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Statusfrom ApplicationsPointof View

• ApplicationstoReal-WorldProblems
- N-Ssolution of full configuration was a big goal in the 80s

- Numerical procedures and computing hardware have been

advanced enabling simulation of complex configurations

• Some Examples of Successful Applications

- Components of liquid rocket engine

- Hydrodynamics (Submarines, propellers .... )

- Ground vehicles (automobile aerodynamics, internal flows...)

- Biofluid problems (artificial heart, lung, ...)

- Some Earth Science problems

• Current Challenges

- For integrated systems analysis, computing requirement is very large

Analysis part is still limited to low fidelity approach
- For high-fidelity analysis, especially involving unsteady flow, longturn-around

time is often a bottle neck _ Acceleration of solutiontime is required

Major Drivers of Current Work

• To provide computational tools as an economical option for developing

future space transportation systems (i.e. RLV subsystems development)

Impact on componentdesign
Increase durability/safety

Rapid turn-around of high-fidelity analysis
Accurate quantification of flow

(i.e. prediction of low-induced vibration)

Impact on system performance _ More completesystemsanalysis
using high-fidelity tools

• Target
Turbo-pump component analysis _ Entire sub-systems simulation

Computing requirement is large:
_The goal is to achieve 1000 times speed upover what waspossible in 1992
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_kl_ Objectives

• Mission of Conference

To bring together Industry and Academia & (Government)

To nurture the next generation in computational mechanics

• Objective of the Current Talk

To discuss some current issues in large scale computing for
mission-oriented tasks

Viscous Incompressible Flow

• Formulation

Can be viewed as a limiting case of compressible flow where the flow

speed is !nslg_ificant cornered to the speed of sound (Preconditioned

compressible N-S eq.)
Artificial compressibility approach

- Artificial CompressibilityMethod (Chorin,1967:Temam,1977)
ADI Scheme,FD (Central*diss)(Beam&Warming,1978;Briley-McDonold,1977)
LU-SGS,FV(Central÷diss)(YoonandJameson,1987..)
LineRelaxation,FD(Upwind) (.r.MacCcrmack,1985)
GMRES,FD (Upwind)

Or truly incompressible
Pressu re projection approach

MAC (Harlow and Wdch, 1965)

Fractio_l Step Method (Chorin, 1968; Yanencko, 1971; Marchuck, 1975_._)

SIMPLE type Pressure Iteration (Caretto et ai.° 1972; Patanka & spalding, 1972...)

Use derived variables

- Vorticity-Velocity(Fasel,1976;Denniset ah,1979;Hafezet al., 1988
Str_eamfunction-vorticity



Artificial Compressibility Method

• Formulation

- Introduces hyperbolic behavior into pressure field.

Speed of pressure wave depends on the artificial compressibility parameter, IL

- The equations are to be marched in a time like fashion until the
divergence of velocity converges to zero.

Relaxes incompressibility requirement.

Time variable dur,ir_j this processda¢_ nat reprcaent physicaltimc step.

For time-accurate solutions

- Iterate the equations in pseudo-time level for each time step until

incompressibility condition is satisfied.

Efficient sub-iteration is the key for success

_===_... ArtificiaI Compressibility Method (INS3D-UP)

• Time accuracy is achieved by subiteration
Discretize the time term in momentum equationsusingsecond-order
three-point backward-difference formq.dn

3q'" - 4q" + q'" = -(rhs)'"
2_t

Introduce a pseudo-time level and artificial compressibility,
Iterate the equations in pseudo-time for each time step until
incompressibility condition is satisfied.

I
_(p ......._p .... )=_/_ .....

1 5 , , , 3q ..... -4q" +q'-'

_(q ..... - q .... ) = -(rhs) ...... 2_t

• Code performance
Computing time : 50-120 ms/grid point/iteration

Memory usage: Line-relaxation 45 words/grid point
GMRES-ILU(O) 220 words/grid point
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_l==l" Pressure Projection Method(INS3D-FS)

• Approach in generalized coordinates

- Finite volume discretization

- Accurate treatment of geometric quantities

- Dependent variables - pressure and volume fluxes

- Implicit time integration

- Fractional step procedure

Solve auxiliary velocity field first,

then enforce incompressibility o3ndition by solving a Poisson

equation for pressure.

