Unifying Model-based and Reactive Programming within a Model-based Executive

Brian C. Williams and Vineet Gupta
NASA Ames Research Center, MS 269-2
Moffett Field, CA 94035 USA
E-mail: {williams, vgupta}@ptolemy.arc.nasa.gov

Abstract

Real-time, model-based, deduction has recently emerged as a vital component in AI's tool box for developing highly autonomous reactive systems. Yet one of the current hurdles towards developing model-based reactive systems is the number of methods simultaneously employed, and their corresponding melange of programming and modeling languages. This paper offers an important step towards unification. We introduce RMPL, a rich modeling language that combines probabilistic, constraint-based modeling with reactive programming constructs, while offering a simple semantics in terms of hidden state Markov processes. We introduce probabilistic, hierarchical constraint automata (PHCA), which allow Markov processes to be expressed in a compact representation that preserves the modularity of RMPL programs. Finally, a model-based executive, called Reactive Burton is described that exploits this compact encoding to perform efficient simulation, belief state update and control sequence generation.

Introduction

Highly autonomous systems, such as NASA's Deep Space One spacecraft (Muscettola et al. 1999) and Rover prototypes, are being deployed that leverage many of the fruits of AI's work on automated reasoning - planning and scheduling, task decomposition execution, model-based reasoning and constraint satisfaction. Yet a likely show stopper to widely deploying this level of autonomy is the myriad of AI modeling languages employed, coupled to the programming and specification languages used to implement and verify the real-time system.

This paper concentrates on the part of this challenge that lies at the reactive layer - robotic execution, model-based monitoring and reactive programming. Key to this challenge is the development of a unified language that can express a rich set of mixed hardware and software behaviors (Reactive Model-based Programming Language - RMPL), a compact encoding of the underlying Markov process (hierarchical constraint automata - HCA), and an executive for this encoding that supports efficient state estimation, monitoring and control generation (Reactive Burton).

Reactive MPL achieves expressivity at both the software and hardware levels by merging key ideas from synchronous programming languages, qualitative modeling and Markov decision processes. Synchronous programming offers a class of languages (Halbwachs 1993) developed for writing control programs for reactive systems (Harel & Pnueli 1985; Berry 1989) — logical concurrency, preemption and executable specifications. Qualitative modeling and Markov decision processes together offer a rich language for describing continuous process and uncertainty.

Reactive Burton achieves efficient execution through a careful generalization of state enumeration algorithms that are successfully employed by the Sherlock (de Kleer & Williams 1989) and Livingstone (Williams & Nayak 1996) systems on simpler modeling languages.

We start with a sketch of Reactive Burton, set in the context of other work on robotic execution and reactive programming. The first half of the paper then introduces hierarchical constraint automata, their deterministic execution, and their expression using Reactive MPL. The direct mapping from RMPL combinators to HCA, coupled with HCA's hierarchical representation avoids the state explosion problem that frequently occurs while compiling large reactive programs.

The second half of the paper turns to model-based execution under uncertainty. First we generalize HCAs to a factored representation of partially observable Markov decision processes (POMDPs) with limited rewards. We then develop RBurton's stochastic monitoring and execution capabilities, while leveraging off the compact encoding offered by probabilistic HCA. Finally, we demonstrate RMPL on a simplified version of a navigation maneuver performed within the Remote Agent Autonomous Spacecraft Experiment. The paper concludes with an additional discussion of related work.

The Reactive Burton Executive

The robotic execution task consists of controlling a physical plant according to a stream of high-level commands (goals), in the face of unexpected behavior from the system. To accomplish this the executive controls...
some variables of the plant, and senses the values of some sensors to determine the hidden state of the plant.

A schematic of Reactive Burton is shown below. The physical testbeds being used to demonstrate aspects of RBurton's capabilities include a deep space probe enroute to an asteroid, a Russian rover, a deep space interferometer, and a chemical plant that generates rocket fuel from the atmosphere.

