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Abstract

Manv new Barth renmote-sensing instruments are erbracing both the advantages and added com-
plexity that result from interferometric or fullv polarimetric operation. To inerease instruent
understanding and functionality, a wmodel of the signals these instriunents measwre is presented. A
stochastie model is nsed as it recognizes the non-deterniinistic natire of any real-world measurements,
while also ])1‘0\'1(1&1)}.‘,‘ a tractable mathematical framework. A stationary. Ganssian-distributed model
structure is proposed. Temporal and spectral correlation measures provide a statistical deseription
of the plivsical properties of colierence awd polarization-state. Froui this relationship. the model is
mathematically defined. The wodel is shown to be unique for any set of physical parameters. A
method of realizing the model (necessary tor applications sieh as synthetic calibration-signal geu-
eration) is given. and computer simulation results arve presented. The siguals are constructed nsing

the output of a nulti-input, mmlti-outpat lincar filter systenn. driven with white noise.



1 Introduction

Radio-interferometers and polarimeters ave being nsed more widelv in remote sensing tor probing the
Earth's lands and oceans (c.g.. (Kerr. 1998, Piepmeter and Gasiewski. 2001].) While these techmigues
have a rich history in the space sciences, Farth-viewing systens are relatively new.  There are
distinet differences in the operation and calibration teclmiques of spacee-viewing telescopes versus
orbiting Earth-viewing instruients. Operationally. Earth-viewing hagers Lave a fraction of the
integration time available compared to radio-telescopes: seconds ve. hours.  Additionally, radio-
telescope elewnents Lhave extremely narrow beats (~ 0.5 compared to low-Earth orbiting hnagers.
whose wide beams (~ 60 - 90°) are required to cover a reasonable swath. Perbaps more important
are the calibration differences. Interferometric radio-telescopes are typically calibrated using extra-
solar point sources. whereby the system can be characterized to within a common gain cocfficient
[Thompson et al., 1901]. Furthermore, it the fnx of the point sonree is know, the interferometer can
be absolutely calibrated. There are no obvious polut sowrces when looking downward at the Earth.
at least ones that cmit cnergy within the protected spectrum for passive obscrving. Furthermore.
becanse of their large beamwidths, Earth-viewing interferometers cannot sclectively view a single
extracsolar puint source. (Besides. the time and operations required for regularly rotating a spacecraft
for calibration would cause data loss and inerease mission costs.) Therefore, a different calibration
technique must be devised for orbiting Earth-hnaging systenis. This paper lays the gronndwork for

«ainch a techmique by rigorously exaunining the sipnals that these radionweters measnre.




While polarimetry and interferometry are wsially investigated independently, they are hased
upon the same idea measuring the interdependence of two siguals. For polarimetry these siguals
are the vertioal and horizontal field amplitudes (or some equivalent pair.) Two-beam interferometry
involves measuring the colierency of two signals separated in space and/or time. In order to fully
nnderstand these instonents. it is desirable to have an accurate tnodel of the types of signal pairs
they measure. This type of model can be crploved in mathematical analysis, computer sinmilations
awed for the generation of svuthetic calibration sighals (one possible on-arbit calibration tool.)

Electromagnetic waves generally have some degree of randomness — an unpolarized component
in polarimetry or an incoherent component i1 interferometry. For this reason it is logical to cruplov
a stochastic method when modeling the pair of signals. The relationship between the statisties of the
model and the standard terminology in polarimetry and interferometry shonld be well understood.

The wodel structure. statistical paraineters and constraints are described in Section 2. See-
tious 3 aud 4 deseribe how this madel’s temporal and spectral corrclation functions can define
polarimetric and interferometric properties. Using this framework. Section 5 shows how a com-
prehensive model can be miguely determined from the physical properties of the modeled wave.
Section 6 gives a computational method for realizing the model. A Snmmary is then presented
followed by an Appendix contaiuning mathematical derivations. A polarimetric examnple is carried

through Sections 3, 5 and 6 in order to demonstrate the ideas presented,
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2 Model Structure and Basic Properties

2.1 Mathematical Signal Representation

The standard literature in hoth polarinietry and interferometry makes extensive use of a ‘narrowband’
signal representation (e.g. {Heeht, 1987, Brossean, 1998].) This representation alludes to the fact
that the measured signals exist within a finite frequency band (centered o sowe frequency wp.) The
general form of this representation is shown helow.

1y = alt)ycoswyt - b(#) sinwpt

(1)
= Reffa(ty + ib()]e="}

It should be noted that a narrowband representation does not inply a siwall fractional baudwidth.
As wentioned in the previons section. the wadel nust deseribe apair of signals. These sipnals

will be labeled X (#) and Y (#) and have a narrowband definition as given helow.

X)) =  A{t)cozwot - B{t)sinwyt
= Re{P(t)c=ot)
{2)
)v(f) e (‘(f)('()?\'.l._'uf D(f).\‘in,u“f

= R(‘{Q(f)w“‘""}

The functions are capitalized to indicate that they are random processes. It will also be assunmed that
the model is stationary and Gaussian distributed. Stationarity is 4 conmon assumption i optics
[[lecht. 1987} and a Gaussian amplitude distribution can be justified by appealing to the Central

Limit Theorem. The consequences of not assumning a Ganssian distribution are disenssed at the end




of Chapter 5.

