the effects of a time
shortage in the absence of any data storage short-

Apphcations

Planmng /

Autonomy
Research
Softwars - .
& H
Algorithms

Levels of Autonomy

T !

MSF Generic g 3

Modules ‘ g5
L

Common Interface

MSF |g
Simulation

Real Robotic
System

Real Worlid

Figure 9: Scope of MSF.

time simplify their integration into a more reliable
simulation.

As shown in Figure 9. MSF will provide simulation
environments which could be used at different level of

—————integratiom. For example a research labcould have

a complete system from the top level autonomy to
the low level hardware control: in this case MSF will
only provide a replacement for the robotic hardware
and the environment with the simulation. On the
other hand, one could need to test a very high level
autonomy component, without having the rest of the
system: in this case, MSF will also provide generic
components replacing the missing parts.

From an implementation point of view, MSF will
rely on the publish/subscribe scheme used in HLA:
each component of the simulation will communicate
with the other components using a standard set of
objects/messages defined for the purpose of MSF.
The HLA Run-Time-Infrastructure (RTT) manages
all the communications between the participants of
the simulation. The RTI also provides facilities to
address the problem of Time-Management which is
a key point in a simulation like MSF because its dif-
ferent components are not necessarly designed to run
in real time.

The Figure 10 shows a simple simulation example:
it is composed of several components which are all
connected to the RTI for communication. They also
have access to a separate database to avoid overload-
ing the network when accessing large objects like im-
ages. The autonomous software is decomposed into
two distinct objects for clarity: each uses a differ-
ent set of messages to interact with the simulation.
Cunsider in this example that they send commands
to a simulated robot. The kinematic simulator (like

Autonomous

) ————
e Softwars »
:' * tRover 3
Control} <
I ~ - -—- == messages
I —_ axampies
: | AUIONOMOUS ?
r————>»> Soltware o
¥ (Sciencel) %
e
i Database
1 23 ™
+ - Kinematic -4 -2
! Simulation | -3 —g’ -
2 -
]
Visualization -3 ——

/Data Logger‘ -g -

— g
| |SensorData '-El’ -3

l Generation ,‘.—g —?-.'—-—i

Figure 10: MSF Sample Simulation Instantiation.

VirtualRobot) will then compute the behavior of the
robot in response to the commands and return var-
ious sensor updates. If the autonomous software re-
quests the acquisition of scientific data (like an im-
age), then the sensor data generator will return ei-
ther simulated data or real data extracted from a
database. Visualization tools (like VIZ) could also
be connected to the simulation to help the user eval-
uate the behavior of the autonomous system.

The development of MSF will provide a set of tools
(simulation components / robotic systems library)
that should speed up the testing process for the de-
velopers of autonomous systems. In addition. the
proposed framework will help advance the develop-
ment of standardization of communication between
autonomous software and robotic hardware.

References

[Bares and Wettergreen. 1999 J. Bares and D. Wet-

tergreen. Dante II: Technical description, re-
sults and lessons learned. [International Journal
of Robotics Research, 18(7):621-649, July 1999.

(Bernard et al., 1993] Douglas E. Bernard, Gre-
gory A. Dorais, Chuck Fry, Edward B. Gamble
Jr., Bob Kanefsky, James Kurien, William Millar,
Nicola Muscettola, P. Pandurang Nayak, Barney
Pell. Kanna Rajan, Nicolas Rouquette, Benjamin
Smith. and Brian C. Williams. Design of the re-
mote agent experiment for spacecraft autonomy.
In Proceedings of the 1998 IEEE Aerospace Con-
ference. 1098.

(Bresina et al., 1999] J. L. Bresina, K. Golden, D. E.
Smith. and R. Washington. Increased fexibility

