17375
/,;J B R Q 87(

Code Parallelization with CAPO

— A User Manual

Haogiang Jin, Michael Frumkin and Jerry Yan

NASA Advanced Supercomputing (NAS) Division
M/S T27A-2 ¢ NASA Ames Research Center
Moffett Field » CA 94035-1000
capo@nas.nasa.gov
http:/fwwie.nas .nasa.gov/Tools/[CAPO/

USING CAPO

Contents

1.

1.1.

General Information
What is CAPO

1.2, Distribution and Contact Information

1.3. Instatlation and Execution

1.4. How to Use This Manual

2. Computer-Aided Parallelization Process

2.1. The OpenMP Programming Model

2.2 CAPTools

2.3 Generating OpenMP Directives

3. Producing Parallel Code with CAPO

3.1. Prepare Serial FORTRAN Codes

3.2 Make Dependence Analysis

3.3. Inspect Loops and Optimize Directive Generation
3.4. Generate Parallel Code with Directives _
3.5. Inspect the Generated Codes and the Log Information
3.6. Compile and Run the Parallel Code

4. Interacting with the Directives Browser

41, Loop Classification

4.2 Browsing Ditterent Types of Loops

4.3. Enforcing New Loop Type

4.4, Routine Duplication

5. Other Features

5.1. CAPO Parameters and Log Information

5.2. Automatic Code Transformation and Optimization
5.3. Command Interface and the Batch Mode

5.4. Parallel 110

5.5. Mix of Message Passing and OpenMP

6. Case Studies

6.1. The NAS Parallel Benchmarks

6.2. ARC3D

6.3. OVERFLOW

References

© O W O N NN s &:WwwNhNhhN

[I | T e T T T e I T R
- O W O e oo O ;e b &N+ O

CAPO User Manual

1. General Information

1.1. What is CAPO

CAPO (Captools-based Automatic Parallelizer using OpenMP) automates the insertion of compiler
directives to facilitate parallel processing on shared memory parallel (SMP) machines. While CAPO is
currently integrated seamlessly into CAPTools (developed at the University of Greenwich), CAPO is
independently developed at NASA Ames Research Center as one of the components for Legacy Code
Modernization (LCM) project. Utilizing the data dependence information produced by CAPTools,
CAPO produces either OpenMP or SGI multiprocessing directives for sequential FORTRAN programs
with nominal user interaction. Due to the broad support of the OpenMP standard, the generated
OpenMP codes can potentially run on a wide range of SMP machines. Generation of a mixed message-
passing (e.g. MPI) and OpenMP code is possible because of the integration of CAPO and CAPTools.

The success of CAPO relies on accurate interprocedual data dependence information which is provided
by CAPTools. CAPO generates compiler directives in three stages:

1) identification of parallel loops in the outer-most level,
2) construction and optimization of parallel regions around parallel loops, and

3) insertion of directives with a proper list of private, reduction, and shared variables.

Attempts have also been made to identify potential pipeline parallelism (implemented with point-to-
point synchronization). Although the user is still expected to inspect the generated code before actual
execution, the task has been simplified tremendously by the automation process and the built-in
graphic user interface, known as the Directives Browser. The Directives Browser provides tools for user
to interact with the parallelization process. It presents information in such a way that the user can easily
isolate problematic code sections from the rest of the code and find a solution quickly.

1.2. Distribution and Contact Information

CAPQ is currently integrated in CAPTools and distributed directly from NASA Ames Research Center.
It is released in a similar way as the standard CAPTools distribution. The distributed executable of
CAPO includes all the functionality of CAPTools for generating message-passing programs as well as
the capability of producing OpenMP codes. So the user needs only to maintain one copy that is
distributed with CAPO to access the functionality of both CAPTools and CAPO.

To require a copy of CAPO, send a request to capo@nas.nasa.gov. You will need a license to run
CAPTools/CAPO. A test license may be obtained from the CAPTools web site (see below) or by
sending email to captools@gre.ac.uk. For NASA users, please contact capo@nas.nasa.gov directly.

For any feedback and bug report on CAPO, please send to:

CAPO Development Team at capo@ias. nasa. gor

For any feedback and user support on CAPTools, please contact:

captoals-support&ereac uk or check the web site at ity Zeaptools. ereac. uk/,

For more information on the LCM project, check:

It/ nas nasa.gov/Groups/Tools/Projects/LCAM.

CAPO User Manual 2

USING CAPO: GENERAL INFORMATION

1.3. Installation and Execution
Once the user has obtained a copy of CAPO in a compressed tar file, extract files by
% gunzip -c capo-sgi-l.l.tar.gz | tar xvf -
The CAPO distribution is maintained in a similar directory structure as the CAPTools distribution does.
For example the executable of CAPO is in
captool/bin/{machine}/capo
where {machine} is sgi for SGI machine running IRIX, sun for SUN workstation running Solaris, and

linux_x86 for Intel machine running Linux.

The user should follow the same installation procedure to CAPTools to set up CAPO. For the
installation and use of CAPTools, please refer to the web site at http://captools.gre.ac.uk/. In summary, the
user needs to set up the following environment variables:

CAPHOME - home directory for the CAPTools/CAPO installation
OPENWINHOME - home directory for the XVIEW library
CAPLIBHOME - home directory for CAPLib (not necessary for OpenMP codes).

and add "$CAPHOME/bin/ {machine}" to the searching path, e.g. in csh:

setenv CAPHOME /usr/local/captool
setenv OPENWINHOME $CAPHOME/openwin
set path = ($CAPHOME/bin/sgi S$path)

CAPO is then ready for use.

1.4. How to Use This Manual

The manual is organized into three parts around the use of CAPO:
1) Using CAPO - discusses the fundamentals of using CAPO to parallelize codes,
2) Appendix - lists detailed references of parameters and the graphic user interface, and
3) Tutorials - gives more hands-on experiences.
For major changes in different versions of CAPO, see WhatsNew included in the CAPO distribution.

Convention generally followed in this manual:

Italic address (including email), URL, remarks, emphasis
Courier code list, syntax description, program outputs
Bold window name, menu name, list name

Bold italic summary head, menu item

Box button, setting selection

Throughout this document, we refer CAPO to OpenMP generation and the relevant components and
CAPTools to the rest, but sometimes these two terms are used interchangeably for shared components.

CAPO User Manual 3

2. Computer-Aided Parallelization Process

The shared memory and distributed memory programming paradigms are two of the most popular
models used to transform existing serial codes to a parallel form. For a distributed memory
parallelization it is necessary to consider the whole program when using an SPMD paradigm. Data
placement is an essential consideration to efficiently use the available distributed memory, while the
placement of explicit communication calls requires careful consideration. Nowadays, scalability and
high performance are mostly involving hand-written parallel programs using message-passing libraries
(e.g. MPI). However, this process is very difficult.

The parallelization on a shared memory system is only relatively easier because of the globally
addressable space. The data placement appears to be less crucial than for a distributed memory
parallelization. Historically, the lack of a programming standard for using directives and the rather
limited performance due to scalability have affected the take-up of the shared memory programming
model approach. Significant progress has been made in hardware and software technologies, as a result
the performance of parallel programs with compiler directives has also made improvements. The
introduction of an industrial standard for shared-memory programming with directives, OpenMP [8],
has also addressed the issue of portability.

In general the parallelization process in any case is error-prone, time-consuming and requires a detailed
level of expertise. Programming with directives may not necessarily produce a result that enhances
performance. In the worst case, the inserted directives can create erroneous results when used
incorrectly. While vendors may have provided tools to perform errorchecking and profiling,
automation in directive insertion is very limited and often failed on large programs, primarily due to
the lack of a thorough enough data dependence analysis. Presence of these deficiencies motivated the
development of the parallelization tool, CAPO. The tool automatically inserts OpenMP directives in
Fortran programs and applies a degree of optimization with nominal user interaction. CAPO is aimed
at taking advantage of the detailed interprocedural data dependence analysis provided by Computer-
Aided Parallelization Tools (CAPTools) [3], developed by the University of Greenwich, to reduce
potential errors made by users and, with nominal help from user, achieve performance close to that
obtained when directives are inserted by hand. Our approach is differed from other tools and compilers
in two respects: 1) emphasizing the quality of dependence analysis and relaxing much of the time
constraint on the analysis; 2) performing directive insertion and preserving the original code structure
for maintainability. Translation of OpenMP codes to executables is left to proper OpenMP compilers.

In this section, we outline the OpenMP programming model, give an overview of CAPTools, and then
its extension, CAPO, for generating OpenMP programs.

2.1. The OpenMP Programming Model

OpenMP [8] was designed to facilitate portable implementation of shared memory parallel programs. It
includes a set of compiler directives and callable runtime library routines that extend Fortran, C and
C++ to support shared memory parallelism. It promises an incremental path for parallelizing
sequential software, as well as targeting at scalability and performance for any complete rewrites or
new construction of applications.

OpenMP follows the fork-and-join execution model. A fork-and-join program initializes as a single
lightweight process, called the master thread. The master thread executes sequentially until the first
parallel construct (OMP PARALLEL) is encountered. At that point, the master thread creates a team of
threads, including itself as a member of the team, to concurrently execute the statements in the parallel
construct. When a work-sharing construct such as a parallel do (OMP DO) is encountered, the workload
is distributed among the members of the team. An implied synchronization occurs at the end of the DO

CAPO User Manual 4

USING CAPO: COMPUTER-AIDED PARALLELIZAT!ION PROCESS

loop unless a “NOWAIT" is specified. Data sharing of variables is specified at the start of parallel or
work-sharing constructs using the SHARED and PRIVATE clauses. In addition, reduction operations
(such as summation) can be specified by the REDUCTION clause. Upon completion of the parallel
construct, the threads in the team synchronize and only the master thread continues execution. The
fork-and-join process can be repeated many times in the course of program execution.

Beyond the inclusion of parallel constructs to distribute work to multiple threads, OpenMP introduces a
powerful concept of orphan directives that greatly simplifies the task of implementing coarse grain
parallel algorithms. Orphan directives are directives outside the lexical extent of a parallel region. This
allows the user to specify control or synchronization from anywhere inside the parallel region, not just
from the lexically contained region.

2.2. CAPTools

The Computer-Aided Parallelization Tools (CAPTools) [3] is a software toolkit that was designed to
automate the generation of message-passing parallel code. CAPTools accepts FORTRAN-77 serial code
as input, performs extensive dependence analysis, and uses domain decomposition to exploit
parallelism. The tool employs sophisticated algorithms to calculate execution control masks and
minimize communication. The generated parallel codes contain portable interface to message passing
standards, such as MPI and PVM, through a low-overhead library (CAPLib).

There are two important strengths that make CAPTools stands out. Firstly, an extensive set of
extensions to the conventional dependence analysis techniques has allowed CAPTools to obtain much
more accurate dependence information and, thus, produce more efficient parallel code. Secondly, the
tool contains a set of browsers that allow user to inspect and assist parallelization at different stages.

2.3. Generating OpenMP Directives

The goal of developing computer-aided tools to help parallelize applications is to let the tools do as
much as possible and minimize the amount of tedious and error-prone work performed by the user.
The key to automatic detection of parallelism in a program and, thus parallelization is to obtain accurate
data dependences in the program. Generating OpenMP directives is simplified somehow because we
are now working in a globally addressed space without explicitly concerning data distribution.
However, we still have to realize that there are always cases in which certain conditions could prevent
tools from detecting possible parallelization, thus, an interactive user environment is also important.

The design of the CAPTools-based automatic parallelizer with OpenMP, CAPO, had kept the above
tactics in mind. CAPO uses the data dependence analysis engine in CAPTools, exploits loop level
parallelism in a program, and inserts OpenMP directives automatically. The schematic structure of
CAPO is illustrated in Figure 1. CAPO takes a serial code as input and first performs the data
dependence analysis. User knowledge on certain input parameters in the source code may be entered to
assist this analysis for more accurate results. The process of generating OpenMP directives is
summarized in the following three stages.

1) Identify parallel loops and parallel regions. The loop-level analysis is carried out to classify loops as
parallel (including reduction), serial or potential pipeline based on the data dependence information.
Parallel loops to be distributed with work-sharing directives for parallel execution are identified by
traversing the call graph of the program from top to down. Only outer-most parallel loops are
considered, partly due to the very limited support of multi-level parallelization in available OpenMP
compilers: Paralle! regions are then formed around the distributed parallel loops. Attempt is also made
to identify and create parallel pipelines.

CAPO User Manual 5

USING CAPO: COMPUTER-AIDED PARALLELIZATION PROCESS

2) Optimize loops and regions. This stage is mainly for reducing overhead caused by fork-and-join
and synchronization. A parallel region is first expanded as far as possible and may include calls to
subroutines that contain additional (orphaned) parallel loops. Regions are then merged together if there
is no violation of data usage in doing so. Region expansion is currently limited to within a subroutine.
Synchronization optimization between loops in a parallel region is performed by checking if the loops
can be executed asynchronously.

3) Transform codes and insert

directives. Variables in common Serial Code
blocks ~are analyzed for the'ir * User
usage in all parallel regions in <4—— Dependence Analysis [@—] Knowledge
order to identify threadprivate
common blocks. If a private ’r
variable is used in a non- .
threadprivate common block, the Loop-level Am_xlys s AN .
. . . . Parallel Region Variable
variable is treated with a special .
. . @ Formation Usage
code transformation. A routine] Analvsis
needs to be duplicated if its usage '§ * A Y
conflicts at different calling A Loop and Region
points. £ Optimization
2 Browsers
By traversing the call graph S — L User
one more time OpenMP directives & Privatization for Interaction
are lastly added for parallel < Common Blocks
regions and parallel loops with Routine Duplication T
variables properly listed. The ¢ P
variable usage analysis is 2
performed at several points to Directive Insertion
identify how variables are used and Code Generation
(e.g. private, shared, reduction, *
etc.) in a loop or region. Such
analysis is required for the Parallel Code
identification of loop types, the
construction of parallel regions, Figure 1: Schematic flow chart of the CAPO architecture.

the treatment of private variables
in common blocks, and the insertion of directives.

Intermediate results can be stored into or retrieved from a database. User assistance to the
parallelization process is possible through browsers implemented in CAPO (Directives Browser) and in
CAPTools. The Directives Browser is designed to provide more interactive information from the
parallelization process, such as reasons why loops are parallel or serial, distributed or not distributed.
User can concentrate on areas where potential improvements could be made, for example, by removing
false data dependences. It is part of the iterative process of parallelization.

CAPO User Manual 6

3. Producing Parallel Code with CAPO

This section describes the usual steps a user will take to produce parallel code with CAPO. The
procedure follows the outline given in Figure 1. One can refer to the Tutorials and Appendix for more
information. It is also important to keep in mind that in order to get an efficiency parallel code user
interaction with tools is almost always needed. The optimization process with CAPO Directive Browser
is given in Section 4.

3.1. Prepare Serial FORTRAN Codes

CAPO currently works on FORTRAN 77 codes. A user can lu.f
either create a single file that contains all the subroutines or blts.f
provide a .1list file that lists all the FORTRAN files in the | buts.f
program. Figure 2 shows an example of an “A11.1ist” file. domain.f
The source directory structure is preserved. The file names erhs.f
can be used later in the code generation. error.f

i exact.f
Any unresolved symbols can be provided with dummy jacld éf
routines. For example, if the FORTRAN program calls C i;izm £
subroutines, dummy FORTRAN routines could be supplied pintgr £
to emulate the C functions even through these dummy read_input. f
routines may be deleted later on from the generated parallel rhs. £
code. This was a requirement of CAPTools prior to Version setbv.f
2.1. The latest CAPTools provides interfaces to the dummy setcoeff.f
routines automatically. setiv.f

ssor.f
CAPTools does not accept source codes that contain pre- | verify.f
processing directives. It is necessary to preprocess these files ../common/print_results.f
before used in CAPTools. Although the tool tries to preserve .- /common/timers. £
the original source form, these preprocessing directives will .. /common/wtime. £
be lost.
Figure 2: An example of "All.list".

3.2. Make Dependence Analysis

Data dependence analysis is performed on the whole program, which is one of the key steps for
directives generation. After source files are loaded into CAPTools, user knowledge, for instance the
range of variables from the READ statements, may be entered. User supplied information can help
obtain more accurate data dependences and, thus, more efficient parallel code. An example is illustrated
in the following code:

read(*,*) isize
do 10 j=1,jm
do 10 i=1,im
ix = 1 + (j-1l)*isize
A(ix) = A(ix) + B(i,3)
10 continue

The value of the parameter isize affects the loop parallelization. For the j loop, if isize >0, no loop-
carried data dependence exists for variable A; if isize =0, there are loop-carried data dependences for
variable A. The ambiguity in the isize value will prevent the j loop from being parallelized, i.e. a data
dependence on variable A will be assumed. User could supply the “isize > 0" information to improve
the analysis accuracy.

CAPO User Manual 7

USING CAPO: PRODUCING PaARALLEL CODE

Depending on the program size and the thoroughness of the analysis specified, the dependence analysis
process can take minutes, hours or days to complete. Once the analysis is finished, the user should save
the result to a database before proceeding further. The dependence analysis is the most CPU intensive
part of the parallelization process. Table 1 lists CPU time spent on analyzing the NPB BT benchmark on
several machines. The analysis uses a single CPU. As one can see, the analysis time is roughly
proportional to the clock speed of a processor.

Table 1: CPU time spent by CAPTools on analyzing the NPB BT benchmark on several machines.

Machine Type OS Type CPU Time

Intel PIII, 500MHz L 105 mi
512MB RAM, 512KB Cache tnux 2 uns

Intel PII, 300MHz Linte 164 mi
512MB RAM, 512KB Cache v 4 mns

Sun UltraSparcll, 360 MHz

1GB RAM, 16KB L1, 4MB L2 Solaris | 15.0 mins
o gé?i&mm,l ; exB r\liillj{ZMB L2 Solaris | 17.6 mins
>t 11621;\;;0 lez 32KB L1 IRIX 71.4 mins
- ?13%%2321(3 L1, IMB L2 IRIX 26.4 mins
SGI R12K, 300MHz — 8 e

1GB RAM, 32KB L1, 2MB L2

3.3. Inspect Loops and Optimize Directive Generation

The parallelization strategy in CAPO is loop-based. Thus, an important next step is to inspect loops
after the dependence analysis is performed, which may involve inspecting the dependences produced
by CAPTools. Quite often a dependence causing a loop to be serialized is due to insufficient knowledge
of value limits for some variables, as indicated in the previous section. The user can use the
dependence browser (DepGraph) to remove unnecessary dependences. However, the information in
the DepGraph window could be overwhelming.

A better approach for inspecting the loops is to use the Directives Browser implemented in CAPO (see
Section 4 for details). The browser can be activated from the View—Directives menu and is designed
to display information that are directly related to directives insertion and are gathered from the
directives analysis. For instance, the browser provides more interactive information on the reasons for
loops to be parallel or serial and the relevant variables. The user can concentrate on loops that are
indicated as serial and optimize the dependence graph if needed. It is also possible to enforce a user-
defined loop type. After changes are made, the directive analysis is reapplied to take into account these
changes. This is an iterative process (see Figure 1). It is always a good idea to save the result to a
database whenever a change is made before directives are actually inserted.

One should keep in mind that CAPO/CAPTools parallelization relies on the static analysis of the serial
code. The dynamic information cannot be detected and applied by the tool. Thus, in most cases user-
guided parallelization process is the only way to achieve a good quality parallel code. Tools offer
resources to simplify this process.

CAPO User Manual 8

USING CAPO: PRODUCING PaARALLEL CoODE

3.4. Generate Parallel Code with Directives

Once the dependence analysis is completed and the loop information is inspected, directives can
automatically be inserted by selecting the "Save OpenMP Directive Code” option under the File menu.
The type of directives is controlled by the CAPO parameters (as described in Appendix 1), which are
also selectable from the Setting box in the Directives Browser. One can elect to use the default setup,
which is to produce OpenMP directives with a full range of analysis. Steps in the generation of
directives are logged to a log file, by default to "code-output.log”. Contents of the log file are
described in Appendix 2.

3.5. Inspect the Generated Codes and the Log Information

It is very important to inspect the generated
arallel code, together with the lo

ﬁ\formation in the log file. In particular, ong @

should look into any shared variables, private

variables and [/O statements that are | parser @
potentialiy incorrectly listed. Warnings in the
last section (PASS 3) of the log file can 1 l
indicate places where potential problems [analyzer @
might exist. Of course, one can use other
tools (such as ASSURE from Kuck & ‘ l

Associate) to check for problems in the [parallelizer @

parallel code.

Sometimes it is useful to find out what have Figure 3: Compare source codes at different stages.
been changed at different stages of code

parallelization. In the framework of CAPQO,
one can compare codes created at three stages as shown in Figure 3: parsing, analyzing and
parallelizing. The codes can be compared with for example the Unix ‘diff’ command. Comparison of
verl.f and ver2.f will review code sections that were deemed to be redundant and were removed by the
CAPTools’ dependence analysis process. Comparison of ver2.f and ver3.f will review the change from
parallelization, such as directives inserted and code transformation.

3.6. Compile and Run the Parallel Code

Once the parallel code is generated, use an OpenMP compiler to compile the code. Typically a compiler
option is required to enable the directives. For example on the SGI Origin2000, the "-mp" option is
needed for the SGI MIPSpro compiler to compile OpenMP codes

% £77 -0 a.out -mp -O parallelcode.f
To run the code with 8 CPUs, do

% setenv OMP_NUM_THREADS 8
% ./a.out

CAPO User Manual 9

4. Interacting with the Directives Browser

As mentioned before although the dependence analysis carried out is very detailed, it can often contain
dependencies that had to be assumed to exist. In these cases, user assistance can be used to improve the
quality of the generated OpenMP code. This is done by classifying the different types of loops that
generally exist in application codes and using the Directives Browser to inspect and interrogate all the
loops in turn. The Directives Browser is activated from the View menu of CAPO after CAPO finishes
the directive analysis (see Figure 4 for the main window of the browser). The browser displays loops
according to their types and provides more interactive information on the reasons why loops are
parallel or serial. The user can concentrate on loops that are indicated as serial (fully or covered, as
given below). The user can also enforce the classification of a selected loop by re-defining the loop type
or define the granularity threshold for a loop so that any loop below this level is not considered for
parallelization. Another feature of the browser is to provide the access for the user to manipulate the

dependence graph (in conjunction with the DepGraph Browser) and improve the parallelization
efficiency.

" — - P o T — e
-] #i=- CAPO: Directives Browsers i s bui i/ aip 1: Sy nRERIER Y T
Scope: 26 Routiaps: 4 Totally serial loops (i.e. not within or containing parallel loops):

T e s)
IA” Routines applu {41 [blts:1/1/35: do melrp.1 - - -, oo Eowabtu i, :J
. bire So1 | buts:1/1/35: do nel,np,1
Loop Filter: Sub: [bors [| se0r:12/2/231: do l-lst,lend.1 7
{| Totally serlal ~ [an . ualeap ,s 290r:13/2/253: do l=lend,lst,-1
Covered Serial | True Recursion dvaain
Faisely Serial 1/0 or Exit "1:"?“":—""“" !
Reductions No Granularity :i::‘_
Pipeline User Defined sy
Chosen Pogacld i
Not Chosen More Fliter...) e
——) EEEP g | -

Show Parallel 1/0: I Yes No RoutineDup...)

Current Routine: blts

why..) Update Directives..) Setting...)

User Laap:

Dismiss) Help..)

35 DOUBLE PRECISION v (5. ldmx/2¢Z+1, Idmy/2+2+1, *), tv (5, L1omx/2+2+1, Lday), 1dz (5. 5. 1dmx72°2+T. Ldny), 1dy (. 5. Ldmx/2*

+1, ldmy), 1dx(5.5. ldmx/2+2+1. 1dmy), d(5. 5. 1dmx/2+2+1, lday)

I
¢ local variables

|
L

integer i,j.k.m.n
DOUBLE PRECISION tap. tapl
DOUBLE PRECISION taat(S,5)

La=i vy boeldoin o1 yeew
k 1

AR UL B S R T U
e L R N L I I TR R R R

S)-l b

A1 YTeruad

Figure 4: The Directives Broswer main window.

CAPO User Manual 10

USING CAPO: INTERACTING WITH THE DIRECTIVES BROWSER

4.1.

Loop Classification

The loops are identified in the browser for the following types:

iii.

iv.

vi.

vil.

Totally serial loops — These loops contain a loop-carried true data dependence that causes the
serialization of the loop i.e. data assigned in an iteration of the loop is used in a later iteration.
(Other possible reasons for a loop to be defined as serial include the presence of 1/0 or loop
exiting statements within the loop body). In addition, this loop type does not contain any nested
parallel loops and also is not contained within a parallel loop. The directive browser shows a list
of the variables and a textual explanation of why the loop is serial. However, the data dependence
may have been assumed to exist and the user may be able to supplement the dependence analyzer
with additional information to prove that the data dependence does not exist. Alternatively, the
user may wish to enforce the removal of a serializing data dependence using the dependence
browser.

Covered serial loops — These are also serial loops containing a loop-carried true data dependence, so
they can be treated in a similar way to totally serial loops. However, this type of serial loop is
either nested within a parallel loop or contains parallel loops within it. In the latter case, if the
serial loop can be made parallel (see fotally serial loops) then the parallelism can be defined at a
higher level and may therefore enhance the performance of the execution.