Tn order to cusire statiouarity in the above signal model (Equation 2), X{f) and Y (1) must
be jointly-stationary. For simplicity it will be assumed that A, B(). C(#) and D(t) (and heuce
P(t) and Q(#)) wust also be joiutly-stationary. To produce a Gaussian-distributed model for X (#)
and Y (#) it will be assumed that A(t). B(H). C{t) and D(t) are Ganssian processes. which leads to
Divariate Gaussian distributions in the complex plane for P(t) and Q).

The random processes A(t). B(). C(t) and D(#) arc real, jointly-stationary and Gaussian. This

means their multivariate probability density funetion is cotpletely defined by their means and sec il



order moments (shown helow.)

ELAD] = pa

E[(‘(f)] = ¢

ElChc - 1)

E[DIHD(t - )}

E[B(H)D(t - 7);

E|C(H)D(t — 7)]

LB = pp

ED{t) = o

Rp(7)
Rap(T)
Rac{m)
Rap(r)
Rpe(r)

Ryp(T)

Rep(r)

-

The functions above can be used to ereate a covarianee matrix and mean vector for any set of points

within the signal. As these two properties define a nmltivariate, Tnussian distribution. the above

fimetions give a complete deseription of the model.

It is also possible to find the weans and second order montents for P(t) and Q(t) by noting that



P(t) = A(t) + i B(#t) and Q(t) = C(t) + i D(#) (see Equations 1 and 2.)

pp = E|PM)] = ELA() + i Bt = pa +ipn

o = EQ)] = E|CH) +iDH)] = pe + ipp

Rp(r) = E[A@) +iBOWAE 1) i Bt 7))

= Ra(r) + Rp(r) ~i(Rap(7) - Rap(-7))

Ro(r) = E[C() +iDUNC(t 7)) - i Dt - 1)

= Re(r) + Rp(r) ~ ilReplr) - Rep(- 7))

Rpg(r) = E[M) 4 i BUNC( - 1) =i D(t - 7))
= Rac(7) + Rpp(r) - i(Rap(7) =~ Rpc(7))

2.2 Correlation and Spectral Functions

It is often nseful to work with these second order moment funetions in the Fourier domain. These
frequency domain representations are known as speetral functions and will he denoted by an S
e, 3{Rpv ()} = Sy (@), where 3{-} denotes the Fourier transtorm.

Correlation functions and their corresponding spectral funetions cannot take on any arbitrary
forin there are theoretical restrictions on the range of legal function sets. These restrictions

(given helow) are most easily presented with respect to the spectral funetions.

—_—
hda g
—

Siw) 20 Spe(w) 20 [Sev(w)] € vSir(w)dv(w)

It can he shown that @ complex, bivariate, stationary random process can be generated to have any

spectral functions that satisty Equation 5.



It was stated in the previous section that a real. stationary. multivariate, Gaussian process is
wiquely deseribed by its means and correlation functions {(or equivalently speetra.) This is not the
case for a complex, stationary. multivariate. Ganssian process. This can he demonstrated by exai-
ining Equation -4 aud noticing that there axe multiple sets of real and maginary componeits (A(t).
B(t), C(t). D(t)) that will result in the same correlation functions for P(t) and Q1) i.e. speci-
fying the correlation functions of P(#) and Q(#) does not nmiguely define the model. To completely

determine the model it is necessary and suthicient to define the fouctions given in Equation 3.

3 Polarimetry — Background and Relation to the Model

This section presents published naterial [Pancharatnam, 1975, Drosscat. 1998, Ishimarn. 1991} in a

way that relates it to the proposed model structure.

3.1 The Stokes Parameters

Polarimetry involves studying the relationship between the horizontal and vertical fields of an elec-
tromaguetic wave. These two fields are nwsually written in narrowhband forni.
E“(f) b= R(‘{El(t)("u”t}

(6)
Ev{t) = R('{E._,(f)(.'w-.,r}
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The polarization state is generally measured wsing the ‘Stokes purameters’. These parameters are

defined in relation to the narrowband formulae above.

I CAE(DF >+ < Ea(D)]* >
Q <|E(D)E > - < B >
= (7)
0 Me{< Ey(1E;(t) >)
v 2hin{< Ey(WES(t) >}

This indicates that four parameters are needed to uniquely specify the polarization state of a wave.

These four parameters are known to obey the incquality given below,

I> QP+ 172+ 17 (¥)

The ratio of the two ters in Equation 8 is known as the degree of polarization’.

Earth sensing radiometric instrmments lend themselves to the nse of the Smodified Stokes parame-

ters’. These are typically used when the vertical and horizontal polarizations correspond to preferred

axes tangent and normal to the Earth's surface.

The parameters ) and s,

L < iEl(f)lz > -]—l-,—q
9 < Eu (D] > Le
- = ()
5 MRef< ELOE; ) >) G
819 21111{< El(f)]:s(f) >} V

represent the power in the horizontal and vertical channels respectively.

In the past many Earth-sensing instruments have only measnred these two properties. However,
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recent Earth-sensing instruments are now weasuring the full set of four parameters this increases
the need for a general model of polarized signals.

