A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflation in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau (Landau, L. D., "On the Theory of Slow Combustion," Acta Physicochimica URSS, Vol. 19, 1944, pp. 77-85; also Journal of Experiments.

H

HYDRODYNAMIC (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, which corresponds to the formation of steady cellular structures as the stability threshold is crossed. This type of instability was originally described by Landau1 and is attributed to thermal expansion across a combustion front. Although gaseous combustion was determined to be intrinsically unstable in Landau's analysis, it was demonstrated that additional effects, such as gravity and surface tension, that enter when the unburned mixture is a liquid result in a specific stability criterion. However, this analysis, along with a later study by Levich2 that considered viscous effects in lieu of surface tension, assumed that the combustion front propagated normal to itself with constant speed, whereas it is now recognized that there is a dynamic interaction between the burning rate and local conditions at the front.

For those problems in which pyrolysis, exothermic decomposition and/or combustion occurs in a confined region in the vicinity of the liquid/gas interface, the dynamical coupling of the burning rate with the underlying hydrodynamics of the flow can be achieved through an analysis of the thin combustion interface region. An alternative approach, however, is to simply postulate a phenomenological dependence of the local burning rate on pressure and temperature and to obtain results in terms of suitably defined sensitivity parameters. Both types of methodologies have been applied to the problem of solid-propellant combustion, and each offers certain advantages. In the present series of studies on liquid-propellant combustion, the latter approach has been adopted, thereby generalizing the Landau/Levich model to allow for a coupling of the burning rate with the local pressure and temperature fields.

By summarizing some of the results obtained from the present model, it has been shown that when only the pressure sensitivity of the burning rate is taken into account, an appropriately generalized stability criterion for cellular (Landau) instability is obtained. Exploiting the realistic limit of small gas-to-liquid density ratios, it is found that the stable region occurs for negative values of the pressure sensitivity parameter, with the original Landau model being intrinsically unstable in this limit. In particular, the neutral stability boundary possesses a local minimum when plotted against the disturbance wave number, which suggests that as the pressure sensitivity parameter decreases in magnitude, the liquid/gas interface develops cells corresponding to classical hydrodynamic

This report is a preprint of an article submitted to a journal for publication. Because of changes that may be made before formal publication, this preprint is made available with the understanding...
instability. This minimum reflects that surface tension and viscous effects stabilize influences for short-wave disturbances, whereas gravity is a stabilizing influence for long-wave perturbations. As a result, the effect of reducing the gravitational acceleration to microgravity levels is to shift the neutral stability minimum to smaller wave numbers. Thus, in the microgravity regime, Landau instability becomes a long-wave instability phenomenon, implying the appearance of large cells along the combustion interface.

Aside from the classical cellular form of hydrodynamic instability, this dynamic generalization of the Landau/Levich model also predicts the appearance of a pulsating form of hydrodynamic instability, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. This form of hydrodynamic instability occurs for negative values of the pressure-sensitivity parameter that are sufficiently large in magnitude. Consequently, stable, planar burning is predicted to occur in a range of negative pressure sensitivities that lies below the cellular boundary and above the pulsating boundary just described. A stable range of negative pressure sensitivities is applicable, for example, to certain types of hydroxylammonium nitrate (HAN)-based liquid propellants for which non-steady modes of combustion have been observed. (Though less common, ranges of negative overall reaction orders/pressure sensitivities have been reported for sufficiently diluted gaseous hydrocarbon fuels as well). The appearance of both pulsating and cellular forms of hydrodynamic instability is analogous to the two corresponding types of thermal/diffusive instabilities that occur for sufficiently large and sufficiently small Lewis numbers, respectively.

When the effect of a temperature sensitivity in the burning rate is included in the analysis, substantial modifications to the preceding stability description can occur. Specifically, if the temperature-sensitivity parameter is sufficiently large relative to the parameter corresponding to pressure sensitivity, the pulsating hydrodynamic stability boundary can develop a turning point, that is, become L shaped, in the (disturbance-wave number, pressure-sensitivity) plane. In that case, the stable region for small wave numbers disappears, and the liquid-propellant combustion is predicted to be intrinsically unstable to the nonsteady form of hydrodynamic instability for all sufficiently large disturbance wavelengths. This has been described in detail in the limit of zero viscosity, and the purpose of the present work is to extend that analysis to the fully viscous model. Viscous effects were shown to have a substantial influence in the absence of thermal sensitivity, where it turned out that the stable region became significantly widened when viscosity was present, and the same result will be demonstrated when thermal effects are present. However, the same intrinsic pulsating instability that occurs for sufficiently large temperature sensitivities and sufficiently small wave numbers in the inviscid case will be shown to be preserved even when viscosity is included. These results lend further support to the notion that a likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