Falsely serial loops — These loops are not serial due to a loop-carried true dependence. Instead, they
will need to execute in serial due to the existence of pseudo dependencies that represent memory
re-use as this needs to be considered when working within a globally addressable memory. The
directive and dependence browsers can be used together with any additional information the user
may wish to offer to re-examine if the variable(s) concerned can be privatized. In the process,
dependencies into or out of the loop are examined to test if the variable could be made PRIVATE,
or to re-examine if the loop carried pseudo dependencies are needed, in an attempt to allow the
loop to execute in parallel. ‘

Reduction loops — The analysis is used to determine if the loop body computations represent a
global reduction operation such as a MAX or summation. These loops provide a partial update of
the results by each thread followed by a global update to give the final reduction value.

Pipeline loops — This is a special class of serial loops with loop-carried true dependencies. Directive-
based software pipelines can be used to good effect in parallel. Figure 5 shows an example where
OpenMP function calls are used to define the pipeline start-up before the J-loop and the pipeline
shutdown after the loop. The example is taken from a version of the NAS LU benchmark. This is a
similar strategy to that adopted for a software pipeline used in a distributed memory
parallelization with message passing. For comparison a software pipeline implementation using a
high level message passing library (CAPLib) is shown in the lower panel of Figure 5. CAPLib is a
thin layer that covers a choice of message passing libraries such as PVM, MPI, Cray Shmem etc.

Chosen parallel loops — These are the parallel loops at which the OMP DO construct is defined. These
loops may contain serial or parallel loops within their nesting but are not surrounded by other
parallel loops.

Not chosen parallel loops - Also parallel loops, but these have not been selected for application to the
OMP DO directive. This is because these loops are surrounded by other parallel loops at a higher
nesting level. In general, the OpenMP compiler suppliers do not currently support nested
parallelism, therefore, even though parallelism exists at these lower levels, it is not currently
exploited.

The sub filter can be used together with the loop filter to control the finer selection of loop types.
Detailed explanation of these filters can be found in Appendix 3.2 and examples of using the loop filters
are in Tutorials.

CAPO User Manual 11

USING CAPO: INTERACTING WITH THE DIRECTIVES BROWSER

(a) lloop = jend-jst
1f (lloop .gt. mthnum) lloop = mthnum
iam = omp_get_thread_num()
if (iam .gt. 0 .and. iam .le. lloop) then
neigh = jam - 1
do while (isync(neigh) .eq. 0)
1 $SOMP FLUSH (isync)
end do
isync(neigh) = 0
1$OMP FLUSH (isync)
endif
'$SOMP DO SCHEDULE (STATIC)
do j=jst,jend,1
do i=ist,iend,1
c forward elimination and back substitution for diag. block inversion
enddo
enddo
!$OMP END DO nowait
if (iam .1lt. lloop) then
do while (isync(iam) .eqg. 1)
'SOMP FLUSH (isync)
end do
isync(iam) =1
!$SOMP FLUSH (isync)
endif

) CALL CAP_RECEIVE(v(1l,2,LOW-1,k),nx0*5-10,3,CAP_LEFT)
do j=MAX(jst,jst+L0w—2),MIN(jend,jst+HIGH—2),1
do i=ist,iend,1
¢ forward elimination and back substitution for diag. block inversion
enddo
enddo
CALL CAP_SEND(V(l,Z,HIGH,k),nx0*5—10,3,CAP_RIGHT)

Figure 5: Implementation of a software pipeline for routine BLTS using (a) OpenMP (b) message passing.

4.2. Browsing Different Types of Loops

The accurate dependence analysis allows the algorithm to automatically generate efficient OpenMP
code in many cases. Experience has shown that this typically leaves a small proportion of cases that
require user interaction. For example, the use of workspace arrays is very common in application codes,
but the value-based nature of the dependence analysis will often prove that no data is passed between
iterations of a loop. The memory re-use (pseudo) dependencies must however be set. This correctly
does not classify such loops as serial, however, the legal privatization of these arrays to allow parallel
execution requires that no data is passed into or out of these arrays from or to outside the loop. The
value-based analysis, again greatly aids in proving that no such dependencies into or out of the loop
exist.

Normally the user wants to go through the following loop types and use the WhyDirectives window to
find out the reason for a particular loop type:

® Totally Serial->True Recursion
® Covered Serial->True Recursion

CAPO User Manual 12

USING CAPO: INTERACTING WITH THE DIRECTIVES BROWSER

e Falsely Serial->Privatization
e Chosen->CopyIn/Qut

I T - o<~/ CAPQ: Why Directives ? e e e
.Loop: jacld:1/1/160: do n=1,np.1 Reason: anti/output dependencies, variable not privatizable
Type: Falsely Serlal New Type...) Antl-dep. variables » Output-d-p.vulahlei In/out—dep. mn-lalﬂes—l
Hints: R CEEET e “
— = b . 3 >b =
4 variables with loop-carried - a : >a
output dependsncies (levelsl) 4 - >d

and non-privatizabls, due to
usage from outside the loop
4 output-dep (») variables

- = aed -
~ Selectall) Select All) SelectAll)

1. Resst) Remove.)a b, c. d

Elsmlss) Heilp..)

o]
-~

10/Exit statements: Contains paralle! loops: Inside paraliel loops:

'L
L

hd

[——1s

L

L

Figure 6: The WhyDirectives window for a falsely serial loop.

The WhyDirectives window (as shown in Figure 6) can be activated by clicking on the @ button in
the Directives Browser window once a loop is selected. The window displays information on variables
that cause a loop to be so classified. The cause for a loop not to be parallel can come from several
sources, for example, loop-carried TRUE/ANTI/OUTPUT dependence, non-privatizable variables (re-
use of memory). If one is sure that some of these dependences are false (mostly due to lack of input
information for the dependence analysis) and can be removed, the Dep-Graph browser can be used to
modify the dependence graph. A shortcut is provided in the WhyDirectives window where variables
can be selected from the variable-list boxes and the relevant dependences can be removed by clicking
the button. The following relevant dependences will be removed, based on the loop type and
variable list type:

Loop Type Variable List Dependence Type
Totally Serial True-dep. Loop-carried TRUE dependence
Anti-dep. Loop-carried ANTI dependence
Output-dep. Loop-carried OUTPUT dependence
Covered Serial True-dep. Loop-carried TRUE dependence
Anti-dep. Loop-carried ANTI dependence
Output-dep. Loop-carried OUTPUT dependence
Falsely Serial Anti-dep. Loop-carried ANTI dependence
Output-dep. Loop-carried OUTPUT dependence
In/Out-dep. TRUE dependence from outside of the loop
Chosen Parallel Copyin/Out TRUE dependence from outside of the loop

CAPO User Manual 13

USING CAPO: INTERACTING WITH THE DIRECTIVES BROWSER

Once a change to the dependence graph (either via the Dep-Graph browser or via the WhyDirectives
browser) is made, be sure to save the change to the database (File—Save Database) and re-perform the
directive analysis (Update Directives.. button).

4.3. Enforcing New Loop Type

A loop type as described in the previous section and defined by CAPO can be overridden by the user
with the LoopType dialog box which is activated from the button (see Figure 6). Typically
this may occur when a loop is chosen for parallelization by CAPO but does not have proper granularity.
The user may want to force it to be serial and let the tool choose another loop that is nested inside this
loop. Another possibility is when the user wants to enable parallelization for a loop that contains 1/0
statements.

Currently the following four types are selectable:

Parallel - from parallel without granularity or with 1/O statements
Serial - from parallel loop, including reduction

Reduction - from serial loop with loop-carried true dependence
Break - from any other types.

Only the conversions as indicated are possible from the dialog box. Although loop types can be
redefined from the user-defined loop file (see Appendix 1.3), use of the LoopType dialog box is safer.
However, one should keep in mind that changing the loop type manually could potential lead to
incorrect results if the above rule is not carefully followed.

4.4. Routine Duplication

Routine duplication is performed after all the loop-level analyses and optimization are done but before
directives are inserted. A routine may be duplicated if it causes usage conflicts at different calling
points. For example, if a routine contains parallel regions and is called both inside a parallel loop and
outside another parallel loop but still inside a parallel region, the routine is duplicated so that the copy
of the routine without directives is used inside the parallel loop and the second copy containing only
orphaned directives without “OMP PARALLEL” is used inside parallel regions but outside parallel
loops. Routine duplication is often used in a message-passing program to handle different data
distributions in the same routine.

There are two selectable types of routine duplication (see the Settings in Appendix 3) for a routine that
contains parallel regions in the dynamic extent of this routine:

¢ 'Loop’ as the type for routine duplication if the routine is called both inside and outside
parallel loop(s).

* Region’ as the default type for routine duplication if the routine is called inside parallel loop(s)
and inside parallel region(s) but outside parallel loop(s).

This first option removes any nested parallelization. The second option confirms the OpenMP standard
that a parallel region can be nested inside a work-sharing construct (parallel loop) but not inside a
parallel region.

The RoutineDup browser (from View—Directives—RoutDup) is used for browsing routines that will
be duplicated. The browser will indicate those calls that are inside parallel loops and those that are
outside parallel loops. One may inspect the calls that are outside parallel loops for possible
improvements, for example, de-serializing any potential outside loop nests.

CAPO User Manual 14

5. Other Features

5.1. CAPO Parameters and Log Information

Parameters are referring to inputs that user can supply to control the behavior of directive generation in
CAPO. A list of all the parameters is given in Appendix 1. These parameters can be defined from a file,
environment variables, the Setting window in the Directives Browser, or the CAPO command interface.
All the parameters have their default values. The Setting window from the Directives Browser is the
most straightforward way to change parameters. It allows a user to select the log information type,
define the directive type, set the loop granularity for parallelization, enable/disable the generation of
the THREADPRIVATE directive, etc. For example, if the Directive Type is set to No Directive, the
generated code will not contain directives and any associated transformations as indicated in the next
section.

By default, the process of automatic insertion of directives is logged to the log-file "code-
output.log”. Information in this file may be examined after directives are added. There are three
main sections in the log file, as outlined in Appendix 2. Depending on the log-info type, different levels
of information details may be logged. In general, the log-info type controls:

1) min — only minimum amount of information, such as WARNING and INFO messages,
2) std — information from min, plus summary for each routine and each region,
3) more — information from std, plus more detailed results for each loop and each region,

4) debug — information from more, plus additional debug information that are probably too
much for an ordinary user.

Warning messages in the log file should be paid enough attention since they indicate potential problems
in the generated parallel code, which may be caused by user’s interaction or bug in the tool.

5.2. Automatic Code Transformation and Optimization

CAPO performs the following code transformation and optimization automatically and logs the actions
into the log file.

e Removal of the end-of-loop synchronization (using the NOWAIT construct) if it is proved valid.
The function can be switched off from the parameter setting.

o Loop nest interchange to improve cache performance. The array usage is analyzed against the
loop nesting order for possible misalignment. Loop transformation is performed to reduce
misalignment. The module is activated only when the O3 optimization is chosen.

e The ability to treat private variables with unknown size. A variable with unknown size is
usually declared as “ (*)” (sometime as “ (1)) for its last dimension in a subroutine. Use of
such a variable as PRIVATE in a parallel region would cause ambiguity in size declaration and
likely run-time error. In the current implementation, variable size is automatically detected
(back tracing and usage checking) and dimension adjustment is then performed.

o Reduction of an array is transformed into local array updates plus a global update in a critical
section at the end.

e Detection of reduction via an IF statement. The reduction is automatically transformed to local
updates and a global update in a critical section at the end. This type of reduction is indicated
as IMIN or IMAX in the Directives Browser.

CAPO User Manual 15

USING CAPO: OTHER FEATURES

5.3. Command Interface and the Batch Mode

The command interface for CAPO is available in Version 1.1 and works closely with the CAPTools’
command interface. It provides a way to access the functionality of GUI components without starting
the components. It serves as a mean to record actions (to a log file) as a result of any user GUI activities
so that these actions can be played back later. The commands in the command interface are usually
recorded to a log file or a command file with

capo -logfile capo_run.cmd
and played back with
capo [-batch] capo_run.cmd.

The second line with the [-batch] option can be used to start a CAPO session in a batch mode. This is
especially useful for the data dependence analysis since it is the most CPU intensive part and very little
use interaction is required once the analysis is started. Refer to Appendix 4 for a list of CAPO
commands and several useful CAPTools commands for the command interface.

5.4. Parallel 1/O

Strictly speaking parallel 1/O is not supported in CAPO. 1/0 is serialized by default, i.e., it is handled
by the master thread only. If any 1/0 is in the dynamic extent of a loop nest, the loop will be executed
sequentially. However, in some cases, one may want to exploit’ parallel 1/Os. For example in the
following code:

DO K=1,NZ

IF (V(K).LT.0.0) THEN
WRITE(*,*) ‘Warning: Negative value at K=', K
ENDIF
END DO

The WRITE statement prints a warning message only when a condition is reached. The order of the
write statement is not important, thus, one may seek for parallelizing the loop nest.

Another commonly encountered case is that warning messages are printed inside subroutine calls while
data are read/written in the current scope of a loop nest. One may want to ignore the warning
messages inside subroutine calls but serialize loops containing 1/O in the current scope.

The level of parallel I/0 in CAPO is controlled by the parameter “CAPO_PIO". If a value of “incall” is
given, CAPO will ignore any 1/0Os inside subroutine calls when parallel loops are considered. Another
possible value is “write”, which allows any WRITE to stdout (UNIT=" or 6) inside parallel loops. This
can be used for the above example. Of course, one can always enforce a user-defined loop type. During
the code generation warnings will be printed in the log file if 1/0 is encountered inside a parallel
region. One can examine these warnings for potential problems.

5.5. Mix of Message Passing and OpenMP

As pointed out in Section 2, CAPTools is designed to generate message-passing codes while CAPO is
used to create OpenMP codes. Mixing message passing (such as MPI) and OpenMP is possibie in the
framework of CAPTools/CAPO since the two tools are integrated together. A commonly used hybrid
model is to have MPI for the coarse-grained parallelization and OpenMP for the fine-grained
parallelization. Such a parallelization model is very effective if an application can be divided into

CAPO User Manual 16

USING CAPO: OTHER FEATURES

domains and different domains are only loosely coupled. MPI is used for inter-domain parallelism and
OpenMP for intra-domain parallelism.

Tutorial 5 gives an example of producing a mixed parallel code for the NAS BT benchmark. Although in
general there is no particular good reason that you want to mix MPI and OpenMP within the same
domain because of poor performance, the tutorial simply illustrates the capability of the tools to
generate mixed codes.

CAPO User Manual 17

6. Case Studies

For completeness in this section we present case studies of using CAPO to parallelize the NAS parallel
benchmarks and two computational fluid dynamics (CFD) codes well known in the aerospace field:
ARC3D and OVERFLOW. The parallelization process described in Section 3 was followed. We mainly
present the results and discuss issues encountered in the parallelization. Most of the results have been
reported in Ref. [6].

In the case studies, we used an SGI workstation (R5K, 150MHz) and a Sun E10000 node to run CAPO.
The resulting OpenMP codes were tested on an SGI Origin2000 system, which consisted of 64 CPUs and
16 GB globally addressable memory. Each CPU in the system is a R10K 195 MHz processor with 32KB
primary data cache and 4MB secondary data cache. The SGI's MIPSpro Fortran 77 compiler (7.2.1) was
used for compilation with the “-03 -mp” flag.

6.1. The NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPBs) were designed to compare the performance of parallel computers
and are widely recognized as a standard indicator of computer performance. The NPB suite consists of
five kernels and three simulated CFD applications derived from important classes of aerophysics
applications. The five kernels mimic the computational core of five numerical methods used by CFD
applications. The simulated CFD applications reproduce much of the data movement and computation
found in full CFD codes. Details of the benchmark specifications can be found in Refs. [1] and [2].

In this study we used six benchmarks (LU, SP, BT, FT, MG and CG) from the sequential version of
NPB2.3 [2] with additional optimization described in [5]. Parallelization of the benchmarks with CAPO
is straightforward except for FT where additional user interaction was needed. User knowledge on the
grid size (2 6) was entered for the data dependence analysis of BT, SP and LU. In all cases, the
parallelization process for each benchmark took from tens of minutes up to one hour, most of the time
being spent in the data dependence analysis. The performance of CAPO generated codes is summarized
in Figure 7 together with comparison to other parallel versions of NPB: MPI from NPB2.3, hand-coded
OpenMP [5], and versions generated with the commercial tool SGI-PFA [10].

CAPO was able to locate effective parallelization at the outer-most loop level for the three application
benchmarks and automatically pipelined the SSOR algorithm in LU. As shown in Figure 7, the
performance of CAPO-BT, SP and LU is within 10% to the hand-coded OpenMP version and much
better than the results from SGI-PFA. The SGI-PFA curves represent results from the parallel version
generated by SGI-PFA without any change for SP and with user optimization for BT (see [10] for
details). The worse performance of SGI-PFA simply indicates the importance of accurate
interprocedural dependence analysis that usually cannot be emphasized in a compiler. It should be
pointed out that the sequential version used in the SGI-PFA study was not optimized, thus, the
sequential performance needs to be counted for the comparison. The hand-coded MPI versions scaled
better, especially for LU. We attribute the performance degradation in the directive implementation of
LU to less data locality and larger synchronization overhead in the 1-D pipeline used in the OpenMP
version as compared to the 2-D pipeline used in the MPI version.

The directive code generated by CAPO for MG performs 36% worse on 32 processors than the hand-
coded version, primarily due to an unparallelized loop in routine norm2u3. The loop contains two
reduction operations of different types. One of the reductions was expressed in an IF statement, which
was not detected by CAPO Version 1.0 (the IF reduction will automatically be detected by Version 1.1),
thus, the routine was ran in serial. Although this routine takes only about 2% of the total execution time
on a single node, it translates into a large portion of the parallel execution on large number of
processors, for example, 40% on 32 processors. All the parallel versions achieved similar results for CG.

CAPO User Manual 18

USING CAPO: CastE STUDIES

— T T —rrrT—— T T
2 4 4
E -

o E N TN\ EIA ;
st N 1 X % AN]
s r \\? T \\m + N 1
§ 107 = -+ ~ - \ -
2 E N ES E3 . 3
F I] . -

s - —— F——++HHH——— - ———
S 3 T 1 —=— MPi-hand |]

2 —aA— OMP-hand
€WE Sn B CAPO |3
w sE J ~ ~. SGI-PFA |1
1t = %]
2 \\:\\ A ~]
wE N ™~ -
3 L, 'a N 3
i e S
1 i st N 1 + s st P 1 g o e

1 2 345 10 20% 1 2 345 10 203 1 2 345 10 203
Number of Processors [Class A, Origin2000 I

Figure 7: Comparison of the OpenMP NPB generated by CAPO with other parallel versions:
MPI from NPB2.3, OpenMP by hand, and SGI-PFA.

The basic loop structure for the Fast Fourier Transform (FFT) in one dimension in FT is as follows.

DO K=1,D3
DO J=1,D2
DO I=1,D1
Y(I) = X(I,J,K)
END DO
CALL CFFTZ(....,Y)
DO I=1,D1
X(I,J,K) = Y(I)
END DO
END DO
END DO

A slice of the 3-D data (X) is first copied to a 1-D work array (Y). The 1-D FFT routine CFFTZ is called to
work on Y. The returned result in Y is then copied back to the 3-D array (X). Due to the complicated
pattern of loop limits inside CFFTZ, CAPTools could not disprove the loop-carried true dependences by
the working array Y for loop K. These dependences were deleted by hand in CAPO to identify the K
loop as a parallel loop.

The resulted parallel FT code gave a reasonable performance as indicated by the curve with filled circles
in Figure 7. It does not scale as well as the hand-coded versions (both in MPI and OpenMP), mainly due
to the unparallelized code section for the matrix creation which was artificially done with random
number generators. Restructuring the code section was done in the hand-coded version to parallelize
the matrix creation. Again, the SGI-PFA generated code performed worse.

6.2. ARC3D

ARC3D is a moderate-size CFD application. It solves Euler and Navier-Stokes equations in three
dimensions using a single rectilinear grid. ARC3D has a structure similar to NPB-SP but contains curve
linear coordinates, turbulent models and more realistic boundary conditions. The Beam-Warming
algorithm is used to approximately factorize an implicit scheme of finite difference equations, which is
then solved in three directions alternatively.

CAPO User Manual 19

USING CAPO: Cast STUDIES

For generating the OpenMP parallel version of ARC3D, we used a serial code that was already
optimized for cache performance by hand [9]. The parallelization process with CAPO was
straightforward and OpenMP directives were inserted without further user interaction. The parallel
version was tested on the Origin2000.and the result for a 194x194x194-size problem is shown in the left
panel of Figure 8. The results from a hand-parallelized version with SGI multi-tasking directives (MT by
hand) [9] and a message-passing version generated by CAPTools (CAP MPI) [6] from the same serial
version are also included in the figure for comparison.

As one can see from the figure, the OpenMP version generated by CAPO is essentially the same as the
hand-coded version in performance. This is indicative of the accurate data dependence analysis and
sufficient parallelism that was exploited in the outer-most loop level. The MPI version is about 10%
worse than the directive-based versions. The MPI version uses extra buffers for communication and this
could contribute to the increase of execution time.

6.3. OVERFLOW

OVERFLOW is widely used for airflow simulation in the aerospace community. It solves compressible
Navier-Stokes equations with first-order implicit time scheme, complicated turbulence model and
Chimera boundary condition in multiple zones. The code has been parallelized by hand {4] with several
approaches: PVM for zone-level parallelization only, MPI for both inter- and intra-zone parallelization,
multi-tasking directives, and multi-level parallelization. This code offers a good test case for our tool not
only because of its complexity but also its size (about 100K lines of FORTRAN 77).

In this study, we used the sequential version (1.8f) of OVERFLOW. CAPO took 25 hours on a Sun E10K
node to complete the data dependence analysis. A fair amount of effort was spent on pruning data
dependences that were placed due to lack of necessary knowledge during the analysis. An example of
false dependence is illustrated in the following code segment:

NTMP2 = JD*KD*31
DO 100 L=LS,LE
CALL GETARX (NTMP2,TMP2, ITMP2)
CALL WORK(L,TMP2(ITMP2,1),TMP2(ITMP2,7),...)
CALL FREARX (NTMP2,TMP2, ITMP2)
100 CONTINUE

Inside the loop nest, the memory

————r e —r ———r—rrr——r
space for an array TMP2 is first 400 |8 —8— CAPO OMP |] —a- CAPO OMP
allocated by GETARX. The working & 300 | Z37 M byhand | 4 NE ~O- MT by hand |3
array is then used in WORK and § 200 1 6f \ @~ MPiby hand | 3

) L Ne]
freed afterwards. However, the g , 4t " i
data analysis has reviewed that the £ 190 '\ B \!\ T
loop contains loop-carried true § 6o . 12t e l
dependences caused by variable £ 4o \A 1 :§_

30 () 1 E e

P2, 2“‘.5’ the .IOIOPT;a“ only be § w0 | ARC3D Ne o8t overFLow
executed in serial. The memory 194x 194x 194 ol 06 [6961x50 :
allocation and de-allocation are i |oat TS
performed dynamically and cannot 1 2 34 6810 2030 1 2 34 6810 2030
be handled by CAPO. This kind of Number of Processors

false dependence can safely be Figure 8: Comparison of execution times of CAPO gencrated parallel
removed with Dependence Browser codes with hand-coded parallel versions for two CFD applications:
included in the tool. Even so, CAPO ARC3D on the left und OVERFLOW on the right.

provides an easy way for user to

CAPO User Manual 20

USING CAPO: CASE STUDIES

interact with the parallelization process. The OpenMP version was generated within a day after the
analysis was completed and an additional few days were used to test the code.

The right panel of Figure 8 shows the execution time per time-iteration of the CAPO-OMP version
compared with the hand-coded MPI version and hand-coded directive (MT) version. All three versions
were running with a test case of size 69x61x50, 210K grid points in single zone. Although the scaling is
not quite linear (when comparing to ARC3D), especially for more than 16 processors, the CAPO version
out-performed both hand-coded versions. The MPI version contains sizable extra codes [4] to handle
intra-zone data distributions and communications. It is not surprising that the overhead is unavoidably
large. However, the MPI version is catching up with the CAPO-OMP version on large number of
processors. On the other hand, further review has indicated that the multi-tasking version used a fairly
similar parallelization strategy as CAPO did, but in quite a few small routines the MT version did not
place any directives for the hope that the compiler (SGI-PFA in this case) would automatically
parallelize loops inside these routines. The performance number seemed to have indicated otherwise.

We also tested with a large problem of 1.5M grid points. The result was not incliided in the figure but
CAP(Y< version has achieved 18-fold speedun on 32 processors of the Origin2000 (10 out of 32 for the
small test case). It is not surprising that the problem with large grid size has achueved better parallel
performance.

References

[1] D. Bailey, . Barton, T. Lasinski, and H. Simon (Eds.), “The NAS Parallel Benchmarks,” NAS
Technical Report RNR-91-002, NASA Ames Research Center, Moffett Field, CA, 1991.

