Synthesis and Characterization of the First Liquid Single Source Precursors for the Deposition of Ternary Chalcopyrite (CuInS₂) Thin Film Materials

Kulbinder K. Banger
Ohio Aerospace Institute, Brook Park, Ohio

Jonathan Cowen
Cleveland State University, Cleveland, Ohio

Aloysius F. Hepp
Glenn Research Center, Cleveland, Ohio

February 2002
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized data bases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at 301-621-0134

- Telephone the NASA Access Help Desk at 301-621-0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076
Synthesis and Characterization of the First Liquid Single Source Precursors for the Deposition of Ternary Chalcopyrite (CuInS₂) Thin Film Materials

Kulbinder K. Banger
Ohio Aerospace Institute, Brook Park, Ohio

Jonathan Cowen
Cleveland State University, Cleveland, Ohio

Aloysius F. Hepp
Glenn Research Center, Cleveland, Ohio

February 2002
Acknowledgments

We thank NASA for financial support under cooperative agreement NCC3-817, Daniel Scheimen for assistance with TGA/DSC experiments, Dr. David Hehemann, Dr. Stan Duraj, and Dr. Alan Riga for laboratory resources.

Trade names or manufacturers' names are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Available from
NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov/GLTRS
Synthesis and Characterization of the First Liquid Single Source Precursors for the Deposition of Ternary Chalcopyrite (CuInS$_2$) Thin Film Materials

Kulbinder K. Banger
Ohio Aerospace Institute
Brook Park, Ohio 44142

Jonathan Cowen
Cleveland State University
Cleveland, Ohio 44115

Aloysius F. Hepp
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

The fabrication of polycrystalline chalcopyrite CIS absorber layers for thin film solar cells have received considerable interest due to their potential as the next generation of photovoltaic devices.1 Chalcopyrite materials are highly appealing given their bandgaps are near optimum for either implementation in space, (AMO) or terrestrial applications, (AM1.5). For example a Cu(In,Ga)Se$_2$ based thin film solar cell has been reported to display an AM1.5 conversion of 18.8 percent.2 A further challenge for space applications is the optimization of mass specific power to minimize power system launch costs. This requirement necessitates the use of lightweight substrates such as metal foils, or polymer substrates, which require the use of reduced-temperature processes, typically < 400 °C. Consequently, greater demand has been placed on the synthesis of new precursors capable of producing chalcopyrite materials at reduced temperatures. Clearly molecular engineering of MOCVD precursors plays a significant role and is receiving greater attention.3 Ternary single source precursors, (type I–III–VI$_2$) provide an attractive and clean approach, however very few are known, or have been tested.

In the course of our investigations for improved precursors for the CVD of chalcopyrite thin-films,4–6 we have discovered new liquid single source precursors to the ternary semiconductor CuInS$_2$, based on the [{PR$_3$}$_2$Cu(SR')]$_2$In(SR')]$_2$ architecture.7 Manipulation of the steric and electronic properties of the neutral donor ligand and the thiol moiety, permits directed adjustment of the physical and thermal properties of the precursor. Use of extended alkyl groups resident either on the phosphine, or thiol groups affords the liquid derivatives, [{P(n-Bu)$_3$}$_2$Cu(SEt)$_2$In(SEt)$_2$] 1 and [{P(n-Bu)$_3$}$_2$Cu(S(n-Pr)$_2$In(S(n-Pr)$_2$)] 2, respectively.

The complexes are synthesised based on a modification of the procedure reported by Kanatzidis,7 with the thiol derivative being generated in situ by reaction of the conjugate acid with NaOEt in methanol, thus producing no adverse side products, in addition to an “activated” NaSR'. The multi-stage synthesis yields the desired products in good yields, (> 65 percent) as opaque liquids that are stable in air for over 5 hrs, during normal handling.8 One of the key features of these new precursors is their liquid phase, which is remarkable considering their high molecular mass and stoichiometry, thus facilitating the possibility of a solvent free delivery and higher deposition rates during thin film fabrication. Needless to say, the precursors also display very high solubility in both polar and non-polar organic solvents, which may be attributed to their ionic character and to the non-polar alkyl groups resident on the phosphine.

