Experimental and Modeling Study of the Burning of an Ethanol Droplet in Microgravity

Andrei Kazakov, Jordan Conley and Frederick L. Dryer
Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, New Jersey 08544-5263

This is a preprint or reprint of a paper intended for presentation at a conference. Because changes may be made before formal publication, this is made available with the understanding that it will not be cited or reproduced without the permission of the author.

Twenty-Eighth Symposium (International) on Combustion,
University of Edinburgh, Scotland, August 2, 2000
Motivation

droplet studies in microgravity:

- simple geometric configuration - opportunity for testing/validating theory
- facile method to study the diffusive combustion of fuel molecular species similar to those in transportation fuels
- link to multi-droplet (spray) applications
- fire safety criteria in space

ethanol:

- relatively simple and established chemistry
- azeotropic behavior of mixtures with water
- change in sooting tendency with pressure
- important gasoline fuel additive
Earlier Studies - Small Droplets

Hara and Kumagai (1991)

- free (unsupported) ethanol droplets
- 1 atm, in air
- $d_0 \sim 0.7-1.3$ mm
- 1.5 s droptower
- reported burning history, flame position

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
<th>Image 4</th>
<th>Image 5</th>
<th>Image 6</th>
<th>Image 7</th>
<th>Image 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.667</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.683</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.698</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.714</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extinction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.746</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.762</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.778</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.794</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.810</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.825</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.841</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fiber Supported Droplet Combustion

FSDC-2

MSL-1/STS-94 (July 1997)

- drops tethered on silicon-carbide fibers (80, 150 microns), 2 to 5 mm initial diameter
- burned in cabin air (1 atm, 22-25 C, 39-46% RH)
- quiescent (all), convective (n-Heptane, n-Decane), & multiple drop (n-Heptane, n-Decane) experiments
- backlighted drop, direct flame video, & dual radiometer measurements
Droplet burning history (FSDC-2)

pure ethanol, $d_0 = 3.41$ mm
Time-Dependent, Spherically Symmetric, Bi-component Model for Droplet Combustion

(Based on FEM approach of Cho, et al., 1992)

Gas Phase:
- Multicomponent molecular diffusion
- Detailed chemical kinetics
- Spectral (non-luminous) thermal radiation
- UV flame emission

Droplet Surface:
- Surface regression
- Evaporation of fuel
- Condensation/Dissolution of products
- Radiative heat exchange

Mass Conservation:
\[\frac{\partial}{\partial t}(\rho_s r^2) + \nabla \cdot (\rho_s r^2 \mathbf{v}) = 0 \]

Species Equations:
\[\frac{\partial (\rho_s Y_{s,i})}{\partial t} = -\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \rho_s Y_{s,i} V_s) + \omega_{s,i} \]

Energy Conservation:
\[\frac{\partial (\rho_s C_{p,s} T_s)}{\partial t} + \nabla \cdot (\rho_s C_{p,s} T_s \mathbf{v}) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \lambda_s \frac{\partial T_s}{\partial r} - q_s \right) - \sum_{i=1}^{n} \frac{\partial p_s (Y_{s,i} V_{s,i} C_{p,s}) T_s}{\partial r} \]

Net Radiative Heat Flux

Droplet Interior:
\[\frac{\partial (\rho_s C_{p,l} T_l)}{\partial t} = \frac{1}{r^3} \frac{\partial}{\partial r} \left(r^3 \lambda_l \frac{\partial T_l}{\partial r} \right) \]
\[\frac{\partial Y_{l,i}}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_{l,i} \frac{\partial Y_{l,i}}{\partial r} \right) \]
Model: further details

- detailed reaction mechanism of $\text{C}_2\text{H}_5\text{OH}$ oxidation (Norton & Dryer, 1992)
 - 33 species
 - 142 reversible elementary reactions
- molecular transport parameters (CHEMKIN database & estimates)
- ethanol/water vapor pressure correlations (Kurimara et al. 1995)
- ethanol/water liquid density correlations (Bai et al. 1998)

Improved non-luminous Plank-mean radiation model:

- derived from the “rediscovered” exact analytical solution for spherically-symmetric system (Kuznetsov, 1951)
- allows for arbitrary radial distribution of the Plank-mean coefficient (i.e., free from the commonly-used approximation of $\kappa_p = \text{const}$)
- takes advantage of the spherical symmetry (numerical efficiency)

No empirical model parameter adjustments were applied
Results: small droplets

Hara & Kumagai (1991), $d_0 = 0.93$ mm

- model flame position is defined at the location of T_{max}
- the level of agreement for the flame standoff is acceptable as the experimental values have large uncertainty (poor ethanol flame visibility)
Results: large droplets

FSDC-2 experiments, 100% ethanol droplets

- $d_0 = 2.79$ mm
- $d_0 = 3.41$ mm
- $d_0 = 5.83$ mm

Note the scale!
Droplet Reburning (FSDC-2)