R. Burton consists of two main components. The state estimation module determines the current most likely states of the plant from observed behavior using a plant model. This generalizes mode identification (MI) (Williams & Nayak 1996). The key difference is the expressiveness of the modeling languages employed. Reactive MPL allows a rich set of embedded software behaviors to be modeled, hence RBurton's state estimator offers a powerful tool for monitoring mixed software/hardware systems.

RBurton's control sequencer executes a program for controlling the plant that is also specified using RMPL. Actions are conditioned on external goals and properties of the plant's current most likely state. Given multiple feasible options, RBurton selects the course of action that maximizes immediate reward. As a control language RMPL offers the expressiveness of reactive languages like Esterel (Berry & Gonthier 1992), Lustre (Halbwachs, Caspi, & Pilaud 1991), Signal (Guernic et al. 1991) and State Charts (Harel 1987). Together they allow complex systems to be modeled that involve software, digital hardware and continuous processes.

Hierarchic Constraint Automata

Hierarchic constraint automata (HCA) incorporate each of these attributes. An HCA models physical processes with changing interactions by enabling and disabling constraints within a constraint store (e.g., a valve opening causes fuel to flow to an engine). Transitions between successive states are then conditioned on constraints entailed by that store (e.g., the presence or absence of acceleration).

A constraint system $\langle D, \models \rangle$ is a set of tokens D, closed under conjunction, together with an entailment relation $\models \subseteq D \times D$. The relation \models satisfies the standard rules for conjunction. *

R. Burton, uses propositional state logic as its constraint system. In state logic each proposition is an assignment $x_i = v_{ij}$, where variable x_i ranges over a finite domain $D(x_i)$. Propositions are composed into formula using the standard logical connectives \land (and), \lor (or) and not (¬). If a variable can take on multiple values, then $x_i = v_{ij}$ is replaced with $\exists v_{ij} \in x_i$.

A deterministic, hierarchical, constraint automaton S is specified as a tuple $(\Sigma, \Theta, \Pi, C_p, T_p)$, where:

- Σ is a set of states, partitioned into primitive states Σ_p and composite states Σ_c. Each composite state denotes a hierarchical, constraint automaton.
- $\Theta \subseteq \Sigma$ is a set of start states.
- Π is a set of variables with each $x_i \in \Pi$, ranging over a finite domain $D(x_i)$. $C[\Pi]$ denotes the set of all finite domain constraints over Π.
- $C_p : \Sigma_p \rightarrow C[\Pi]$, associates with each primitive state s_i a finite domain constraint $C_p(s_i)$ that holds whenever s_i is marked.

\star The standard rules for conjunction are 1) $a \equiv a$ (identity); 2) $a \land b \equiv a$ and $a \land b \equiv b$ (\land elimination); 3) $a\equiv b$ and $b \land c \equiv d$ implies $a \land c \equiv d$ (cut); and 4) $a \equiv b$ and $a \equiv c$ implies $a \equiv b \land c$ (\land introduction).
Simulating Deterministic HCA

First some preliminaries. Given automaton \(A, \overline{C}(A) \) denotes a function that returns the relevant constraints that are associated with any primitive state contained in \(A \) or one of its descendants. Formally, \(\overline{C}(A) = \{ \overline{C} \cup \bigcup_{B \in \Sigma} \overline{C}(B) \} \). Similarly, \(\overline{T}(A) \) returns the relevant transition function associated with any of these primitive states — \(\overline{T}(A) = \overline{T} \cup \bigcup_{B \in \Sigma} \overline{T}(B) \).