The inequality in Equation 8 can casily be rewritten in teris of the wmodified Stokes paranetoers.

The result is given below,

RAVETE, (1)
It is also obvious from the definition in Equation 9 that the inequalities below are true.
sp 20 sp > 0 (11)

The polarimetric theory given above cau be related to the model structure by invoking station-
arity. Stationarity implics that the probability of any given polarization state is constant across the
signal. In this case, stationarity also implies ergodicity which means that the expected valnes of the
random processes are egial to the corresponding tine averages. If X(1) is set to model Epp(#) and

Y (#) models Ey-(t) then the modificd Stokes parameters can be related to the correlation functions




as shiown below.

S1

3

S

<P} >

<IQF >
2Re{< P(HQ™(1) >}
2lm{< P(HQ*(t) >}

Rp(0)

R (0)
QRe{Rpo(0)

2L { R pe ()}

J b’[’(w”(l.&.‘
! H(_z (.;,‘){ILU
QRI‘{‘[ SPQ(u‘}(}w‘}

oM [ Spolw)dw)

E[P(t)P"(1)]
E[QMQ"(1)]
Me{EIPHQ* ()]}

2Am{ 2| P(H)Q* (1)}

3.2 Frequency Distributed Stokes Parameters

The analvsis above shows that the polarization state of the wodeled wave is determined by the

arca under the spectral fumctions. While this is correct. a more general interpretation is given in

Pancharatnam [1975). In that paper it is shown that each frequency component of the wave ean

be treated as a single. independent wave with correlation properties dictated by the spectra at that

frequeney. The correlation fiunctions are a measure of the inferdependence between or within the
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signals. As the spectral functions show how this interdependence is distributed across frequency. the

polarization state at each frequency is deterined by the spectral finietions.

s1(w) Splw)

sa{w) ~ Sep(w) (1)

sa(w) 2Re{Spo(w)} |
i sq(w) |1 2M{Spolw)} ]

It should be noted that the variable w above represents awcasure of distance from the central
frequency wy. Also. the Stokes parameters in Equation 13 are actually densitios i.c. their units
are power per unit bandwidth rather than just power.

To get the final wave, the components are considered to he incoherently (as they are independent)
summed over frequency. This is intuitively satisfving as speetral fiumctions sum under independent
addition and Equation 13 becomes Equation 12.

If Equation 13 is substituted into the inequalitics given in Equations 10 and 11 then the following

inegnalitios are produced.

2/ Sp(w)Sg{w) > 2/Re{Spqg(w)}? + Im{Spglw)}?

= |Spo W)l € VSr(w)Sylw) a4

Splw) =0 Solw) >0

"

It can be seen that these are the same inequalitios as those stated in Equation 5. This means that

the theoretical restrictions on the model given in Equation 5 are equivalent fo restrictions on the

moditied Stokes paraweters and hence do not linit the range of pelarization states that cau be
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modeled.

The conclusion that can be drawn from this seetion is that the polatization state (distributed over
frequeney) to be modeled can be used to define the model parameters Sp(w). Sp(w) and Spolw)
(which in turn can be ased to define Rp(r). Ro(7) and Rpo(r).) This is demonstrated on an
exaple signal with a contrived. frequency-dependent polarization state.

Erxample: The signal to he modeled s 5 distinet polarization bands within its overall banduwidth
IBW . The lowest fifth of its spectrum is unpolarized and has unity power density (‘modified Stokes
densities” are [0.5,0.5.0. 01): the second fifth has a deqree of polarization of 0.5. unity power density
and the polavized component is left-civendar (10.5.0.5.0 - 0.5)): the central fifth is completely lincarly
polarized at 307 and has unity power density (1.75,.25,0.860, 0]); the fowrth section has a degree of po-
larization of (0.5, unity power density and the polarized component is right-cireular ([0.5.0.5.0.0.5]):
and the hiyhest frequency scetion is also unpolayized with wnity power density (10.5.0.5.0.0]). By
using Equation 13, the model parameters shown i Tuble 1 are found.

The maodified Stokes parameters for the total waee can be: found by perforniing the integrations i

Equation 12. This results in the modified Stokes vector [1.1BW. 0.0BW.0.316 BIW.0;.

Ttalics used

for example

text



4 Interferometry — Background and Relation to the Model

4.1 Basic Coherence and Interference

Two beam interferoetry measnres interference and is elosely related to the idea of coherence. as
explained in [ITecht, 1987]. Interference is produced by the addition of two waves that have been
separated in time and/or space. It is generally assmned that polarization effects can be ipnored
and that the space/time separation produces a time delay 7 between the signals. The time delay is
typically produced by a difference in propagation length and hence in time of flight. Stationarity is
also usually assumed. so the two signals can be modeled as X (1) and Y (- 7) as given in Equation 2.

Interference ocenrs when the two heams are added. This sum s expressed below,

-t
—

Z(1) = X(1) + Y(t — 1) = Re{[P(t) + QU — T)¢ =T|e=") (12

1t is the time-averaged, intensity of this s (the square magnitude of S(#)) that is observed in
interferometry. Constructive interference oceurs when P(#) and Q(f — 7) are in-phase and add to
produce a large magnitude. Destrietive interference ocenrs when they are ont-of-phase and add to

produce a small maguitude. This gives bright and dark interference fringes respectively.