• Codeperformance
- Computing time : 80 ms/grid point/iteration
- Memory usage: 70 words/grid point

Pressure Projection Method

• Fractional-step

- Solve for the auxiliary velocity field, using implicit predictor step:

l(u', u') -Vp" h(u"
i + )

- The velocity field at time level (n+t)is obtained by using a

correction step:

2 n÷l

- The incompressibility condition is enforced by using a Poisson equation

for pressure (p" = y" - p" )

V:p' 2-_-V- U °

At
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Impulsively Started Flat Plate at 900

• Time History of Stagnation Point

3"

I ............
i" ....... F-rakerrJxm Sc_.(Yo_ida. t9_)

Time

• Code

1982-1987

1988-1997

History of INS3D Development

• Applications

Original version

(Kv,_k.c_)

_E PhosaTT+

I-4GMRcd_sig_

INS3D-UP

(l_ogtr_, Kiris, Kwak)
INS3D-I.U

_oon, K_k)
INS3D-FS

(Rosenfeld, K_ris,Kwak)

Inducer

Iml_ller

Human implantation.199B

(_kkey/NASA VAD

199B-Present Combined version

(_ris. Kwak)
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Current Challenges

Challenges where improvements are needed
- Time-integration scheme, convergence
- Moving grid system, zonal connectivity
- Parallel coding and scalability

• As the computing resources changed to parallel and distributed
platforms, computer science aspects become important suchas
- Scalability (algorithmic & implementation)
- Portability, transparent codinget_

• Computi_ resources
- "Grid" computing will provide new computingresources for

problem solvingenvironment
- High-fidelity flow analysis is likely to be performed using "super

node" which is largely based on parallel architecture
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Parallel Implementation of INS3D

• INS3D-MPI

(coarse grain)

T. Faulkner & J. I_cles

• INS3D-MPI / Open MP
MPI (co_se grain) + OpenMP (fine grain)

Implemented usin 9 CAPO/CAPT tools

H. Jin & C. Kiris

MPI
IIII

Group 1 Group

Group 1 ..... Group N

• INS3D-MLP
C. Kiris O O OOO

Parallel Implementation of INS3D

• Previous Work (SSME Impeller)

PreJsure ._.Z " "" .... . "_'" ._ ''_"4'.........*..........."............:,_Y
(:_c.mf_m_l _ from _, iIde (d_

I 1 I , I I l I ; [

_',.4 '._- -:RIS.I_3|m, ...... ,-- -_ --- l_-_[_1

I
ml • w m w _ i _ _i • I • • i

Ci_-,n_l _IIe _ _;*:_I_,_l_ (d_I)

"_|il__<-,"i".,._..i,-._ .... _...

•__.tca:mf_e,.'u_l t.nl[Ic fcom ¢ac'lio¢__ (_)



Parallel Implementation of INS3D

MPI coarse grain + OpenMP fine grain TEST CASE : SSME Impeller

24 zones/2.8 ,Million points 60 zones / 19.2 Million points

,o :_ _-_ 1=.=. PoJr,t,

1 II I I l,, i I

4 O 10 _10 3040 100 I t0 _1 30,10 100 2100300

Number of CPlJI Number of (:PUs

Parallel Implementation of INS3D

Multi-Level Parallelism (MLP)
INS3D-MLP ' MLP routines + OpenMP
Shared Memory MLP Organization for Origin 2000

MLP_I
Common/local/aa,bb

MI.P Proce_ 2
Corn ,'J,lon//oceJV _Hl, J_

Zones 2,3,5
OpenMP

Conanon/g/oba// x,y,,z
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e=,= Parallel Implementation of INS3D

INS3D-MLP (bIAS MLP no pin-to-node) TEST CASE : SSME Impeller
/ OpenMP 60 zones / 19.2 Million points

=
I I\ _ I--O- MPl-OpenMPl-_rid

T i.... !"-

" I -F-f___

lo = =o_) 1oo _=o0 w == 40 !oo :m =ms

Number ol CPUa Number o_ OPUs

Space Shul_le Main Engine Turbopump

Diffuser
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Space Shuttle Main Engine Turbopump

Overset C-rid System

15 Blades

23 Zones

M Points

23 Blades

31 Zones

8.6 M Points

Shuttle Upgrade SSME-rigl

blade
grid

background grid

Impeller Grid ;
60 Zones 1 19.2 Million Grid Points

Smallest zone _ 75K/Largest zone : 996K
Less than 192 orphan points,

grid for tip
¢learssce

Hub grid
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A Parallel Implementation of INS3D

INS3D-MLP / 40 Groups
RLV 2 "J Gen Turbo pump

114 Zones / 34.3 M grid points

___± __L. _ L l ,I __ L J--.... _lI --_,,I

• ] ! 1 ' H

H
_ oz.iC_x.l-F_-I-=-°_°°p_n Fl
41_)---?_',.,.r_x_I_ -I- _ no-pinM

40 100 200

Per processor Mflop is

between 60-70.