A full marking of an automaton is a subset of states of an automaton, together with the start states of any composite states in the marking. This is computed recursively from an initial set of states \(M \) and \(s \) composite. Given a current marking \(M \) on an automaton \(A \), the function \(\text{Step}(A, M) \) computes a new marking corresponding to the automaton transitioning one time step.

\[
\text{Step}(A, M) :=
\begin{align*}
1. & \quad M_1 := \{ s \in M \mid s \text{ primitive} \} \\
2. & \quad C := \bigwedge_{s \in M_1} \overline{C}(s) \\
3. & \quad M_2 := \bigcup_{s \in M_1} \overline{T}(s, C) \\
4. & \quad \text{return } M_F(M_2)
\end{align*}
\]

Step 1 throws away any composite marked states, they are uninteresting as they lack associated constraints or transitions. Step 2 computes the conjunction of the constraints implied by all the primitive states in \(M \). Step 3 computes for each primitive state the set of states it transitions to after one time step. In step 4, applying \(M_F \) to the union of these states marks the start states of any composite state. The result is the full marking for the next time step.

A trajectory of an automaton \(A \) is a finite or infinite sequence of markings \(m_0, m_1, \ldots \), such that \(m_0 \) is the initial marking, and for each \(i \geq 0 \), \(m_{i+1} = \text{Step}(A, m_i) \). The initial marking is \(M_F(\Theta) \).

Elaborating on step 3, we represent the transition function for each primitive state \(\overline{T}(s) \) as a set of pairs \((l_i, s_i)\), where \(s_i \in \Sigma \), and \(l_i \) is a set of labels of the form \(\vdash c \) or \(\not\vdash c \), for some \(c \in C(\Pi) \). This is the traditional representation of transitions, as a labeled arc in a graph. If the automaton is in state \(s \), then at the next instant it will go to all states \(s_i \) whose label \(l_i \) is entailed by constraints \(C \) that are associated with currently marked primitive states, as computed in the second step of the algorithm. \(l_i \) is said to be entailed by \(C \), written \(C \vdash l_i \), if \(\forall c \in l_i, C \vdash c \), and for each \(\not\vdash c \in l_i, C \not\vdash c \). It is straightforward to translate this representation into our formal representation: \(\overline{T}(s, C) = \{ s_i \mid C \vdash l_i \} \).

Two properties of these transitions are distinctive: Transitions are conditional on what can be deduced, not just what is explicitly assigned, and transitions are enabled based on lack of information.

Step provides a deterministic simulator for the plant, when applied to an HCA that specifies a plant model. Alternatively Step provides a deterministic version of the control sequencer for RBurton, by placing appropriate restrictions on the control HCA. Constraints attached to primitive states on this HCA are restricted to control assignments, while transition labels are conditioned on the external goals and the estimated current state. The set of active constraints collected from marked states during step 2 of the algorithm is then the set of control actions to be output to the plant.

A Simple Example

We illustrate HCA with a simple automaton. \(c \) represents a constraint, start states of an automaton are marked with arrows, and all transitions are labeled. For convenience we use \(c \) to denote the label \(\vdash c \) and \(\not\vdash c \) to denote the label \(\not\vdash c \). Circles represent primitive states, while rectangles represent composite states.

\[
\text{The automaton has two start states, both of which are composite. Every transition is labeled \(\not\vdash d \), hence all transitions are disabled and the automaton is preempted whenever \(d \) becomes true. The first state has one primitive state, which asserts the constraint \(c \). If \(d \) does not hold, then it goes back to itself — thus it repeatedly asserts \(c \) until \(d \) becomes true. The second automaton has a primitive start state. Once again, at anytime if \(d \) becomes true, the entire automaton will immediately terminate. Otherwise it waits until \(a \) becomes true, and then goes to its second state, which is composite. This automaton has one start state, which it repeats at every time instant until \(d \) holds. In addition, it starts another automaton, which checks if \(e \) holds, and if true generates \(b \) in the next state. Thus, the behavior of the overall automaton is as follows: it starts asserting \(c \) at every time instant. If \(a \) becomes true, then at every instant thereafter it checks if \(e \) is true, and asserts \(b \) in the succeeding instant. Throughout it watches for \(d \) to become true, and if so halts. An RMPL program that produces an equivalent automaton is: }
\]

\[
\text{do}
\begin{align*}
\text{always } c, \\
\text{when a donext always if e then next b)
\end{align*}
\]