The physical nature of the pulsating form of hydrodynamic instability described here, like the pulsating form of thermal/diffusive (or reactive/diffusive) instability, is manifested through an oscillatory imbalance between reaction-front perturbations and those processes that act to dampen such perturbations. In the case of a pulsating reactive/diffusive instability, such as occurs in gaseous combustion, smaller mass-to-thermal diffusivity ratios, that is, larger Lewis numbers, also allow a relatively greater concentration of reactant in the reaction zone. This in turn triggers, for sufficiently large Zel'dovich numbers, a more intense reaction, which leads to an imbalance between temperature perturbations that accelerate the front and cause the profiles to steepen, and diffusion, which transfers heat to the unburned mixture and thereby reduces the reaction intensity. In the purely hydrodynamic problem, a negative pressure sensitivity plays a somewhat analogous role to that of diffusion because positive pressure perturbations will either locally accelerate or decelerate the front, depending on whether the pressure sensitivity is positive or negative. Thus, positive pressure sensitivities lead to intrinsic instability, whereas negative pressure sensitivities that are sufficiently large in magnitude lead to an overcorrection in the local burning rate in response to a hydrodynamic pressure disturbance. In the latter case, an oscillatory imbalance between hydrodynamic perturbations and corresponding variations in the local burning rate is thus established. As indicated by the subsequent results, the inclusion of viscosity and a thermal sensitivity in the reaction rate, where the latter results in a coupling of the thermal and hydrodynamic fields, accentuates this effect through the inclusion of thermal/diffusive processes as already described.

Summary of the Mathematical Model

The mathematical model was described previously, but it is briefly summarized here for completeness. Specifically, it is assumed that the combustion front coincides with the liquid/gas interface, where pyrolysis and/or exothermic decomposition occurs. Denoting the nondimensional location of this downward-propagating interface by \(x_1 = \Phi(x_1, x_2, t) \), where \(x_1 \) is the vertical coordinate and the adopted coordinate system is fixed with respect to the stationary liquid at \(x_1 = -\infty \), we transform to the moving coordinate system \(x = x_1, y = x_2, z = x_3 - \Phi(x_1, x_2, t) \) such that the liquid/gas interface always lies at \(z = 0 \). Conservation of mass, energy, and momentum within each phase then gives

\[
\nabla \cdot \mathbf{v} = 0, \quad \varepsilon \neq 0
\]

\[
\frac{\partial \Theta}{\partial t} + \mathbf{v} \cdot \nabla \Theta = \frac{1}{\lambda} \nabla^2 \Theta, \quad \varepsilon \leq 0
\]

\[
\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho_1^{\text{opt}}} \nabla \rho + \frac{\mathbf{S}}{\lambda} + \frac{\mathbf{P}}{\lambda \mathbf{P}_2} \nabla \mathbf{v}, \quad \varepsilon \leq 0
\]

where \(\Theta \) is temperature, \(\mathbf{P}_1 \) and \(\mathbf{P}_2 \) are the liquid- and gas-phase Prandtl numbers, \(\lambda \) and \(\varepsilon \) (to be used) are thermal diffusivity and heat-capacity ratios, and \(\varepsilon^{-1} \) is the inverse Froude number (gravitational acceleration). Other nondimensional parameters introduced subsequently include the gas-to-liquid viscosity ratio \(\mu \) and the unburned-to-burned temperature ratio \(\alpha \).

Equations (1–3) are subject to a set of boundary and interface conditions given by

\[
\mathbf{v} = 0, \quad \Theta = 0 \quad \text{at} \quad z = -\infty
\]

\[
\mathbf{h}_1 \times \mathbf{v}_2 = \mathbf{h}_1 \times \mathbf{v}_1
\]

\[
\mathbf{n}_2 - \mathbf{n}_1 = (1 - \rho) \mathbf{S} \frac{\partial \Phi}{\partial t}
\]

\[
\mathbf{n}_2 \times \mathbf{n}_1 = \mathbf{A} \left[\mathbf{p}_{1 \text{opt}} \Theta \right] \mathbf{v}
\]

\[
- \rho \mathbf{p}_2 \mathbf{r}_2 \cdot \mathbf{n}_2 + \rho \mathbf{p}_2 \mathbf{r}_1 \cdot \mathbf{n}_1 + \rho \mathbf{p}_1 \mathbf{r}_1 \cdot \mathbf{n}_1 - \mathbf{r}_2 \cdot \mathbf{v}_2 + \mathbf{r}_1 \cdot \mathbf{v}_1
\]

\[
\mathbf{n}_1 \times \left[\mathbf{v}_2 (\mathbf{n}_1 \cdot \mathbf{v}_2) - \mathbf{v}_1 (\mathbf{n}_2 \cdot \mathbf{v}_1) - \mathbf{r}_2 \cdot \mathbf{v}_2 + \mathbf{r}_1 \cdot \mathbf{v}_1 \right]
\]

\[
= \frac{\mathbf{L}_{1 \text{opt}}}{\lambda} + \mathbf{G} \left[\mathbf{p}_{1 \text{opt}} \Theta \right] \mathbf{v}
\]