Multinuclear NMR, low temperature Differential Scanning Calorimetry (DSC), and Thermogravimetric analyses (TGA) with evolved gas analysis, (EGA) were used to characterize and verify precursor formation and purity. NMR data demonstrated that 1 and 2 were free from any starting reagents (see supporting info).31P NMR spectra shows a shift for PBU$_3$, from -32.50 to -19.2 for [{PBU$_3$}$_2$Cu{MeCN}$_2$]+PF$_6$-, -22.4 for I and -22.5 ppm for 2, which is indicative of ligand to metal co-ordination and hence complex formation.9 Low temperature DSC provided information on the thermal stability and temperature dependent phase changes of the single source precursors. The samples were heated at a rate of 10 °C/min under a dinitrogen atmosphere, using hermetically sealed aluminum pans to eliminate weight loss associated with vaporization. The low temperature DSC profiles show an absence of an endotherm assignable to a melting phase transition, thus confirming their liquid phases at ambient temperatures (figure 1). The main exothermic events for 1 and 2 begin with onset temperatures of 258 °C and 225 °C with large exotherms of 220 J/g and 313 J/g, respectively, which can be assigned to the decomposition of the samples. The lower decomposition temperature of 2 is as expected, since an increase in chain length and/or steric “bulk” of the alkyl groups is reported to decrease stability.2,10

Thermogravimetric analyses (TGA) were performed at ambient pressure in platinum pans, on samples of the liquid precursors. The samples were heated at a rate of 20 °C/min under a dinitrogen atmosphere to correlate with EGA. Weight loss was associated with decomposition of the complexes (figure 2). Calculation of the derivative maximum rate of weight loss (MRW, percent/°C), and step transition weight loss were used as a measure of relative
stability. The TGA curves show a smooth loss of mass over a temperature window of approximately 170 °C, accounting for a loss of 70 percent for 1 and 71 percent for 2, of the original material where the MRW is found at 238 and 225 °C, respectively. The TGA profile for sample 1 and 2 indicate an initial weight loss, as low as 82 and 75 °C, whilst calculation of the extrapolated onset temperatures yields 189 and 171 °C, respectively. Calculation of the precursor efficiency for 1 and 2 to afford CulnS2 as the final product, shows both samples to be within 1.5 percent based on the residual material from the TGA experiments. Preliminary Vacuum-TGA studies on 1, shows the degradation temperature window to be as low as 100 to 160 °C, thus making these precursors ideal candidates for use in low temperature MOCVD on space qualified substrates such as KaptonTM.

Interestingly, TGA data indicates that both precursors begin to decompose at lower temperatures than observed by DSC analysis. In order to resolve this issue, low temperature Modulated Differential Scanning Calorimetry, (MDSC) was undertaken, which provides information about the reversible, (heat capacity) and non-reversible, (kinetic) characteristics of thermal events, thereby providing greater sensitivity to deconvolute thermal phase transitions.11 MDSC profiles for sample 1 and 2 show an onset for an endothermic phase transition occurring at approximately 80 and 75 °C, respectively, which may be correlated with the decomposition temperatures found in TGA, whilst the exothermic maxima, (Tbird) are of a magnitude constant with those found in the DSC experiments, (figure 3). Hence, MDSC supports the TGA decomposition data. A more thorough interpretation of the thermal properties of these materials is presented elsewhere.6