Reactive MPL: Primitive Combinators

We now present the syntax for the reactive model-based programming language. Our preferred approach is to introduce a minimum set of primitives, used to construct programs — each primitive that we add to the
language is driven by a desired feature. We then define on top of these primitives a variety of program combinators, such as those used in the simple example, that make the language usable. The primitives are driven by the need to write reactive control software in the language, as well as to model physical systems. To write reactive control programs we require combinators for preemption, conditional branching and iteration. For modeling hardware, we require constructs for representing co-temporal interactions and uncertain effects. Finally we need logical concurrency to be able to compose models and programs together.

As we introduce each primitive we show how to construct its corresponding automata. In these definitions lower case letters, like c, denote constraints, while upper case letters, like A and B, denote automata. The term "theory" refers to the set of all constraints associated with marked primitive states at some time point.

c. This program asserts that constraint c is true at the initial instant of time. This construct is used to represent co-temporal interactions, such as a qualitative constraint between fluid flow and pressure. The automaton for it is:

\[\text{if } c \text{ then } \text{next } A\]

This program starts behaving like A in the next instant if the current theory entails c. This is the basic conditional branch construct. Given the automaton for A, we construct an automaton for \text{if } c \text{ then } \text{next } A by adding a new start state, and going from this state to A if c is entailed.

\[\text{if } c \text{ then } \text{next } A\]

unless c thennext A. This program executes A in the next instant if the current theory does not entail c. The automaton for this is similar to the automaton for \text{if } c \text{ then } \text{next } A. This is the basic construct for building preemption constructs — it is the only one that introduces conditions \(\not\equiv c \). This introduces non-monotonicity, however since these non-monotonic conditions hold only in the next instant, the logic is stratified and monotonic in each state. This avoids the kinds of causal paradoxes possible in languages like Esterel.

\[\text{unless } c \text{ then } \text{next } A\]

We also allow generalized sequences for if \ldots then and unless \ldots then, terminated with thennext.

A,B. This is the parallel composition of two automata, and is the basic construct for introducing concurrency. The composite automaton has two start states, given by the two automata for A and B.

\[A, B\]

always A. This program starts a new copy of A at each instant of time — this is the only iteration construct needed. The automaton is produced by marking A as a start state and by introducing an additional new start state. This state has the responsibility of initiating A during every time step after the first. A transition back to itself ensures that this state is always marked. A second transition to A puts a new mark on the start state of A at every next step, each time invoking a virtual copy of A. The ability of an automaton to have multiple states marked simultaneously is key to this novel encoding, which avoids requiring explicit copies of A.

\[\text{always } A\]

Adding Uncertainty to RMPL

The presentation has concentrated thus far on an expressive language and an algorithm for deterministically executing hierarchical constraint automata. This can be used to simulate the plant or to generate deterministic plant control sequences. Uncertainty requires closing the controller's loop. The plant's observables are used to predict its internal state, and to determine when it deviates from the intended effect. Uncertain effects are modeled by introducing transition probabilities, turning the plant into a partially observable Markov process. The efficient estimation of these processes for complex systems is notoriously difficult.

An efficient estimate of the plant's possible states (its belief state) is enabled through the compact encoding of the plant's model in terms of hierarchical constraint automata. This estimate is used to guide the evaluation of the control program at each time tick. To express probabilistic knowledge into Reactive MPL we introduce the probabilistic combinator choose :

\[\text{choose } [A \text{ with } p, B \text{ with } q]\]

This combinator reduces to A with probability p, to B with probability q, and so on. In order to ensure that the current theory does not depend upon the probabilistic choices made...
To incorporate probabilistic transitions into HCA we change the definition of \(T_p \). Recall for deterministic HCA that \(T_p(s_i) \) denotes a single transition function. For probabilistic HCA \(T_p(s_i) \) denotes a distribution over transition functions \(T_p(s_i) \), whose probabilities \(P(T_p^j(s_i)) \) sum to 1.