[2] D.Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, “The NAS Parallel

Benchmarks 2.0,” RNR-95-020, NASA Ames Research Center, 1995. NPB2.3,
http:/ /www.nas.nasa.gov /Software/NPB/.

[3] CS. lerotheou, S.P. Johnson, M. Cross, and P. Legget, “Computer Aided Parallelisation Tools
(CAPTools) - Conceptual Overview and Performance on the Parallelisation of Structured Mesh
Codes,” Parallel Computing, 22 (1996) 163-195. (http:/ /captools.gre.ac.uk/)

{4] D.C.Jespersen, “Parallelism and OVERFLOW,” NAS Technical Report NAS-98-013, NASA Ames
Research Center, Moffett Field, CA, 1998.

[5] H.Jin, M. Frumkin and J. Yan., “The OpenMP Implementation of NAS Parallel Benchmarks and
Its Performance,” NAS Technical Report, NAS-99-011, NASA Ames Research Center, 1999.

[6] H.Jin, M. Frumkin and J. Yan., “Automatic Generation of OpenMP Directives and Its Application
to Computational Fluid Dynamics Codes,” in Proceedings of Third International Symposium on
High Performance Computing (ISHPC2000), Tokyo, Japan, October 16-18, 2000.

[7]1 H.Jin, M. Hribar and]. Yan, “Parallelization of ARC3D with Computer-Aided Tools,” NAS
Technical Report, NAS-98-005, NASA Ames Research Center, 1998.

[8] OpenMP Fortran/C Application Program Interface, http:/ /www.openmp.org/.

[9] J. Taft, “Initial SGI Origin2000 Tests Show Promise for CFD Codes,” NAS News, July-August, page
1, 1997. (http:/ /www.nas.nasa.gov/Pubs/NASnews/97/07 /article01.html)

[10] A. Waheed and J. Yan, “Parallelization of NAS Benchmarks for Shared Memory Multiprocessors,”
in Proceedings of High Performance Computing and Networking (HPCN Europe "98),
Amsterdam, The Netherlands, April 21-23, 1998.

CAPO User Manual 21

APPENDIX

Contents

1. Parameters for CAPO A-2
1.1. General A-2
1.2. The Parameter File A-2
1.3. Parameter Keys and Possible Values A-2
1.4. Parameters for Debugging Purpose A-5
1.5. Sample Parameter File A-5
2. Messages and Symbois in the Log File A-7
2.1. Classification of Loops A-7
2.2 Construction of Parallel Regions A-8
2.3. Insertion of Directives in Routines A-11
2.4, Debug Information A-13
3. CAPO Graphic User Interface A-16
3.1. Directives Browser Main Window A-16
3.2 Loop Filters and Sub-filters A-18
3.2.1. Loop Variable Filter Window A-20
3.3. WhyDirectives Window A-21
3.4. Routine Duplication Browser A-26
3.5. Parameter Setting Window A-27
3.6. User Loop Type Window A-29
37 Reduction Operator Dialog A-29
3.8. Updating Directives Dialog A-30
3.9. Variable Removal Confinmation Dialog A-30
3.10. Data Graph Window A-31
3.11. Hookups to CAPTools A-32
4. CAPO Command Interface A-35
4.1, Commands for the Command Interface A-35
4.2 Other CAPTools Commands Useful for CAPO A-37
4.3. An Example of "capo_run.cmd" A-37
CAPO User Manual A-1

1. Parameters for CAPO

The following describes parameters available in Version 1.1.

1.1. General

Parameters are referring to inputs that user can supply to control the behavior of directive generation in
CAPO. There are default settings for all the parameters (see Section 1.3). Parameters can be defined
from a file, environment variables, or the Setting box in the Directives Browser. Values from the
parameter file or environment variables supersede any defaults. Values from the parameter file
supersede environment variables. Changes from the Setting box (Section 3.5) in the Directives Browser
are applied at last. Parameter setting can also be done from the CAPO command interface. See Section 4
for details.

1.2. The Parameter File

The parameter filename can be defined via the environment variable CAPO_PAR. The default filename is
"capo-inp.par” in the current directory. An example of this file is given in Section 1.5.

Format of the parameter file:

H the sign starts a comment
‘key value' the pair defines an entry

1.3. Parameter Keys and Possible Values

ENV_VARIABLE KEY DEFAULT POSSIBLE VALUES

CAPO_PAR capo-inp.par

CAPO_LOG log-file on (off on stdout)

CAPO_LOGNAME log-file-name codeoutput. log

CAPO_LOGINFO log-info std (min std more debug)

CAPO_PLOOP loop-granularity 6 (012 ...)

CAPO_TYPE directive-type omp (omp sgi sgix no)

CAPO_REGION region-type default (loop bloop one join full)

CAPO_OPTIMIZE optimize-type o2 (off on 02 03)

CAPO_USERLOOP user-loop-file user-loop.par

CAPO_DIRCLEAR directive-clear default-list (off on filename)

CAPO_TPRIV tpriv-directive on (off on)

CAPO_COMMENT comment-type £390 (£77 £90)

CAPO_USEPARTI use-parti-loop no (no yes)

CAPO_RDUPTYPE rdup-type region (loop region)

CAPO_UNKSIZE allow-unksize false (false true)

CAPO_PIO allow-pio no (no incall write noread
any)

CAPO User Manual A-2

APPENDIX: PARAMETERS FOR CAPO

Description of the parameters:

“log-£file” type is one of

off — Logging to file is off, only minimum messages are printed on screen

on — Information are logged to the log-file

stdout — Information are printed to stdout (screen)

“log-file-name” defines the name for a log file. If no name is defined, CAPO will use the
output filename from the code generation to form a log filename. Contents of the log file are
described in Section 2.

“log-info” type is one of

min — Only minimum information are logged or printed

std — Print standard set of log information

more — Print more detailed log information, including region and loop numbers in the final
Fortran file

debug -— Print debugging information, probably more than you want, including region and
loop numbers in the final Fortran file

The loop granularity is based only on the loop iterations at this point. Future extension to
include profile information can easily be added.

Currently supported directive types are

omp — Produce OpenMP directives (default)

sgi — Produce SGI native directives

sgix — Produce OpenMP directives with SGI extensions. Currently, only the NEST’
directive is supported

no — Do not insert directives in code generation (useful for comparison).

Different region types

loop — consider only one loop for one region (no pipeline)
bloop — consider one block + one loop for one region (no pipeline)
one — consider one region (region not joined, no pipeline)

join — consider joined region (outer loop nesting, no pipeline)
full — consider full region (region joined and possible pipeline)

For SGI directives, only "loop" is allowed for the region type (region-type). The default region-
type is "loop” for SGI and "full” for OMP.

Optimization type is intended for possible improvements to be applied, such as loop
granularity check, synchronization overhead reduction, and loop transformation. Currently an
attempt to reduce synchronization at end-of-loop is implemented. Other optimizations are less
defined and/or tested.

off — Do not do any optimization

on — Try to reduce synchronization at end-of-loop

02 — Use logical disprove (slow sometime) for affinity comparison

03 — Perform additional optimization (such as loop transformation) before loop analysis

and directive insertion.

User-defined loop types are read from a file that can be defined via environment variable
CAPO_USERLOOP or "user-loop-file” entry in the parameter file. If a "userloop.par” file
exists in the current working directory, this file will be taken if the other two methods are not
used. The format of this file is:

CAPO User Manual A-3

APPENDIX: PARAMETERS FOR CAPO

starts commen:
#RoutineName LoopNumber NewType
routine name loop_count S|P|R|Bloptions)

Entries are specified line-by-line. “Routine_name” is case insensitive. For a program without
the main-routine name defined, “MAIN” can be used to indicate the main routine.

“loop_count” is the loop number counted from the beginning of a given routine. A negative
"loop_count” indicates the loop (defined by -loop_count) will not be considered for
automatic loop transformation.

Currently the following new loop types are supported:

"g" for serial
"p" for parallel
"R" for reduction

"B" for break-type (e.g. so that a parallel region won't be formed around this loop).
The "R” type can optionally be attached with
"[OPR:VAR]" or "[OPR: VAR ()]" list

to indicate the reduction operator and the reduction variable, no space in-between. The second
form indicates an array reduction.

® List of directives to be cleared can be read from a file or taken from the default list. The default
list contains the following:

"cdirs", /* Cray vector directive */

“cmic$", /* Cray autotasking directive */

“c$par", /* PCF (Parallel Computing Forum) directive */
"c$doacross", "cS$&", /* SGI multiprocessing directive */

"c$ ", "es\t",

"cSomp", /* OMP directive */

"c$sgi” /* SGI OMP extension */

The default setting is to use the above list. The ‘clearing’ action may be turned off by setting
CAPO_DIRCLEAR to ‘of £'. Additional directives may be added to the default list by prefixing a
'+'in front of the filename for CAPO_DIRCLEAR.

A dirclear-list file contains simply a list of directives (keywords) to be considered. A keyword
should lead with one of ['C’,"t","*']. A *-' sign can be added to the front of a keyword to indicate
the corresponding directive should not be cleared (i.e. keep its original form), otherwise, the
directive will be commented out (cleared).

® The THREADPRIVATE directive will be generated by default. If the option is turned off via
CAPO_TPRIV (=off), CAPO will use an alternative method to treat private variables used in a

common block.
off —Use an alternative method to handle private variables
on — Try to create THREADPRIVATE directives

¢ The comment type refers to the leading character to be used for directives. The 'C’ character is
for the f77 type and the 1" character is for the f90 type. Defaultis'!".

® By default, if a loop is partitioned in a message-passing program, the loop will not be
considered for directives (CAPO_USEPARTI=no). This is equivalent to a two-level
parallelization. If a partitioned loop is intended for directives as well, CAPO_USEPARTT can be
set to 'yes'. This would be a one-level parallelization with mixed type. The option is only

CAPO User Manual A-4

APPENDIX: PARAMETERS FOR CAPO

1.4.

meaningful when CAPTools is first used to generate message-passing program and CAPO is
then applied to insert directives.

Two types of routine duplication (RDUP) can be selected:

loop —as the type for RDUP if a routine is used both inside and outside parallel loop(s).
region — as the (default) type for RDUP if a routine is used inside a parallel loop and inside
parallel region but outside parallel loop.

The second option allows nested parallel regions and confirms the OpenMP standard that a
parallel region can be nested inside a parallel loop but not inside a parallel region.

The environment variable CAPO_UNKSIZE controls how unknown-size private variable (USPV)
is treated. A unknown-size variable has its last dimension declared as ™" or "1" in a subroutine
and is in the routine argument list. By default, if an USPV is encountered, CAPO will take
effort to adjust the size of the unknown dimension. If the size cannot be adjusted, the
corresponding loop will be made serial. If CAPO_UNKSIZE is set to "true”, the loop with
USPV will not be made serial, instead, a warning will be printed so that the user can make
manual change later on.

By default I/O statements are not allowed in the dynamic extent of parallel loops. However,
one can exploit certain degrees of parallel I/O with CAPO_PIO.

no —no I/O statements in the dynamic extent of a loop (default).

incall —no 1/0 in the current scope of a loop, but allowed inside subroutine calls.
write — allow "WRITE(*,*)", i.e. write to standard output.

noread — no READ, but allow any WRITE.

any — allow any type of /O statements.

Parameters for Debugging Purpose

The following parameters are only available from the Setting box (Section 3.5) in the Directives browser.
By default, all these parameters are enabled. The Setting box can be used to disable them for debugging

purpose.
Generate-NOWAIT — enable/disable the NOWAIT directive
Transform-Induction-Loop -—enable/disable induction loop treatment
Handle-Array-Reduction — enable/disable array reduction
Remove-0ld-Directives — enable/disable removing old directives
Apply-UserLoop-Type — enable/disable applying userloop types
Setup-Pipeline-Loop — enable/disable pipeline loop

1.5. Sample Parameter File

env: CAPO_PAR
Parameters for CAPTools-based Parallelizer with OpenMP (CAPO)
They apply to version 1.1

env: CAPO_LOG
defines if log-information is wanted
log-file on {off on stdout)

env: CAPO_LOGNAME

CAPO User Manual A-5

APPENDIX: PARAMETERS FOR CAPO

defines log-file name when log-file = on
log-file-name {default: codeoutput.log)

env: CAPO_LOGINFO
defines type of information to be logged
log-info std (min std more debug)

env: CAPO_PLOOP
defines granularity (min. no. of iters.) for parallel loops
loop-granularity 6 (012 ...)

env: CAPO_TYPE
defines type of directives to be produced
directive-type omp {omp sgi sgix no)

env: CAPO_REGION
defines type of parallel regions to be considered
region-type full (loop bloop one join full)

env: CAPO_OPTIMIZE
defines optimization type for parallel regions
optimize-type 02 (off on 02 03)

env: CAPO_USERLOOP
defines the file name for user-defined loop types
user-loop-file (default: user-loop.par)

env: CAPO_DIRCLEAR
defines the file name for directives to be cleared
directive-clear Default (off on filename)

env: CAPO_TPRIV
switches on/off the generation of THREADPRIVATE
tpriv-directive on (off on)

env: CAPO_COMMENT
chooses a comment type for directives
comment-type £390 (£77 £90)

env: CAPO_USEPARTI
uses partitioned loops for directives
use-parti-loop no (no yes)

env: CAPO_RDUPTYPE
defines routine duplication type
rdup-type region (loop region)

env: CAPO_UNKSIZE
allows unknown-size variables
allow-unksize false (false true)

env: CAPO_PIO
allows parallel I/0
allow-pio no (no incall write noread any)

CAPO User Manual

2. Messages and Symbols in the Log File

By default, the process of automatic insertion of directives is logged to the log-file "code-
output.log”. Information in this file may be examined after directives are added. There are three
main sections in the log file, as outlined in the following subsections. Depending on the log-info type as
described in Section 1, different levels of information details may be logged. In general, the log-info
type controls:

1) min — only minimum amount of information, such as WARNING and INFO messages,
2) std - information from min, plus summary for each routine and each region,
3) more — information from std, plus more detailed results for each loop and each region,

4) debug — information from more, plus additional debug information that are probably too
much for an ordinary user.

In the case of "more” and "debug"”, additional labels (region# and logp#) are added as comments for
parallel loops in the generated parallel code. Regions and loops are labeled within a given routine,
sequentially.

2.1. Classification of Loops

The first section lists the analysis of loops in all routines from the dependence information. For a given
routine a loop is labeled with its sequence number, the group number and the loop-nesting level. The
group number is defined as a sequence number for a loop-nest group at a given nesting level. Loops are
classified as parallel, serial, or possible pipeline. For a parallel loop, it is further tested for granularity
and is indicated if a parallel directive is to be added, provided the loop is not nested inside another
parallel loop. For a serial loop, the reason of serialization as well as the first variable that causes the
loop to be serialized is given. The causes of loop serialization include loop-carried dependences (true,
anti and output), I/O statement inside, and breaking out of the loop. A pipeline loop is a serial loop
with only loop-carried true dependences and determinable dependence vectors. The basic information
for loops is as the following:

Routine: ROUTINE_NAME
Loop # (loop_variable), group #, level #: parallel/serial
TYPE? Reason for serial...

"TYPE?" is one of types from the loop type list:

HREDU" , "NPARII , “ PARII , L IOI‘ , L LVAR" , L SERII , IIANVI\I L , n PIPEII ,
"BRK", "UPIPE", "PAREG", "INDU", "INPLP", "RDINP", "GRAN", "PARTI"

As an example, part of the analysis for three routines in NPB-LU is given here (with 1og_info set to
MORE).

Routine: BUTS

Loop 1 (J), group 1, level 1: parallel, granularity - ok
PAR-> directives to be added for the loop <1,1>

Loop 2 (I), group 1, level 2: parallel, granularity - ok
INPLP? no directive, loop inside a parallel loop

Loop 3 (M), group 1, level 3: parallel, granularity - no

Loop 4 (J), group 2, level 1: serial

CAPO User Manual A-7

APPENDIX: MESSAGES AND SYMBOLS IN THE LOG Fius

'y

IPE? true dependence, pipeline loop? dvector: VI[(0.8,-1,0])
Loop 5 (I), group 2, level 2: serial
PIPE? true dependence, pipeline loop? dvector: V[0,-1,0,0]
Loop 6 (M), group 2, level 3: parallel, granularity - no
Loop 7 (M), group 2, level 3: parallel, granularity - no
*** Total number of loops: 7, parallel: 5, serial: 2, directive: 1
Routine: JACU
Loop 1 (J), group 1, level 1: parallel, granularity - ok
PAR-> directives to be added for the loop «1,1>
Loop 2 (I), group 1, level 2: parallel, granularity - ok
INPLP? no directive, loop inside a parallel loop
*** Total number of loops: 2, parallel: 2, serial: 0, directive: 1

Routine: SSOR
Loop 1 (I), group 1, level 1: serial
ANTI? loop carried output or non-exact anti dependence: ELAPSED
Loop 2 (I), group 2, level 1: serial
ANTI? loop carried output or non-exact anti dependence: ELAPSED
Loop 3 (ISTEP), group 3, level 1: serial
BRK? break out of the loop or comm-call inside the loop
Loop 4 (K), group 3, level 2: parallel, granularity - ok
PAR-> directives to be added for the loop <2,1>
Loop 5 (J), group 3, level 3: parallel, granularity - ok
INPLP? no directive, loop inside a parallel loop
Loop 6 (I), group 3, level 4: parallel, granularity - ok
INPLP? no directive, loop inside a parallel loop
Loop 7 (M), group 3, level 5: parallel, granularity - no
Loop 8 (K), group 3, level 2: serial
SER? loop carried true dependence: ELAPSED
Loop 9 (K), group 3, level 2: serial '
SER? loop carried true dependence: ELAPSED
Loop 10 (K), group 3, level 2: parallel, granularity - ok
PAR-> directives to be added for the loop <2,2>
Loop 11 (J), group 3, level 3: parallel, granularity - ok
INPLP? no directive, loop inside a parallel loop
Loop 12 (I), group 3, level 4: parallel, granularity - ok
INPLP? no directive, loop inside a parallel loop
Loop 13 (M), group 3, level 5: parallel, granularity - no
*** Total number of loops: 13, parallel: 8, serial: 5, directive: 2

>>>> Grand total: num_routines 25, num_loops 157
loops: parallel 145, serial 12, directive 30

The label for a parallel loop with directive to be added (PAR->) is given as <level, group> pairs. In
the case of a serial loop only one variable is listed for the cause of serialization. For a potential pipeline
loop, the dependence vector for the first related variable is given, as the case of V{0, 0, -1, 0] for loop
4 (J) in routine BUTS.

The user-defined loop types are applied after the loop classification. Therefore, it is user's responsibility
to ensure the correctness of user-supplied loop types.
2.2. Construction of Parallel Regions

This section contains first the summary from the pass-two analysis of all the routines in the outer-most
loop level to decide if directives need to be added in a routine. Routines are traversed on their call

CAPO User Manual A-8

APPENDIX: MEsSSAGES AND SYMBOLS IN THE LoG FILE

sequences. A <yes> or <no> flag is marked for each analyzed routine to indicate the addition of
directives in the routine. A routine may need to be duplicated if it is called both inside and outside a
parallel loop and will contain directives in itself.

Routine: ROUTINE_NAME <yes/no/inploop/noploop>

<yes> — routine is added with directives for parallel loops

<no> — routine has no directives

<inploop> — routine is called inside a parallel loop

<noploop> — routine has no parallel loop, but may contain potential pipeline loops

A sample result from the analysis of NPB-LU looks like the following.

Routine: APPLU <yes>

Routine: READ_INPUT <no>

Routine: DOMAIN <no>

Routine: SETCOEFF <no>

Routine: SETBV <yes>

Routine: SETIV <yes>

Routine: ERHS <yes>

Routine: SSOR <yes>

Routine: TIMER_CLEAR <no>

Routine: JACLD <yes>

Routine: BLTS <yes>

Routine: JACU <yes>

Routine: BUTS <yes>

Routine: RHS <yes>

Routine: TIMER_START <no>

Routine: L2NORM <yes>

Routine: TIMER_STOP <no>

Routine: ELAPSED_TIME <no>

Routine: WTIME <no>

Routine: ERROR <yes>

Routine: EXACT <no>

Routine: PINTGR <yes>

Routine: VERIFY <no>

Routine: PRINT_RESULTS <no>

Routine: TIMER_READ <no>

>>> Total routines: 25, checked: 24, with directives: 13
in/outside ploop: 0, in/with ploop: 0, no ploop: 12
Total directive loops: 30, effective: 30, in ploop: 0

The last line of the statistics indicates how many loops can be put with directives, how many of them
are really added with directives, and how many of them are nested inside other loops with directives.

Next is to construct parallel regions based on the loop information. A parallel region includes at least
one parallel loop or pipeline loop with possible basic blocks in the beginning of the loop. No nested
parallel loops are considered at this point. Two neighboring regions can be joined together if no codes
other than comments or nops (such as continue) exist between the two regions. Individual regions
are labeled sequentially within a routine. For each region a number is included in () to indicate the end
(or last) region of a joined area of regions. For disjointed regions, the end region is the same as the
region itself. Additional information included for a region are: loops in the region and type of the
region. Regions are also summarized for a routine as "region- type-summary’.

CAPO User Manual A-9

APPENDIX: MESSAGES AND SYMBOLS IN THE LoGg FILE

Region-type:

one ploop — containing exactly one parallel loop (no pipeline)
*prev-block — one parallel loop plus any preceded basic blocks
sub ploop — one or more parallel loops nested at different levels
pipeline — potential pipeline

<default> — region with joined neighbors

Region-type-summary:

DEFAULT — routine contains normal parallel regions
PIPE —routine is part of a pipeline region
UPIPE — routine contains potential pipeline regions

Sample outputs from the analysis of NPB-LU:

Region-in-Routine: BUTS

region-type-summary: UPIPE

Parallel region 1 (2): loops (1-3}

Parallel region 2 (2): loops [4-7]

*** Total number of regions: 2, joined regions: 1
Region-in-Routine: JACU

region-type-summary: DEFAULT

Parallel region 1 (1): loops [(1-2) one ploop

*** Total number of regions: 1, joined regions: 1
Region-in-Routine: SSOR

region-type-summary: DEFAULT

Parallel region 1 (1): loops [4-7] one ploop

Parallel region 2 (2): loops [10-13] one ploop

*** Total number of regions: 2, joined regions: 2

Once the initial regions are determined, routines are then checked for possible pipeline regions across
routines. If such a region is identified, the pipeline-loop limit is checked against all other parallel loops
in the same pipeline region for alignment. If a discrepancy is found, a message will be printed out as
either "not the same limit" or "low-high limit swapped!”. In the first case, the suggested pipeline
operation may produce incorrect run-time result and further check of this generated code is needed. In
the second case CAPO automatically swaps the loop limit to ensure the consistence. If pipeline loops
are not desirable, set the environment variable CAPO_REGION to "join".

For LU, routines BUTS and JACU were identified to be part of a pipeline region in routine SSOR and
information was generated as follows.

Region-in-Routine: BUTS
region-type-summary: PIPE
pipeloop: DO J=JEND,JST,-1 (BUTS)
thisloop: DO J=JEND,JST,-1 (BUTS)

same limit

Region-in-Routine: JACU
region-type-summary: PIPE
pipeloop: DO J=JEND,JST,-1 (BUTS)
thisloop: DO J=JST,JEND,1 (JACU)

low-high limit swapped!

Region-in-Routine: SSOR
region-type-summary: DEFAULT
Parallel region 1 (1): loops (4-7] one ploop

CAPO User Manual A-10

APPENDIX: MESSAGES AND SYMBOLS IN THE LOG FiLE

Parailel region 2 (2): loops [8-8] pipeline
Parallel region 3 (3): loops [9-9] pipeline
Parallel region 4 (4): loops [(10-13} one ploop
*** Total number of regions: 4, joined regions: 4

>>>> Grand total: routines 25, regions 34, joined regions 26

Parallel regions are further optimized for removal of end-of-loop synchronization (use the 'NOWAIT
construct). Although more conservative approach is taken, careful examination of NOWAIT is still
needed. For example, one should pay attention to the WARNING messages on 'EndLoop-Sync
required /re-enforced’. If any problem occurs, one can always switch the optimization off (setenv
CAPO_OPTIMIZE off).

For LU, this is the summary after region optimization:

>>>> Total number of syncs removed: 7, in 4 routines (13 checked)

2.3. Insertion of Directives in Routines

There are four functions performed in this stage:

e clearing any old directives if CAPO_DIRCLEAR is not off (Section 1.3),

e searching for threadprivate common blocks and inserting the THREADPRIVATE directive if
CAPO_TPRIV is not off,

e duplicating routines if needed, and

¢ inserting region/loop-level directives.

Information resulted from these four actions are not fed back to the Directives Browser except for
presented as directives in the source code. Thus, once directives are inserted, the Directives Browser
should not be used to do further changes.

A threadprivate common block is the one that have all its variables used as private (including copyin)
for all the parallel regions in the whole program. It means even a single instance of a non-private usage
of a variable can prevent the common block from becoming threadprivate. In the debug mode, causes of
a common block being determined as threadprivate or shared can be examined. See Section 2.4 for
details. Normally messages are printed for identified threadprivate common blocks and routines that
contain them. An example is given here.