The mode of decomposition for the liquid precursors 1 and 2 was investigated by FTIR and mass spectroscopic EGA. The FTIR spectra for 1 (figure 4), show absorptions at approximately 3000, 1460, 1390, 1300 and 1250 cm−1, which are assignable to the initial expulsion of diethyl sulphide. Correlation with the mass spectra supports these findings on the basis of the library fit and from the assignment of the fragment and parent ions, (m/z = 90). After approximately 15 minutes the intensity of the absorptions in the IR spectra due to diethyl sulphide decrease, however absorptions in the aliphatic regions are still evident. Comparison with the respective mass spectra allows for the assignment to the loss of PBU3, with a library fit of 92 percent and assignment of the parent ion, (m/z = 202). Importantly, mass spectroscopic EGA shows the absence of any fragment ions with an isotopic pattern associated with an indium derivative. In a similar experiment, EGA for the n-propyl derivative gave analogous results.

The ability of the new precursor to thermally decompose to yield single-phase CulnS2 was investigated by powder X-ray diffraction (XRD) analysis and Energy Dispersive Spectroscopy, (EDS) on the non-volatile solids from the TGA experiments and vacuum pyrolysis, (5mmHg, 150 to 300 °C). XRD spectra for the non-volatile material produced from the pyrolysis of 1 confirmed it to be single-phase CulnS2 (figure 5). Examination of the EDS spectra for the same samples, shows predominant emissions due to Cu, In, and S edges, with the approximate percentage atomic composition of 27, 23 and 50 for 1 and 28, 23 and 49 for 2, respectively, thus supporting the stoichiometric formation of CulnS2, albeit slightly copper rich.12 The stoichiometry of CIS deposition is known to be temperature dependent,16 and so these initial results are very promising.

In summary we have produced the first known liquid single source precursors for the deposition of the ternary chalcopyrite CulnS2. Thermal analysis supports that selective adjustment of the sterically demanding groups either on the donor group, or chalcogenide, permits adjustment of the solid-state phase and stability of the precursor. Furthermore, the availability of a liquid phase precursor dramatically broadens the potential for a number of MOCVD processes, and may allow application to certain spin coating processes, fabrication of CulnS2 quantum dots and impregnated CIS polymer films.

References

8. For 1: 1H NMR: 300 MHz; CDCl3: δ 2.75 ppm (q, CH3CH2S-); δ 1.57 ppm (br m, P(CH3C2H7)3); δ 1.42 ppm (br m, P(CH3C2H7)3); δ 1.32 ppm (t, CH3)
-SCH₂CH₃); δ 0.94 ppm (t, P(CH₂C₂H₆CH₃)₃); ¹³C NMR 75 MHz; CDCl₃; δ 26.66 ppm, (P(CH₂C₆H₄CH₃)₃); δ 24.88 ppm (P(CH₂CH₂C₆H₄CH₃)₃); δ 24.83 ppm (P(CH₂CH₂C₆H₄CH₃)₃); δ 23.22 ppm (-SCH₂CH₃); δ 20.87 ppm (-SCH₂CH₃); δ 13.89 ppm, (P(CH₂C₆H₄CH₃)₃); ³¹P NMR: 121 MHz; CDCl₃; δ -21.42 ppm, (br s, -Cu{P(Bu₃)}₂). Complex 2 was prepared in an similar manner to 1: ¹H NMR: 300 MHz; CDCl₃; δ 2.69 ppm (t, C₆H₅CH₂S-); δ 1.56 ppm (br m, P(CH₂C₆H₄CH₃)₃ overlapping with CH₃CH₂CH₂S-); δ 1.41 ppm (br m, P(CH₂C₂H₆CH₃)₃); δ 0.94 ppm (m, CH₂CH₂CH₂S- overlapping with P(CH₂CH₂C₆H₄CH₃)₃); ¹³C NMR 75 MHz; CDCl₃; δ 30.92 ppm, (CH₃CH₂CH₂S-); δ 28.73 ppm (CH₂CH₂CH₂S-); δ 26.66 ppm (P(CH₂C₆H₄CH₃)₃); δ 24.96 ppm (P(CH₂CH₂C₆H₄CH₃)₃); δ 24.85 ppm (P(CH₂CH₂C₆H₄CH₃)₃); δ 13.91 ppm, (P(CH₂CH₂C₆H₄CH₃)₃); δ 13.71 ppm (CH₂CH₂CH₂S-); ³¹P NMR: 121 MHz; CDCl₃; δ -21.38 ppm, (br s, -Cu{P(Bu₃)}₂).