\(T_p(s_i) \) is encoded as a probabilistic, AND-OR tree. This supports a simple transformation of nested choose combinators to probabilistic HCA. Each leaf of this tree is labeled with a set of one or more target states in \(\Sigma \), at which the automaton transitions to in the next time tick.

The branches \(a_i \rightarrow b_j \) of a probabilistic OR node \(a_i \) represent a distribution over a disjoint set of alternatives, and are labeled with conditional probabilities \(P(b_{ij} \mid a_i) \). The probability of branches emanating from each \(a_i \) sum to unity.

The branches of a deterministic AND node represent an inclusive set of choices. Each branch is labeled by a set of conditions \(l_{ij} \) of the form \(
abla \phi \) or \(\nabla \phi \), where \(\phi \) is any formula in propositional state logic over variables \(\Pi \). Every branch is taken whose conditions are satisfied by the current state (i.e., \(P[b_{ij} \mid a_i, l_{ij}] = 1 \)).

Each AND-OR tree is compiled into a two level tree (shown above), with the root node being a probabilistic OR, and its children being deterministic ANDs. Compilation is performed using distributivity, as shown below, and commutativity. This allows adjacent AND nodes to be merged, by taking conjuncts of labels, and adjacent OR nodes to be merged, by taking products of probabilities.

This two level tree is a direct encoding of \(T_p(s_i) \). Each AND node represents one of the transition functions \(T_p^j(s_i) \), while the probability on the OR branch, terminating on this AND node, denotes \(P(T_p^j(s_i)) \).

RBurton: State Estimation

To implement belief state update recall that a probabilistic HCA encodes a POMDP. A POMDP can be described as a tuple \((\Sigma, M, \mathcal{O}, P\mathcal{T}, P\mathcal{O}, R) \). \(\Sigma, M \) and \(\mathcal{O} \) denote finite sets of feasible states \(s_i \), control actions \(\mu_i \), and observations \(o_i \). The state transition function, \(P_T[s_i(t) \rightarrow s_i(t+1)] \) denotes the probability that \(s_i(t+1) \) is the next state, given current state \(s_i(t) \) and control action \(\mu_i(t) \) at time \(t \). The observation function, \(P_O[s_i(t) \rightarrow o_i(t)] \) denotes the probability that \(o_i(t) \) is observed, given state \(s_i(t) \) at time \(t \). The reward function \(R(s_i(t)) \) specifies the immediate reward for taking each control action given state \(s_i(t) \) at time \(t \).

RBurton incrementally updates the plant belief state, conditioned on each control action sent and each observation received, respectively:

\[
\sigma^{(t+1)}[s_i] = \sum_{j=1}^{n} \sigma^{(t)}[s_j] P_T[s_i, \mu_i \rightarrow s_j]
\]

\[
\sigma^{(t+1)}[s_i] = \sum_{j=1}^{n} \sigma^{(t)}[s_j] P_O[s_i \rightarrow o_k] \frac{P_T[s_i, \mu_i \rightarrow s_j] P_O[s_j \rightarrow o_k]}{\sum_{j=1}^{n} \sigma^{(t+1)}[s_j] P_O[s_j \rightarrow o_k]}
\]

To calculate \(P_T \) recall that a transition \(T \) is composed of a set of primitive transitions, one for each marked primitive state. Assuming conditional independence of primitive transition probabilities, given the current marking, the combined probability of each set is the product of the primitive transition probabilities of the set. This is analogous to the various independence of failure assumptions exploited by systems like GDE(de Kleer & Williams 1987), Sherlock(de Kleer & Williams 1989) and Livingston(Williams & Nayak 1996). However unlike these earlier systems, multiple sets of transitions may go to the same target marking. This is a consequence of the fact that an HCA primitive states have multiple next states. Hence the transition probabilities for all transitions going to the same target must be summed according to the above equation for \(\sigma^{(t+1)}[s_i] \).