I = < Z{H)Z*H) >
= < PHP () > 4 < Qt ~ 7)Q*(t ~ 1) >
(16)
+2Re{< P(HQ(t — T)e™~PT >}

pens I'“(O) + r-_r_)(()) + 2R('{F12(7‘)}
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The final step makes use of ergodivity. The functions I11(7). Tua(7) and Tyz(7) are known as the
self- and mutnal-colierence functions. They are comimonly used to define the colierence of a pair of

waves and are defined below.

To(r) = < PPt 1)>c" = Rp(r)e™T
Tap(r) = <QUQT(t~T)> =07 = Ry(r)e” ()
Tafr) = < POt 7)»e" = Rpg(r)etor

Equation 17 shows how the coherence properties of the signals to e modeled determine the model
parameters Bp (7). Ro(r) and Rpo(7) (whichh in fnrn can be used to define Sp(w), Solw) and

Spe(w).)

4.2 Useful Functions in Coherence and Interference

There are a variety of useful measures defined by the colierence functions a brief sininary of
some of them is given here.

The fual term in Equation 16 is known as the interference tern Mathematically. it is this term
that produces the interference fringes (the other two terns are simply coustants.) So. thie shape
of the fringes governs the form of T2(7). which in turn determines the model parameter Rpo(7)
(and Spo(w).) The model paranseters Sp(w) and Sg(w) are the power spectral densities of the two
signals  i.c. they determine how the power of the signals is distributed about wy. Also, if & sigual
were to interfere with itself. it would be the self-colierence functions (given by Rp(r) or Ro(7)) that

would prodnee the interference ter.
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An important interferometric property is the fringe “visibility function’. This funetion is defined
by the intensity given in Eguation 16,

Inm.r - [min _,, 2][-12(7” -)IRPQ(T)!

- : - 18
I:uu,r -+ Imiw F]l(()) + r))(()) RP(“) t [{(}(“) ( )

V=

Here it is assumed that the oscillatory exponential terns in I'yp(7) varies noels faster than the fune-
tion's magnitude. It is often the case that Ty (0) = Taa(0) and the visibility function in Equation 13
recluces to the absolute value of the *complex degree of coherence” (V= [y (7).

[ia(7) _ Rpo(r)e”
VIn(O)(0) ' Rp(0)Re(0)

Ti2f7) = (19)

A siniilar function to the cowplex degree of cohierence is the “complex degree of spectral coherence’
(sce [Goodinan, 1985].) This funetion gives a measure of the distribution of the degree of coherency
across frequency (a shmilar idea to the distributed polarization coneept preseuted in Seetion 3.) The

function is expressed in ters of the spectral representations of the coherence faetions (G (w) =

'\\S{I—'H(’T’ } Cg) e \S{Fn( } and glf_;(.c) e \\S{ru(]‘)})
5 (w ) A"'PQ(M-’ ...... w'”)
) = — S — _ (20)
1 VG11(w)Gn VS (w — wo)So(w ~ wo)

The following properties of the spectra can he shown to be true.

Gulw) >0 Guw)=20 0< [pplw)i<l (21)

The above equations imply that the inequalities in Equation 5 are always satistied. This means that
the theoretical limits on the model do not limit the range of partially coherent signals that can be

wodeled.
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This section has shown that there are a variety of reluted inferferometric aud cohereney properties
(e.g. the coherence funetions or the interference tenn, the comnplex degree of colierency. the visibility
funetion. ete.) that can be used to define the wodel. As in the polarimetric case, the functions Splw).
So(w) and Spg(w) (or Bp(r). Ro(7) aud Rpg(r)) can all be specified by the phvsical properties of

the wave.

5 Completely Defining the Model

To completely define the model the functions iu Equation 3 mmst be specified, Ju Sections 3 and {1
it was shown how the physical properties of the waves to be modeled (in ecither the polarimetric
or interferometric case) can be wsed to define the correlation funetions of P(f) and Q). However,
in Section 2 it was shown that these correlation functions are insufficient to completely define the
model {as there are many sets of the functions in Equation 3 that will result in the same correlation
functions for P(t) and Q(1).)

It can also be shown that while exteusive use bas been made of the fact that P(t) and Q1)
are stationary (as ave A(#). B(t), C(t) aud D{t)). this does not gnarantee that X(¢) and Y () are
also statiomary. In this section (aud the correspouding Appendix) it will be shown how enforeing
stationarity on X (t) and Y(#) allows the model to be completelv defined using ouly the correlation

frnetions of P(t) and Q(f).
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5.1 Consequences of Enforcing Stationarity

The first step in enforeing stationarity is to give the constraints it places on the fuuctions in Equa-

tion 3 {see Appendix A.)

jia = g = e pep = 0

Rc(7)

H_.;D(T)

Rap(T)

Rep(T)

(22)

Rpl(T)

Rpp(7)

~Rpe(r)

~Rap(~7)

Rep(—7)

The above equations are iwportant because they show that rather than having four constants and

ten fnuctions to find (as in Equation 3), there are now only six Mnetions (two of which must be

odd-synunetric.)