\[
(1 - \rho)^2 \mathbf{S} \frac{\partial \Phi}{\partial t}
\]

\[
\mathbf{v} = \mathbf{v}_{1 \text{opt}}, \quad \mathbf{r} = \mathbf{r}_{2 \text{opt}}, \quad \text{and } \mathbf{S} = \mathbf{S}_{1 \text{opt}}
\]

where \(\mathbf{v}_{1 \text{opt}} = \mathbf{v}_{1 \text{opt}}, \mathbf{r}_{2 \text{opt}} = \mathbf{r}_{2 \text{opt}}, \) and Eqs. (5–10) correspond to continuity of the transverse velocity components (no-slip), conservation of (normal) mass flux, the mass burning rate (pyrolysis law,
The conservation of flux of the normal and transverse components of momentum, and conservation of heat flux. Here, \(S(\Phi) = (1 + \Phi^2 + \Phi^4)\Phi\frac{\partial\Phi}{\partial z} \), the unit normal \(n_z = (-\Phi_x, -\Phi_y, 1) \), \(S(\Phi) \), and the expressions for the gradient operator, the Laplacian, and the curvature in the moving coordinate system are given by \(\nabla = (\nabla_1, \Phi_x, \Phi_y, 1) \), \(\nabla_1 = \frac{\partial}{\partial x} + \Phi_x \frac{\partial}{\partial z}, \Phi_y = \frac{\partial}{\partial y} + \Phi_y \frac{\partial}{\partial z} \), and \(\nabla_1 = \frac{1}{\partial x} + \Phi_x \frac{\partial}{\partial z}, \Phi_y = \frac{1}{\partial y} + \Phi_y \frac{\partial}{\partial z} \), respectively. However, the vector \(\Phi \) still denotes the velocity with respect to the \((x_1, x_2, x_3)\) coordinate system.

Finally, we note that the non-dimensional mass burning rate appearing in Eq. (7) is assumed to be functionally dependent on both the local pressure and temperature at the liquid/gas interface. By definition, \(A = 1 \) for the case of steady, planar burning, but perturbations in pressure and/or temperature result in corresponding perturbations in the local mass burning rate.

Because the thermal and hydrodynamic fields are coupled only through the temperature dependence of the mass burning rate \(A \) appearing in Eq. (7), the strictly hydrodynamic problem for \(\rho, v, \) and \(\Phi_0 \) can be analyzed separately when \(A \) is assumed to depend on pressure only. In the present work, we focus on the fully coupled problem to determine how the hydrodynamic stability boundaries are modified when the local burning rate depends on temperature as well as pressure. Our stability results will thus depend on two sensitivity parameters, \(A_p \) and \(A_m \), defined as \(A_p = \partial A/\partial p|_{v=1, \rho=0} \) and \(A_m = \partial A/\partial T(\rho>0, v=0, \rho=0) \), where \(T = 1 \), and \(\rho = 0 \) are the interface values of temperature and pressure of the basic solution in Eq. (11).

Though an explicit expression for the reaction rate \(A \) is not needed in the present analysis, we note that, because the non-dimensional activation energy is typically large, the temperature sensitivity \(A_T \) would likely be larger in magnitude than the pressure sensitivity \(A_p \), which will have some bearing on the relative scalings of these parameters that will emerge in the following analysis.

Basic Solution and Its Linear Stability

The nontrivial basic solution of the preceding problem that corresponds to the special case of a steady, planar deflagration is given by

\[
\begin{align*}
\rho^0 &= 0, \quad v^0 = 0, \quad \Phi^0 = 0, \quad z \leq 0, \\
\rho^0 &= 0, \quad v^0 = 0, \quad \Phi^0 = 0, \quad z > 0.
\end{align*}
\]

The problem governing its linear stability may be formulated, before introducing any further approximations, in a standard fashion by introducing the perturbation quantities \(\phi(x, y, z, t) = \Phi(x, y, z, t) - \rho^0(x, y, z, t) \), \(u(x, y, z, t) = v(x, y, z, t) - v^0(x, y, z, t) \), \(\theta(x, y, z, t) = \Phi(x, y, z, t) - \Phi^0(x, y, z, t) \), \(\theta(x, y, z, t) = \Phi(x, y, z, t) - \Phi^0(x, y, z, t) \), and \(\theta(x, y, z, t) = \theta(x, y, z, t) - \theta^0(x, y, z, t) \).

Perturbation analysis of the basic solution (11) is then given in terms of these perturbation variables by

\[
\begin{align*}
\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial v}{\partial z} &= 0, \quad z \leq 0, \\
\frac{\partial \theta}{\partial x} + \frac{\partial \theta}{\partial y} + \frac{\partial \theta}{\partial z} &= 0, \quad z \leq 0.
\end{align*}
\]

where Eqs. (16) and (17) have been used to simplify Eqs. (18–21).