Given \(P_T \), the belief update algorithm for \(\sigma^{(t+1)}[s_i] \) is a modified version of the Step algorithm presented earlier. This new version of Step returns a set of markings, each with its own probability. Step 3a builds the sets of possible primitive transitions. Step 3b computes the combined next state marking and transition probability of each set. Step 3c sums the probability of all composite transitions with the same target.
Step\(P(A,M) :\)
1. \(M1 := \{ s \in M \mid s \text{ primitive} \} \)
2. \(C := \bigwedge_{s \in M1} \overline{P}(s) \)
3a. \(M2a := \prod_{s \in M1} P(s,C) \)
3b. \(M2b := \{ (M_F(\bigcup_{i=1}^n S_i), \prod_{i=1}^n p_i) \mid (S_1,p_1), \ldots, (S_n,p_n) \in M2a \} \)
3c. \(M2 := \{ (S, \sum_{(S,p) \in M2b} p) \mid (S, ..) \in M2b \} \)
4. return \(M2 \)

The first best enumeration algorithms developed for Sherlock and Livingstone, are directly used by RBurton to generate the composite transitions in step 3a and b in order from most to least likely. However, since the correspondence between transitions and next states is many to one, there is no guarantee that the belief states are enumerated in decreasing order.

Instead we assume that most of the probability density resides in the few leading candidate transition sets. Hence a best first enumeration of the few leading transition sets will quickly lead to a reasonable approximation. We enumerate transitions in decreasing order until most of the probability density space is covered (e.g., 95%), and then perform step 3c to merge the results.

Computing \(\sigma^{i+1}[s_i] \) requires \(P_C[s_i \rightarrow q_i^{(i)}] \).

\(P_C \) is computed using the standard approach in model-based reasoning, first introduced within the GDE system. For each variable assignment in each new observation, RBurton uses the model, current state and previous observation to predict or refute this assignment, giving it probability 1 or 0 respectively. If no prediction is made, then a prior distribution on observables is assumed (e.g., 1/n for n possible values).

RBurton: Greedy Sequencing

A full decision theoretic executive that maximizes expected reward using HCA is well beyond the scope of this paper. However, RBurton makes the simplest use of immediate reward and belief state, resulting in a simple form of task decomposition execution. In particular, RBurton maximizes immediate reward under the assumption that the most likely estimated state is correct. We further assume that rewards are additive. The hierarchical automaton provides a way of structuring tasks, subtasks and solution methods.

Recall that the asserted constraints \(c \) of a control program are restricted to primitive terms. In addition, to support selection of methods for tasks, we replace the probabilistic combinator choose with an analogous combinator based on reward:

\[\text{choosereward} [A \text{ with } p, B \text{ with } q] \]. This combinator reduces to \(A \) with reward \(p \), to \(B \) with reward \(q \), and so on. \text{choosereward} has restrictions analogous to \text{choose} that associate rewards only to expressions containing \text{next}.

The AND-OR Tree formed by nested applications of \text{choosereward} is analogous to \text{choose}. The tree is reduced in a similar manner, except that rewards are added while probabilities are multiplied.

Control sequence generation again uses a variation of Step. For step 3 of this algorithm a best first enumeration algorithm is given the sets of enabled transitions from each primitive state that is marked in the most likely current marking. During the enumeration it must rule out any sets of transitions that lead to an inconsistent (conflicting) control assignment. It then returns the set of transitions that maximize combined reward. This is analogous in RAPS (Firby 1995) to selecting applicable methods based on priority numbers.

Extending RMPL: Definable operators

Given the basic operators defined earlier, we can define a variety of common language constructs, making the task of programming in reactive MPL considerably easier. Common constructs in RMPL include recursion, conditional execution, next, sequencing and iteration.

In this section we concentrate on those constructs necessary to support the DS1 navigation example.