An interesting result can be stated from Equation 23. By looking at a single signal (say X(f))

and its in-phase and quadrature components {A(#) and B{t)) it can be seen that R4(0) = Rp(0) and

R4p(0) = 0. This weans that at any given tine the in-phase and quadrature components have the

sane variance and are nncorrelated. Since this is a Ganssian process, the result is that the anplitude

of the sipnal is Ravleigh distributed and the phase is uniformly distributed. This result is stated in

[Brossean. 1998},
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Equation 23 also results in X () and Y(#) being zero mean and having a well defiued set of
correlation functions.

Ry(1) = Ra(r)coswT -+ Rap(7)sinwer

Ry (1) = Re(T)coswoT + Rep(r)sinwyr (24)

Rxy(r} = Rac(r)coswyt + Rap{7)sinweT
By substituting the relations in Equation 22 and 23 into Equation 4 it can he seen that P(#) and
Q(t) must be zero wean and have correlation functions as given below.
Rp(r) = 2(Ralr) ~iRap(7))
{25)

RQ(T) = 2{Re(T) iRep(TY))

Rpo(t) = 2Rac(t)—iBRap(7))

Tlie cquations above are significant because there is now only one real function defining each of the

real aud imaginary parts of the spectra of P(t) and Q(f) (c.f. Equation 1.)

5.2 Mathematical Model Definition

Equation 25 implies that there is now only one set of correlation functions for Alt), B(t). C(t) and
D(1) that will produee a given set of correlation functions for P and Q(t). This set of correlation
functions is found by simply taking half the real and imaginary parts of Rp{7). Ro(7) aud Rpo(7).
This resnlts in the six functions required in Equation 23. It should be noted that Equation 2%'s
odd-symmetry condition on Rap(7) and Bep(7) is always satisfied as Rp(7) and Rg(7) are always

corjugate-svinetric (this is a consequence of Sp(w) and So{w) being real. as huplicd in Equation 5.)
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This nethod of deternining the correlation functions of A(). B(t). C(t) aud D(t) can also be

expressed in the frequeney doain.

Ra(r) = IRelRp(r)} = H{Rp(r) + Bp(7))
= Salw) = §lSplw) + Sp(-w)l
Re(r) = 3Re{Ro(M)} = {Ro(7) + R (7))
= Se(w) = §lSolw) + Sol-w)]
Rap(r) = =m{Rp(n)]} = 3{Rp(7)- Ry}
= Saplw) = 4[Sp(w) - Sp(-w)]
(26)
Rep(r) = Su{Ro(n) = 4{Relr) -~ Ry()]
= Sepw) = 4lSelw) - Sel-w)]
Rac(r) = IRe{Rpo(n)} = HBprolr) + Rp(7)}
= Saclw) = flSpe(w) + Shol-w)]
Rap(r) = SIm{Rpe(n)} — HRpo(r) ~ Bpng(T)}
= Saplw) = £[Spolw) — Shol-w)]

By using the cquations above and the first four equalities in Equation 23. all the functions in
Equation 3 can be found. This leads to a model that is completely specified: aid, that specibication
is unigue (i.e. it is the ouly one that will produce the desired correlation funetions for P(t) and Q1)
while maintaining stationarity of X (f) and Y (f).)

It can be seen that the even- and odd-symmetric portions of the spectra Splw), Solw) and

Spofw) are being takew. This results in the above spectra being coujugate-symmetric as would be



o
(B3

expeeted for the spectra of real. random processes. If the complete set of sl-)('('h'u arc arranged to
form the spectral matrix, it can be shown that the resnlt is a Hermitian. positive semi-definite matrix
(see Appendix B.) This is a general property of all spectral matrices (see fJeukins and Watts. 1964])
and in the two-process case gives the inequalitios of Equation 5.

Example: This process will he applied to the spectral fuuctions from the example in Section 3.

Using Equation 26 the results shown in Table 2 are found.

5.3 Summary of Model Design
A brief swnmary of the model desigu is presented iu the forin of a list.

1. Define the spectral or correlation functious of P(t) and Q(#) by considering the physical prop-

ertios (either interferometric or polarimetric) of the waves to be modeled.

2. Apply Equation 26 to get six valid spectral or correlation fimetions for A(t). B(#). C(t) and

Di(t).

3. Apply Equation 23 to get the complete set of statistical fumctions (as given in Equation 3) of

the random processes A(t). B(t). C(t) and D(#) and thus completely detine the model.

It should be noted that there is no loss of generality in any of the steps. and that a single set of
phvsical parameters can only produce one valid model. Tt can also be seen that if the Gaussian
assumption is not made. then the model is not wniguely defined (as second order statistics no longer

completely deseribe the p.d.f). However. the previons analvsis can still be used to define a stationary,



covariance-crgodic model up to second-order statistics. The Gunssian model is a special case of this

where stationarity implies ergodicity and second-order statistics specity all higher orders,

6 Realizing the Model

The previons sections have developed astochastic model for a pair of signals. This model is defined by
the temporal and spectral correlation functions of A(t). B(t). C(t) aud D(t). These can be found from
physical signal properties and used to specify the probability density functions of the model. This is
a clear mathematical model that as the poteutial to be useful in theoretical analysis. However. for
applications such as computer simulations aud svithetic signal generation it is necessary to create
realizations of these random processes. It is sufficient to ereate realizations of the real variables
A{t). B(t). C(t) and D(t). as the other variables (P(t). Q). X(#) and Y (1)) can be created hy
deterministic functions of these fonr realizations.