Nontrivial harmonic solutions for \(\phi, u, \) and \(\theta \), proportional to \(\exp(\imath \omega t + \imath k_x x + \imath k_y y) \), that satisfy Eqs. (12–14) and the boundary/boundedness conditions at \(z = \pm \infty \) are given by

\[
\begin{align*}
\phi &= \exp(\imath \omega t + \imath k_x x + \imath k_y y) \left(b_{1e^{ik_x x + k_y y}} - \frac{2}{b_{1e^{ik_x x + k_y y}}} - 2 \right), \\
u &= \exp(\imath \omega t + \imath k_x x + \imath k_y y) \left(b_{1e^{ik_x x + k_y y}} - \frac{2}{b_{1e^{ik_x x + k_y y}}} - 2 \right), \\
\theta &= \exp(\imath \omega t + \imath k_x x + \imath k_y y) \left(b_{1e^{ik_x x + k_y y}} - \frac{2}{b_{1e^{ik_x x + k_y y}}} - 2 \right).
\end{align*}
\]
\[ikb_3 + ikb_4 + qb_4 = ikb_4 + ikb_5 + rb_4 = 0 \]
\[b_3 - \frac{ik_1}{io + k} b_1 - b_4 + \frac{ik_1}{io - k} b_3 = (\rho^2 - 1) i \]
\[b_4 - \frac{ik_2}{io + k} b_1 - b_3 + \frac{ik_2}{io - k} b_4 = (\rho^2 - 1) i \]
\[b_2 = \frac{k}{io + k} b_1 - rb_3 - \rho k b_2 = (1 - \rho) i \omega \]
\[b_7 = \frac{k}{io + k} b_1 - A_9 b_2 - A_9 b_3 = i \omega - \rho F^2 A_9 \]
\[1 + \frac{2k^3 P_r I}{io + k} b_1 - \frac{1 + \frac{2k^3 P_r I + 1 - \rho}{io - k}}{2 P_r q b_4} - 2 P_r q b_7 \]

Focusing on the realistic regime \(\rho < 1 \) (typical values are on the order of 10^{-3} to 10^{-4}), we formally introduce a booking parameter \(\epsilon \ll 1 \) and introduce the reasonable scalings \(\rho = \rho \epsilon \), \(\mu = \mu \epsilon \), \(P_r \sim O(1) \), and either \(F^2 = \epsilon \) or \(\epsilon = \epsilon \), where \(F^2 \sim O(\epsilon) \) corresponds to the case of greatly reduced gravity. In this parameter regime, the appropriate scaling for \(A_9 \) to describe the neutral stability region is \(A_9 = A_9 \epsilon \) (Refs. 5 and 6), whereas the appropriate scale that describes the main effects of thermal coupling turns out to be \(A_9 = A_9 \epsilon^{1/4} \) (Ref. 7). Based on this scaling, we note that the ratio \(A_9/A_9 \sim O(\epsilon^{-4}) \gg 1 \), as might be expected based on an overall Arrhenius reaction-rate dependence on temperature.

Based on our earlier analyses, the scalings introduced induce a set of corresponding regimes for the wave number \(k \) (and the complex frequency \(i \omega \)) in the dispersion relation determined by Eqs. (27-34). These first emerged in our analysis of cellular instability using the generalized model in the limit \(A_9 = 0 \), but they are also relevant when one considers the pulsating form of instability and when \(A_9 \) is allowed to be nonzero. In particular, in the case of cellular instability and zero temperature sensitivity, there are three wave number scales to be considered. First, there is an \(O(1) \) outer wave number region, where the stabilizing effects of surface tension, viscosity, and gravity are all relatively weak. Second, there is a far outer scale \(k \sim k_\text{fr} \), where surface tension and/or viscosity are strongly stabilizing and gravitational effects are, to a first approximation, negligible. Finally, we have an inner scale \(k \sim k_\text{fr} \) and \(k_\text{fr} \), where gravity is the dominant stabilizing effect (the first scale is valid for normal gravity, the latter for the reduced gravity regime) and where viscosity and surface-tension effects are absent at leading order. In each of these regimes, the cellular stability boundary, obtained by seeking solutions of the dispersion relation for which \(i \omega \) is identically zero, is given, respectively, by

\[A_9^*(k) = -\rho^2/2 \]

\[A_9^*(0)(k_i) = -\frac{\rho^2}{2} \frac{1}{2} \]

\[F = 1 + 4 \mu^2 \sigma k^2 \]

\[A_9^*(t) \sim -\rho^2 - \frac{2 \rho^2 P \mu}{1 + \frac{2 \rho P \mu}{1 + \rho P \mu}} \]

\[\frac{\rho^2}{2k^2} \frac{1}{e^2 P \mu} \]