T_PRIV common blocks:

-/WORK_1D/-18: SP SET_CONSTANTS EXACT_RHS INITIALIZE ADI TXINVR X_SOLVE
NINVR Y_SOLVE PINVR Z_SOLVE LHSINIT TZETAR ADD VERIFY ERROR_NORM
COMPUTE_RHS RHS_NORM

-/WORK_LHS/-18: SP SET_CONSTANTS EXACT_RHS INITIALIZE ADI TXINVR X_SOLVE
NINVR Y_SOLVE PINVR Z_SOLVE LHSINIT TZETAR ADD VERIFY ERROR_NORM
COMPUTE_RHS RHS_NORM

>>> THREADPRIVATE directive added for 2 common blocks in 18 routines
Warnings may be printed for those common blocks that potentially be threadprivate:

WARNING! SSOR... region 4, loop 8

CAPO User Manual A-11

APPENDIX: MESSAGES AND SYMBOLS IN THE LoG FILE

'CJAC/ Type corilict: old SHARED, new PRIV - use SHARED

It indicates that in routine SSOR all variables in common block /CJAC/ are used as private in region 4,
but the common block is shared in other places. One can trace further for where the common block is
shared in the debug mode.

Directives are added by annotating the call graph and using the parallel region information obtained in
2.2. The call paths are printed as the insertion is progressing. Any routine is only visited one time.

Routine: APPLU

Routine: APPLU->SETCOEFF

Routine: APPLU

Routine: APPLU->SETBV

Routine: APPLU

Routine: APPLU->SETIV

Routine: APPLU

Routine: APPLU->ERHS

Routine: APPLU

Routine: APPLU->SSOR

Routine: APPLU->SSOR->RHS

Routine: APPLU->SSOR->RHS->TIMER_START

Routine: APPLU->SSOR->RHS->TIMER_START->ELAPSED_TIME

Routine: APPLU->SSOR->RHS->TIMER_START->ELAPSED_TIME->WTIME

Routine: APPLU->SSOR->RHS->TIMER_START->ELAPSED_TIME

Routine: APPLU->SSOR->RHS->TIMER_START

Routine: APPLU->SSOR->RHS

Routine: APPLU->SSOR->RHS->TIMER_STOP

Routine: APPLU->SSOR->RHS

Routine: APPLU->SSOR

Routine: APPLU->SSOR->L2NORM

INFO! Array reduction variable replaced with local critical in region 1 -
SUM() --> SUM_CAP1{()

Routine: APPLU->SSOR

Routine: APPLU->SSOR->JACLD

Routine: APPLU->SSOR

Routine: APPLU->SSOR->BLTS

Routine: APPLU->SSOR

WARNING! Potential memory conflict for shared variable in region <2,1> -

ELAPSED

Routine: APPLU->SSOR->JACU

Routine: APPLU->SSOR

Routine: APPLU->SSOR->BUTS

Routine: APPLU->SSOR

WARNING! Potential memory conflict for shared variable in region <3,1> -

ELAPSED

Routine: APPLU

Routine: APPLU->ERROR

INFO! Array reduction variable replaced with local critical in region 1 -
ERRNM() --> ERRNM_CAP1 ()

Routine: APPLU

Routine: APPLU->PINTGR

Routine: APPLU

Routine: APPLU->VERIFY

Routine: APPLU

CAPO User Manual o A-12

APPENDIX: MESSAGES AND SYMBOLS IN THE LoG FILE

WARNINGs for "...variable used after a parallel region”, "potential memory conflict”, and INFOs on the
changes made to routine arguments should be examined carefully. These are just warnings, may or
may not cause any programming errors. The warnings are the cases where CAPO are uncertain of
decision making and user needs to inspect the generated code at the pointed places for verification. The
parallel region is labeled as <region_number, parallel_loop_number> pairs in the call path
right preceding the warning message.

Meanings of keywords in the WARNING message:

"variable" — a variable used in the current routine scope

“common-variable” — a variable used outside the current scope, e.g. through COMMON
blocks or SAVE statements in a subroutine

"Shared” — variable shared in the current region

"Plocal” — potential private variable in the current region

"Control” — variable with multiple control paths, i.e. variable could be updated
either inside or outside the current region

“I/0 statement” — routine called inside a parallel region contains i/o
(OPEN,READ,WRITE,CLOSE) statements

"STOP statement” — routine called inside a parallel region contains STOP/PAUSE
statements

“"Potential memory conflict” — for shared variable that can cause memory conflict in a parallel
region

If a private variable in a parallel region is updated via a COMMON block in a subroutine, CAPO tries to
privatize such a variable by adding it to the subroutine’s argument list and renaming the original
variable in the COMMON block of the subroutine. CAPO will generate the following INFO messages
in this process:

New argument () added to CALL OTHER_ROUTINE() :# in ROUTINE_NAME
New symbol () added to the argument list of ROUTINE_NAME
Common block /cblk/ duplicated for ROUTINE_NAME

CAPO performs a code transformation automatically for a reduction variable that is an array element.
The corresponding message is like:

Array reduction variable replaced with scalar in region # -
OLD_ARRAY_ELEMENT --> NEW_SCALAR_VARIABLE

2.4. Debug Information

More information will be logged if CAPO_LOGINFO is set to "debug”. These are useful for debugging
CAPO. Some of the information are included here for reference only.

® UserLoop information for user-defined loop types

Userloop: Defined loop # in routine ROUTINENAME - newtype
“newtype” is one of (S, P, R, B) as mentioned in Section 1.3.
e List of old directives to be cleared

® Summary of loop type with list of all dependence vector deltas for pipeline loops

CAPO User Manual A-13

APPENDIX: MESSAGES AND SYMBOLS IN THE LOG FILE

® Three tests during region formation

Mem-Conflict check for region #R, loops #L-#L...

Conflict variables: <var,var...>
Shared-Array check for region #R, loops #L-#L.. .Assigned <Symbol>
IO-Statement check for region #R, loops #L-#L...

I/0 or Reduction in routine <RoutineName>

® List of symbols and types in each region

TYPE
Private — Local (privatizable) variable
Reduction — Scalar reduction variable
ArrayReduction — Array reduction variable
Shared — Shared variable
LastPrivate — Usage in and after the region
FirstPrivate — Usage in and before the region
CopyInQut — Shared but no or no proof of loop-variable dependence
ThreadPrivate — Used in a threadprivate common block
UnknownType — Type not defined yet
CONTROL
No-Control — Symbol not in a control dependence
Control-Dep — Symbol in a control dependence
SCOPE
In-Scope — Symbol defined in the current routine
Not-in-Scope — Symbol not defined in the current routine (defined via
common block or save statement)
Not-in-Use — Symbol passed into a subroutine but not used in the
subroutine
DTYPE:DEPTH (printedin [.:.])
I0 -1, Input/Output
NT 0. Non-exact True
NA 1, Non-exact Anti
NO 2, Non-exact Output
ET 3, ExactTrue
EA 4, Exact Anti
EO 5, Exact Output
CT 6, Control
UN 7, Unknown type

Depth = 0 forloop-independent dependence

e List of routine call types, indicating the usage of a routine inside/outside parallel
regions/loops. Five bits are used:

bitl [0x01] called outside parallel region

bit2 [0x02] called inside paregion but outside parallel loop
bit3 [0x04] called inside parallel loop

bit4d [0x08] called outside parallel loop (= bitl | bit2)

bit5 [0x10] called inside parallel region

CAPO User Manual A-14

APPENDIX: MESSAGES AND SYMBOLS IN THE LoG FivLE

® Information on updating duplicated routines

Replace call to DROUTINE with CAP_DROUTINE in ROUTINE
Removed ROUTINE from the calledby list of DROUTINE
Added ROUTINE to the calledby list of CAP_DROUTINE

® List of symbols and affine expressions for testing loop limits (such as in the removal of end-of-
loop synchronizations)

HOME (LOOP-VAR-EXPR, #hits) Low <EXPR> High <EXPR> [Al:INDX,A2:INDX..]
(LOOP-VAR-EXPR, #hits) Low <EXPR> High <EXPR> [B1l:INDX,B2:INDX..]
OTHER (NONLOOP-EXPR, #hits) ([C1l:INDX,C2:INDX..]
(NONLOOP-EXPR, #hits) [D1:INDX,D2:INDX..]}
Here <EXPR> is a symbolic expression, A, B, C, D are array names, INDX is the relevant array
index. The lists are for both source and sink.

e Summary of fields associated with the ploopinfo data struct, mainly for development purpose.

Loop Lvar D/L Type G WP IP Nest Flag
Routine: ROUTINE_NAME

var ?2/? TYPE? ? ? ? n/cn [321]
'Loop' -— the loop number in a routine
‘Lvar' — theloop variable name
‘D' — the ‘dlevel’ value
'w — the 'level’ value of the loop
'Type' — one of type strings given in Section 2.1
‘G — the loop granularity flag (internal info only)
'"WP' —'1' containing parallel loop, ‘0" without parallel loop
‘IP* — 1" inside parallel loop, ‘0" not inside parallel loop
'n' — this loop nest flag (containing nested parallel loop)
'en' —child loop nest flag (part of nested parallel loops)
‘Flag' — three bits for internal usage only

e Symbols and their types in common blocks (for testing threadprivate). Meanings of symbol

types:
[U) — Unset
[P] — Private
[R] — Reduction
[A] — ArrayReduction
{S] — Shared (RW)
[s] — Shared (Readonly)
[L] — LastPrivate
[F}] — FirstPrivate
[C] — CopyInQut

® Methods used in determining the declaration size of unknown-size variables

[NOT JIDENTICAL SIZE, method 1 (caller declaration) used
MAX(el,...), MIN(el,...), method 2|3 (access range in routine) used
NO method - variable NOT safe - <var>

CAPO User Manual A-15

3. CAPO Graphic User Interface

CAPO is currently integrated into CAPTools as a component to generate OpenMP directives. For
CAPO-enabled CAPTools, additional items have been added to the File, View and Edit menus (see
Section 3.10) to access the CAPO graphic user interface (GUI).

The CAPO GUl is also referred to as the Directives Browser. It provides an easy way for user to access
information generated during the directives analysis and insertion. The browser consists of several
information windows and dialog boxes as given in the following sections. It also provides hookups to
the CAPTools” GUI tools, such as DepGraph, Variable Browser, etc., so that one can easily navigate and
interact with the parallelization process.

3.1. Directives Browser Main Window

ey T T R TR T CAROY Directives Browser v r e T TEw T TR R L)
Scope; 26 Rovtines: 4 Totally serial loops (i.e. not within or containing parallel joops):
— At} SR T
£ All Routines spalu * | blts:1/1738: do neLrp,1 : L.

N Llre | buts:1/1/35: do nel,np.1 j—
Loop Filter: _ Sub: b i $30r:12/2/231: do lelst,lend,1 4
j Totally Serial - All amlen | 390r:13/2/253: do l-lend. lst, -1 |
Covered Serial : True Recursion | domain ! :
R T e - i
Falsely Serial © 1/O or Exit i slapied tine] | ;
S st ettt R XY H '
Reductions - No Granularity | e_ i i
Pipeline ' User Defined : i ‘ :
— } :
Chosen L
NotChosen | More Filter... b j
Show Parallel I/0: r—;ush No | RoutineDup... Why..: Update Directives.. i Setting... }
Current Routine: blts User Loap: Dismiss * Help...)
75 DOVBLE PRECISTON (5. Tdwx/Z+2:1 Tdmy/2+2+1, *), tv (S, Laax/2+2+1. Tday), L3z (5. 3, Toax/2°0- . Taay) 18y 5.5 Tnn/ 20
s1, ldny), Ldx (5.5, Ldnx/2+2+1, dny), d(5, 5, 1dmx/221, Lny) §
26 e s K
27 ¢ local variables 14
28 G e |
integer 1,3. k. m.n X
DOUBLE PRECISION tmp, tapl)
DOUBLE PRECISION tmat(5.5) o

A....;_——Lq L

Poaoy-bobseldromclon yerwel 4ol qbieddyom Lo qetw g Jolibae
Taoprwid -y Foeldyin 4oy yicwid 1 -1 kreldrin 4 g iV

The main window of the Directives browser is activated by View->Directives... from the CAPTools
main window (see Section 3.9) after a source or database is loaded in. It presents information from the
first two phases of the directives analysis (before directives are added). It is organized around loop

CAPO User Manual A-16

APPENDIX: CAPO GRAPHIC USER INTERFACE

tvpes and is an entrv point for other browser windows, such as WhyDirectives and
RoutineDuplication.

Once directives are generated (via Save OpenMP Directives Code), the Directives browser should not be
used to do further changes.

Scope [setting]: selects one routine or all routines for loop listing.
Routines {list]: a list of routines that can be selected for loop listing.

Loops [list]: a list of loops under the selected routine/loop filters. To activate the WhyDirectives
window through the button, a loop needs to be selected.

Loop Filter [list}: provides a way to focus on a particular type of loops, mainly serial or parallel, as
described in details in Section 3.2.

Sub [list}: sub-loop filter to be combined with the loop filter to provide finer control of loop selection.

More Filter [button]: activates the Loop Variable Filter window to perform even finer loop selection
(Section 3.2.1).

Show Parallel I/O [setting]: controls the way that a loop with 1/0 statements inside is displayed. By
default (Yes), loops with potential parallel 1/0O are classified as parallel although parallel 1/O with
directives is not supported at this point.

RoutDup [button]: activates the RoutineDuplication window (Section 3.4).

Why [button): activates the WhyDirectives window (Section 3.3) after a loop is selected.

Update Directives [button]: activates the Update dialog box (Section 3.5) to re-perform the directives
analysis, usually after settings are changed.

Setting [button]: activates the Setting window (Section 3.6) to reset parameters for CAPO. The window
may also be launched from Edit->Directives Setting... in the CAPTools main window.

Current Routine [textpane]: displays the source of a selected routine or a routine in which a selected
loop is located. The selected loop nest is highlighted.

How a loop or a statement is labeled.

Loop: RLHS: 1/1/83 : DO 100 L'—'Ls; LE‘ 1 Statement: RLHS : 110 :CALL RLHSL (NQ'IT, JPER; JS
routine loop nesting line routine line
name number level number name number

CAPO User Manual A-17

APPENDIX: CAPO GRAPHIC USER INTERFACE

3.2. Loop Filters and Sub-filters

Definitions of basic loop types:

Serial loop — a loop with loopcarried TRUE dependence from data flow, ANTI/OUTPUT
dependence from non-privatizable variables, I/O statements, and /or exit statements.

Parallel loop — a loop without loop-carried TRUE dependence from data flow, ANTI/OUTPUT
dependence from non-privatizable variables, I/O statements, and exit statements. Such a loop
can be executed in parallel.

Reduction loop — a loop, other than one or more reduction operations, that can be executed in
parallel.

Pipeline loop — a loop that contains loop-carried TRUE dependences with determinable, non-
negative dependence vectors. The loop can potentially be used to set up a parallel pipeline
with an outer loop.

Distributed loop — one of Parallel loop, Reduction loop or Pipeline loop.

Loop Filter: Totally Serial —
serial loop with loop-carried TRUE dependence, containing no

Loop Filter: Sub:
Totally Serial . | All -

Coversd Serlal | True Recursion dxstnbutgd lpop and not nested inside other c_hstrxbuted loop. The
——— code section in the loop will be executed sequentially.

Falsely Serial 170 or Exit

Reductions No Granularity | Syb-filter: True Recursion — no /O or exit statements

Pipeline User Defined I/0 or Exit — with 170 and/or exit statements

Chosen No Granularity — one or no iteration

Not Chosen | User Defined — user-defined serial loop “S”

Loop Filter: Sub: Loop Filter: Covered Serial —

Totally Serial | | serial loop with loop-carried TRUE dependence, containing

Covered Serial distﬁbu_ted loop or ' nesteq inside other distributed loop: The code
L section in the loop will partially or completely be executed in parallel.

Falsely Serial 1/O or Exit

Reductions Inside Parallel | Syb-filter: True Recursion — no 1/0 or exit statements

Pipeline User Defined IO or Exit — withI/O and/or exit statements

Chosen Inside Parallel — inside other parallel loops

Not Chosen User Defined — user-defined serial loop “S”

CAPO User Manual

A-18

APPENDIX: CAPO GRAPHIC USER INTERFACE

Loop Filter:
Totally Serial
]
Covered Serial |

Sub:

‘;Ali

Privatization

g Falsely Serial
Reductions

1/0 Statement

No Granularity

Pipeline

User Defined

Chosen
Not Chosen

Loop Filter: Sub:
Totally Serial W——
Covered Serial
Falsely Serial
rReductions .
Pipeline User Defined
Chosen
Not Chosen
Loap Filter: Sub:
Totally Serial Al e

" Covered Serial { Normal
Falsely Serial Copyln/Out
Reductions Ordered
Pipeline User Defined

| Chosen

Not Chosen

Loop Filter:
Totally Serial
Covered Serial

Sub:
All o
Inside Parallel

Falsely Serial 1/0 Statement
Reductions No Cranularity !
Pipeline ! user Defined
Chosen |

"NotChosen

Loop Filter: Falsely Serial —

serial loop without loop-carried TRUE dependence, but containing
ANTI/OUTPUT dependence from non-privatizable variables. Loop
may contain distributed loops for parallel execution.

Sub-filter: Privatization — due to non-privatizable variables
110 Statement — with /O statements but no nested
parallel loops
No Granularity — no granularity and no nested parallel
loops

User Defined — user-defined serial loop “S”

Loop Filter: Reductions —
loop with one or more reduction operations which can be executed as
parallel reductions.

Loop Filter: Pipeline — -
A pipeline loop as part of a parallel pipeline working with an outer
loop.

Sub-filter: All
User Defined

— all loops with reductions/pipeline
— user-defined reduction loop “R”

Loop Filter: Chosen (Parallel) —
parallel loop chosen for distribution with directives. The code section
in the loop will be executed in parallel.

Sub-filter: Normal — regular parallel loop
CopyIn/Out — with copyin/copyout variables
Ordered — with ordered code section
User Defined — user-defined parallel loop “P”

Loop Filter: Not Chosen (Parallel) —

parallel loop not chosen due to other parallel loop(s) already been
chosen. The loop is either inside other distributed loop or contains
distributed loops.

Sub-filter: Inside Parallel — inside other parallel loops
I/O Statement — with 1/0 statements
No Granularity — parallel but no granularity
User Defined — user-defined parallel loop “P”

CAPO User Manual

A-19

APPENDIX: CAPO GRAPHIC USER INTERFACE

3.2.1. Loop Variable Filter Window

The Loop Variable Filter Window controls even finer selection of loops in conjunction with the main
loop filter and sub filter. The filter applys to variables used in loop heads.

Routine [label]: indicates the currently selected routine.
Variable List [list]: contains a list of variables used in the loop heads of the current routine.

Sfope [setting]: controls the scope of variables.

Loop Variable — variables from loop iteration
Loop Limit — variables from loop high-low limit
Either — either of the above two cases

Choice [setting]: controls the filtering effect.

Inclusion — show loops when variables appear
Exclusion — show loops when variables do not appear
%0z Ldop Varlable Flltegza:ii 73 || Filter [setting]: disables or enables the loop
" Routine: ssor . variable filter.
P ;' ~d .- . y -
iend F Scope: _ c'""“ Variable(s) [textfield]: contains a list of the
f’f’; | _Loop Variable | fincluston,. currently filtered variables.
f”: Loop Limit Exclusion |
is ™ R A - .
| dsteptr oo REther i ses Add [button]: adds the selected variables in the
itmax Lo - :

R Variable List to the filtered variable list.
 Filter: ;Enabled : :

Disabled |

Reset [button]: resets variable selection.

- Variable(s):
- 1“ L . -
Apply [button]: applies the current filter to the
Add) ~ Reset) Apply) Dismiss) Help..; | display.

CAPO User Manual A-20

APPENDIX: CAPO GRAPHIC USER INTERFACE

3.3. WhyDirectives Window

=]) . . +.~+ CAPO: Why Directives ? P R R

Loop: 9301:7/1/204; do istep=l,itmax.1 Reason: I/O or Exit contalning parallel loops

Type: Covered Serial New Type..) True—dep. variables . Anti-dep. variables . Output—dep. varlablei
Hints: rsdnm - - rsdnm al
— u o | u —1
. : ol . hd hd| ; 3
Contains 7 parallel loops t 1 rho_i rtho_i
11 variables with loop-carried -;1 qs qs
true dependencies (levelsl) d elapsed
6 variables with loop-carried ¢ tarray
cutput dependencies (level-1) b 1
2 I0/Exit statements inside a I
Select All) Select All) - Select All)
Reset) Pernwa...
— . . N
Dismiss 3 Help... !
10/Exit statements: Contains 7 paralle! loops: Inside paralilel loops:

i 210:write (UNIT=* | “ 990r:8/2/219: do ke2,nz-1,1
3
-

L
'L

i 342:return 8s0r:14/2/281: do ke2,nz-1,1
12norm:2/1/29: do k=2,nz0-1,1
rha:1/1/158: do ke=1,nz.1
the:5/1/176: do ke2,nz-1,1
rhe:16/1/242: do k=2,nz-1,1

p——y RN

|
!
i
J
!
I

S—p

The WhyDirectives window is displayed for a selected loop after the m button is clicked in the
Directives main window. It presents detailed information for the selected loop, in particular, reasons
and hints on why the loop was classified as serial or parallel. The window can be used to remove false
dependences identified by the user and to redefine the loop type. Depending on the current loop type,
the three variable lists may show different types of variables and the two loop lists may present
different information. The displayed window is for Covered Serial.

The following items are common for All Loop Types.

Loop [textfield]: currently selected loop with routine name and loop labels (see the end of Section 3.2).
Type [textfield]: loop type as described in Section 3.1.
Reason [textfield]: one sentence summarizing why the loop was classified to its type.

Hints [textarea]: more detailed summary of the usage of the relevant variables in the loop and whether
the loop contains 1/0 statements, exit statements, etc.

New Type [button]: activates the New Loop Type dialog box (Section 3.6).
Select All [button]: selects all variables in the corresponding variable list.
Reset [button]: deselects all variables in the variable lists.

Remove [button]: activates the Variable Removal dialog box (Section 3.8) for the selected variables.

CAPO User Manual A-21

APPENDIX: CAPO GRaPHIC USER INTERFACE

10/Exit statements [list]: list of I O and exit statements in the selected loop nest.

The following list is common for Totally Serial and Covered Serial.

True-dep. variables [list]: list of variables causing loop-carried TRUE dependences, remouvable. An “[x]"
followed a variable indicates the dependence vector length for this variable.

The following lists are common for Totally Serial, Covered Serial and Falsely Serial.

Anti-dep. variables [list]: list of variables causing loop-carried ANTI dependences and the variables
cannot be privatized, removable.

Output-dep. variables [list]: list of variables causing loop-carried OUTPUT dependences and the
variables cannot be privatized, removable.

Contains parallel loops [list]: list of parallel loops that are nested inside the current loop.
Inside parallel loops [list}: list of parallel loops that contain the current loop.

The following list is for Falsely Serial.

In/out-dep. variables [list]: list of variables that have data (TRUE) dependences from the outside of the
loop, removable.

S CAPOTWhY DIFSCtives T v r T h e 1

Loop: jacld:1/1/160: do n=1,np,1 Reason: anti/output dependencies, variable not privatizable
. i Anti—dep. variables Output-dep. variables in/out-dep. variables
Type: Falsely Serlal *' New Type...) p » s, -
S : Al {7 | a -
Hints: . ; c : i ooe
— EI b - T |d] -
4 variables with loop-carried ‘i a . . RRESR >a
output dependencies (level=1) :7‘ diy. . anl oo >d
and non-privatizable, due to ¥
usage from outside ths loop
4 output-dep (>) variables

T 5 4
Selact All } Select All) Select All)

Resot}) * Remove..)a, b, ¢, d

Dismiss) . Help...)

10/Exit statements: Contains paraliel loops: Inside parallel loops:
— - - 1 —
i i a l a | al
; I | | _!
l '..l i b ; 1 -va;
! T iT ! i
: N N f
| Q | 3 ;
| i J ' ! i
(] L ‘
R R P - —

The above window is for a Falsely Serial loop.

CAPO User Manual A-22

APPENDIX: CAPO GRAPH!IC USER INTERFACE

The following lists are common for Reductions, Pipeline, Chosen, and Not Chosen.

Private variables [list]: list of privatizable variables in the loop nest, not removable.
Shared variables [list]: list of shared variables in the loop nest, not remouvable.
Nested parallel loops [list]: list of secondary parallel loops that are nested inside the current loop.

Inside parallel loops [list]: list of parallel loops that contain the current loop (except for Pipeline).

The following list is only for Reduction Loop.

Reduction variables [list]: list of variables for reductions in the loop nest, not removable. Reduction
variables are preceded with labels indicating reduction operators or intrinsic functions. A “()” after a

variable indicates an array reduction.