Figure 1. Low temperature DSC Studies.

12. Samples were characterized by transmission spectroscopy (Perkin Elmer, Lambda-19), scanning electron microscopy (SEM) (Hitachi S-3000N), Energy dispersive Spectroscopy (SEM-EDS) (EDAX), (accurate to ±3 percent). XRD, Philips PW3710, (Cu Kα, 1.541 Å). TA Instruments Hi-Res-TGA, 2950, TA Instruments DSC 910, and MDSC 2920.
Figure 2. TGA profile for [{P(n-Bu)₃}₂Cu(S(n-Pr))₂In(S(n-Pr))₂], 2.

Extrapolated Onset

74.95°C

170.95°C

70.96% Step transition weight loss (6.412mg)

Residue:
28.96%
(2.617mg)

244.44°C

Temperature (°C)

Weight (%)

Figure 3. Low temperature MDSC for [{P(n-Bu)₃}₂Cu(SEt)₂In(SEt)₂] 1 and [{P(n-Bu)₃}₂Cu(S(n-Pr))₂In(S(n-Pr))₂] 2.

Sample 2

Sample 1

250.02°C

276.15°C

74.97°C

81.95°C

Temperature (°C)

Heat Flow (W/g)
Figure 4. EGA-FTIR spectra for [{P(n-Bu)₃}₂Cu(SEt)₂In(SEt)₂] 1.

Figure 5. XRD Powder Diffraction for non-volatile residue from pyrolysis of [{P(n-Bu)₃}₂Cu(SEt)_2In(SEt)_2], (Cu Kα, 1.541 Å).

![XRD Powder Diffraction](image)
Appendix A
Supporting Information

Scheme 1: Preparation of single source CuInS₂ precursors.

\[\text{Cu}_2O + \text{HPF}_6 \xrightarrow{\text{MeCN}} [\text{Cu}\{\text{MeCN}\}_4]^+\text{PF}_6^- \]

\[[\text{Cu}\{\text{MeCN}\}_4]^+\text{PF}_6^- + 2\text{PBu}^3 \xrightarrow{\text{CH}_2\text{Cl}_2/\text{Ar}} -2\text{MeCN} \]

\[\{\text{PBu}^3\}_2\text{Cu}\{\text{MeCN}\}_2]^+\text{PF}_6^- \]

\[\text{NaOMe} + \text{HSR}' \xrightarrow{\text{MeOH}/\text{Ar}} \text{NaSR}' + \text{MeOH} \]

\[4 \text{NaSR}' + \text{InCl}_3 \xrightarrow{\text{MeOH}/\text{Ar}} \text{Na}^+\text{[In(SR)₄]⁺} + 3 \text{NaCl} \]

\[\{\text{PBu}^3\}_2\text{Cu}\{\text{MeCN}\}_2]^+\text{PF}_6^- + \text{Na}^+\text{[In(SR)₄]⁺} \xrightarrow{\text{MeOH}/\text{Ar}} \{\text{PBu}^3\}_2\text{Cu(SR)'₂In(SR)₂} \]