Recursion and procedure definitions. Given a declaration \(P := A[P] \), where \(A \) may contain occurrences of procedure name \(P \), we replace it by always if \(p \) then \(A[p/P] \). At each time tick this looks to see if \(p \) is asserted (corresponding to \(p \) being invoked), and if so starts \(A \).

next \(A \). This is simply if \(\text{true} \) then next \(A \). We can also define if \(c \) then next \(A \) else next \(B \) as if \(c \) then next \(A \), unless \(c \) then next \(B \).

if \(c \) then \(A \). This construct has the effect of starting \(A \) at the time instant in which \(c \) becomes true. It can be defined in terms of the other combinators as follows, where the expression to the left of the equality is replaced with the expression on the right:

if \(c \) then \(d = c \rightarrow d \)
if \(c \) then if \(d \) then next \(A \) if \(c \land d \) then next \(A \)
if \(c \) then always \(A \)

if \(c \) then \(A \), if \(c \) then next always \(A \)
if \(c \) then \((A,B) \)

if \(c \) then \(A \), if \(c \) then \(B \)
if \(c \) then choose \(\text{[A with } p, B \text{ with } q] = \text{choose} \) if \(c \) then \(A \), if \(c \) then \(B \text{ with } q] \)

A; B. This does sequential composition of \(A \) and \(B \). It keeps doing \(A \) until \(A \) is finished. Then it starts \(B \). It can be written in terms of the other constructs by detecting the termination of \(A \) by a proposition, and using that to trigger \(B \). RMPL detects the termination of \(A \) by a case analysis of the structure of \(A \) (see Fromherz, Gupta, & Saraswat 1997 for details).

do \(A \) watching \(c \). This is a weak preemption operator. It executes \(A \), but if \(c \) becomes true in any time instant, it terminates execution of \(A \) in the next instant.
The automaton for this is derived from the automaton for \(A \) by adding the label \(\neq c \) on all transitions in \(A \).

suspend \(A \) on \(c \) reactivate on \(d \). This is like the "Control - Z, fg" pair of Unix — it suspends the process when \(c \) becomes true, and restarts it from the same point when \(d \) becomes true.

when \(c \) done next \(A \). This starts \(A \) at the instant after the first one in which \(c \) becomes true. It is a temporally extended version of if \(c \) then next \(A \).

when \(c \) do \(A \). This temporally extends if \(c \) then \(A \). Its automaton is similar to the automaton for if \(c \) then \(A \), except for the fact that there is a transition from the start state to itself labeled \(\neq c \).

DS1 Optical Navigation Example

To make RMPL's capability concrete we model the autonavigation system of the spacecraft Deep Space 1. This system is used on the spacecraft once a week to do small course corrections. It works by taking pictures of three asteroids, and by using the difference between their actual locations from their projected locations to determine the course error. This is then used by another system to determine a new course. The following is a greatly simplified version of the program. MICAS is a hardware model for the miniaturized camera, AutoNav is the top-level control program, and TakePicture and SnapStore are subroutines, the second including a repair procedure.

AutoNav() :: {
 TurnMicasOn,
 if IPSon then next SwitchIPSStandBy,
 do
 when IPSstandby \& MICASon done next {
 TakePicture(1);
 TakePicture(2);
 TakePicture(3);
 { TurnMicasOff,
 OpticalNavigation() }
 } watching PictureError \& OpticalNavError,
 when OpticalNavError done next AutoNav(),
 when PictureError done next AutoNavFailed
}

TakePicture(n) :: {
 do {
 TurnToTarget(n),
 when Turndone do SnapStore(0)
 } watching PictureError
}

SnapStore(n) ::{
 if (n=3) then PictureError,
 next {
 MICASTakePicture;
 if MICASfail then
 do loop next
 {MICASReset; TurnMicasOn; MICASTakePicture}
 watching MICASdone,
 when MICASDone do {
 StorePicture,
 do {
 when CorruptPicture done next SnapStore(n+1)
 } watching PictureError \& StoreOk
 }
 }
 }