As the probability density functions are known. it is possible to create a sampled realization
directly. If N poiuts of data were required. the correlation watrix for these points could be calenlated
and a multiviciate. Ganssian randoin number generator applied (such as the mvarnd command found
in the MATLAB software package.) However. difficultios arise when the dimensionality of this p.d.f.
is considered. There are four co-deperdent ontputs at every sample so a signal of length N would
have a pdf. of dimension AN, For example. a signal of 125 Az bandwidth requires a minimun

sampling rate of 250 x 10% samples per sccond  thus a two-second signal wonld require 500 x 10°

Emphasis

used when

referring to

specifie

software
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samples and result iu a probability density function of dimension two billion. This is computationally
impractical so a simpler method must be found.

A commou technique in one dinension is to use a linear filter to shape noise into a desired
gpectral shape. The problem here ig more complicated as the fietion is ﬁ'()m one dimengion
(time) into four dimensions (A(t). B(t). C(t). D(t}). A generalized filter structure with NV in-
puts (I (t). L(t). .. .. In(£)) and M outputs (O (). Ox(f). . ... Oxr(1)) is given below (this structure
is presented in [Jenkins and Watts, 1963].)

Oty = N hy(t)* L(t)

Ost) = SIN hoi(t) = (1)

(,);\l(f) = Zl\ L ll‘\,],(f) * I,(f)

The filter respouses mmst be chosen so that the desired correlation functions are realized. These

funetions are given by the expressions below [Jenkins and Watts, 196K].

fo,0,(r) = E0,00,t -7 (= I?(L;O,.(“T))
= B[(SY st L) (S s huite - <t )]
(28)

= FE [Zz\ﬂ Z;‘ L () + L)) (g (8 = )= (1 T))]

= :\—1 ZJ\_l Ry (1) % by (7) % By (—7)

This set of equations has a simpler form in the Fourier doain, as the convolutions becowe multi-



plications.

So,0, = L1 T S (W) Hplw) Iy, ()

11

(29)
e SN TN S O H W), ()

The final step takes advantage of conjugate syimetry (which s guaranteed by the fact that by, (1)
is real for all inn.)

A peneral sot of solutions for the system of equations given by Equation 29 is non-trivial as the
o g

gystem is non-lincar.  Simplifications cau be wade by making certain assimptions the first of

which is that the iuput random processes are independent, white, vaussian, unit variance and zero
mean (50 Sy, x, (w) = (7 — j).) This cusures the outputs will be Gaussian and zero mean as required:

and that Equation 29 reduces to the form given helow.

So,0,@) = }:,AJ VO G H (W) HY (e
(30)

- Z/\l IIP’( )I[ql( )

T this case only four output processes ave required (M = 4.) This means we have ten independent
equations  one for cach of the correlation functions given in Equation 3 (there are 16 cquations but
there is redundancy. as shown by the bracketed term in Equation 28.) A solution is presented for the
case of four input processes (ie. N = 4) althongh the method can be applied to larger dimensions
provided that Al = N and the specified spectra satisty the properties of a spectral matrix. The
equations for this problem (as defined by Equation 30) are given below {the w dependence as been

dropped for clarity.) The outputs are denoted by A B. (7. ) as before. wlhile the inputs are muubered
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Sa
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Although these equations arce

developed is most suceinetly

= |[Ha|? 4 [Haol? + {Hag? + [Haal?
- HaHy, + HasHyy + HasHpy, + HasHp,
o HayHoy b HasHp + HagHoy -+ HatHyy
Iy, 4 Haslly, + HadTh + HandTp,
= [Hp[* + |Hp? + |Hpal? + | Hpa|*
= Hp M}y + HpaHpg + HpaHY o + HpgHey
— Hp Ty, + HpaIlyy + HpaH, + Hod,
= |Her2 4 [Heal? 4 [ Heal? + [ Heal?
e HeadIn, b Hoally + HesHy + eI,

= |Hpi* + |Hpal* + |Hpal* + [Hpal?

nou-linear they can still be solved relatively easily

expressed in matrix notation.

Hy1 Haso Haiy Hay

Hp, Hpe Hpy Hpy

~—
s
f

Hey Hes Hew Hes

Hpy Hp: Hpy Hpy

(31)

*. The solution method

{(32)
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Using this notation, Equation 31 can be rewritten as showu below.

(34}

For matrices the T operation represents a conjugate transpose. In order to find a suitable set of filters
it is suticient to solve Equation 31 at the frequency points of interest. It is shown in [Strang. 1976)
that because S is positive semi-definite (see Appendix B and [Jenkins and Watts. 1968]). Equation 31
can always be solved. A method for doing this is ontlined below.

Because the spectral matrix S is Herwitinw, it is always diagonalizable, its cigenvalues are real
and its elgenveetors are orthogonal. This allows a simple solution for Equation 34 to be found by
using the diagonalized form of 5. If the eigenvalues are arranged on the main diagonal in the matrix

A and the cigenvectors in the matrix E then the following is true.