Code optimization for

cache based platforms

Is currently unclerway.
Target Mflops is to
reach 120 per

processor.
Increaslng number of

OpenMP threads Is also

the maln o_ectlve for

this effort.

Number ol CPUI

SSME-rigl/Overset Grid System

Initial Start: first time step

lnll_

|i
t!
|i

w.1
wl
L1

Time Step 5

Velocity colored by magnitude

Impeller started at 10%of

designspeed
Impeller rotated 2.25 degrees
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SSME-rig! / Initial start

Time Step 7: Impeller rotated 3-degrees at 30% of design speed

IN

PRESSURE VELOCITY MAGNITUDE

SSME-rig! / Initial start

Time Step 18: Impeller rotated 8-degrees at 100% of design speed

-l,m

....

i!
PRESSURE VELOCITY MAGNITUDE
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Summary of SSME Turbopump Simulation

Problem size:
- 34.3 Million Points

- 800 physical time steps in one rotation

CPU requirement:

- One physical time-step requires less than 20
minutes wall time with 80 CPU's on Origin 2000.

- One complete rotation requires one-week wall
time with 80 CPUs.

I/O:

- Currently I/O is through one processor. Timing

will I_ improved with parallel I/O since time-

accurate computations ore I/O intensive

Parallel Efficiency:

MLP/OpenMP version requires t9-25% less

computer time than MPI/OpenMP version.

Pin-to-node for MLP version reduces computer

time by 40%

Discussion on Numerical Procedures

• Finite Difference

- Based on Taylor series expansion _ Requires smooth grid

- .Need specia! care for grid singularity

- Generally easier to use fine grids near wall at high Reynolds number

• Finite Volume

- Formulation is mace physical (conservation of properties)

- Viscous flux calculation is not as straightforward
- Difficult to implement higher order schemes

• In actual implementation, however,
- These differences become unclear

i.e. - FV in curvilinear coordinates requires lots of averaging depending on

definition of variables such as staggered vs cell vertex arrangement

- Both FD and FV implementations are very similar near grid singularities

- Major differences come from time integration scheme which also affects

the computational efficiencies, especially, for unsteady flow computations
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Discussion on Applications

• Rapid turn around can be accomplished through the use of

- Algorithm : convergence acceleration such as multi-grid, and GMRES

- Parallel implementation

• Total process time can be reduced by

- Automatic solution process including CAD to grid procedure

• Need further development of methodology as well as physics modeling for

- Deep understanding of flow physics such as unsteady flow characterization for

better aeroacoustics modeling,and flow induced vibration

Is LES method mature enough for this?
- Need to matrix IT tools to flow simu_tion for smo.-t flow control and optimization

• Efficient extraction of information is still a challenge

On top of all these we still need trained CFDers to solve many unsolved

real world problems, for development of flow devices and for better

understanding of flow physics
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Back up charts

Parallel Implementation of INS3D

INS3D-MPI - coarse qrain
lmplancntcd by T. Faulkncr & J. Daclcs

Group I

l
N.o_d J_PtJ" m

Group 2 Group 3 Group N
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Parallel Implementation of INS3D

INS3D-MPI/OpenMP

MPI (coarse grain) ÷ OpenMP (fine grain)

Implemented by using CAPO/CAPT tools

OpenMP

threads

MPI

OpenMP

threads

Group 1 ..... Group N

f .--#. Parallel Implementation of INS3D

MPI coarse grain + OpenMP fine grain TEST CASE : SSME Impeller

Z4 zones / 2,8 Million points
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ParallelImplementationof INS3D

I TEST CASE : SSME Impeller

MPI coarse grain + OpenMP fine grain 60 zones / 19.2 Million points

_l--_ --J--_ i r lIIlf ' I

Z
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Number of CPU1

Parallel Implementation of INS3D

OpenMP with two different solver
TEST CASE : SSME Impeller

60 zones / 19.2 Million points
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Parallel Implementation of INS3D

MPI coarse grain + OpenMP fine grain
TEST CASE : SSME Impeller

60 zones I 19.2 Million points
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Parallel Implementation of INS3D

INS3D-MLP (bIAS MLP no pin-to-node)
/ OpenMP

TEST CASE : SSME Impeller

60 zones/19.2 ,Million points
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Parallel Implementation of INS3D

1NS3D-MLP/OpenMP vs. -MPI/OpenMP

_0_ _ ...... = | 1 J iwel i

-O-.- MPI-OpenMP I-ly_dd
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TEST CASE : SSME Impeller

60 zones/19.2 Million points
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Parallel Implementation of INS3D

INS3D-MLP

GMRES-ILU(0) solve r - 20 Groups

TEST CASE : SSME Impeller

60 zones/19.2 .Million points
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