Synthesis of 1: All manipulations were carried out under anaerobic condition. NaSEt was prepared *in situ* by reaction of NaOEt (1.31 g, 24.25 mmol) with EtSH (1.43 g, 23.01 mmol) in anhydrous methanol. After 30 min InCl₃ (1.27 g, 5.75 mmol) was added. The mixture was stirred for 1 hr. [Cu(CH₃CN)₂(PBu₃)₂]PF₆ (4.0 g, 5.75 mmol), dissolved in anhydrous methanol (20 mL) was added dropwise to the reaction flask. The mixture was stirred (~3 d) resulting in the precipitation of a white solid. The reaction solution was then concentrated and the product extracted with anhydrous CH₂Cl₂ (50 mL), and filtered through celite to remove the inorganic salts. The collected filtrate was concentrated via rotary evaporation, which afforded the clear liquid precursor (69%). Complex 2 was prepared in an analogous manner, (71%).
Figure 1. EGA-FTIR spectra for \([\{P(n-Bu)_3\}_2Cu(SPr^3)_2In(SPr^3)_2]\), 2

Figure 2. TGA Profile for \([\{P(n-Bu)_3\}_2Cu(SEt)_2In(SEt)_2]\), 1.

- Extrapolated Onset: 81.07°C
- 188.50°C
- 69.55% Step Transition weight loss (12.78mg)
- Residue: 30.62% (5.828mg)
- 253.78°C
Figure 3. Vacuum TGA for [{P(n-Bu)₃}₂Cu(SEt)₂In(SEt)₂], 1.

- Extropolated Onset: 33.68°C
- 108.15°C
- 72.35% Step Transition weight loss (5.149mg)
- 229.80°C
- Residue: 28.28% (2.013mg)
Figure 4. X-ray Powder Diffraction spectra for \([\{P(n-Bu)_3\}_2Cu(SPr^n)_2In(SPr^n)_2\}, 2, (Cu K\alpha, 1.541 \, \text{Å})].

Diffractometer type: PW3710
Diffractometer number: 1
Anode: Cu
Wavelength Alpha1: 1.54060
Intensity ratio (alpha2/alpha1): 0.50000
Monochromator used: YES
Generator voltage [kV]: 45
Start angle [X2]: 10.0100
Type of scan: CONTINUOUS
ConvertedTo/FIXED/

Wavelength Alpha2: 1.54439
Divergence slit: 1
Receiving slit: 0.2
Generator current [mA]: 40
End angle [X2]: 89.9900
Step size [X2]: 0.020
Time per step [s]: 1.00

Peaks:

- 27.9550 100
- 28.0750 95
- 32.4850 14
- 46.3600 77
- 50.3800 4
- 55.2500 66
- 57.7400 11
- 68.0100 8
- 74.7900 28
- 77.2700 11
- 86.1100 30

NASA/TM—2002-211128
10
Table 1: Acquisition Data for Powder XRD: [{P(n-Bu)}_2Cu(SEt)_2In(SEt)_2], 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffractometer type</td>
<td>PW3710</td>
</tr>
<tr>
<td>Diffractometer number</td>
<td>1</td>
</tr>
<tr>
<td>Wavelength Alpha1</td>
<td>1.54060</td>
</tr>
<tr>
<td>Intensity ratio (alpha2/alpha1)</td>
<td>0.50000</td>
</tr>
<tr>
<td>Divergence slit</td>
<td>1</td>
</tr>
<tr>
<td>Monochromator used</td>
<td>YES</td>
</tr>
<tr>
<td>Generator voltage [kV]</td>
<td>45</td>
</tr>
<tr>
<td>Start angle [X2]</td>
<td>10.0100</td>
</tr>
<tr>
<td>Step size [X2]</td>
<td>0.020</td>
</tr>
<tr>
<td>Time per step [s]</td>
<td>1.00</td>
</tr>
<tr>
<td>Anode</td>
<td>Cu</td>
</tr>
<tr>
<td>Wavelength Alpha2</td>
<td>1.54439</td>
</tr>
<tr>
<td>Receiving slit</td>
<td>0.2</td>
</tr>
<tr>
<td>Generator current [mA]</td>
<td>40</td>
</tr>
<tr>
<td>End angle [X2]</td>
<td>89.9900</td>
</tr>
<tr>
<td>Type of scan</td>
<td>CONTINUOUS</td>
</tr>
<tr>
<td>ConvertedTo, FIXED</td>
<td></td>
</tr>
</tbody>
</table>