S - ERE
S - EVAVAE
(35)
= == — = _!
S - (BVA(EVR)

\ﬁMfJﬁ*

x|l
I}
=

VA is o matrix with the square-roots of the eigenvalies on the main diagonal (so that \/i \E =A)
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Positive semi-definiteness guarantees the cigenvectors are positive. so A will always be a real matrix
and hence be equal to its own conjugate transpose.

By comparing Equation 35 with Equation 34 it can be scen that the filter responses can be

calculated by as follows.

A (36)

S

T E\

gl

Equation 36 shows how Equation 30 can be solved by finding the cigenvalues and eigenveetors of
the spectral matrix S at each frequeney poiut. Tt is easy to show that this method will produce
filter spv(‘tra. that are conjngate-syiumetric, which is necessary to eusure that the filters have a real
response.  Reordering the eigen-values and -veetors will still result in a valid solution at a single
frequency point but care should be taken not to do this when constructing functions over many
frequency points. Doing so would result in a sharp discontinuity in the filter spectra produced which
would inerease the length of the filter impulse response.

Tu this section it has been shown liow independent. white, Ganssian noise functions (whiclt are
ecasily generated) can be fed into a system of linear filters to prodnee realizations of the model. The
filter sets are generated using Equation 36 which depends on the model parameters. This process is
computationally tractable and produces results like those shown in the example below.

Example: The example functions nsed in Sections 3 aud 5 were realized using the methodology

given in this section. This process was carvied ont using MATLAB and plots of the resulting spectra
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this corresponds to oversampling. The frequency axes are normalized so that the range of unaliased
frequencies falls between 0.5 and (1.5,

The estimates of the realized spectra were found using periodogram averaging. 10 spectra were
averaged in cach case and a rectangular window was nsed in the time domain to remove the noisy
terins associated with a large |7]. Each plot has 399 frequency points aud the filters were truncated
to 199 taps. Figure 1 shows that the resulting spectra agree closely with those specified. The small
diferences can be acconnted for by the necessary truneation of the generation filters and by the fact

that a finite munher of spectra were used to create the periodogram average.

7 Summary

This paper begins by showing how standard measures ju polavimetry and interferometry (such as
Stokes parameters and coherenece fuuctions) can be interpreted in terms of the model’s temnporal
or spectral correlation functions. This statistical interpretation then allows a statiouary, Gaussian
wodel of the signal pair to be defined. A stationary. Gaussian model can be justified physically.
This model structire was shown not to limit the range of physical siguals that can be modeled (i.c.
all cohereney- or polarization-states coulid be modeled.)  Additionally, the stationarity assumption
was shown to lead to a unique model for any given set of physical properties. This indicates a
comprehensive, well defined stochastic model in either the polarimetric or interferometrie paradigni.

To realize this sigual (as would be required in sueli applications as svathetic calibratiou signal
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generation). it is necessary to produce a signal pair that has the same properties as the model. This
can be done by generalizing a well-known noise-shaping technique in which a white, Gaussian process
is passed through a linear filter in order to color its spectimn to a desired sha])(;. The method was

corroborated by presenting results from a MATLAD fmplementation.

Appendix A Derivation of Equation 22, 23 and 24

Because X (1) and Y (#) are Ganssian, they will be stationary if and only if their means and second
order moments are independent of time,
Hy S E{)&'(f)]

=  ElA(t) coswot -~ B{f) sttt wpt] (37)

I

L4 Coswot — jip sinwot
For this to be independent of t. 3 = pup = 0 = py = 0. Similarly pe = pp =0 = py = 0. This

shows that zero mean processes are required by stationarity.
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The second order moments must also be independent of time.

Rx(7)
= EX(HX(t-7)
= E[(A{t)coswyt ~ B(t)sinwnt)
(At~ T)coswol(t ~ 7))~ B{t 1) sinwg(t - 7))
= Ry(7)coswpt coswy(t = 7) + Rp{7)sinwet sinwo{t — 1)

wRap(T)coswyt sinwy(t — 1)~ Iap( 1) sinwyt coswy(t - T)

(3%)
= ARy(T)[coswaT + coswn(2t - )|
+3Rp(r)|coswy — coswy (2t - 7))
’“%R_A\B(T)lh‘ill#uT +bosinwy (28 - 7))
7%]?_.\3(“7‘)}[“ siwor 4 sinwy (2t — 7))
..... EATCAL T IC] ‘(T"; Biolt) coswyr + —-—————R"””"fz”"“‘ " Gnwgt
- —————R‘(ﬂzn”m coswo(2t - T} Raptr) i fapl T} ’,_,ﬁ"“"‘ T ginwy (2t - T)
To remove the t dependence requires that
Ri(m) = Rp(r)  aud  Rapl(t)= ~Rap(~T)
{39)
= Ry(7) = Ralr)coswot + Rap(7)sinwgt
A siwiilar argument can be applied to Y(#) to give
Re7) = Rp(+) and Rep(7) = ~Rep(-71)
(10)

= Iy (1) = Re(T)voswt + Rep(7) sinwgt



The cross-term between the compouents must also be independent of £.