B i oT e s nie W CAPO: WhiyDirectives?. =77 = 7% L etk et a
Loop: 12norm:2/1/29: do k=2,nz0-1,1 Reason: Loop involving reductions
Type: Reductions . New Type.. Private variables . Shared variables y Reduction variables »
. New Type...) - .
Hints: ’ ‘m - v - +:sum() i‘i
— i = ist - :J
Loop with 1 reductions R 3 iend 2
4 private variables - k jet
6 shared variables jend
’ o CT nz0
Select All) Select All) Select All)
Reset) Peraovs.. h]
Dismiss J Help... }
10/Exit statements: 1 Nested paralle! loop: inside parallel loops:
- - |
~! | 12norm:3/2/30: do j=jst, jend. 1 - i‘l
| e . §
- - L — "—J

The above window is for a Reduction loop with reduction array variable "sum ()"

CAPO User Manual

A-23

APPENDIX: CAPO GRAPHIC USER INTERFACE

The following lists are only for Pipeline Loop.

Inside parent loops [list}: list of loops that are nested above the current pipeline loop to form parallel
pipelines. Appropriate synchronization directives and statements will be inserted at the code
generation. A parent loop is usually a serial loop without I/0 and exit statement inside.

Other variables [list]: list of variables other than private and shared, such as CopylIn/CopyOut
variables, not removeable.

IR T AL L . el CAPO: Why Directives? - - . RN
Loop: blts:4/1/43: do j=jst, jend. 1 Reason: Loop as part of pipelines
Type: Pipeline _ New Type...) Prl'vata variables » Shared varlables . Other variables .
CHints: oo o] “]d - -
- — tapl p ldx - -
Pipeline loop “l | tmat ldy
. 6 private variables - t 3 v
11 shared variables i tw
b] k
omega
ist 5
—d —_ —_
Select all) Select all) Select All)
 Reset) Ferowe.

Dismiss) Help..)

10/Exit statements: Nested parailel loops: Inside 1 parent loop:
- - —d —
- : 4[| Jsoor:8/2/213; do ke2,nz-1,1,7% ,; ., |+
L4 T wl | A4
— - —

The above window is for a Pipeline loop with the parent loop highlighted.

The following lists are only for Chosen Parallel Loop.

Copyin/out variables [list]: list of variables that will be declared as Copyln (FIRSTPRIVATE) and/or
CopyOut (LASTPRIVATE) due to potential conflict in updating the same memory location and the
variable(s) having usage outside of the loop. It might arise, for example, from an induction variable that
is assigned before the loop and used after the loop. It could also indicate a programming bug.

Controlled variables [list]: list of variables that will be placed inside an “ORDERED” code section. These
variables are usually inside IF conditional statements and the corresponding assignments need to be
executed in a designated order as is in sequential.

CAPO User Manual A-24

APPENDIX: C

APO GraAPHIC USER INT

m

RFACE

CAPO: Why Directives 7 -

{1

'rl.oop: BCCTJIK:2/1/99:

D0 300 N-1.NQ.1

Type: Chosen

Private variables

Shared variables

Reason: Parallel loop exploited with copyin/out variables
Copyin/out variables

New Type... |

10/Exit statements:

6 Nested parallel loops:

H — —_— i —
Hints: ™ »| | 1BLANK “ 1> Lo
- ={ | smoo - ,__J
Parallel loop :’ Lx T | TPER T‘ i—‘
12 private variables 5 A 4 : I0NE ! '
18 shared variables T ISM00 LPER ; i
1 copyout (») variables L 4 NSN00 H]
DIJIP i LD {)
| D3 1| i i
i — — i —
Select All) Select All Salect All)
Reset} Rernve..
Dismiss) Help...)

inside parailiel loops:

i
|
|
i

{
]
!
}

! BCCTJK:3/2/106: DO 30 J=JS,JE.1

: BCCTIK:5/2/116: DO 40 LeL5.LE. 1

| ZER0:1/1/10: DO 10 I=1,LEN,1

! BCCTJK:8/3/129: DO 110 LsLS.LE,1
BCCTIK:10/3/145: DO 120 J=JS,JE,1

‘ BCCTJK:12/3/161: DO 130 La=LS,LE,1

diob L

The above windows is for Chosen parallel loop with Copyin/out variables.

e i CCAPOLWHY DIr@ctives 2w 42F

R 'fs‘{ FERES
B I L DTS St Y S 7.5 e 13

Loop: SYNCEK:7/1/179: DO L=1,LD,1

Type: Chosen

_New Type...) Private variables

Shared variables

Reason: Parallel loop exploited with ordered assignments
Controlled variables

i ~ P
H -~
Hints: ERR ;; z .i {ERROR} 4
— | sxxw Y —
‘ ; hd | hd|
i Parallel loop * ! p2 TOL
i 10 private variables :- DY 1] i
: 9 shared variables ' | proL XM
| 1 other variables Dx2 X
'i px1 K
DX ' Jo
— - - -
! Select All } Select All) Select All }
Reset} Ewrrve.. |
Dismiss) Help...)
1O/ Exit statements: 1 Nested paralie! loop: Inside paralle! loops:
= —i T B _J.
{4 | SYMCHK:.8/2/180: DO J=1,3D.1 l‘| ' 4]
bt i S,
al ie 7]
! ' I ?
i] i
o
| 1B
j
The above window is for Chosen parallel loop with Controlled variables.
A-25

CAPO User Manual

APPENDIX: CAPO GrRaAaPMIC USER INTERFACE

3.4. Routine Duplication Browser

= VY .__CAPO: Directives RoutineDup Browser ... L e ety ke] el]
Orig. Routines: Dup. Routines: 2 Calis Inside Parallel Loop: 3 Calls Outside Paratie! Loop:
[—_ - - -
oL Y carrrza 1| [MBS:131;CALL RLRSI (NQTT. JPER,3S | | | [BCIMLP:319;CALL V2TRIP(IS1IE,KS, ||
i P23 cap_p23_1 * | RLES:95:CALL RLESJ(NUTT.JPER.JS, ||| BCNOGP:319:CALL V2TRIP(JS.JE.LS. ;J
§ P2K caP_P2K_1 £ . BCILIP: 319: CALL V2TRIP (XS, KE, LS,
| VITRI CAP_VITRI_1 E
| ime CAP_VITRIP_1 ’
| V2TRI ol CAP_V2IRI_1] ol
RO ST _I [Car_vemare 17,
I IERO - CAP_IERC_1 -

- - -

- - -~ —
Number of Duplicated Routines: 24 Inside Loop: RLHS5:3/1/126: DG 300 LsLS,LE, 1

) Dismiss) Help..)

Inside Cali in Routine: ALES Outside Call In Routine: DONMLP
11T c 305 ¢ -
118 ELSE 306 :!SOMP PARALLEL DO DEFAULT(SHARED) PRIVATE(J.K)
119 ¢ 307 :'SOMP& SHARED(JS, JE,KS.KI)
120 :C Loop through JK-planes. 308 D0 220 K=KS,XE.1
121 ¢ 309 DG 220 JeJS.JE.1
122 NTMP2-M2D*14 310 C(3.K)=1
123 !'SOMP PARALLEL DO DEFAULT(SHARED} PRIVATE (TWP2. ITWP2,L) 311 . A(3.X)=-B(),K) i
124 :'SOMP& SHARED (KSRC, LPER, KPER. LD, KD. JD, CFLTRB., TF0S0, REY] 312 220 CONTINUE §
. JPER, NQTT. JSRC. {] 313 .150MP END PARALLEL DO
125 ‘SCIHP& KE. XS, JE, JS, NTMP2, LE. LS) 314 CONTINUVE .
126 D0 300 L=LS.LE.1 315 ¢ !
127 ¢ CALL GETARX (NTMP2. TMPZ. ITMP2) 11316 :C Solve periodic or nonperiodic tridiagonal system. E
128 ¢ :C
129 ¢ J-direction H
130 :C
131 CALL RLHSJ (NQTT. JPER, JS, JE.KPER,KS,KE.LPER. L.
AEY. TPOSO. CPLTRB. JSKC. Q. VGAYMA, QT, S. TSCAL, VMUL, VMUT, DAMP1, DA 321 . CALL V2TRI(JS. JE,KS.KZ A, C. B, RHS, JD.KD) o
P2, YVALL, VORT, TRANS, RTV, IBLANK, TMP2 (ITMP2, 1), TMP2 (ITXP2. 2), 322 ENDI? :
THP2 (ITHP2. 3), TMP2 (ITMP2. 4), VOL. XX. XY. XZ. YX. YY, YZ. ZX. 2Y. 22. K] .| 323 ENDIY —
T, YT. ZT. TMP2 (ITP2, 5), JD, KB, LD) _i 324 ¢ -
132 .C 325 ‘¢ Update boundaries for given topology [}
133 :C K-direction >l 326 ¢ H
134 ¢ 11327 ¢ J-direction 1
135 CALL RLHSK (NQTT. JPER, JS, JE, KPER, KS,KE.LPEZR, L.} | | 328 ¢
REY, '1!'050 CPLTRB. KSRC, Q. VGAMMA, QT, S, TSCAL, VMUL. VNUT, DAMP1, DA ,. 329 Ir (JPER) THEN i

The RoutineDuplication window is used for browsing routines that are to be or were duplicated to
avoid usage conflict of directives. The window is activated from the button in the
Directives browser main window.

Orig. Routines [list]: list of original routines to be duplicated.

Dup. Routines [list]: list of duplicated routines. Before code generation, this list will be empty. After
code generation, the list is filled with new routines that have one-to-one correspondence to the original
routines. The matched (original, duplicated) routine pairs are selected in concert.

Number of Duplicated Routines [numeric]: as it says.

Calls Inside Parallel Loop [list]: list of call statements (to a selected original routine) that are inside
parallel loop(s).

Calls Outside Parallel Loop [list]: list of call statements (to a selected duplicated routine) that are
outside any parailel loop.

Inside Loop [textfield]: the loop that contains the selected call statement to an original routine.

Inside Call in Routine [textpane]: the source for the corresponding ioop for Inside Loop. The textpane
is also used for displaying source code for the selected original routine.

CAPO User Manual A-26

APPENDIX: CAPO GRaAaPHIC USER INTERFACE

Outside Call in Routine {textpane]: the source around the selected call statement from the Call Outside
Parallel Loop list. The textpane is also used for displaving source code for the selected duplicated
routine.

3.5. Parameter Setting Window

A default setup for the Parameter Setting window is displayed on the left. It is launched from either the
button in the Directives main window or the Edit — Directives Setting... in CAPTools main
window. The window is used to reset parameters for CAPO to control the directives analysis and
generation. The available parameters and their values are described in Section 1.

== CAPO: Parameter setting' =% %=+ .~ %] CAPO Version: the current version

_ - ~ » number of CAPQ.

_CAPO Version: ;.. Log Information: ©| Standard

1.1.01 N Date Built date on which the
. Directive Type: ©| OpenMP ", .

Date Built vpe: | Op current version of CAPO was built.

30-Jan-01 Region Type: ©| Full (+Pipeline)

Update [button]: re-performs direc-
larity:
Loop Granularity: 6, /17 tives analysis with the current

Optimization: ¥} 02 parameters.

Routine Duplication: ¥j ‘ Region Usage Apply [button]: applies the current

Others: of Process THREADPRIVATE o Generats NOWAIT parameter setting without perfor-
ming the directives analysis.

o« Transform Induction Loop o Handle Array Reduction
o] Remove Old Directives « Apply User Loop Type For detailed information on settings
Co e ‘ e and checks, see Sections 1.3 and 2.
« Setup Pipeline Loop 1 Use f77 Comment Style. The following brieﬂy describes
| Allow Unknown-Size Array _| Use Partitioned Loop each setting and check box in the
- window.
To update directives with new settings, use ——> Update) Loop Granularity [numeric]: the

minimum number of iterations in a
loop for the consideration as a
distributed loop. If the number is 0
or if the number of iterations
cannot be evaluated, there will be no check on the granularity for the loop.

Apply) Dismiss) Help..}

4 standard Log Information [setting]:
| Minimum } | Minimum — minimum log information, such as warning and info messages,
Standard — “Minimum” information plus statistics for loops and regions,
Standard "
| More — “Standard” information plus more detailed loop and region
More 1y information,
Debug Debug — “More” information plus much more for debugging purpose.

For both More and Debug, loop and region labels are inserted in the generated
source code.

CAPO User Manual A-27

APPENDIX:

CAPO GRAPHIC USER INTERFACE

#4 OpenMPp

|
SGI !
|

SGixtension

No Directive

:

Full (+Pipeline)

P8lk + One Loop

One Region

Naalon lcaas s
"Ragion Usage}

Directive Type [setting]:
OpenMP — generate OpenMP directives (default),
SGI — generate SGI native directives,
SGIxtension— generate OpenMP directives with SGI extensions,
No Directive— create source file without directives.

Region Type [setting]:

One Loop — only one loop for one region,

Pblk + One Loop — one pre-block plus one loop for one region,

One Region — regions are not joined,

Joined Region — regions are joined, no pipeline consideration,

Full Region — consider joined region and possible pipeline (default).

Optimization [setting]:

Off — do not do any optimization,

On — try to reduce synchronization at end-of-loop,

02 — use logical disprove (slow sometime) for affinity comparison,

O3 — enable additional optimization (such as automatic loop transformation)
before directive insertion.

Routine Duplication [setting]:

Loop Usage — routine duplicated if it is used both inside and outside parallel
Loops (no nested parallel region),

Region Usage — routine duplicated if it is used inside a parallel loop and inside
parallel region but outside parallel loop (allow nested parallel region).

Others [checkbox]:
Process THREADPRIVATE — enable/disable the THREADPRIVATE directive
Generate NOWAIT — enable/disable the NOWAIT directive
Transform Induction Loop — enable/disable induction loop treatment
Handle Array Reduction — enable/disable array reduction
Remove Old Directives — enable/disable removing old directives
Apply UserLoop Type — enable/disable applying userloop types
Setup Pipeline Loop — enable/disable pipeline loop
Use f77 Comment Style — use 77 (not checked) or f90 (checked) comment style

Allow Unknown-Size Array
Use Partitioned Loop

— enable/disable the use unknown-size array in PRIVATE
— enable/disable partitioned loop for directives

CAPO User Manual

A-28

APPENDIX: CAPO GRAPHIC USER INTERFACE

3.6. User Loop Type Window

The loop type window is used to redefine a loop type] T CAPO: Loop Type]

manually. It is displayed for a selected loop by clicking
on the Eew Tég button in the WhyDirectives Loop: mg:2/1/258: do ist bench,t_last,1

window.

Current Type: Parallel

Loop [textfield]: print of the selected loop. New Type:
Parallel | Serlal Reduction J' Break | Original !

Current Type [textfield]: the current loo e.
yp [] P typ To update directives with new loop types,

New Type [setting]: one of the selectable types. use —> Update

Parallel - a parallel loop Apoly; Dismiss) Help...)
Serial - aserial loop —A—
Reduction - a parallel loop with reduction. The
Reduction setting may activate an additional
dialog box: Reduction Operator (See Section 3.7).
Break - aserial loop excluded from any parallel region
Original - the type originally set by CAPO.

An un-selectable type indicates a type that cannot be converted to from the current type.

Update [button]: saves the newly defined loop type to the userloop.par file and re-performs the
directives analysis with the new setting.

Apply [button]: saves the newly defined loop type to the userloop.par file but does not re-perform
the-directives analysis.

3.7. Reduction Operator Dialog

This is a dia!og box to s_elect an option (or optiops) 1% 7.7 CAPO: Reductlon Opérator . ..]
for user-defined reduction loop type. The option
specifies reduction operators/intrinsics and Loop: norm2u3:1/1/29: do i3=2,n3-1,1
variables as part of the entry in the userloop.par)
file. See Section 1.3 for the description of the variablos: onmmr/lnmnsilc
userloop.par file. The dialog box is activated only if M 'NEQV'_
the Reduction setting in the LoopType window is — MAX-
selected and there exist potential reducible : MIN
variables detected in the loop by CAPO. AND. | AND
OR._ | IOR

Loop [textfield]: print of the selected loop. EQV. ! IEOR
Variables [list]: list of variables that can potentially Select All 3 Reset JAX:rrau
be selected as reduction variables, selectable.

Apply ; Dismiss ? Help... !
Operator/Intrinsic [setting]: one of the defined ' '
reduction operators or intrinsic functions.

Select All [button]: selects all the variables in the variable list.

Reset [setting]: resets any previous selection. The textfield on the right lists the selected Operator/
Intrinsic and variables.

CAPO User Manual A-29

APPENDIX: CAPO GRAPHIC USER

INTERFACE

Apply [button]: creates an [operator/intrinsic:variables] combination and add to the option list for the
currently selected loop. The option and user-loop type are only stored to the userloop.par file when the
{Apply or [Updatd button in the LoopType window is pushed.

3.8. Updating Directives Dialog

Update Directives with new settings ?

ot B T CAE iYe Directivesfzss | This is a dialog box for confirming the analysis of
rg— m ~ a5l directives with new settings. It is popped up after the

B - ' button in the Directives browser main window
is pushed.

. ' A Update [button]: performs the directives analysis,

— prag) +. Dlsmiss) - _Help...) includh.\g Iqop .and regior_\ level_ analy§is, without
[o, AT T T generating directives. The dialog will be disabled after
RS . the OpenMP directives code is generated.

3.9. Variable Removal Confirmation Dialog

Really Remove Relevant Dependences
_for the Following Variables 7

Selected Vars: tv, v, v, v

‘—A-DAD!D Dismiss) Help...)

el h o R CAPOLVAT LISt Removal 1 s raeas |

Apply [button]: applies the removal action.

The dialog is used for confirming the removal
of dependences for selected variables and
types. The variables and types are determined
in the WhyDirectives window and the dialog
box is activated by pushing the
button. This box provides a shortcut to the
DepGraph for quickly deleting false
dependences.

Selected Vars [textfield]: list of selected
variables from the WhyDirectives window.

CAPO User Manual

A-30

APPENDIX: CAPO GrAPHIC USER INTERFACE

3.10. Data Graph Window

2| e FEalE ST T CAPO: Data Graphs et L SRSy AT] o
Scope: 26 Routines: 94 Blocks:
All Routines el p
: o applu (lu. £) _ v “ mroutma erhs -
Craph Type: 1 blts (blts.f) ’ < 161:do k -
-
Call Graph alog teulep.t) et]
- - - c c . :do i
Dataflow Graphy | 4oppin (domainf) . ° 164:d0 2 l
Data Flow Parent elapsed_time (/common/tiners. £) 165:frct =
Pradominates [orhe (orhs.£) < "-‘-‘2&% S 167: enddo }
predom Graph error (error. f) 168: onddo ¥
—] exact (exact.f)
postdom Crapgh jacld (jacld. £) :
acu (jucu. £ ’
lntrlnslcs 3 6 . Lo : Sy
Feciudey Include I Order: Fﬂm su-kt‘T ' o
Routine: echs ; Create) Dismiss } Help..)
157 DOUBLE PRECISION uZlk. u3lk, udlk, ublk -
158 DOUBLE PRECISION u2liml,u3liml, udlaml,uSlinl i
159 DOUBLE PRECISION u2ljml.ulljal, udljal,uSljnl
160 DOUBLE PRECISION u2lkal, u3lkml, udl I,USILI
161 do kel nz, 1
162 do j=l.ny.1
163 do 1=1.nx,1
164 do mel,5,1
165 frct(m, 1,3.k)=0.0d+00 PS
166 enddo
167 enddo
168 enddo z
169 enddo
171 zeta= (dble (k-1)) /{nz-1)
172 . do jel.ny. 1l
173 eta-(dble(] 1)) / (ny0-1)
174 . do i=1,nx.
178 xx-(dble(l. 1)) /(nx0-1)
176 do mel,5,1
177 - rsd(m 1, 3. k)=ce(m, 1)« (ce(m 2)+(ce(m 5)+(ce(m B)+ce(n, 11) *x1) *xi) *x1)
4 *x1+(ce(m. 3)+(ce(m. 6)+(ce(m 9)+ce(m 12)*eta) *eta) *eta) *etas (ce(m 4)+{ce(m. T)+ (ce(n. 10)+
—

The Data Graph window is used to create graphs for development purpose. It may have little use to a
typical user, but is included for reference. The window is activated from View—Data Graph in the
CAPTools main window. If the “Data Graph” menu item is not present, try to start CAPO with the -
capodg] option.

Scope [setting]: defines the scope of the routine list.

Graph Type [setting]: chooses from one of the predefined graph types.

Intrinsics [setting]: excludes or includes intrinsic functions in the routine list and in the graph.

Routines [list]: list of routines (name of the file containing a routine).

Order [setting]: defines the way routines are listed (Alphabetic, Strict, Reversed Strict).

Blocks [list]: list of basic program blocks in the selected routine.

Create [button]: creates a graph for the selected routine and/or block (currently xvcg is used to display
the graph).

CAPO User Manual A-31

APPENDIX: CAPO GRAPHIC USER INTERFACE

3.11. Hookups to CAPTools

J]

=t AR o U CAPTO0IS 2.1 BEta Pre=Rel€ase (024) - i .. - et i AL a]]
File v) View v) Edit~) Links v) Analyser.) Partitisner. s cengraty.: Properties... | Help...)
"This copy of CAPTools is licenced to NASA Ames —
Licence expires on Wednesday October 31 2001. ‘}
Welcome to Computer Aided Parallelisation Tools (CAPTools) (c¢) _;_1,
{c) Copyright 1992-2000 Parallel Software Products Ltd.
Rights of use
This is a Beta version of CAPTools. You should not transmit or copy this program
in any form to any other company or individual without the consent of the
] ovners of the code. Your right to use this Beta version of CAPTools ends on
the licence expiry date or with the first release of 2 commercial product, vhich
ever is earlier.
; Using CAPTools
The user manual provides you with a full introduction to all the concepts used
by CAPTools and includes several tutorials Use the on-line help to obtain help
in using each window.
More information on CAPTools can be obtained from:
{ Parallel Processing Research Group
] University of Greenwich
Queen Anne Building
Maritime Greenwich Campus
30 Park Row
{ Greenwich Tel : +44-20-8331-8731/8655 Web : http://captools. gre. ac.uk
1 London SE10 9LS Fax : +44-20-8331-8665 Email : captools@gre. ac.uk
To report bugs and get user support please email: captool-supportgre. ac.uk
: —

This is the main GUI window when CAPTools is started. CAPO is integrated into CAPTools as a
component to generate OpenMP directives. For CAPO-enabled CAPTools, additional items are added
to the File (Save OpenMP Directives Code), View (Directives) and Edit (Directives Setting) menus.
Those menu items that are relevant to directives generation are summarized here.

Y

Load F77 Source... j cwad FrE Seurge.. D ‘n twad Fr7 Sewrce.. "
Save Paralie} Seda... Save Farallel S¢de... Save Parallsl Code...

Load Database... wad Datebasa... Lead Databass...

Save Dababgae.. Save Database... Save Database...

Savg Yatiyg Profiis Code.. Save Yatus Profiis Code.. Savg Yaiuys Profiie {ods..

wirurngnisd Codse. Savs AIMS Insrurngatad Code Save AIMS Instrumented Code...
Direchivgs (oade.. Save OpenMP Directives Code... Save OpenMP Directives Code...
i Aunghakich, Save Partition Annotation... Save Partition Annotation...

2. Load Knowledge... toad Knowledge... !

About CAPTools... About CAPTools... About CAPTools... j

Exit T Exit Exit j
Before source is loaded After source is loaded After communication is generated

CAPO User Manual A-32

APPENDIX:

CAPO GraAaPHIC USER

INTERFACTE

The File menu:

Load F77 Source [entry]: loads Fortran 77 source
(.f or list file).

Load Database [entry]: loads a previously saved
database (.dbs file).

= CAPTools: Save DataBase -

Directory: /u/wk/hjin/capo/tests/npb/iu_ns

4. (Goup aleveDd
[da.dbs

dbs
(Y lu.parse.dbs

!

Save Database [entry]: saves the current analysis
result to a database. As of CAPO version 1.1, the
directives analysis result is not yet saved to the
database. But the inserted directives are saved.

vl

Name: |u_full.dbg

Language: | F77 P3¢ HBE

Source Farm: figd Fieg

INCLUDE Path:

(Saves Dismiss s Help..)

The Save Database dialog box.

Save OpenMP Directives Code

v"s‘;.J

[entry]: performs the directives

AP .Current Directory: /u/wk/hjin/capo/tests/npb/lu_ns
analysis if it has not been done

ff‘.«f—]ﬁ‘%si%%&?é‘} =51 CAPTools: Save OpenMP Directives Code ‘3.5 . -

and generates OpenMP Dirs: » Files in Current Directory:
directives. [4.©Coupalaved . |« | [Dallist

Oybitss

-

T | Dbutsf

[} domain.f

Dyerns.t

Derror.t

(Yexactf

Dyjacid.f

o Djacut
Ll Dlzriorm.f

Name: lu_omp.f

e A LR

Save Using:

Original Filenames | Suffixed Original Filenames | Single Filename

Filename Suffisc _»mpf

~Save Dismiss . Help.. 1

The Save OpenMP Directives Code dialog box.

CAPO User Manual

A-33

APPENDIX:

-~

CAPO

GRAPHIC USER

INTERFACE

."Call Graph... i
Dep Graph...

Loops...
Args/Commons...
Var Definition..
Clobal vars...
Masks...
Comms...
Directives...

