CHARACTERIZATION OF RHENIUM OXIDES USING ESCA

Binayak Panda

Metallurgical and Failure Analysis Team
Metallic Materials and Processes Group
Materials, Processes and Manufacturing Department
Engineering Directorate
RHENIUM AS AN ENGINEERING MATERIAL

- High Melting Point – one of the Refractory metals
- High Strength at Elevated Temperature
- Excellent Toughness at Room Temperature
- Low vapor Pressure at Melting Point
- Low Co-efficient of Thermal Expansion
- High Impact and Wear Resistance
- Compatibility with Elements such as Carbon and Platinum
- Conservation of Properties in Presence of Hydrogen, water Vapor, and Oxides of Nitrogen
- Poor Oxidation Resistance
OVERVIEW

• HISTORY
 • Rhenium as an Engineering Material
 • Testing of Rhenium Thrusters
 • Sample for Oxidation Evaluation

• EXPERIMENTAL PROCEDURE
 • Available Data
 • Data Comparison

• OXIDES OF RHENIUM

• ANALYSIS OF OXIDES
 • Spectrum from Oxides
 • Effects of Ion Sputtering

• SUMMARY OF RESULTS

• CONCLUSIONS
Test Arrangements for the Rhenium Engine
Appearance of Sample Extract on Gold Sheet
AVAILABLE DATA

<table>
<thead>
<tr>
<th>OXIDES</th>
<th>LINE POSITIONS IN ELECTRON VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4f7/2</td>
</tr>
<tr>
<td>Pure Re</td>
<td>40.3</td>
</tr>
<tr>
<td>Re$_2$O$_7$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51.6</td>
</tr>
<tr>
<td>Re O$_3$</td>
<td>46.7</td>
</tr>
<tr>
<td>Re O$_2$</td>
<td>43.5</td>
</tr>
</tbody>
</table>

Ref. – (a) Handbook of X-ray Photoelectron Spectroscopy Published by Physical Electronics Inc.
CHARACTERIZATION OF RHENIUM OXIDES USING ESCA

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
George C. Marshall Space Flight Center

Scans From Samples
OXIDES OF RHENIUM

- As many as seven Oxides
- Three Oxides are well-known – Heptoxide (Re₂O₇), Trioxide (ReO₃), and Dioxide (ReO₂)
- Heptoxide absorbs moisture and converts to a transparent perrhinic acid with in seconds
- Heptoxide can be reduced to lower Oxides by CO or SO₂
- Trioxide can breakdown to lower oxides in vacuum
- Heptoxide can breakdown to lower oxides when heated in air above 120°C

CHARACTERIZATION OF RHENIUM OXIDES USING ESCA

Scans From Rhenium Heptoxide
CHARACTERIZATION OF RHENIUM OXIDES USING ESCA

Scans From Rhenium Trioxide
Scans From Rhenium Dioxide
SUMMARY OF RESULTS

<table>
<thead>
<tr>
<th>OXIDE / SAMPLE</th>
<th>POSITION OF RHENIUM LINES (eV)</th>
<th>POSITION OF OXYGEN LINE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Sputtered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sputtered</td>
<td>48.7, 46.2, 43.7, 41.4</td>
<td></td>
</tr>
<tr>
<td>Re₂O₇</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Sputtered</td>
<td>48.6, 46.2, 43.7</td>
<td>531.4</td>
</tr>
<tr>
<td>Sputtered</td>
<td>48.6, 46.2, 43.8, 41.4</td>
<td>531.2</td>
</tr>
<tr>
<td>ReO₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Sputtered</td>
<td>49.1, 48.1, 46.8, 45.5, 44.3</td>
<td>530.6, 531.9</td>
</tr>
<tr>
<td>Sputtered</td>
<td>47.0, 45.6, 44.6, 43.1, 41.3</td>
<td>530.2</td>
</tr>
<tr>
<td>ReO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Sputtered</td>
<td>47.1, 44.9, 43.3, 41.0</td>
<td>530.8</td>
</tr>
<tr>
<td>Sputtered</td>
<td>46.1, 44.4, 43.2, 42.0, 40.6, 39.6</td>
<td>530.5</td>
</tr>
</tbody>
</table>
CONCLUSIONS

(1) From ESCA Evaluations and the Physical Characteristics it is Clear that the Test Sample Collected from Testing is Rhenium Heptoxide

(2) Ion Beam Sputtering Changes Oxidation States of Samples to Oxides of Lower Oxidation States

(3) Pure Oxides Showed other Forms of Oxides on the Surface

Acknowledgement:

Author Thanks Marshall Space Flight Center for support of this work.