Bxy(T)
= EIX(#)Y(t 1)
= E|(A{t) coswot ~ B(t) sinwot)
(C(t - Ty coswy(t = 7) = D(t = T)sinwy(t ~ 7))
= Rac(r)coswgt coswy(t - 7) + Rpp(T) sinwyt sinwg(t — 7)
o Raplr) coswot sinwg (f = 7) = Rpe(7) sinwgt coswy(t - 7)
(41)
= LRac(m)coswor + coswo(2t - 7}
+—%RBD(T)[('UH woT - coswu(2t - 7))
-»4»%1'1’,1[)(7')[@11.;“7 +osing (20 - T
~4Rpe (1) sinwyr + sinay (2t 7))

R(\vlr)..‘..ff”“(T) CoswyT + R_:\y»(r)-.: Hie (7)

3 5 sitwyT

Raciv) R R R Rpciv) - .
o Ract - rol(7) coswo(2t - T) - Jn(r)‘i) Jils )Sllla’(,(lf 1)

To remove the t dependence requires that

Rac(r) = Rpp(r)  and  Rap(r)= ~Rpc(r)
(12)

= RXY(T) = H;‘('(T}('l)«\'d)‘]f + R,\[)(T) Sillwq)t
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Appendix B Proof that the Spectral Matrix S is positive

semi-definite

In order to show that the ernitian matrix S is positive scini-definite it is necessary to prove the

following inequality.

< Sperz=at8e >0 (43)
Lot @ = |o boe,df.
Sia Sap Sac Sap a
— 5_-:\ B S[l SB(' . SB n h
2'Sr = et b e Y (14)
She She Sc Seo ¢
S%p Skp Sto Sp d
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Writing the S matrix in terms of Sp(w). Sg(w) and Spg(w) (nsing Equation 23 aud 26).

#Sr = HSp(oat + W+ i(ath— o)
4 8p(-wua” 4+ b b i(ab - ah)]
+So et 4 did* i et d = ed™)]
+8So (- w)ee” + dd* +iled” - d)]
S po(w)a*e + b d + i(a*d -~ b7e)]
FSpol)act 4 bd* i (e - ad”)]
FSpol-ac 4 bds 4 ilad” - ber)]

HS'},Q( wila®e 4 b0 A4 iH{bTe - atd)l}



Lett=a+ib u=c+id o =a—ih w=c—id
5 = H{Splw)tt® -+ Sp(~wlve + Sglwnu’ + So(-w)ww”
+8p ()t u + Spolw)ta” + Spo(—w)ew” + Spo(wirtu}
= i{SP(M)H* F Sp(when® 4 Splwhun™ + Syl e eyt

-+ )R('[b['(}( )f*'l] + QR(‘[SP(J(""u.')‘l'll?‘J}

> HSp(lt2 4+ Splwlel? + Sylwlul? + S ~w)lal?
28 plItilel - 2(Spoi-w)llellu) (46)
> H{Splw)it] - wie]? + Solw)nf? + So(-w)fel?
=2/ Sp()Sow)ltllu] - 2/ Sp(-w)Se(~w)ivllet}
= H(VSpt] - Sela)]ui)?
+(VSp(=w)lr] = /So(~=)e)?)
> 0

This proves Equation 43 and hence shows that 8 i positive scmi-definite.
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Figure 1: Example of realized spectra (plotted with desired speetra) for complex processes P(t)
and Q(t): (a) power spectral density of P(t): (h) power spectral density of Q(t): (¢} complex cross

spectra of P(t) and Q(¢) (real part): (d) complex cross spectra of P{t) and Q1) (imaginary part).



Table 1: Example Spectral Funetions found from Polarization State

(BW, )

Fregueney Band Sp(w) | Solw) | Srolw)
(~oc. ~BW] 0 0 0
(—~BW. ~0.6BW] 0.5 5 t
(~0.6BW, ~0.2BW] 0.5 0.5 (1.254
(—0.2BW.0.2BW] 0.75 0.25 (h.433
(0.2BW. 0.6 BW| 0.5 0.5 0.25i
(0.6BW. B} 0.5 0.5 0
0 {0 0
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Table 2: Model Spectral Functious found for Exanple ju Section 3

Frequency Salw) Sew) | Sapw) | Sepntw) Sac(w) Sap(w)
Band = Splw) | = Sp(w) = Spplw) | = —Spc(w)

(=~ B 0 0 0 0 0 0
(~DBW. ~0.6BW| 0.25 0.25 0 ] () ()

(—0.6BW, - 0.2BW] .25 (125 0 () () .125
(~0.28BW, ().‘ZBH"] 0.375 0.125 0 0 0.217 ()

(0.2BW. 0.6BWV| 0.25 0.2 0 {0 0 (125

(0.6BW. BW] 0.25 0.25 v 0 ) 0
(BW. x) 0 0 0 0 0 0
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Figure 1: Example of realized spectra (plotted with desired spectra) for complex processes P(t) and Q(t):

C

d

(a) power spectral density of P(t); (b) power spectral density of Q(1); (c) complex cross spectra of P(t)
and Q(t) (real part); (d) complex cross spectra of P(t) and Q(t) (imaginary part)