The View menu:
Directives [entry]:
activates the Directives
browser, which performs
the directives analysis (if
not yet done) and presents
information on directives.

Analyser...
Transformations
Partitioner...
Code Generator...

Knowledge Base...
READ Knowledge...
User Knowledge...

Value Profiler...

@rectives Setting...)

"~

The Edit menu:

Directives Setting [entry):
activates the Setting
dialog box as given in
Section 3.5. It can be used
to set up parameters for

CAPO before the the
directives analysis is
performed.

The following popup menus are hookups to various tools from selected lists or items in a GUI window,
usually activated with a right-mouse-button click.

|

Command Menu Loop Menu Routine Menu Variable Menu
(_Routine Calls... J)| (Routine Calls.. i (‘Routine Calls..) { Partitioner...)
Routine Callers... Routine Callers... Routine Callers... Transformations r

Partitioner... Partitioner... Partitioner... Call Graph...

Transformations » Transformations r Transformations r Oep Graph..,

Call Graph... Call Graph... Call Graph... Loops...

Dep Graph... Dep Graph... Dep Graph... Args/Commons...
var Definition..

Loops... Loops... Loops... Global vars...

Args/Commons... Args/Commons... Args/Commons... Masks...

Var Definition.. Var Definition.. Var Definition.. Comms...

Global vars... Global vars... Global vars... Directives...

Masks... Masks... Masks... List r

Comms... Comms... Commes...

Directives... Directives... Directives...

List r List ~o List ~

Command Menu [popup]: for a selected statement.

Loop Menu [popup]: for a selected loop.

Routine Menu [popup]: for a selected routine.

Variable Menu [popup]: for a selected variable.

CAPO User Manual

A-34

4. CAPO Command Interface

The command interface for CAPO is available in Version 1.1 and works closely with the CAPTools'
command interface. It provides a way to access the functionality of GUI components without starting
the components. It serves as a mean to record actions (to a log file) as a result of any user GUI activities
so that these actions can be played back later. The commands in the command interface are usually
recorded to a log file or a command file with

capo -logfile capo_run.cmd

and played back with

capo [~batch] capo_run.cmd.

The command interface for CAPO is different from the command-line version of CAPO, which takes
simply the database as input and creates the Fortran output:

capo -capoc [-options] database.dbs output.f.

This stand-alone version is mostly for testing purpose. The command interface is the preferred method.

4.1. Commands for the Command Interface

CAPO commands start with the keyword “capo” to distinguish them from CAPTools commands.

Main commands:

<file.dbs>
Load database file

version 1
Define CAPO command version

load

capo

capo

capo

capo

capo

removedep <routine> <variable> <loop_number> <dtype> <fc> [<drout>]
Remove loop-related data dependences

*

*

*

*

routine - routine name
variable - relevant variable in the routine
loop_number - loop to be considered
dtype - dependence type: 1 for loop-carried TRUE dependences
2 for TRUE dependences from outside loop
3 for loop-carried ANTI dependences
4 for loop-carried OUTPUT dependences
fc - 1 fatherlist, 2 childlist, 0 both lists
[drout] - optional field to define routine in which the variable is actually declared (if it
is different from <routine>)

update [0/1]
Perform directives analysis with the new setting
'0' for initial analysis, '1' for new update

passtwo
Re-perform the pass-two analysis

generate [<file.f>]

. CAPO User Manual A-35

APPENDIX: CAPO COMMAND INTERFACE

- Generate OpenMP directives. <file. £> is used to define the logfile name, i.e. <file.log>.
If<file.f>isnotgiven, “capo-info.log” is assumed for the logfile name.

save source <file.f> 3 0
- Savesourcecodeto <file.f>
'3 indicates a single file

("load” and "save" are two CAPTools commands. See 4.2 for details.)

Parameter setting commands:

capo set log-file on/off/stdout
- Turn on/off information logging, default is on

capo set log-file-name <filename>

- Define log filename, default is "capo-info.log"
capo set log-info minl/std/more/debug

- Select log information type, default is std

capo set loop-granularity <value>
- Set loop granularity threshold, default value = 6

capo set directive-type omp/sgi/sgix/no
- Select directive type, default is omp

capo set optimize-type off/o0l/02/03
- Set the optimization type, defaultis o2

capo set user-loop-file <filename>
- Define user loop file, default is "userloop.par"

capo set directive-clear off/on/<filename>
- Turn on/off old directive clearing, defaultis on
A <filename> is used to define a new set of directives

capo set comment-type £77/£90
- Set the comment type for directive, defaultis £90

capo set use-parti-loop yes/no
- Allow the partitioned loop for directive, defaultis no

capo set rdup-type loop/region
- Select the routine duplication type, defaultis region

capo set allow-pio no/incall/write/noread/any
- Allow parallel 1/0 type, default is no
Setting commands for debugging purpose:

capo set mflag <mflag_value>
- Define the module flag
<mflag_value> canbe <number>/<ml:m2..> with [+-] sign

capo set region-type default/loop/bloop/one/join/full
~ Set a region type, defaultis full

capo set tpriv-directive on/off
- Turn on/off the generation of THREADPRIVATE, default is on

capo set allow-unksize true/false
- Allow the use of unknown-size private variables, defaultis false

CAPO User Manual A-36

APPENDIX: CAPO COMMAND INTERFACE

capo

capo

capo

capo

capo

capo

4.2. Other CAPTools Commands Useful for CAPO

vers

load

save

save

set
set
set
set
set
set

add

anal

set have-pipeloop true/false
Generate pipeline loop, defaultis true

set have-induc true/false
Treat parallel induction loop, defaultis true

set have-arreduc true/false
Treat array reduction, defaultis true

set have-nowait true/false
Generate the NOWAIT directive, default is true

set apply-userloop yes/no
Apply user defined loop types, default is yes

set apply-dirclear yes/no
Apply old directive clearing, default is yes

ion 2
Define CAPTools command version

<file.f/file.list/file.dbs>
Load source/database file

database <file.dbs>
Save to database

source <dir/suffix/file.f> <1/2/3> 0
Save source withtype 1, 2 or 3

Type 1: Saveto original files, <dir> is required for directory name
Type 2: Save to original files with <suffix>, <dir/suffix> required

Type 3: Saveto asingle file with file name <file.f>

exact on

scaler on

knowledge on

disproofs on
interprocedural on
logic on

Settings for the analysis power

read knowledge applu:76: ((nx-5 .GT. 0))
Define read user knowledge

yse
Perform dependence analysis

4.3. An Example of "capo_run.cmd”

version
load ap
capo ve
capo se
capo up
capo re
capo re
capo re

2
plu_full.dbs
rsion 1
t log-file-name applu_omp.log
date 0
movedep setbv u 1 4
movedep setbv u 3 4
movedep setbv u 5 4

O O o

CAPO User Manual

A-37

APPENDIX: CAPO COMMAND INTERFACE

capo update 1
capo generate
save source applu_omp.f 3 0

To use the command file, do "capo -batch capo_run.cmd”.

CAPO User Manual ‘ A-38

TUTORIALS

Source codes for all the tutorials described in this manual are included in the CAPO distribution and
can also be obtained from site http://www.nas.nasa.gov/Tools/CAPO/. Refer to “Examples.txt”
included in the examples directory for additional information.

Contents

Tutorial 1. A Simple Jacobi Code T-2
Tutorial2. NPB LU-hp Removing False Dependences T-3
Tutorial 3. NPB MG User-Defined Loop Type ‘ T1-7
Tutorial 4. A More Realistic CFD Application T-11
Tutoria!5. Mix of Message-Passing and OpenMP T-19

CAPO User Manual T-1

Tutorial 1. A Simple Jacobi Code

This tutorial demonstrates the very basic operations you would follow to generate an OpenMP code
without little user intervention. The code (jacobi.f) has an initialization loop and an iteration loop. The
iteration loop computes new solutions by averaging two neighboring points and checks the maximum
residual.

Steps of parallelization:

1.

Perform the data dependence analysis. In CAPOQ, click Load F77 Source in the File
menu. Select jacobi.f and click In the Analyser window, select the option and click

. This will just take a few seconds.

Save to database. In the File menu, click Save database. Enter a filename for the database or
take the default name (jacobi_full.dbs) and click It is always a good idea to save the
results from different stages of the code analysis.

Browse directives. In the View menu, click Directives to perform the directives analysis.
The Directives browser will be popped up quickly. Select the |All Routine§ scope and browse
through all loop filters. You will notice that the Jacobi code contains one Reduction loop (DO 30
I=1,N), two Chosen (parallel) loops (DO 10 I=1,Nand DO 20 I=2,N-1), and one Falsely
Serial loop (DO 50 I=1,Ncontaining an I/O statement).

Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a
filename (or take the default name, jacobi_omp.f) and click . If the directives analysis has
not been performed (via Step 3), it will automatically be performed before the parallel code is
generated. The log file, jacobi_omp.log, contains additional information for the parallelization
process.

To compile the OpenMP code on the SGI Origin2000, do

% £77 -o jacobi_omp -03 -r8 -mp jacobi_omp.f

To execute the parallel code with 2 threads, do

% setenv OMP_NUM_THREADS 2

% ./jacobi_omp

Enter the values of N and TOL ...
1000 1.0e-6

The output looks like

49.99968169151887
1166848 9.9999888192314756E-07

You can compare the result with a single thread run or a serial version run. You will notice the program
does not scale well, primarily due to little work inside each distributed loop.

CAPO User Manual T-2

Tutorial 2. NPB LU-hp Removing False Dependences

This tutorial demonstrates the basic user interaction with CAPO: removing false dependences to
improve the quality of data dependence and directives analyses. False dependences usually arise from
insufficient knowledge of certain parameters (such as from READ statements or calculated at runtime)
during CAPTools data dependence analysis. With the Directives browser, the user can inspect the
results and remove these false dependences if needed.

The example is one of the benchmarks from the NAS Parallel Benchmark (NPB) suite. The benchmark,
LU-hp, uses an SSOR algorithm to solve the Navier-Stokes equations in three dimensions. A hyper-
plane implementation of the SSOR algorithm is used in LU-hp. The code is split into many .f files. In
order to load the code to CAPO, we first create a list file “Alllist” that contains names of all the f files.

Steps of parallelization:

1.

Load file and enter user knowledge. Click Load F77 Source in the File menu. Select
Alllist and click the @ button. Select READ Knowledge from the Edit menu. In the READ
Knowledge window, select variable nx0 and click [Positive Nontrivial, see Figure T2-1 on next
page. Apply the same steps to variables ny0 and nz0. These three variables define the number
of grid points in each dimension. Making them positive nontrivial (> 5 in the current case)
improves the quality of data dependence analysis.

Perform the data dependence analysis. After the user knowledge is entered, in the
Analyser window select the option and click . On an Indy R5000 workstation, the
analysis process takes about 18 minutes.

Save to database. In the File menu, click Save Database. Enter a filename for the database
(lu_hp_full.dbs) and click Savel

Browse directives. In the View menu, click Directives to perform the directives analysis.
The Directives browser will be popped up shortly. Select the |All Routine§ scope and browse
through all loop filters. Pay attention to the serial loops (Totally, Covered and Falsely. For
meanings of these loop types, refer to Section 3.2 in Appendix).

Remove false dependences. In the Directives browser window, select the
loop filter and the scope. There are four loops listed under this category. Choose
the first loop: blts:1/1/35: do n=1,np,1 and click the @ button. The WhyDirectives
window as shown in Figure T2-2 will be popped up. As indicated in the window, the
serialization of this loop is caused by loop-carried data dependences from two variables: v and
tv. After inspecting the loop, the user realizes that this loop performs calculation for all points
on a given hyper-plane. Each point on one hyper-plane could be calculated independently, thus
in parallel. However, indirect indexing was used to access data elements on the plane and these
indices were calculated dynamically and not available at the data dependence analysis stage.
Conservative decisions were made to keep these data dependences during the analysis. So, the
user can safely remove these false dependences to enforce a parallel loop: using either the
DepGraph window (in CAPTools) or the WhyDirectives window here (simpler). With the
second method, select variable v and tv in the three lists (True, Anti and Output), click the
button and click the @ button to confirm the action. Apply the same procedure to
the second loop: buts:1/1/35: do n=1,np,1.

CAPO User Manual T-3

TUTORIAL 2. NPB LU-HP REMOVING FALSE DEPENDENCES

wnl . CAPTools: Knowledge of READ variables . -'v o vovi sl xo- Sn LR I-]Dl
€ integer Vars are READ: Values From Profiles 3 User Knowledge Rems:
— o —

“/ inorm read_input 159 resd(UNIT-J.EMT-*)1pr. inorm) . 4 nz0 >~ 6
'5 1pr:tead_input 159:cesd (UNTT-3,FNT=*) 1pr ,inorm o . om0 e
| atmax read_input.162: read (WNIT=, PNT=*) itmax | § T D e 6
. [ro:zead_input 174 read (ONTT-3, IT>*) rdl .ny0.nz0 ! ! : 1
. ny0:resd_input:174:cesd (UNTT=3,FXTe*)rol. ny0 ,nz0] | | |
. nz0:.read_input:174:read (UNIT=3, FET-*)nxl. ny0. nz0 [| | I
. i
.l !
i I I i
i ! - LR !
Positive Nontrivial) Positive) Negative Nontrivial | Negative) Delets
Positive Nontrivial Default 5]
Negative Nontrivial Defaule -5/ -
User knowlsdge: nx0 Dismiss ; Help... ;
-S89 cead (UNIT~3, PHT=*) 1pr. 1n0CR
l 160 read (UNITe3, FiT=+)
161 read (UWIT-3, FNT-*)

l 162 read (UNIT«3, FNT=*) 1taax
163 - read (UNIT=3, FNT=*)

I 164 read (UNITe3, FNT=*)

, 165 : read (UNITa3, FiT»*)dt
166 read (UNTT=3, FNT=¢)

I 167 read (UNIT=3, PNTs*)

168 read (UNITa3, FNT»*) oxega
| {169 tead (UNIT=3. 7¥Ta*)

170 . read (UNIT=3. FUT=*)
‘ 17 read (UNIT«3, PXT=*) tolrad(l), tolrad(2). tolrsd(3). tolrad(4). tolrsd(5)
l 172 read (UNIT«3, FMT=*)

173 resd (UNIT=3, FNT=*)

l 1 close(3)

1|17 else

! 177 - 1preapr_default

178 inorm=inora_default
1|19 1tmaxsitmax_default
af] 180 dtedt_default

181 omsgaronega_default

<l 182 . tolrsd (1) ~tolradl_def

-1 183 - tolrsd(2) =tolrsd2_def

' 184 tolrsd(3)etolradld_def

11185 tolrsd(d) etolrsdd_def

1

Figure T2-1: The READ Knowledge window for entering initial user knowledge.

In the Directives browser window, select loop filter and sub-filter

Two loops are listed in this category. Choose the first loop: jac1d:1/1/160: do n=1,np.1
and click the @ button if the WhyDirectives window is not visible. A new set of variables is
shown in the window, Figure T2-3. By the same token as above, the user selects those variables
listed in the Output-dep list and applies to delete the relevant loop-carried Qutput
dependences. The variables in the In/Out-dep list were not selected because they are indeed
used outside the current loop. If a variable is removed from the In/Out-dep list and kept in the
Output-dep list, the variable would be privatized, which is not what we want here. Use the same
procedure on the second loop: jacu:1/1/160: do n=1,np, 1.

Save new database and re-perform the directives analysis. Once data dependences
are modified, it is wise to save the results to a new database. In the File menu, click Save
database. Enter a filename for the database (lu_full_prune.dbs) and click m To re-perform
the directives analysis with changes taking into account, click the [Update Directives button in
the Directives main window and to confirm the action. After the update, you will
notice the four loops treated above are now listed in Chosen (parallel). CAPO automatically
recognizes five reduction loops, two of them being array reductions.

Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Choose the
Single Filename setting, enter a filename (lu_hp_omp.f) and click . The log file,
lu_hp_omp.log, contains additional information and statistics for the parallelization process.

CAPO

User Manual T4

TUTORIAL 2. NPB LU-HP REMOVING FALSE DEPENDENCES

i BT BN L e it i A S
Loop: blts:1/1/35: do n=1,np,1 Reason: with True dependencies, i.e. with recursion
Type: Totally Serial New Type... | 'l:ue-dep. variables A_::ti—dep. variables (—)Jutput—dep. variables
Hints: Il I | CE i A
-t . . . A4 L\ d tv -
“|l 1 variable with loop-carried
p- true dependencies (level=l)
2 variables vith loop-carried
anti dependencies (levelel)
1 variable with loop-carried
output dependencies (levels=l)
- - —
Select All) Selact All Select All)
1 Reset) Remove..}tv, v, v, v
Dismiss) Help...)
10/Exit statements: Contains paraliel loops: Inside parallel loops:
—d — - 1
- | - a| [
M :
ol : 4 |
|
i
- —t — i

Figure T2-2: The WhyDirectives window for a Totally Serial loop. It can be used to remove false
dependences for the selected variables.

To compile the OpenMP code on the SGI Origin2000, do
% £77 -o lu_hp_omp -03 -mp lu_hp_omp.£f
To execute the parallel code with 4 threads, do

% setenv OMP_NUM_THREADS 4
% ./lu_hp_omp

The output (for a class-W problem on 195MHz O2K) looks like:
Programming Baseline for NPB - LU Benchmark
Size: 33x 33x 33

Iterations: 300
Time step 1

0.1161399311023E+02 0.1161399311023E+02 0.3074289103934E-13
Verification Successful

LU Benchmark Completed.

Class = W
Size = 33x 33x 33
Iterations = 300
Time in seconds = 52.74
Mop/s total = 342.43

CAPO User Manual T-5

TUTORIAL 2. NPB LU-HP REMOVING FALSE DEPENDENCES

a0 stedn ARMMECAPONNBIIDIrectives. 2 505 i - oimasduad SR v Bl & SR i | L]

Loop: j3cld:1/1/160: do n=l.rp,1 Reason: anti/output depsndencises, variable not privatizable .
Type: Falsely Serial New Type...) Anti—dep. variables . Output-dep. variablei in/out-dep. varlables_'
Hints: ez 1 e *
—J b... >b
4 variables with loop-carried | * i i e - I I
output dependencies (levels«l) - [S >d

and non-privatizables, due to
usage from outside the loop
4 output-dep (>) varisbles

L
L
L

Select All) Select All) Select All)

LA AReset) Remove...) ab cd

Dismiss) Helb...)

iO/ExIt st;t'caments: .,.. Contains parallel loops: . inside paralle! loops: y
- — —_ —
- - -
- v -

L
L
L

Figure T2-3: The WhyDirectives window for a Falsely Serial loop. The loop-carried output dependences
for variables a,b,c,d are selected for removal.

The output from a single process execution looks like:
Programming Baseline for NPB - LU Benchmark
Size: 33x 33x 33
Iterations: 300

Time step 1

0.1161399311023E+02 0.1161399311023E+02 0.3227238810597E-13
Verification Successful

LU Benchmark Completed.

Class = w
Size = 33x 33x 33
Iterations = 300
Time in seconds = 155.97
Mop/s total = 115.80

We have a speedup of 2.96 on 4 CPUs for this particular problem. If the pipelined LU were used, the
performance would be better (speedup of 3.32 on 4 CPUs). A version of the LU benchmark using the
pipeline algorithm is included in directory LU. Parallelizing LU with CAPO is straightforward and
similar steps as for parallelizing the hyper-plane LU can be followed. The difference is that the user
does not even need to remove any false dependences when generating the OpenMP code (skip Steps 5
and 6). CAPO is able to automatically set up the parallel pipeline.

CAPO User Manual T-6

Tutorial 3. NPB MG User-Defined Loop Type

This tutorial was included in Version 1.0 of CAPO to demonstrate how the user enforces loop type to
improve the performance. This kind of interaction is not very often and can be done either within or
outside CAPO. The outside interaction is often involved with direct change to the source code. In the
following we first show the steps of parallelization without any change and then illustrate two ways of
user manipulation to the source code.

The example is one of the benchmarks from the NAS Parallel Benchmark (NPB) suite. The benchmark,
MG, uses the V-cycle multigrid algorithm to obtain an approximate solution to a discrete Poisson
problem in three dimensions. The norm of the solution is calculated in each iteration to check for
convergence. As was done in Tutorial 2, all the f files are first listed in a single file: A11.1ist.

Parallelization of the original code.

1.

Perform the data dependence analysis. Click Load F77 Source in the File menu. Select
Alllist and click the button. In the Analyser window select the option and click
. On a Sun workstation, the analysis process takes about 20 minutes.

Save to database. In the File menu, click Save database. Enter a filename for the database
(mg_full.dbs) and click

Browse directives. In the View menu, click Directives to perform the directives analysis.
The Directives browser will be popped up shortly. Choose scope and loop filter
fTotally Seriall and sub-filter Select loop: norm2u3:1/1/27: do i3=2,n3-1
and click the Why]button. Figure T3-1 is what you will see afterwards. The loop nest (and two
others inside) contains an IF statement which prevents the loop being recognized as a
reduction loop over variable rnmu’. In order to be a valid reduction statement for OpenMP, the
code needs to be modified (see Step 5). Without any change, this piece of code will be run in
sequential.

Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a
filename (mg_omp.f) and click The log file, mg_omp.log, contains additional information
and statistics for the parallelization process.

To compile the OpenMP code on the SGI Origin2000, do

% £77 -o mg_omp ~03 -mp mg_omp.f

To execute the parallel code with 8 threads, do

% setenv OMP_NUM_THREADS 8
% ./mg_omp

The output (for a class-A problem on 250MHz O2K) looks like:

Programming Baseline for NPB - MG Benchmark

" Due to the improvement in Version 1.1 of CAPO, the IF-type reduction is now automatically recognized. The
described serial loops will no longer exist. But the concept of user interaction from this Tutorial is still valid.

" CAPO User Manual T-7

TUTORIAL 3.

NPB

MG UserR-DeEFiINED LoOoOP

Tyere

Norm 1is .

Error 1is

MG Benchmark Completed.

Class

Size

Iterations

Time 1in seconds
Mop/s total

A single-CPU run of this cod
particular problem.

e

ZSSFUL
3336530907E-05
2805188218E-1¢
A
256x256x256
4
6.65
585.42

took 39.29 seconds. We have a speedup of 5.91 on 8 CPUs for this

<&l §CAPO: Directies Browser
Scope 7
[Al Routines - butbls { q [rorada3: 171727 G0 13-%.73-1.1
[T norm2ud 2/2/28: do i2«2,n2-1,1
[““"—""";_ Sub: U T elageed tims = norm2u3:3/3/29: do ils2.ni-1.1
| Totally Serial Al inteip print_results:1/1/21: do je13,1,-1
Covered Serial | | True Recursion setup:2/2/89: do k=lt-1.1,-1
Falsely Serial | 1/0 or Exit - ”“‘Pfs/l/;;_:: do jele-1.1.-1
N 3 i VRAMLC:1/1 : do i=1,n,1
Reductions No Cranularity ! poTus zran3:1/1/33: do i3+2,3,1
Pipeline User Defined | prist_susulrs zran3:2/2/35: do i2+2,62.1
Chosen Pooplus zran3:4/1/59: do i3e2,n3-1,1
m‘ L. rand ".ﬂ“c_nzm. Ao i%a2 n041 1
Show Paraliel I/0: 1 Yes No ! Routinel) -
_— RN Loop: norm2u3:1/1/27: do i3«2,n3-1,1 Reason: with True depsndencles, i.e. with red
Current Routine: nora2ul
Type: Totally Serial New Type... | 'Zuo—dap. variables A_t:tl-du. variabi
- integer n - | =
logical timeron Hints: i |
common /timers/timeron — pm [i P
integer T_norm2 «ll 2 variables with loop-carried i
parameter (T_norm2s9) _J N d denci Levelel |
1f (timeron) THEN pon rue dependencies (levelal) ! i
call timer_start(T_norm2) 1 variable with loop-carried | i
ENDIP : ' i
AsnX*nyenz output dependencies (level«l) ; i
s=0. 0D :
rmau=0. 000 M . {
o , 1)
Select All) SelectAll)
Reset i Perrws.
10/Exit statements: Contains parallel loops: Inside paralig
— ~dT -
-l 3 :J‘ Al[
rrml=sqre(s/float(n)) - ! ." ;1!
if (timecon) THEN - T !
call timer_stop(T norm?2) ! :
- ENDIF | ;
! return ' |
4= L - b

Figure T3-1: The window shows a serial loop in norm2u3, MG.

Further improvement to the code can be made by parallelizing the loop in routine norm2u3 (the
highlighted area in Figure T3-1). The operations inside the loop nest can be expressed as reductions
with slight code modification. There are two ways to achieve the goal: modifying the serial code and re-
performing the dependence analysis (Steps 5-7) or user enforcing loop type in the tool without re-
analysis (Steps 8-9).

CAPO User Manual T-8

TUTORIAL 3. NPB MG USER-DEFINED LooOP TYPE

Modification of the serial code.

5.

Modify the serial code. The step involves directly modifying the serial code (mg.f) with an
editor before the analysis. In routine norm2u3, change the IF statement

if (a.gt.rnmu) rnmu = a
to a form that can be expressed with reduction
rnmu = dmaxl (rnmu, a)
Save the new version to mg2.f and create a new list file ‘All2list’ to include mg2.f.