as shown in Fig. 1. Clearly, the stable region lies below \(A_9^* = -\rho^2/2 \) (negative values of \(A_9 \) over certain pressure ranges are characteristic of a number of HAN-based liquid propellants) with the location of the minimum in the cellular boundary increasing to less negative values of \(A_9 \) with increasing values of the stabilizing parameters \(\rho, P_r, \mu, \sigma \). In Fig. 1, the curves are drawn for the case \(\epsilon = 0.04, \rho = 0.8, \mu = 0.005, \sigma = 2.0 \). The solid curves correspond to the inviscid limit (P = 0) with nonzero surface tension (y = 2.5). The dash-dot curves correspond to a nonzero surface tension (y = 2.5) and liquid viscosity (P = 1.0), but zero gas-phase viscosity (P = 0). The dash-dot-dot curves differ from the dash-dot curves by the addition of gas-phase viscosity (\(\mu P = 1.0 \)) and are similar to the dash-dot-dot-dot curves, where the latter correspond to larger viscosities (P = \(\mu P = 2.0 \)). The dash-dot-dot-dot curves correspond to a viscous case (P = \(\mu P = 1.0 \)), but with zero surface tension. For comparison, the two sets of curves corresponding to the normal and reduced gravity cases, it is clear that the critical wave number for instability becomes small in the latter regime. That is, cellular hydrodynamic instability becomes a long-wave instability in the limit of small gravitational acceleration. Further discussion of this stability boundary, and its relationship to the original Landau-Levich predictions, is given in Ref. 5.

Considering the pulsating stability boundary (in the limit \(A_9 = 0 \)), which is obtained by seeking solutions of the dispersion relation for which only the real part of \(i \omega \) vanishes, it is found that the corresponding expressions in the inner and outer wave number regions are given by

\[A_9^*(k) \sim -\rho^2, \quad A_9^*(0)(k_i) \sim -\rho^2 (1 + 2 P \epsilon) \]

respectively. In this case, it is clear that the outer solution is, in fact, the composite solution, which lies below the cellular boundaries and
HYDRODYNAMIC STABILITY BOUNDARIES \(\rho \ll 1 \)

<table>
<thead>
<tr>
<th>Viscous Case (\rho > 0)</th>
<th>Unstable</th>
<th>Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((\rho' P_0)' P_0)</td>
<td>(k)</td>
<td>((\rho'' P_0)' P_0)</td>
</tr>
</tbody>
</table>

Fig. 1 Asymptotic representation of the cellular hydrodynamic neutral stability boundaries.

The limit stabilizing as \(k \) becomes large (Fig. 2). Clearly, this stability boundary is more sensitive to the stabilizing effects of the liquid viscosity parameter \(\rho \) than is the cellular boundary, having a leading-order stabilizing effect for \(O(1) \) wave number disturbances in this case. In the limit \(P \to 0 \), the pulsating boundary collapses to the straight line \(A_p' = -\rho' \), that is, \(A_p' = 1 \) in Figs. 1 and 2, but even in that limit, there is a region of stability corresponding to values of \(A_p' \) greater than \(-\rho'\) and less than the minimum in the cellular boundary, which is greater than \(-\rho'/2 \). However, if one now considers the effects of a nonzero temperature sensitivity in the inviscid limit \(P = 0 \), then, for \(A_p' \sim O(\epsilon^{1/2}) \), the pulsating boundary possesses a turning point such that the stability region disappears for sufficiently small wave number perturbations. This is shown in Fig. 3, which indicates that the pulsating boundary then frames the stable region except along the upper branch that asymptotes to the previous cellular boundary as \(k \) becomes large in the outer wavenumber region. The evolution from a stability diagram that indicates a stable region delineated by distinct pulsating and cellular hydrodynamic stability boundaries to the pulsating-dominated one shown in Fig. 3 can be seen to occur in the parameter regime \(A_p' \sim O(\epsilon^{1/2}) \), which, based on the estimate \(A_p' \sim O(\epsilon^{1/2}) \), \(\epsilon \) is attained for many types of liquid propellants. We now extend the analysis that produced the fully developed pulsating boundary shown in Fig. 3 to the viscous case in which both \(\rho \) and \(\rho' \) are allowed to be nonzero. Owing to the complexity of the fully viscous problem, we analyze Eqs. (27-34) directly by seeking appropriate expansions for the complex frequency \(\omega \) and the coefficients \(b_i \). We first consider the \(O(1) \) wave number region and, based on our earlier analyses, seek an expansion for the dispersion relation \(\omega(k) \) in this region of the form

\[
\omega \sim \epsilon^{-1} (\iota \omega_0 + \epsilon \iota \omega_1 + \epsilon^2 \iota \omega_2 + \cdots) \tag{39}
\]