Peaks,

<table>
<thead>
<tr>
<th>28.1350</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.5450</td>
<td>10</td>
</tr>
<tr>
<td>46.5350</td>
<td>81</td>
</tr>
<tr>
<td>46.7200</td>
<td>83</td>
</tr>
<tr>
<td>55.2650</td>
<td>62</td>
</tr>
<tr>
<td>57.7650</td>
<td>9</td>
</tr>
<tr>
<td>67.7800</td>
<td>8</td>
</tr>
<tr>
<td>74.9950</td>
<td>26</td>
</tr>
<tr>
<td>77.0950</td>
<td>9</td>
</tr>
<tr>
<td>86.2650</td>
<td>29</td>
</tr>
</tbody>
</table>

Figure 5a: EDS spectra for [{P(n-Bu)}_2Cu(SEt)_2In(SEt)_2], 1.
Figure 5b. EDS spectra for [{P(n-Bu)$_3$)$_2$Cu(SPr$_{3}$)$_2$In(SPr$_{3}$)$_2$}, 2.

<table>
<thead>
<tr>
<th>Elem</th>
<th>Wt %</th>
<th>At %</th>
<th>K-Ratio</th>
<th>Z</th>
<th>A</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>S K</td>
<td>25.94</td>
<td>48.70</td>
<td>0.2037</td>
<td>1.1569</td>
<td>0.6715</td>
<td>1.0109</td>
</tr>
<tr>
<td>InL</td>
<td>44.62</td>
<td>23.40</td>
<td>0.3629</td>
<td>0.9051</td>
<td>0.8987</td>
<td>1.0000</td>
</tr>
<tr>
<td>CuK</td>
<td>29.44</td>
<td>27.90</td>
<td>0.2826</td>
<td>1.0016</td>
<td>0.9584</td>
<td>1.0000</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Element Net Inte. Backgrd Inte. Error P/B

- S K: 155.55 8.43 0.84 18.45
- InL: 87.25 6.45 1.15 13.53
- CuK: 42.70 2.88 1.63 14.83

kV: 20.00 Tilt: 0.00 Take-off: 29.88 Tc: 50.0
Det Type: SUTW, Sapphire Res: 128.39 Lsec: 100
Figure 6. SEM of non-volatile residue from TGA for \([P(n-Bu)_3]_2Cu(SEt)_2In(SEt)_2\], 1.

Grain size \(\sim 1\mu m\)

Figure 7. SEM of non-volatile residue from TGA for \([P(n-Bu)_3]_2Cu(SPrn)_2In(SPrn)_2\], 2.
Figure 8: EGA: Mass Spec data from TGA for \(\{P(n-Bu)_3\}_2Cu(SEt)_2In(SEt)_2 \), 1.

PBUCISET #888 RT: 8.82 AV: 1 NL: 1.36E3
T: + c Full ms [50.00-650.00]

PBUCISET #924-1085 RT: 9.17-10.67 AV: 162 NL: 2.22E4
T: + c Full ms [50.00-650.00]
Figure 9. EGA: Mass Spec data from TGA for \(\{P(n-Bu)_{3}\}_2Cu(SPr^p)_2In(SPr^p)_2 \), 1.