Perform the data dependence analysis. Click Load F77 Source in the File menu. Select
All2.list and click the button. In the Analyser window select the option and click
@. Save the result to a database (mg2_full.dbs). Browse directives if you like (View —
Directives). You will notice the loop in routine norm2u3 is now recognized as reduction.

Produce OpenMP code. In the File menu, click Save OpenMP Directives Code. Enter a
filename (mg2_omp.f) and click The log file, mg2_omp.log, contains additional
information and statistics for the parallelization process.

Now you can compile and run the parallel code as described after Step 9.

User enforced loop type.

Define a new loop type. From the File menu, load in the database “mg_full.dbs” from the
previous analysis. Perform Step 3. In the WhyDirectives window, click the button.
Right after the setting is selected the Reduction Operator dialog box is shown up
(see Figure T3-2). Select variable “rnmu” and intrinsic function “max”, and push @ in the
Reduction Operator dialog and in the Loop Type dialog. A new entry “R[max:rnmu]” is
added to file “userloop.par” in the current working directoy. This is to inform CAPO to treat
variable “rnmu” as a reduction variable besides other variables (such as “s”). Now in CAPO
click [Update Directives| to re-perform the directives analysis, which will take into account the
user-defined loop types from file “userloop.par.”

Save and change OpenMP code. In the File menu, click Save OpenMP Directives Code.
Enter a filename (mg2_omp.f) and click We need to do one last change in the generated
OpenMP code: Use an editor, change in routine norm2u3

if (a.gt.rnmu) THEN

rnmu=a

ENDIF
to an “OpenMP-compliant” form

romu = dmaxl{(rnmu, a)

CAPO User Manual T-9

TUTORIAL 3. NPB MG USsER-DEFINED LooPrP TYPE

—[- %N CAPOF RediicTion Opera toRmers oW |
Loop: norm2u3:1/1/29: do i3s2,n3-1,1
Variables: - Opsrator/intrinsic:
— o]+ NEQv. |
w - 1 EY i‘
s 4 MIN
AND. IAND
OR. 1OR
EQV. IEOR
—

_SelectAll) _Reset) MAX: rrau

) Apply) .. ' Dismiss) . Help..) -

Figure T3-2: The Reduction Operator dialog after the setting is selected.

From either method, we should produce the same new parallel code (mg2_omp.f). Use the same process
after Step 4 to compile and run the new code. The output from a run with 8 CPUs (for a class-A problem
on 250MHz O2K) looks like:

Programming Baseline for NPB - MG Benchmark

VERIFICATION SUCCESSFUL
L2 Norm is 0.243336530907E-05

Error is 0.694753363997E-16

MG Benchmark Completed.

Class = A
Size = 256x256x256
Iterations = 4
Time in seconds = 5.67
Mop/s total = 686.60

The new code took 39.12 seconds on 1 CPU and 5.67 seconds on 8 CPUs, a speedup of 6.90 and 14%
improvement over the first version.

CAPO User Manual T-10

Tutorial 4. A More Realistic CFD Application

The sample code, teamkel, in this tutorial has been taken from ore of the CAPTools’ tutorials with a
slight modification. This is a more realistic application. It includes structures that may be encountered
in many scientific applications. The example illustrates an incremental approach to achieve good
performance with assistant from CAPO and other tools like SpeedShop (available on the Origin 2000
machine). These tools are used to pinpoint problematic code sections quickly so that the user can apply
necessary changes.

Parallelization of the original code: teamkel.f

1.

Perform the data dependence analysis. Start CAPO, click Load F77 Source in the File
menu. Select teamkel.f and click the {Load] - button. In the Analyser window select the
option and click |Analysd - The analysis process takes only a few minutes.

Save to database. In the File menu, click Save Database. Enter a filename for the database
(teamkel_full.dbs) and click .

Perform the directives analysis. In the View menu, click Directives to perform the
directives analysis. The Directives browser will be popped up shortly. Choose the
scope and browse through different loop filters. You will notice there are a quite number of
Totally Serial loops (see Figure T4-1), which will limit the performance of this code. At this
point, we only look into more details of the loop nest in routine CALCP1. The rest of the loops

will be discussed in Step 5 and after.

Choose the loop “CALCP1:1/1/35: DO 100 I=2,NI,1” and click . The WhyDirectives
window indicates the loop was serialized due to loop-carried dependences for variable SU. The
DepGraph (activated from the right-mouse button Loop Menu over the selected loop) shows
level-1 and level-2 dependences from statement 50 to 52 to 55 (see Figure T4-1). In particular
the 52 — 55 dependence prevents even a pipeline being formed within the loop nests. In fact,
we realize the add operation for variable SU in statements 52 and 55 is associative, thus, the
execution order of the two statements can be switched and the 52 — 55 dependence can be
removed.

In the DepGraph window, click the 52 — 55 dependence edge with the right-mouse button and
load the “Why Dependence?” window (see Figure T4-2). Apply the [Remove This Dependence]
button and confirm the action. Save to a new database if you like. Click [Update Directives to
re-perform the directives analysis and a pipeline is automatically recognized in routine
CALCP1.

Loop types are summarized here:

25 Totally Serial loops

10 Reduction loops

1 Pipeline loop in routine CALCP1
45 Chosen (parallel) loops

Produce OpenMP code. Without additional change, in the File menu, click Save OpenMP
Directives Code. Enter a filename (teamkel_omp.f) and click .

CAPO User Manual T-11

TUTORIAL 4. A MoRE REALISTIC CFD APPLICATION

—| L

CAPO: Directives Browser > .-

Loop Fliter: Sub:
[Totally Suctad g [AR: (... oyop:

Covered Serial | Trus Recursion || cALTT

Falsely Serlal 170 or Exit : CALETE
; || i CALRU

Reductions No Granularity D ocavoy

Pipeline User Defined ;

Chosen

Scope: 26 Routines:
< ' i
I Al Routines SLITKTATE

27 Totally seria) Jeops (l.e. not wkhln or cantaining nralhl Ioo’s)'

——_y
.

]
I
—

Al

CALCEZD:1/1/42: DO 100
CALCED :2/2/43: DO 100

1s2,01,1
J=2.03,1

Loop Menu

|caLce1:1/1/35: Do 100
CALCP1:2/2/36: DO 100
CALCP2:1/1/27: DO 100
CALCP2:2/2/28: DO 100

Is2. WL}
J=2,%3.1
12,01,1
J=2,%3.1

CALCT:1/1/48: DO 100 I=2,MI.1
CALCT:2/2/49: DO 100 J=2,MJ,1

CALCTE:1/1/41: DO 100
CALCTE :2/2/42: DO 100

I=2,¥1.1
Je2,%3,1

CALCU-1/1/40: DO 100 1I-2,wDMl1.1

(Routine Calis...)

Show Paralie! 170: | Yes No] RoutineDup...) Why..) _Update Directives..) Setti
Current Routine: CALCP1 User Loup:
31 COMMON /COEY /AP (NX. NY) , AN(NX, NY) , AS (NX, NY) , AL (NX, NY), AV (X, NY) , SU (X, NY) , SP (NX, NY)
32 COMNON /OTHR] /NITER, MAXIT, URPVIS, URPDEN, IMON, JMON, IPREP, JPREY, SORXAX, FLOVIN, XMONT}
33 ¢
34 L *+* ASSENPLY OP COEPFICIENTS
35 DO 100 I=2,NI,1
36 DO 100 J=2,NJ.1
31 C **¢ AREAS
38 AREAVSRSYCV (J)
39 AREAS=SXCV () *R¥(J-1)
40 C *** CALCULATE COEFFICIENTS
DENV=DEN(I-1,J)+FX(I-1)%(DEN(I.J)-DEN(I-1,3})
DENS=DEN(I, J-1)+FY(J-1)*(DEN(I. J) -DEN(I, J-1))
AV (I, J) aDENV*AREAW*DU(I-1, J)
AE(1-1,3)=A¥(1.J) _ -
AS (I, J) =DENS*AREAS*DV(I, J-1)
AN(I, J-1) =AS (I, J)
CALCULATE SOURCES @
CVU=DENV*U (I-1, J) *AREAV U
CSsDENS*V (I, J-1) *AREAS 2
i - su
L@
su
1
]

Routine Callers...
vampie (2

Partitioner...
Transformations »r

Call Craph...

Dep Graph...

Loops..
Args/C

Help...)

Var Definition..
Global Vars...
Hasks..

Comnmi.,
Diractives...

List r

Figure T4-1: The Directives Browser window displaying Totally Serial loops in teamkel. The Loop Menu
is used to activate the DepGraph (shown as inset) for the selected loop.

Hgngﬂé

DepGraph Dependence Menu

{ Why Depen

dence?)

Partitioner...
Transformations r

Call Graph...
Dep Craph...

Ltoops...

Args/Commons...
var Definition..
Clobal vars...

Masks...
Comms...
Directives...

Figure T4-2: The DepGraph Dependence Menu after clicking on a dependence edge.

i CAPO User Manual

T-12

TUTORIAL 4. A MORE REALISTIC CFD APPLICATION

To compile the OpenMP code on the SGI Origin2000, do

% £77 -o teamkel_omp -02 -mp teamkel_omp.f

or use the supplied Makefile
% make VERNO=1

To execute the parallel code with 4 threads, do

% setenv OMP_NUM_THREADS 4
% ./teamkel_omp < inp.dat > teamkel_omp.out.4

Use the SpeedShop tool available on the Origin 2000 to profile the code. For 1 CPU:

% setenv OMP_NUM_THREADS 1
% ssrun -pcsamp ./teamkel_omp < inp.dat > teamkel_omp.out.l

A sampling file named as "teamkel_omp.pcsamp.m(pid)" will be created. Here “(pid)" is a proper
process id. Use the "prof” command to create the profile output:

% prof teamkel_omp teamkel_omp.pcsamp.m(pid) > teamkel_omp.prof.1l

Follow the same procedure to obtain
profile on 4 CPUs. The profile outputs
for the key routines on 1 and 4 CPUs
are compared in Table T4-1. "ratio” is
1-CPU time over 4-CPU time, or the
speedup on 4 CPUs. The error of ratio is
calculated from the statistical sampling
error reported in the profile data. As we
can see, except for two routines
(calcpl and props), the major
routines do not scale. The poor
performance correlates with the Totally
Serial loops indicated in Figure T4-1.
These loops were executed sequentially.
In order to improve the performance,
we need to investigate and find a way
to parallelize these loops.

Table T4-1: Comparison of profile results for the first

parallel version of teamkel. Time is given in seconds.

Function 1CPU ! 4CPUs ratio error
LISOLV 16.18 16.89 0.958 0.033
CALCTE 9.53 9.06 1.052 0.049
caLc 895 | 786 | 1139 | 0056
CALCU 8.58 7.58 1.132 0.056
CALCED 8.10 7.71 1.051 0.053
CALCT 7.10 6.47 1.097 0.060
calcpl 478 1.59 3.006 0.275
CALCP2 411 4.03 1.020 0.071
props 0.48 0.16 3.000 0.866
init 0.25 0.15 1.667 0.544
PRINT 0.06 0.20 0.300 0.140

Total 80.83 74.21 1.089 0.018

CAPO User Manual

T-13

TUTORIAL 4. A MoRE REALISTIC CFD APPLICATION

Version 2 - Code modification without change to the basic algorithm:

5.

Inspect code sections. Restart CAPO and load back teamkel_full.dbs (Load Database in
the File menu). In the View menu, click Directives to perform the directives analysis. In the
Directives browser window, choose scope loop filter and loop
"CALCTE:2/12/42: DO 100 J=2,NJ". Click the Why] button and the WhyDirectives
window as shown in Figure T4-2 will be displayed. There are six variables with loop-carried
true dependences, five of which have a determinable dependence vector length as indicated by

"[1]1" This is an indication of a potential pipeline loop if changes can be made to variable UN
and two other variables VE and SMPW presented in the Output-dep. variable list.

| e ——— ———————— s e SRR R r — —— g _'-- Sm— oy
=3 SCAPO: Wiy Dirtotives T S TRISFIR it o7 v e R e e - |)

Loop: CALCTE 2/2/42: DO 100 J=2.MJ.1 Reason: wlith True dapendencies. ie. with recursion

. Trus—dep. variables Anti-dep. variables Output—dep. variables
Type: Totally Serial New Type...) = _: \ "ii ‘
Hints: N o su oy
— an 1) i s Pl o
&l § variables with loop-carcried j 3 v 1] T AS ! '! PV '
| true dapendencies (Level:2) | U (1) e |

3 variables with loop-carried ! sp (1) : i

anti dependencies (levels2) | As (1) . i
3 variables with loop-carried < I ' |
output dependencies (levels2) | ! i !
| L L L j
; Select All) Select All) Selact Al
| _Reset) Remwe.

Dismiss } Help...)

10/Exit state ments: Contains parallel loops: Inside paraliel loops:
—_ —

a a -

hd

| =—————id]
| m—d]

Figure T4-3: The WhyDirectives window for a Totally Serial loop in teamkel.

Change scalar assignments. Checking the code section in loop nests I and J, we realize
that the dependences on scalar variables UN and VE were caused by the reuse of the assigned
values from the previous J or I iteration in an IF statement. The dependences can be removed
if we recalculate both variables at each J or I iteration.

Start a text editor and load in teamkel.f. In subroutine CALCTE modify the assignment for UN
from
IF(J.NE.NJ)UN=0.5*(U(I,J)+U(I-1,J)+FY(J)* (U(I,J+1)+U(I-1,J+1)-
> U(I,J)-u(1r-1,J
to
IF(J.NE.NJ) THEN
UN=0.5* (U(I,J)+U(I-1,J)+FY{(J)*(U(I,J+1)+U(I-1,J+1)-
U(1,J)-0(1-1,3)
ELSE
UN=0.5*(U(I,J-1)+U(I-1,J-1)+FY(J-1)*(U(I,J)+U(I-1,J)-
> U(I,J-1)-U(I-1,J-1)))
ENDIF
and for VE from
IF(I.NE.NI)VE=0.5* (V(I,J)+V(I,J-1)+FX(I)*({V(I+1,J)+V(I+1,J-1)-
> V(I,J)-V(I,J-1}

CAPO User Manual T-14

TUTORIAL 4. A MORE REALISTIC CFD APPLICATION

IF(I.NE.NT)THEN
VE=0.5*(VI(I , J)+V(I,J-1)+FX(I)*(V(I+1,J)+V(I+1,J-1)-
VI(I,J)-V(I,J-1)

ELSE :
VE=0.5*(V(I-1,J)+V(I-1,J-1)+FX(I-1)*(V(I,J)+V(I,J-1)-
> V(I-1,J)-V(I-1,J-1)))
ENDIF
Apply a similar modification to variables in three other routines. The changes are summarized:
Routine Loop Variable Description
CALCPZ DO 100 J=2,NJ SUS, SUW Recalculate at each
CALCTE DO 100 J=2,NJ VE, UN iteration
CALCU DO 100 J=2,NJ GAMN, DVDXN

CALCV DO 100 J=2,NJM1 GAME

Expand 1-D array to 2-D. Variable SMPW is a 1-D working array throughout the program. In
order to set up a pipeline of the J loop with the outer I loop, this array needs to be expanded to
twn dimensional. As an example, in routine CALCTE, change the declaration of SMPW from 1-D
to 2-D, i.e. SMPW (NX) — SMPW (NX, NY). Then modify the following code section from

CP=AMAX1 (0.0, (SMPW(J)+CW))
SMPW(J)=-CW-CS
SMPW (J-1)=SMPW(J-1) +CS

to
CP=AMAX1 (0.0, (SMPW(I-1,J)+CW))
SMPW(I,J)=-CW-CS
SMPW(I,J-1)=SMPW(I,J-1)+CS

The initialization of SMPW is done in subroutine (entry) INIT. In this routine modify the
declaration from SMPW(NX) to SMPW(NX,NY) and the assignment from SMPW(J)=0.0 to
SMPW(I,J)=0.0.

Similar changes are made in several other places. The modifications on SMPW are summarized
here:

Routine Loop Description

CALCED DO 100 J=2,NJ Expand sMPW from 1-D to 2-D

CALCT DO 100 J=2,NJ Change declaration in the whole program
CALCTE DO 100 J=2,NJ

CALCU DO 100 J=2,NJ

CALCV DO 100 J=2,NJM1

INIT DO 951 J=1,NJ

All the modifications do not alter the basic algorithm, so the same run-time results should be
expected. Save the modified code to a new file: teamke2.f.

Perform code analysis. Restart CAPO and load teamke2.f Perform the Full data
dependence analysis and save to teamke2_full.dbs. Start the Directives browser from the View
menu and the Directives menu item. With the scope browse through different
loop filters. You will notice that the number of Totally Serial loops has been reduced from 25 to
13 with increase in the number of pipeline loops. Loop types are summarized here:

13 Totally Serial loops (mainly in routine LISOLV)
10 Reduction loops

7 Pipeline loops

45 Chosen (parallel) loops

CAPO User Manual ' T-18

TUTORIAL 4. A MORE REALISTIC CFD APPLICATION

9. Produce OpenMP code. In the File menu, click Save OpenMP Directives Code and save to
file teamke2_omp.f.

Compile and run the parallel code as before. The SpeedShop profile resuits for the new parallel code are
summarized in Table T4-2. As one can see, the parallel performance of Version 2 has been improved in
almost all routines except in routine LISOLV. LISOLV still executes serially and affects overall
performance. The single CPU execution time increased slightly in comparison with the original version.
This is because the recalculation of scalar variables in the new code costs slightly more time.

Table T4-2: Comparison of profile results for the second parallel version. Time is given in seconds.

Function 1CPU | 4CPUs ratio error
LISOLV 16.14 18.00 0.897 | 0.031
calcte 9.89 3.19 3.100 0.200
calcv 9.28 292 3.178 0.213
calcu 882 | 283 | 3117 | 0213
calced 8.76 2.87 3.052 0.208
calct 7.79 2.39 3.259 0.241
calcpl 5.04 1.75 2.880 0.253
calcp2 4.06 1.11 3.658 0.392
props 0.53 0.20 2.650 0.695
init 0.28 0.13 2.154 0.723
PRINT 0.14 0.26 0.538 0.178

Total 83.77 | 46.67 | 1795 | 0.033

Version 3 — Change of algorithm in LISOLV:

10.Inspect code sections. Restart CAPO and load back teamke2_full.dbs (Load Database in
the File menu). In the View menu, click Directives to perform the directives analysis. In the
Directives browser window, choose scope loop filter and loop
"LISOLV:2/2/18: DO 100 I=ISTART,NIM1". Click the right mouse button to activate the
Loop Menu. In the menu choose Dep Graph and the DepGraph window will show data
dependences that serialize the loop (see Figure T4-4 and the inset): variable PHI at level 2 (loop

I) and 3 (loop J) and variable A,C at level 3 (loop J). In loop I, variable PHI is used to calculate
A and C and gets updated at each I iteration.

11.Modify the algorithm. We can use a more explicit algorithm in the I loop: Variables A and C
are calculated for all the values of I before variable PHI is updated. The I loop then becomes
parallel. The impact of such a change is mainly on the convergence speed of the underline
algorithm. One may have to balance convergence rate and parallelization. In this case
parallelization seems to be more important.

The modifications to the code involve expanding the dimensionality of A and C from 1-D to 2-D
and splitting the I loop into two parts: the first part calculates A and C from PHI and the second

CAPO User Manual T-16

TUTORIAL 4. A MoRE REALISTIC CFD APPLICATION

part updates 2=I. The moditied code section is shown in Figure T4~4. Apply the same change to
loop 'DO 1027 C=JSTART, NJML

Save the final code to teamke3.f

x| "CAPO: Directives Browser - i 4 1 E i bR R R AT SN AR o]Qj

Scope: 26 Routines: 13 Totally serial leeps (1.s. not within er containing paraliel loops):
—_— — b
All Routines . ll ozow 1171712 b0 750 3e2,w3,1 :
© CZOM:12/1/75: DO 800 3-2.¥N.1 :
Iter: Sub: v
toop """. __“."-M - T GRID-2/1/17: DO 104 3.2, JTT,1 !
' Totally Serial | All ORID 4/1/84: DO 106 J<JETPL.WJML.1 :
Covered Serial . True Recursion rELiT ORID:6/1/90: DO 108 1Ie2,IL.1 !
Falsely Serial | |/o wEat PALUTE " GRID-8/1/96 DO 110 I-ILPL,NINL. 1 ;
Tesuctions 7 Ho Cranulari raLig ! LISOLV:1/1/15: DO 2000 IT=1,NSV.1 |
, j AL S R ! [LTS0LV:2/2/18. DO 100 T-TSTART, WD, 1 ‘
Pipeline | User Defined 1 pava LISOLY.3/3/21. DO 101 JeJSTART. NNM1.1 ‘
Chosen i czm . LISOLV:4/3/32° DO 102 J3J=JSTAXT, NN, 1
wot Choren 1 !J RRD ,,; LISOLV.S/2/38. DO 1000 J-JSTART,¥JM1,1
Show Parallel 1/0: | Yes No RoutineDup... Why-) Update Directives..; Satting. }
Current Routine: LISOLY User Laap: Dismiss) Help..}
i DIMENSION AL (WX).BI(NX) . CI(NX), DI (NX). AP (NX, NY). AL (NX. NY).AW(NX.NY).AN(NX. NY).AS(NX. NY), SU(NX. NY)
NIHieNI
l NJIXI=NJ
| JSTN1-JSTART-1
1 ISTM1ISTART-1 I
DG 2000 ITs1, NSV, 1
A(ISTH1) =0 0 |
C --- COMMENCE V-f SVEEP
I (25
-
3 <>,
PHI
2 <D

S Al (ISTHL) =0 0
37 ¢ --- COMMENCE S-N SWEEP
39 DO 1000 J=JSTART. NJMI. 1

Figure T4-4: The Directive Browser window for Totally Serial loops in teamke2. The highlighted code
section in routine LISOLV is to be modified to a more explicit form.

g DINENSION PHI(NX, NY),A(NX, NY).B(NX), C (NX, NY), D (NX)
10 DIMENSION Al (NX),B1(NX).C1{NX),D1(NX).AP (NX. NY).AZ (NX. XY). X
11 NIN1=NI

12 NIM1=NJ

13 JSTH1=JSTART-1

14 1STM1=ISTART-1

15 DO 2000 1ITel, NSW. 1

16 € --- COMMENCE ¥-L SVIEP

17 DO 101 I-ISTART.NIN1. 1

18 A(1.JSTM1)=0 O

19 C(I.J5TM1)=PHI(I,L JSTN])

20 C --- COMMENCE S-N TRAVERSE

21 D0 101 J=JSTART, NJX1,1

22 C --- ASSEMBLE TOMA COEFFICIENTS

23 A(l J)=AN(I.J)

24 B(J)=AS(I.J)

25 C(1.J)=AE(I. J)*PHI(I+1.3)+AW(1, J)*PHI(I-1.J}+5U(1.J)
25 D(J)=AP(I1.J)

21 € --- CALCULATE COLFFICIENTS OF RECURRENCE PORMULA

2 TERM=1 /(D(J)-B{J)*A(L.J-1))

29 A(I.J)=A(1.J)*TERN

30 101 C{I.3)«(C(1.3)+B{J)*C(1.J-1))*TERN

31 CONTINUE

31 € --- OBTAIN NEV PHIAS

33 DO 100 I=ISTART.NIN1, 1}

34 DO 102 JJ=JSTART. NJN1. 1

35 J=NJ«JSTART-JJ

35 102 PHI(I. J)sA(1.J)*PHI(I.J-1)+C(I.)

37 100 CONTINVE

Figure T4-5: The modified code section after loop I is split into two parts.

CAP_O User Manual T-17

TUTORIAL 4. A MoRE REALISTIC CFD APPLICATION

12.Perform code analysis. Restart CAPO and load teamke3.f. Perform the Full data
dependence analysis and save to teamke3_full.dbs. Start the Directives browser from the View
menu and the Directives menu item. With the scope browse through different
loop filters. You will notice that the number of Totally Serial loops has been reduced from 13 to

6 and these loops are in routines GEOM and GRID. Loop types are summarized here:

6 Totally Serial loops
10 Reduction loops
7 Pipeline loops

49 Chosen (parallel) loops

13.Produce OpenMP code. In the File menu, click Save OpenMP Directives Code and save to

file teamke3_omp.f.

Compile and run the parallel code as before. The SpeedShop profile results for the final parallel code are
summarized in Table T4-3. As one can see, the parallel performance of Version 3 has been improved
over Version 2 and a reasonable speedup has been obtained. The single CPU execution time of routine
LISOLV increased about 40% in comparison with the previous version but the parallel execution time

decreased quite a bit.

Table T4-3: Comparison of profile results for the third parallel version. Time is given in seconds.