Introducing the already defined parameter scalings, the quantities \(p, q, r, \) and \(s \) defined following Eq. (26) are expanded as

\[
p \sim p_{(-1)} \epsilon^{-1} + p_0 + p_{1} \epsilon + \cdots
\]

\[
q \sim q_{(-1)} \epsilon^{-1} + q_0 + \cdots
\]

\[
r \sim r_{(-1)} \epsilon^{-1} + r_0 + r_{1} \epsilon + \cdots,
\]

\[
s \sim s_{(-1)} \epsilon^{-1} + s_0 + s_{1} \epsilon + \cdots \tag{40}
\]

where

\[
P_{(-1)} = (i\omega_0)^{1/2}, \quad 2p_0 = [1 + i\omega_0/(i\omega_0)^{1/2}]
\]

\[
8 p_{(1)} = (i\omega_0)^{-1/2}[1 + 4k^2 + 4i\omega_0 - (i\omega_0)^2 + i\omega_0]
\]

\[
q_{(-1)} = (i\omega_0/P)^{1/2}, \quad 2p_0 = [1 + i\omega_0/(i\omega_0/P)^{1/2}]
\]

\[
r_{(1)} = s_{(1)} = -i\omega_0 \rho', \quad r_{(1)} = -i\omega_0 \rho'
\]

Finally, the \(b_i \) are conservatively postulated to have the expansions

\[
b_i = b_i^{(-1)} \epsilon^{-1} + b_i^{(-1)} \epsilon^{-1} + b_i^{(-1)} \epsilon^{-1} + \cdots, \quad i = 1, 2, 3
\]

\[
b_i = b_i^{(-1)} \epsilon^{-1} + b_i^{(-1)} \epsilon^{-1} + b_i^{(-1)} \epsilon^{-1} + \cdots, \quad i = 3, 4, 5, 6
\]

\[
b_i = b_i^{(-1)} \epsilon^{-1} + b_i^{(-1)} \epsilon^{-1} + b_i^{(-1)} \epsilon^{-1} + \cdots, \quad i = 7, 9, 10
\]

where the form of the latter expansions is again partly motivated by our earlier analyses of more specialized cases. Substituting the preceding expansions into Eqs. (27-34) and equating coefficients of like powers of \(\epsilon \), we obtain the leading-order conditions
Fig. 3 Composite pulsating/cellular hydrodynamic stability boundary for $A_\theta \sim \mathcal{O}(\varepsilon^{1/4})$ in the limit of zero viscosity.

\begin{align}
\begin{aligned}
 ik_b^{(0)} + ik_1 b^{(0)} + q_{-1} b^{(0)} + q_{0} b^{(0)} &= 0 \\
 ik_2 b^{(1)} + ik_1 b^{(1)} + q_{1} b^{(1)} + q_{0} b^{(1)} &= 0 \\
 ,iw_1 = b^{(1)} - \tilde{b}^{(1)} = b_1^{(1)} = b_2^{(1)} &= 0 \\
 b_1^{(0)} + b_2^{(0)} &= 0 \\
 b_3^{(0)} &= 0 \\
 b_5^{(0)} &= 0
\end{aligned}
\end{align}

where the last of Eqs. (48) was deduced from the next-order difference of Eqs. (29). Finally, from the sum of the first of Eqs. (28) multiplied by ik and the second of Eqs. (28) multiplied by ik_2, we conclude that $b^{(-1/2)}_2 = i\omega_0(1 - A_\theta^*/\rho^*)$. However, when $i\omega_0 = 0$ implies the need to continue the analysis at the next order to determine $i\omega_2$. Proceeding in this fashion, we obtain from the earlier results and Eqs. (29-34) at this next higher order a new set of conditions given by

\begin{align}
 b^{(0)}_2 &= 0 \\
 b^{(-1)}_2 = 2b^{(-1)}_3 = i\omega_0(2k - 1) + A_\theta^*/\rho^* \\
 b^{(-1)}_3 = (A_\theta^*/\rho^*)^{(1)} b^{(1)}_0 = i\omega_0[1 - (A_\theta^*/\rho^*)^2] \\
 -i\omega_0 b^{(-1)}_2 = 1 + 4A_\theta^*/\rho^* + 2P^2 \\
 b^{(1)}_0 = b^{(1)}_3
\end{align}

where Eq. (51) was actually obtained from the next higher-order difference of Eqs. (29) and the second of Eqs. (49) was obtained from the sum of Eqs. (31) multiplied by ik_2 and Eqs. (32) multiplied by ik_3. Equations (49-52) constitute a closed system for $b^{(0)}_2$, $b^{(-1)}_3$, $b^{(1)}_0$, and $i\omega_2$. Eliminating the first three of these in favor of the last and using the result (45) for $i\omega_0$, we finally obtain the dispersion relation for $i\omega_2$ as

\begin{align}
 i\omega_2 &= -2P^2 k^2 + k(A_\theta^*/\rho^* - 1) \\
 \times \left[A_\theta^*/\rho^* + 1 + \rho^*k^{-1}A_\theta^*(2A_\theta^*/\rho^* + 1)^{-1}\right]
\end{align}