MICAS :: always {
 choose {
 if MICASon then {
 if TurnMicasOff then next MICASoff
 else next MICASon,
 if MICASfail then
 if MicaReset then next MICASoff
 else next MICASfail
 } with 0.99,
 next MICASfail with 0.01
 }
}

Discussion and Related Work

The RMPL compiler is written in C, and generates hierarchical constraint automata as its target. This supports all primitive combinators and a variety of defined combinators. RBurton is written in Lisp, and builds upon the best-first enumeration code at the heart of the Livingstone system. The optical navigation scenario and other simple but expressive examples have been encoded. In addition the language is sufficiently expressive and compact to support the full DS1 spacecraft models developed for Livingstone. RBurton's behavior is equivalent to Livingstone for those examples. Current working includes modeling for a Mars rover and JPL's Space Interferometer Mission.

Turning to related work, Reactive MPL synthesizes ideas underlying constraint-based modeling, synchronous programming languages and POMDPs. Synchronous programming languages (Halbwachs 1993; Berry & Gonthier 1992; Halbwachs, Caspi, & Pilaud 1991; Guernic et al. 1991; Harel 1987; Saraswat, Jagadeesan, & Gupta 1996) were developed for writing control code for reactive systems. They are based on the Perfect Synchrony Hypothesis — a program reacts instantaneously to its inputs. Synchronous programming languages exhibit logical concurrency, orthogonal preemption, multiform time and determinacy, which Berry has convincingly argued are necessary characteristics for reactive programming. Reactive MPL is a synchronous language, and satisfies all these characteristics.
In addition, Reactive MPL is distinguished by the adoption of MDPs as its underlying model, its treatment of partial observability and its extensive use of constraint modeling to observe hidden state. This provides a rich language for continuous process, failure, uncertainty and repair.

In the Esterel work, Berry emphasizes executable specifications — “What you prove is what you execute” — this is to eliminate the gap between the specifications about which we prove properties, and the programs that are supposed to implement them. We carry this one step further, by doing our reasoning on executable programs directly, in real-time.

As previously discussed, RMPL and RBurton overlap substantially with AI robotic execution languages RAPS, ESL and TCA. For example, method selection, monitoring, preemption and concurrent execution are core elements of these languages, shared with RMPL.

One key difference is that RMPL’s constructs fully cover synchronous programming, hence moving towards a unification of the executive with the underlying real-time language. In addition, RBurton’s deductive monitoring capability handles a rich set of software/hardware models that go well beyond those handled by systems like Livingstone. This moves execution languages towards a unification with model-based, deductive monitoring.

Finally, note that hierarchical state diagrams, like State Charts (Harel 1987), are becoming common tools for system engineers to write real-time specifications. These specifications are naturally expressed within RMPL, due to RMPL’s simple correspondence with hierarchical constraint automata, which are closely related to state charts. Together this offers a four way unification between synchronous programming, robotic execution, model-based autonomy and real-time specification, — a significant step towards our original goal.

Nevertheless substantial work remains. Many execution and control capabilities key to highly autonomous systems fall well outside the scope of RMPL and RBurton. For example, RMPL has no construct for expressing metric time. Hence RBurton cannot execute or monitor temporal plans without the aid of an executive like RAPS or Remote Agent’s Exec. In addition, outside of monitoring, RBurton does not employ any deduction or planning during control sequence generation. Unifying the kinds of sequence generation capabilities that are the hallmark of systems like HSTS (Muscettola 1994) and Burton (Williams & Nayak 1997), requires significant research.

References

Firby, R. J. 1995. The RAP language manual. Animat le Agent Project Working Note AAP-6, University of Chicago.

Fromherz, M.; Gupta, V.; and Saraswat, V. 1997. cc – A generic framework for domain specific languages. In POPL Workshop on Domain Specific Languages.

Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C. 1999. The new millennium remote agent: To boldly go where no ai system has gone before. Artificial Intelligence 100.

