Fast Bound Methods for Large Scale Simulation
with Application for Engineering Optimization

Principal Investigators: Anthony T. Patera
Department of Mechanical Engineering, Bldg. 3-266
Massachusetts Institute of Technology
Cambridge, MA 02139-4307
T 617 253 8122
E patera@mit.edu

Jaime Peraire
Department of Aero & Astro, Bldg. 37-451
Massachusetts Institute of Technology
Cambridge, MA 02139-4307
T 617 253 1981
E peraire@mit.edu

NASA Technical Officer: Dr. Thomas A. Zang

Date: January 28, 2002
1. Introduction

In this work, we have focused on fast bound methods for large scale simulation with application for engineering optimization. The emphasis is on the development of techniques that provide both very fast turnaround and a certificate of fidelity; these attributes ensure that the results are indeed relevant to — and trustworthy within — the engineering context. The bound methodology which underlies this work has many different instantiations: finite element approximation; iterative solution techniques; and reduced-basis (parameter) approximation. In this grant we have, in fact, treated all three, but most of our effort has been concentrated on the first and third. We describe these below briefly — but with a pointer to an Appendix which describes, in some detail, the current “state of the art.”

2. Output Bounds for Isoparametric Finite Element Discretizations of the Heat and Incompressible Stokes Equations

A priori error estimates inform us of the asymptotic rates of convergence, but cannot answer the ever present engineering question, “can I trust the current approximation?” Such questions often revolve around concerns of mesh fidelity and feature resolution — issues of numerical uncertainty which erode confidence in the simulation. As confidence erodes, so does the utility of the simulation in the engineering design process: either the simulation is not trusted, or it is more costly than necessary. We present an implicit a posteriori method for computing rigorous constant-free upper and lower bounds for outputs from isoparametric finite element discretizations. The error bounds significantly reduce numerical uncertainty by providing confirmation of accuracy as well as allowing for the effective trade-off between accuracy and computational cost. The method relies on a partition of unity which decomposes the domain into independent nodal patch Neumann subproblems. We apply the method to both the heat and Stokes equations posed on two-dimensional domains with curved boundaries. See Appendix I for a description of the methodology and some application.

2. Reduced-Basis Output Bound Methods

We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced-basis approximations — Galerkin projection onto a space W_N spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation — relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures — methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage — in which, given a new parameter value, we calculate the output of interest and associated error bound — depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited
for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control. See Appendix II for a description of the methodology and some application.

3. Publications

Appendices