Stability in the region $A_\theta^* < -\rho^*/2$ below the cellular boundary is determined by the real part of $i\omega_0$. In that region, the principal value of the complex factor in Eq. (53) may be written as $\left(A_\theta^*/\rho^* + 1\right)^{-1/2} = -\left(A_\theta^*/\rho^* + 1\right)^{-1/2}e^{-\frac{i\theta}{2}}\Delta A_\theta^*$, and thus the neutral stability condition $\text{Re}(i\omega_0) = 0$ leads to an implicit equation for the (pulsating) neutral stability boundary $A_\theta^*(A_\theta^*, \rho^*, P)$. In terms of the new pressure sensitivity parameter θ defined by $A_\theta^* = -(\rho^*/2)(1 + \theta)$, where θ represents the negative deviation, in units of $\rho^*/2$ from the cellular boundary $A_\theta^* = -\rho^*/2$, this boundary is given by

\begin{align}
 b^3 + b^2 - (3 + b)(1 - b) + 8P^2k^2 &= 0 \\
 \theta &= \frac{A_\theta^*/\rho^*}{\Delta A_\theta^*}
\end{align}

In the limit $k \to \infty$, it is clear that there are two solutions of Eq. (54) given by $b = 0$, that is, $A_\theta^* = -\rho^*/2$, and $b = 1 + 2(1 + 2P^2k^2)/\Delta A_\theta^*$.

\[\text{MARGOLIS}\]

\[\text{A}_0 = 0.5, \rho^* = \gamma = 1, \epsilon = 0.005\]
that is, \(A_0^* / \rho^* \sim - \left(1 + 2 P k \right)^{1/2} \). Thus, the pulsating boundary is clearly multivalued, as in the inviscid case (Fig. 3), with one branch approaching the cellular boundary and the other branch approaching the pulsating boundary for \(A_o = 0 \) (Fig. 2) in the limit of large \(k \). More generally, Eq. (54) may be rewritten as a cubic equation for the inverse relation \(k(b) \) as

\[
64 P k^2 + 16(3 + \hat{b})(1 - \hat{b}) P k^2 + (3 + \hat{b})^2(1 - \hat{b})^2 k
- \alpha (3 + \hat{b}) \hat{b}^{-1} = 0
\]

which is clearly seen to collapse to the previous inviscid result\(^7\) in the limit \(P \to 0 \). For arbitrary \(P \), typical plots of \(k(b) \) are shown in Figs. 4a–4d, which, when rotated \(-90 \) deg so that the \(k \) axis is horizontal, is readily interpreted in the context of Figs. 1–3, where the lines \(A_0^* = - \rho^*/2 \) and \(- \rho^* \) correspond to \(b = 0 \) and 1, respectively. It is clear that these curves asymptote to the lines \(b = 0 \) and \(-1 + 2(1 + 2 P k)^{1/2} \) as \(k \to \infty \), where the latter corresponds to the viscous pulsating boundary in the limit \(A_o^* \to 0 \). They cross the line \(b = 1 \), which corresponds to the inviscid pulsating boundary in the specified limit, at \(k^* = - \rho^*/4 P^2 \). That the pulsating boundary becomes \(C \) shaped (in the rotated frame of reference) for \(A_o^* > 0 \) implies that steady, planar burning is intrinsically unstable for sufficiently small wave numbers. In addition, because the portion within the \(C \)-shaped curve is the stable region, any crossing of the \(C \)-shaped boundary from the stable to the unstable region corresponds to the onset of a pulsating instability. As \(A_o^* \) increases, the turning point of the \(C \)-shaped pulsating boundary shifts to larger values of \(k \). On the other hand, as \(A_o^* \) becomes small, the turning point shifts to small values of \(k \) such that this point eventually leaves the \(O(1) \) wave number region for which Eq. (54) is valid. Indeed, it turns out that the transition to separated pulsating and cellular branches occurs as \(A_o^* \) decreases through \(O(e^{1/2}) \) values for intermediate \(O(e^{1/2}) \) wave numbers.\(^7\) Thus, as \(A_o^* \) becomes small, the original pulsating and cellular boundaries are recovered in the \(O(1) \) wave number regime, but as \(A_o^* \) becomes large, the original cellular boundary lies within the unstable region for \(O(1) \) wave numbers, and the basic solution becomes intrinsically unstable to oscillatory disturbances.