- some (large) initial droplets that underwent extinction followed by subsequent vaporization stage could be re-ignited (up to 5 re-ignitions)
- in the model, this procedure was simulated by restarting the previous run with the imposed temperature profile that imitated the effect of igniter wire

Model-predicted burning rate

Well-reproduced sequence of radiative extinction events!
Results: Flame Standoff

(FSDC-2, only limited data available)

100% ethanol droplet (reburn) case, \(d_0 = 2.89 \text{ mm} \)

- Model flame standoff is defined by the location of \(T_{\text{max}} \)
- Reasonable agreement between the model and the experiment
Average Burning Rate

- excellent agreement with the FSDC-2 and Hara & Kumagai data
- model shows no significant differences between 100% ethanol and 96% ethanol/4% water droplet burning rates
- advantages of the present detailed model over simplified approaches
Extinction diameter

radiative extinction diameter ~ 4 mm

same diameter (no burning)

- 100% ethanol (expt.)
- 96% C₂H₅OH - 4% H₂O (expt)
- present model

- excellent agreement between the model predictions and the experimental data

- first experimental (and confirmed theoretically) value of ethanol droplet radiative extinction diameter
Water Condensation & Azeotropic Behavior Based on the Model Analysis

\[d_0 = 1 \text{ mm, initially } 100\% \text{ C}_2\text{H}_5\text{OH} \]

Water mass fraction

Fractional gasification rate

Time (s)

Vapor pressure (atm)

Fractional gasification rate

Water mass fraction

Azeotrope
condensation of water occurs only during a short initial period of time until the droplet composition approaches the azeotropic point (about 4% of water by weight)

for the remainder (main part) of the burning history, droplet combustion proceeds primarily via preferential gasification of ethanol

the above phenomenon explains the observed similarities in the predicted burning behavior of pure ethanol and 96% ethanol/4% water (azeotropic composition) droplets
Summary

- first extensive experimental information on ethanol droplet burning in microgravity
 - burning rates
 - extinction diameters
 - radiative extinction diameter (~ 4 mm)
 - flame diameters

- the presented numerical model is capable of predicting in detail the ethanol droplet burning behavior for the broad range of initial droplet sizes

- ethanol droplet combustion is less influenced by water condensation (as compared to the previously studied methanol cases) due to azeotropic behavior of ethanol/water mixtures

Acknowledgements

- Brad Urban for his help with the data reduction
- FSDC-2 team members:
 Forman Williams, Ron Colantonio, Dan Dietrich, John Haggard, Sue Motil, Vedha Nayagam, and Ben Shaw
- financial support from NASA Glenn Research Center
Submitted for Work–In–Progress Poster Presentation at the
Twenty–Eighth Symposium (International) on Combustion
Edinburgh, Scotland
July 30–August 4, 2000

Experimental and Modeling Study of the Burning
of Ethanol Droplet in Microgravity

Andrei Kazakov, Bradley Urban, and Frederick L. Dryer
Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, NJ 08544

ABSTRACT

The microgravity ethanol droplet combustion experiments were performed aboard the
STS–94/MSL–1 Shuttle mission within the Fiber–Supported Droplet Combustion–2 (FSDC–2)
program. The burning histories and flame standoffs for pure ethanol and ethanol/water droplets
were obtained from the images recorded with two 8 mm videocameras. The obtained results
show that average gasification rate is related to the initial droplet size in a manner similar to
t–alkanes and methanol and consistent with the results of Hara and Kumagai [1] and the data
taken recently in the NASA–Lewis 2.2 s droptower [2].

A transient, moving finite–element chemically reacting flow model applied previously to
sphero–symmetric combustion of methanol, methanol/water, t–alkane, and t–alkane binary
mixture droplets was adopted for the problem of ethanol droplet combustion. The model includes
detailed description of gas–phase reaction chemistry and transport, a simplified description of
liquid phase transport, and non–luminous radiative heat transfer. Gas–phase chemistry was
described with the detailed reaction mechanism of Norton and Dryer [3], which consists of 142
reversible elementary reactions of 33 species. Another recently published reaction mechanism of
high–temperature ethanol oxidation [4] was also considered.

The model predictions were found to compare favorably with the experimental data. The
model analysis also indicates that water condensation in the case of ethanol has smaller effect on
average droplet gasification rate as compared with previously studied methanol cases. This effect
is explained by non–ideal (azeotropic) behavior of binary ethanol–water mixtures. Further
analysis of computational results and ethanol droplet radiative extinction behavior will be
discussed.

REFERENCES
Hara, H. and Kumagai, S., Twenty–Third Symposium (International) on Combustion, The
Colantonio, R., and Naygan, V., "Radiative Heat Loss Measurements during Microgravity
Experimental and Modeling Study of the Burning of Ethanol Droplet in Microgravity

Andrei Kazakov, Bradley Urban, and Frederick L. Dryer
Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, NJ 08544

corresponding author: Dr. Andrei Kazakov
e-mail: andrei@princeton.edu
phone: (609) 258 5280
fax: (609) 258 1939