Function 1CPU | 4CPUs | ratio error
lisolv 22.71 7.47 3.040 0.128
calcte 9.74 295 3.302 0.219
calcv 9.11 278 3.277 0.225
calced 8.89 2.55 3.486 0.248
calcu 8.74 2.64 3.311 0.232
calct 7.83 234 3.346 0.249
calcpl 4.87 1.80 2.706 0.236
calcp2 4.01 1.07 3.748 0.408
props 0.52 0.24 2167 0.535
init 0.27 0.12 2.250 0.781
PRINT 0.05 0.37 0.135 0.064

Total 89.92 36.23 2.482 0.049

CAPO User Manual

T-18

Tutorial 5. Mix of Message-Passing and OpenMP

This tutorial demonstrates one way to generate a hybrid parallel code with CAPTools/CAPO. The
parallelization is done at two levels: message-passing (MP) at one level and OpenMP at another. The
example relies on the thread-safe feature introduced in MPI-2 and the success of execution depends on
the implementation of a thread-safe MPI-2 library. We need to emphasize that the hybrid parallelization
here is not the best way to achieve good performance for the currently selected code. We mainly like to
illustrate that it is possible to produce a hybrid parallel code with the tools.

The example is one of the benchmarks from the NAS Parallel Benchmark (NPB) suite. The benchmark,
BT, uses an implicit scheme to solve the Navier-Stokes equations in three dimensions. Within one time
iteration the solver sweeps through each dimension successively. Each step has strong data
dependences in the swept direction, but is completely parallel in the other two directions. The multi-
level parallelization is achieved by first distributing the data in the J dimension for message passing
and then applying directives on loops working on the K dimension. Small modification to the generated
parallel code by hand is needed in order to work around an incompletion due to that the hybrid code
generation is not really supported by the current tools.

The sequential version of the source code is in directory BT-mix. In order to load the code to CAPO, we
list all the .f files in one file: A11.1ist.

Parallelization with message-passing at the first level:

1. Load source and enter user knowledge. Click Load F77 Source in the File menu. Select
AlLlist and click the button. Select READ Knowledge from the Edit menu. In the READ
Knowledge window, select variable nx and click [Positive Nontrivial, see Figure T5-1 on next
page. Apply the same steps to variables ny and nz. These three variables define the number of
grid points in each dimension. Making them positive nontrivial improves the quality of data
dependence analysis in Step 2.

2. Perform the data dependence analysis. After the user knowledge is entered, in the

Analyser window select the option and click On a Sun Sparc (Ultra-4)
workstation, the analysis process took 12 minutes.

3. Save to database. In the File menu, click Save Database. Enter a filename for the database

(bt_full.dbs) and click

4. Partition data. Launch the Partitioner from the CAPTools main window. Choose routine
"add", array "u" and index "3" (see Figure T5-2) and click [Generate Partition| This step creates a
data distribution for array "u” on the 3" index (the J dimension) and CAPTools also partitions
automatically the relevant arrays throughout the program. Figure T5-3 shows the partitioning
window after the process is finished. You will notice that array "1hsb" was left untouched. The
next thing to do is to select this array, index 4 and perform another partitioning.

5. Save to database. Use the Save Database menu to save the partitioned data to bt_part_j.dbs.

U CAPO User Manual T-19

TUTORIAL 5. Mix oF

MESSAGE-PASSING AaND OPENMP

wni CAPTouls: Knowledge of READ varisbics - Sl i
4 Integer Vars are READ: Values From Profiles 3 User Knawledge Rems:
- - - 1
“ niter PT 174 read (UNTTe2, MMT=*) rater - * nzoeé '
- ™ T 176 read (WNIT2, FXT=¢) mx .ny.nx T T ™o (1

| ny D176 cesd (WNIT2, fiT=*}rnx, ny .nz H T T o6 i
. ne:BT:176 tesd (WTI=2, NiT=*)nx. ny. nE ‘ !
& ’
i E }
! | {
L L ! i
Positive Nontrivial . Positive Negative Noatrivial Negative ; Cwiere
Pesitive Nemtrivial Defawit: 3 - --i
gative Nentrivial Defavit: -5
User knewledge: n2 .CT. 5 Dismiss) Holp..
T 12; t_namer(t_zsolve)s zsolve’
1 t_names(t_rdisl)- redistl’ T
HEE t_names(t_rdis2)+ redase2- =i . CAPTocls: Anslyser iin. /i
: ig . tﬂ:&.;)(t-wd)-'-dd'
- close(" H

: 1:; 5 olse Quick Chalce: Bk | intsrmediate l tull

AR tinecons false

{]aee: ondat Analysis ts lnclude: [Knonbd. [Olsproots .

' 100 open tmeet, 5'{2“’ putbt 4 t tarproce

. o (unite2, f1le= u’vu t data’. statuss’ald’, 10statsfs [dural | Exat

H B °¥ {foeatus ¢q O l i

172 w1t (UL, PUTA233) [scatar i Logic
i l;? - 233 format (" Reading from input file 1nputbt data’) !
1 read (UNIT=2, PXT+*)niter

H s read (UNIT=2, FNT=+)dt Dspendence test: | Banerjes Omegs

i

! close(2) Limit Analysis Time: ves | No Al

afl 178 grid_points(l)enx v ™ —’— -

179 grid_points(2) eny Max Time: | Fob o Mews
1l 180 qnd_pnnu(i)-nz _ -
181 else >

b{182 wr1Ce (UNITas INT234)

I . -

s et datacde Analyse) Oismiss help.. .

1] 185 grid_points(l) sprobles_size

1] 186 grid_points(2)eproblea_size

14187 grid_points(3)=problea_size

ket

Figﬁre T5-1: The READ Knowledge window for entering user know]edge and the Analyser window.

Rewtines: rwlzk ‘-3_5:1--? fo Lzt Heip...)
«!| [edd - i udd:24 Unpartitioned Amvs o .
- adi ‘ Namse Index For Against ‘
binwcrhs ——
binvrhs b q9{0. INAX, 0: JMAR, D : KMAX) [[})]
- |]| ehe_io:Dax 0:nux 0000 ° ° °
conpute_ths i ths (5. 0. TMAX, 0 JMAK. 0. KIAK) o [0
elapsed_tine I square (0: INAX, 0: AR, : KIGX)]] 0
error_nora 1 tap_block (5. S)] 0 0
tap_vec(5) 0 [0
Sase Variable Specification: | l u{S.0: AKX, 0: NAX, 0 KAT) [] [0
Varisble: u af ue(-2:problem_size«l,S) 4 0 0
e ve (0. DAX. 0: JNAX. 0: KMAX)] (] 0
Varlable Index: 3, - 7} 7l vs(0:DOX 0: O, 0. 10AM) 0 o °
Medules: I
Oiviser bans g why Lafatlh Prevant) Undo Preventions }
Otfset: ld‘ Mltll od Amvs
i~ Pkt Gl S ———y
, Name Index Define Range Partition Range i
Type: | Mok Cyclic - '
-l
Block/Cycllc f Unstructured i
Partition Acceptance: '
Maximum Against 0 |
For/Against Ratio: O
Partition Allgnment:
Telerence: § - -
Partitisming Options:
. Knowledge " Exact -
: Disproofs Scalar Equality T Ea ST
 intsrprocedurat Logic &@'&‘2‘1”‘"’” & aut Al enritia L Oismiss .
Partitioning... ’

Figure T5-2: The Partitioner window for array partitioning: routine add, array u, index 3.

CAPO User Manual

T-20

TUTORIAL 5. MiXx 0OF MESSAGE-PASSING AND OPENMP

wnl CAPTeols: Partitioner ;. . T s St e AL ‘—..-.:.,ﬂ - ’D
Routines: Fartogning Queesien Lish. Help..
o — ! . Al
a add 77 T T T 7 add:19 Unpartitioned Arrays
S i Name index For Against
T dinverhs I
| binvrhs i ' cuf (-2 -problem_size+1) 1 6 12
yoeT ‘\ I cv(-2.problem_size~1) 0)] 0
| compute_the] o' £j8c(5.5.0:prcblen_size.0:problenl] 18232
| elapsed time i | £jac(S.5.0:probles_size, 0:problemt 19310 6110
} ' srror_nora | > grid_pointa(3) 0 0 0 !
- j I; 1hsb(S.5.0: DAX. 0. AKX, 0: KXAX) -9999 0 600 !
B8ase Variable Specification: b _lhsb(5. 5, 0: IMAX, 0:3MAX, 0:FXAY) 3 o 7636 !

variabls: lhsb b 1heb(S,S,0:IMAX, 0:JMAX, 0:EXAY) 4 11386 72670
- }: 1heb(5.5.0.DOX0.70X.0.0AY) 5 0 11386
Variable indexc 4 - 7|)i njac(5.5.0:problen_sire.0 problea? 0 24920
Modulus: -
pivisor: UnPartitionad Details.. 1 Why UnPartitioned ?..} Prevant’ Undo Preventions)
Offset = add: 11 Partitioned Arrays
Name index Define Rangs Partition Range
Typs: llbd: Cyclic —
' forcing 3 - CAP_Lforcing:CAP_Kforcing
Block/Cydlic | Unstructured i - -
4 J —; lhsa 4 - CAP_Lforcing:CAP_Hforcing
Partition Acceptance: . lhesc 4 - CaP_Lforcing:CAP_Nforcing
axl)) " oqe 2 - CAP_Ltorcing:CAP_Hfortcing
aximum Against: 0 - 7| ' tho_i 2 - CAP_Lforcing CAP_Nforcing
For/Against Ratlo: 0 L ! the 3 - CAP_Lforcing: CAP_Hforcing
Partition Alignment: quace 2 - CAP_Lforcing CAP_Hforcing
Tolerence: 5__ - 17| L u 3 1:grid_points(2)--2 CAP_Lforcing CAP_Hforcing
— = | us 2 - CAP_Lforcing: CAP_Rforcing
Partitioning Options:)1 ows 2 - CAP_Lforcing.CAP_Eforcing
[Kmlndga | Exact =i
{ Disproofs [Sahr Equallty Farttten Camits. - Delebe Partivian ;- Browse Partition Ranges.. i
l Interproce dura! I Logik Generate Partition } Accept All Pastitions ' Deieta All Partitions | Dlismiss »
Partitioning complets.

Figure T5-3: Apply array partitioning on the second array: 1hsb, index 4.

6. Remove unwanted partitions. If you use the result produced from Step 4 to generate
message-passing code, you would notice that CAPTools place quite a few communication calls
inside routine COMPUTE_RHS, which exchange boundary values of some of the working arrays
(such as gs, rho_i...) for the partitioned dimension. These boundary values, in fact, can be
calculated in the routine instead of being communicated from neighbors to improve the
performance. This kind of improvement can be achieved within CAPTools by removing
partitions on the relevant arrays (although it is not very obvious and intuitive). In the
Partitioner window, select routine "compute_rhs". Select "gs" in the Partitioned Array list
and click the button. Apply the same procedure to arrays: rho_i, square, us,
vs, and ws. Figure T5-4 is what you will see after this process from which partitions on six
arrays have been removed.

Click the [Accept All Partitiond button.

7. Generate masks and communications. Start the Code Generator from the CAPTools
main window. Choose 2 for Min Slabs Per Processor, which indicates at least 2 slabs in the
partitioned direction to be used for the execution and reduces number of communications calls
placed. Select [Gather/Scatteq for Communication Type. Click [Generate Maskd to start the
mask generation and [Calc & Gen Comms to generate communications. See Figure T5-5.

At this éoint E'ou could produce a pure message-passing program if you wish (the

ave Final Code button). But we move onto next step.

8. Save to database. Use the Save Database menu to save the communication data to
bt_comm_j.dbs.

CAPO User Manual T-21

TUTORIAL 5. MIix oF

MESsAGE-PASSING AND OPENMP

SF M ENE

Routines:

binwcrhs
; binvrhs
=il

T fcamputs_
f

I

|

[

.,

.
a

eslapsed_tine
*rroT_norm
sxact_ths
exact_solution

b e -

Ease variablie Sprcification:
variable:
Varlable indexc <
tMadulus:
Divisor:
Ofiset

Type: ﬁ;x\ T Crelic !

Bk-kCrelic ¢ Uostructursd ;

Partition Acce tance:

Maximum Againse: ¢ -

For/Against Ratio: & -
Partition Aligninent

Tolerence: & R
Partitioning Options:
[Xnowledge [Exect
[Dlsuooﬁ_: !

 scatar Equality

| interprocedural [Logic

S S R T e e .
Fatitening Suwsben Lt Help... -
computa_rhs: 27 Unpartitioned Arrays
: Name index Far Against
—
~fi b_inverse(5.5) 0 0 °
ol WE(-2-problem_sizesL.5) 1 4 92
~|J ce(S.13)]] 0
! cuf (-2:problem_sizes+l) 1 § 12
t cv(-2:problen_size+1) [} 0 0
f £7ac(5.5.0.problen_size.0 problend 0 25132
{ tjac (5.5, 0:problen_size, 0 probled 26560 8610
:
H grid_points(3) 0 0 0
: njac (5.5, 0:problem_size.0 problend 0 26170
H njac(5.5,.0:problea_size. 0 problemd 664 12064
e O -
mbartilyned Cotalls, | Wiy Lofaitionsd 2
compute_rhs: 6 Partitloned Arrays
Name Index Dsfine Range Partition Range i
- i
“}| torcing 3 - CAP_Lforcing:CAF_Rforcang i
i lbea 4 - CAP_Lfoccing:CAP_Eforcing i
lhad 4 - CAP_Lforcing:CAP_Rforcing
lhec 4 - CAP_Lforcing:CAP_Nforcing
ths 3 0 grid_points(2)+~1 CAP_Lforcing:CAP_Mforcing
u 3 - CAP_Lforcing: CAP_Hforcing
= [. ——
Patirion Ceisils. . Dabete p2rbtise © Browse Partition Ranges... |

Genorate

Masking
Communications
Optimisations
Flnalise

Min Siabs Per Precessor: 2 -
Communication Type: Bulk |

Communications Optlans: I Short Circuit Brosdeast Calculation (QUICKD

Execution Mask Heuristicc | Union Of Masks

I Cather/Scatter
Cather/Scatter + Plpeling Crouping
individual

First Pass Only (NO CODE GENERATIOND
Optisns: | Knowledge . | Disproofs
| Interprocedural [Exact
I Scaler [rogic

Most Frequent {unit count)

Most Frequent (cummulative count
‘Maximise Loop Allignment

_Generate Masks

CaicComms

T P]

Giierene & Szuz Sing! Cone

ERIARIR TN T HE R Id T TN

Dismiss Help..

Calculating Communications...

e

Figure T5-5: The Code Generator window for the final generation of message-passing code.

CAPO User Manual

T-22

TORVA L 7 Moo .- MEssascE-PassinG AND OPENMP

Insertion of OpenMP directives at the second level:

9. Browse directives In the View menu, click Directives to Eerform the directives analyvsis.

The Directives browser will be popped up shortly. Select the [All Routine scope and browse
through all loop filters. Payv attention to the serial loops (Totally, Covered and Falsely).

10.Re-enforce new loop types. In the Directives browser window, select the

scope, the loop filter and sub filter (Figure T5-6). There are two K
loops listed under this category. Choose the first loop: y_solve:8/1/302: do k=1,grid..
and click the button. The WhyDirectives window (see Figure T5-7) indicates that there
are four MP (Message-Passing) calls (as part of the parallel pipelines) inside the K loop, which
serialize the K loop. If nothing is done here, the inside I loop will be chosen for the second level
parallelization with directives, which will not give a good performance.

Loop Filter: Sub:

<3| CAPO: Directives Browser R R 2 '—l;-_.][_]j]
Scope: 29 Routines: 7 Falsely serial loops {with I/0 or MP statements):
: Al Routines - -

4. BT:11/1/280: do 1-1.t_last,1 ;
error_norm:6/1/131: do CAP_m=1,5,1 '

T
§
I

el o

‘ T rhs_norm:6/1/121. do CAP_ms1,5,1 |
Totally Serial | Al wer:fy 4/1/282: do a=1,5,1 ‘
Covered Serial | Privatization verify 5/1/299; do asl.5.1 |
! Falsely Serial | /O Statement {y_solve 8/1/302: do kel. grid_points(3)-2.1
Reductions | No Granularity : : y_solve 13/1/353 do k=1,grid_pointse(3)-2.1 w
pipeline | User Defined i i
Chosen . :
“Not Chosen | LI) !
Show Parallel 1/0: XT No . RoutineDup... ; why.. . Update Directives... | Setting...)
Current Routine: y_solve User Laop: Dismiss ; Help.. -

L

[B R R e e
c begin inner most do loop
¢ do all the elements of the cell unless last

(1 2. 1.0AP BLraccrmg-1 ko oqoud peant-olye -t 3 LAP LEFT
ot VAP BLEvucang-1 b gt poantcilesfoj0 ¢ (AP LEFTS
1itiy ~P PHba a1

R R S VAR AP 1y ni
Lo Moblol oy 3 b AP LY oo, el P HEnooir oo
IR
ol Ly i vk by b aeer o oand gy .
celvap Dy b d L by byt anees eyl b
sall hapvoche i bl oy v b Wheoadl b r vy b bl oy v by AP Lroccann-yel cAP HEou ang-1eld
PR
~rids
call VAP SEND L el Y LVAP EHtAcraag b quad poanrarli o800 o D AP BIGHTY

|

Figure T5-6: The Directives Browser window for the Falsely Serial and 1/O Statement type.

In order to improve the performance, we can enforce a parallel type for the two K loops with an
assumption that the MP calls are thread-safe. This is possible within the context of MPI-2. To
define a new loop type, click the [New T\:pa button in the WhyDirectives window (Figure T5-
7). Select new type [Paralle] and push |Applyl. A new entry is now added to file userloop.par.

CAPO User Manual T-23

TUTORIAL 5. Mi<«x 0oF MESSAGE-PASSING AND OPENMP

Select the second K loop: y_solve:13,1/353: do k=1,grid.. and click the E’ew T\"pa
button. Again in the LoopType window choose new type Parallelland push [Update. CAPO will
save the new entry to file userloop.par and re-perform the directives analysis with the new

loop types.
< CAPQ.Why Dlrectives P, . o 30 S s h os g taw om0
Loop: y_s0lve:8/1/302: do k=l grid_ r| Reason: with I/O or MP statements inside
Type: Faisely Serial “New Type...) A—t‘m-don. variables (inlnput—dep. variables l:/out—dep. variables
Hints: ‘l :J “
-

b4 - :
|| Contains 1 parallel loop

- 4 I/0 or MP statements inside

—
Select All
Loop: ~i1/302: do kel,grid points(3)-2.1
L Reset) Pernova.
Current Type: 1/O inside
10/Exit statements: Contains parallel loops:

— New Type:

|

f)) ,
</l 303:call cap_rec ~“ y_solve:10/3/306: do i=1,grid_pd Parallel Serial | Reduction | Break | Original |
| 304:call cap mec

]

324:call caP_SEW T ! To update directives with new loop types,
!
!

325:call CAP_SEN — y
- use —> Update

i Apply) Dismiss) Help...

— —

Figure T5-7: The WhyDirectives window for the selected loop and the LoopType window for defining a
new loop type.

11.Insert OpenMP directives. In the File menu, click Save OpenMP Directives Code. Enter a
filename (bt_cap_j_omp.f) and click . By now you will have the first version of a hybrid BT
code. The log file, bt_cap_j_omp.log, contains additional information and statistics for the

parallelization process. You will see warnings on "I/O or MP statements inside parallel region".
This is what we need to fix next.

Modification to the generated hybrid code:

12.Replace MP calls with thread-safe version. As mentioned before, the current tool does
not really support the generation of hybrid codes, but is merely used to assist such a process.
The message-passing (MP) calls (CAP_SEND, CAP_RECEIVE...) placed inside the generated
code by the tool are assumed to be used in a single-threaded environment. The supporting
library, CAPLIB, is designed to run under a single-threaded environment as well. So in order to
have the hybrid code working properly, we need to modify the message-passing calls inside
parallel regions so that they can work safely under a multi-threaded environment. To achieve
the goal, we will create a subset of the routines in CAPLIB to support multi-threading. These
routines contain an additional field "TAG" in the argument for use with a specific thread. A

sample implementation of the thread-safe MP routines used in this tutorial is included in file
caplib_thread.F.

So we want to make a final touch to the generated code: replace several message-passing calls
with the thread-safe version. Edit file bt_cap _j_omp.f with a text editor:

1) In subroutine Y_SOLVE, include the following two lines in the declaration

CAPO User Manual T-24

TUTORIAL 5. MiXx OF MESSAGE-PASSING AND OPENMP

integer omp_get_thread_num, myid
external omp_get_thread_num

2) In subroutine Y_SOLVE, the third parallel region, change

!$OMP PARALLEL DO DEFAULT (SHARED) PRIVATE(i,j,k)
to
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,myid)

and add the following lines before "do k=1,grid_peoints(3)-2,1"

myid = omp_get_thread_num()
!SOMP DO

Now add a message tag to the four MP statements in the K loop by replacing

CALL CAP_RECEIVE(...)

with

CALL CAP_RECEIVE_TAG(...,2000+myid)
and

CALL CAP_SEND{...}
with

CALL CAP_SEND_TAG(...,2000+myid)

The tagged SEND and RECEIVE calls are from caplib_thread.F and the tag "2000+myid" is
added to ensure the point-to-point communication between two threads with the same thread
number. The offset "2000" in the tag is to avoid potential conflict with message tags internally
used by CAPLIB, but the choice of the value is a bit of arbitrary.

Lastly, change

1SOMP END PARALLEL DO
to

!SOMP END DO NOWAIT

!SOMP END PARALLEL

3) Apply the same changes as in 2) to the fifth parallel region in subroutine Y_SOLVE and save
the modification.

Compile and run the hybrid code.

In order to compile and run the hybrid code successfully, the following additions or installations are
required:

1) The CAPLIB library from the CAPTools distribution. CAPLIB can be downloaded from
http: aptools.gre.ac.uk/.

2) A thread-safe extension to some of the routines in CAPLIB, which are supplied here in
caplib_thread.F for MPL. One of the main things in the file is a dummy MPI_INIT()
routine which just passes the call to MPI_INIT_THREAD (). The CAP_*_TAG routines are also
in this file.

3) A thread-safe implementation of MPI-2 library that supports MPI_INIT_THREAD in level
MPI_THREAD_MULTIPLE. Such an implementation is available from SGI's MIPSpro 7.3
compilers and MPT 1.4 toolkit.

We will use the supplied Makefile to compile the hybrid code on the SGI Origin2000. Modify the
content of Makefile, in particular the value for CAPLIB. Then do

.+ CAPO User Manual T-25

TUTORIAL 5. Mix 0OF MESSAGE-PASSING AND OPENMP

% maxe

which will create an executable "bt_cap_j_omp.1". To execute the parallel code with 3 MPI processes
and 3 threads per MPI process, do

% setenv OMP_NUM_THREADS 3
$ mpirun -np 3 ./bt_cap_j_omp.l -top pipe3

The output (for a class-W problem on 195MHz O2K) looks like:

Thread support on Rank 0 = 3, number of threads = 3

Thread support on Rank 1 = 3, number of threads = 3

Thread support on Rank 2 = 3, number of threads = 3

PID HOSTNAME MPI_ PROCNAME UNIX_PID BIN_NAME
1 turing turing 35973 bt_cap_j_omp.1
2 turing turing 35974 bt_cap_j_omp.1
3 turing turing 35979 bt_cap_j_omp.1

Programming Baseline for NPB - BT Benchmark

Size: 24x 24x 24
Iterations: 200 dt: 0.000800
Time step 1

5 0.1018045837718E+02 0.1018045837718E+02 0.4575047075825E-12
Verification Successful

BT Benchmark Completed.

Class = W
Size = 24x 24x 24
Iterations = 200
Time in seconds = 11.66
Mop/s total = 662.12

The execution time from a single process run is 84.69 seconds, so we have a speedup of 7.3 on 9 CPUs.
You can run the code with different combinations of MPI processes and OpenMP threads, for example,
to run with 2 MPI processes and 8 threads per MPI (2x8 = 16 CPUs):

% setenv OMP_NUM_THREADS 8
% mpirun -np 2 ./bt_cap_j_omp.l -top pipe2

Table T5-1 on next page contains a collection of results from runs on two SGI Origin2000s: 195 (CPU
type 195 MHz, 32Kb L1 and 4Mb L2 cache) and 300 (CPU type 300 MHz, 32Kb L1 and 8Mb L2 cache).
NP stands for number of MPI processes and NT is the number of threads per MPI process. For a given
number of CPUs, the hybrid code has a better performance when NP is close to NT. However, you also
notice that "8x2" performs better than "4x4" or to say MPI is more preferable in this case.

¢..CAPO User Manual 4 T-26

TUTORIAL 5. MiXx 0OF MESSAGE-PASSING AND OPENMP

Table T5-1: Execution time (in seconds) and Mop/s (million floating point operations per second) of the

hybrid BT code, obtained for the Class W (24x24x24) and with 1, 9 or 16 CPUs.

195 MH: Origin2000, 1 or 9 CPUs

NPxNT | 1x9 3x3 9x1 1x1

Time 14.26 11.66 12.26 84.69

Mop/s | 54146 | 662.12 | 62947 |91.14

300 MHz Origin2000, 16 CPUs

NPxNT | 1x16 2x8 4x4 8x2 16x1
Time 8.21 6.38 5.76 5.38 6.88
Mop/s | 940.61 | 1210.05 | 1339.76 | 143353 | 1122.38

CAPO User Manual

T-27

PRT S E