Composite Neutral Stability Boundary

A composite asymptotic solution for the neutral stability boundary in the regime \(A_o^* \sim O(e^{1/4}) \) is thus obtained by matching the cellular and pulsating boundaries in the far outer wave number regime, where the former is given by Eq. (36) and the latter by the second of Eqs. (38), with the appropriate solution branch of Eq. (54) in the \(O(e^{1/4}) \) wave number region. In particular, reverting back to the parameter \(\lambda_0^* \), we denote the two solution branches of Eq. (54), which correspond to the portions of Fig. 4 that lie to the left and to the

Fig. 4 Pulsating hydrodynamic stability boundaries for \(k \sim O(1) \) and \(A_o^* \sim O(e^{1/4}) \) in the general viscous case for \(\rho^* = 1 \) and a) \(P = 0.01 \), b) \(P = 0.001 \), c) \(P = 0.1 \), and d) \(P = 1.0 \).
right of the turning-point minimum, by \(A_k^{\ast \omega}(k) \) and \(A_k^{\ast \omega}(k) \), where the superscript \(\omega \) as before, the outer, or \(O(1) \), wave number region and the superscripts \(u \) and \(f \) for the upper and lower (rotate Fig. 4 by \(-90 \) deg) portions of the double-valued pulsating boundary \(A_k^\ast(k) \). Along the upper branch, \(A_k^{\ast \omega}(k) \to -\rho^k/2 \), that is \(b \to 0 \), as \(k \to \infty \), which can be matched with Eq. (36) because \(A_k^{(l)} \to -\rho^k/2 \) as \(k \to 0 \). Similarly, \(A_k^{\ast \omega}(k) \to -\rho^k(1+2PK)^{1/2} \) [i.e., \(b \to -1+2(1+2PK)^{1/2} \)] as \(k \to \infty \), which clearly matches the viscous pulsating boundary given by the second of Eq. (38) in the far outer wave number region. As a result, a leading-order composite stability boundary spanning both the outer and far outer wave number regions is given by

\[
A_k^\ast(k) \approx \begin{cases}
A_k^{\ast \omega}(k) - \frac{\rho^k}{2} + \frac{2\rho^k e^k P(1+ek)}{4\epsilon^k(1+\epsilon k^2)} & \text{for } \rho^k \ll 1 \\
A_k^{\ast \omega}(k) & \text{otherwise}
\end{cases}
\]

(56)

The composite stability boundary is shown in Fig. 5. Based on the preceding construction, the lower branch of Eq. (56) is a pulsating boundary for all wave numbers, whereas the upper branch transitions from a pulsating boundary for \(O(1) \) wave numbers to a cellular boundary for \(O(e^{-k}) \) wave numbers. Indeed, from Eq. (45), the size of the upper region of oscillatory instability, which is bounded below by the upper branch of the pulsating stability boundary and above by the region of nonoscillatory instability beyond the outer cellular boundary \(A_k^\ast \approx -\rho^k/2 \) for \(\rho^k = 0 \), shrinks to zero as \(k \) becomes large on the \(O(1) \) wave number scale. In this regime, the lack of a stable region for sufficiently small wave numbers thus implies an intrinsic instability to long-wave pulsating perturbations.

Conclusion

The present work further extends our recent formal treatment of hydrodynamic instability in liquid-propellant combustion. The analysis is based on a generalized Landau-Levich model in which the dynamic motion of the liquid/gas interface, assumed to coincide with the combustion front, realistically possesses both a pressure and temperature sensitivity. In the present work, the fully viscous case was considered, thereby generalizing previous analyses in which either the viscosity of the fluid and/or the temperature sensitivity of the reaction rate was neglected. As in these preceding studies, the smallness of the gas-to-liquid density ratio was used to define a small parameter that allowed an asymptotic treatment of a rather complex dispersion relation. Specifically, it was again shown that in addition to the classical Landau, or cellular, stability boundary, there exists a pulsating hydrodynamic stability boundary as well. For sufficiently small values of the temperature-sensitivity parameter, there is a stable region between these two boundaries corresponding to a range of negative pressure sensitivities for which steady, planar burning is stable.

As the pressure sensitivity decreases in magnitude, the cellular stability threshold is crossed, leading to classical Landau instability. Surface tension, viscosity (both liquid and gas), and gravity all stabilize effects with respect to this type of instability. However, only gravity stabilizes small wave number disturbances, and thus Landau instability becomes a long-wave instability in the reduced-gravity limit. Alternatively, as the pressure-sensitivity parameter increases in magnitude, the pulsating boundary is crossed, and liquid-propellant combustion becomes unstable to oscillatory perturbations. This type of hydrodynamic instability is more sensitive to the stabilizing effects of (liquid) viscosity than is the cellular boundary, but the stabilizing influence of viscosity does not extend to small wave number disturbances, and gravity turns out not to have a significant effect on this type of hydrodynamic instability. Consequently, for sufficiently large values of the temperature-sensitivity parameter, the pulsating boundary develops a turning point and becomes C shaped. In this parameter regime, corresponding to ratios of the temperature-to-pressure sensitivities of the order of 200–1000, steady, planar combustion is intrinsically unstable to nonsteady long-wave perturbations. In that case, the pulsating form
of hydrodynamic instability is predicted to dominate, leading to large unsteady cells along the burning liquid/gas interface.

Acknowledgments
This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000 and by the NASA Microgravity Science Research Program under Contract C-32031-E.

References

S. K. Aggarwal
Associate Editor