Mass Spectroscopy Data

- **RT**: 0.00 - 58.99
- **m/z**: 117.9, 120.0, 176, 178, 205, 207, 254, 256, 292, 298, 334, 335, 374, 376, 418, 437, 484, 485, 513, 514, 532, 554
- **Rel. Abundance**: 0.50, 2.43, 5.56
- **Time (min)**: 0 to 55

Mass Spectrum Analysis

- **RT** of spectrum 1: 8.59
- **AV**: 1
- **NL**: 1.10 E3
- **T: + c Full ms [50.00-650.00]
- **m/z**: 117.9, 120.0, 176, 178, 205, 207, 254, 256, 292, 298, 334, 335, 374, 376, 418, 437, 484, 485, 513, 514, 532, 554

Mass Spectrum Analysis

- **RT** of spectrum 2: 8.40
- **AV**: 1
- **NL**: 8.02 E2
- **T: + c Full ms [50.00-650.00]
- **m/z**: 117.9, 120.0, 176, 178, 205, 207, 254, 256, 292, 298, 334, 335, 374, 376, 418, 437, 484, 485, 513, 514, 532, 554
Figure 10. 1H, 13C & 31P NMR data for 1, 2, and [{P(nBu3)}3Cu{MeCN}2]PF6.

NOTE

To confirm the liquid properties of 1 and 2 were not as a result of impurities due to un-reacted starting materials, a series of test were conducted. 31P NMR spectra of a mixture of PBu3 and either 1, or 2 gave a single broad peak around -28 ppm, which can be attributed to the mean chemical shift as a result of exchange between the free, and the ligated phosphine group, thereby further supporting the absence of “free” PBu3 in both precursors. 1H, 13C, NMR spectra for both precursors show the absence of a signal associated with a nitrile group, thus confirming that the intermediate [{PBu3}2Cu{MeCN}2]+PF6— (which is a liquid), was not present in either sample. In addition, DSC thermal “finger-printing” also confirmed products 1 and 2, where free from any starting reagents.

For [{P(nBu3)}3Cu{MeCN}2]PF6: 1H NMR: 300 MHz; CDCl3; δ 2.25 ppm (s, CH3CN); δ 1.62 ppm (br, P(CH2C3H7)3); δ 1.42 ppm (br, P(CH2C2H4CH3)3); δ 0.94 ppm (t, P(C3H6CH3)3); 13C NMR 75 MHz; CDCl3; δ 119.68 ppm (CH3CN); δ 27.15 ppm (P(CH2C3H7)3); δ 24.55 ppm (P(CH2CH2C2H3)3); δ 24.12 ppm (P(C2H4CH2CH3)3); δ 13.85 ppm, (P(C2H4CH2CH3)3); 31P NMR: 121 MHz; CDCl3; δ -19.26 ppm, (br s, -Cu{P(Bu3)}2); δ -145.92 ppm, (sep, PF6).
31P NMR: PBu₃

IH NMR: [{P(n-Bu)₃}₂Cu(SEt₂)₂In(SEt₂)]
$1H \text{ NMR: } \{\{PBu_3\}_2Cu\{MeCN\}_2\}PF_6$

$31P \text{ NMR: } \{\{PBu_3\}_2Cu\{MeCN\}_2\}PF_6$
31P NMR: $[\{P(n-Bu)_{3}\}_{2}Cu(SPPr)_2In(SPPr)_2]$
31P NMR: $[\{P(n-Bu)_3\}_2Cu(SEt)_2In(SEt)_2] \& PBu_3$
Synthesis and Characterization of the First Liquid Single Source Precursors for the Deposition of Ternary Chalcopyrite (CuInS$_2$) Thin Film Materials

Kulbinder K. Banger, Jonathan Cowen, and Aloysius F. Hepp

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

National Aeronautics and Space Administration
Washington, DC 20546–0001

Molecular engineering of ternary single source precursors based on the \([$\{PBu_3\}_2Cu(SR')_2In(SR')_2$\] architecture have afforded the first liquid CIS ternary single source precursors (when $R = Et, n-Pr$), which are suitable for low temperature deposition, (< 350 °C). Thermogravimetric analyses (TGA) and Modulated-DSC confirm their liquid phase and reduced stability. X-ray diffraction studies, EDS and SEM support the formation of the single-phase chalcopyrite CuInS$_2$ at low temperatures.

Sulfides; Thermal analysis; Copper compounds; Indium compounds