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Abstract

Here we present the resultsof a Large Eddy Simulation of

a non-buoyant jet issuingfrom a circularorificein a wail,

and developing in neutral surroundings. The effectsof

the subgrid scaleson the largeeddies have been modeled

with the dynamic large eddy simulation model applied

to the fully3D domain in spherical coordinates. The

simulation captures the unsteady motions of the large-

scales within the jet as well as the laminar motions in

the entrainment region surrounding the jet. The com-

puted time-averaged statistics(mean velocity,concentra-

tion,and turbulence parameters) compare well with lab-

oratory data without invoking an empirical entrainment

coefficientas employed by lineintegralmodels. The use

of the large eddy simulation technique allows examina-

tion of unsteady and inhomogeneous featuressuch as the
evolution of eddies and the details of the entrainment

process.

Introduction

Standard engineering design models for jetsand plumes

employ averaging techniques that mask the rich details
evident in the realworld. A snapshot of a plume billow-

ing from a chimney or effluentdischarging from an ocean

outfailshows a highly irregularedge with regions of low

concentration near the centre and pockets of high con-

centrations far downstream from the source. Superim-

posed on thisirregularityisa structure evidenced by the

boilsor eddies which seem to repeat at seemingly regular

intervals. While experimental techniques are available

to explore these unsteady phenomena, sampling is lim-

ited. For example laser-doppler anemometry is a point

method that misses the synoptic, while laser-induced

fluorescence and particle-imaging velocimetry only pro-

vide a sliceof information with sampling limited to the

frame rate of the video camera and the density of pixels

in the charged couple device. An attractive alternative
is to model the fluid motions at a sufficientlydetailed

scale so that the energy-containing eddies are resolved -

thismodeling approach is called Large Eddy Simulation

(LES). We present here the results of such a study on

a simple momentum jet discharging into a semi-infinite

quiescent environment.

The Model

The equations to be solved are the filtered incompress-
ible Navier-Stokes equations together with the continuity

equation and a scalar transport equation representing a

passive tracer (or pollutant).

The non-dimensional governing parameters for this flow

are:

Reynolds number = Re = UoDo/v ,

Prandtl number = Pr = v/_ ,

where Uo isthe mean verticalvelocityof the fluidleaving

the source (used to non-dimensionaiise allvelocities),Do
is the diameter of the orifice(used to non-dimensionalise

lengths),v is the kinematic viscosityof the fluid,and

the scalar diffusivity.In the following we use T to

represent the dimensionless scalar concentration (e.g.a

tracer or pollutant).

Large Eddy Simulation

To create an LES computational model, the Navier-

Stokes/continuity/tracer equations are filteredwith the
filtercutoff chosen to remove the dissipativescales but

retain the energy-containing scales.In the present study,

the subgrid scalesstressesand fluxesare modeled using

the dynamic approach ([6],and [4]),which automatically

determines, using differentfilterwidths, the spatialdis-

tribution of the magnitude of eddy viscosityas required

by the subgrid-scaieSmagorinsky model. This procedure

obviates the need for any empirical determination of the

Smagorinsky constant.

A major advantage of thismethod isthat itismuch more

likelyto be successfulfor inhomogeneous flows,particu-

larly in the present case where part of the domain is

laminar. This issue was explored by Liu et ad. [9]who

compared the Smagorinsky and the dynamic models with

particle image velocimetry laboratory measurements in

the far fieldof a turbulent round jet. The Smagorinsky

model was found to correlatepoorly with the realturbu-

lentstress,while the dynamic model yielded appropriate

coefficients.The inadequacy of the Smagorinsky model

was alsodemonstrated by Bastiaans et aL [i]in an LES

model of transientbuoyant plumes in an enclosure. In

this study, they found they could only get a match of

the evolving plume by tuning the Smagorinsky constant.

Such tuning reduces the generalityof a model.

N_mQrical scheme

We use the LES code of Boersma, an adaptation of

his own jet direct numerical simulation (DNS) code[3].

The code was modified by Basu [2] to compute buoy-

ant plumes. A spherical polar coordinate system (R, e, _b;

along the radial, lateral and azimuthal directions respec-

tively) is used here because, for the present flow with

its conical mean growth, a spherical coordinate system

allows for a well-balanced resolution of the flow field

without excessive grid points. For presentation purpcees,

however, and for comparison to laboratory data, the re-
sults are converted to the axisymmetric cylindrical coor-

dinate system (z axial and r radial). The symbols U and
V are used for velocities in the z and r directions respec-

tively. Further details of the computational scheme can

be found in [3], [4], and [6].

Boundary conditions and test parameters



For the chosen staggered grid, only velocities normal to
the boundary need be specified - i.e. six components. The

equation for the tracer (T) is second order in each spatial
direction, requiring six boundary conditions as well.

For the bottom boundary a Dirichlet BC is used with log-

law profile velocity at the orifice, to which white noise of
2% rms is added. At the outflow boundary, or the top
end of the current computational domain, we use the ad-

vective boundary condition and at the lateral boundary
we apply a stress-free condition ([3] and [7]). Periodic

boundary conditions axe used along the azimuthal _ di-
rection boundaries and lateral velocity (u0) is set to mean
value at 8 = 0.

The Keynolds number for the jet source is set at 3500 -

within the range of experimental data for which the jet
is turbulent at or near the nozzle[5].

The computations are carried out in a domain that ex-
tends to 50 diameters downstream of the source. The do-

main encompasses a conical volume of lateral angle lr/12,

with a virtual origin that is 15 diameters upstream of the
orifice. For the purpose of LES, this volume is discre-

tised using a grid of size (N, = 128, No = 40, N¢ = 32).
Time stepping is chosen to satisfy CFL conditions [3]

which turns out to be typically 0.01 in dimensionless time

units (Do/Uo). Spatially the grid is an order of mag-
nitude smaller than the expected large scale (typically

0.4z, although there is an arbitrariness about the defi-
nition of the jet edge) and an order of magnitude larger

than the Kolmogorov length scale [10] as appropriate for

LES modeling. The temporal sampling is much smaller
than the Kolmogorov time scale.

The computations are carried out for over 100,000 time-
steps (a non-dimensional time of about t = 300). Aver-

aging for statistical quantities was done towards the end
of the simulations when we were convinced that the flow

was statistically stationary.

Model verification

Confidence in the model can only come from comparison
with laboratory data. There is a wealth of such data and

we use a selection reviewed by List[8]. The data repre-
sent air in air and water in water over a wide range of

Reynolds number (but all in the turbulent regime). De-

spite the range of fluids and laboratory conditions there
is a surprising consistency between the results and hence

we would expect our model to be able to match them
well.

To compare the model results, we have averaged first
moment and second moment statistics over some 10,000

samples. The particular sampling and averaging carried

out yields an uncertainty of about 2% for any given sta-
tistical estimate.

Here we examine two statistics, the mean z-direction ve-

locity (U) and the tracer concentration (T). The pro-
cedure for reducing the data was to fit Gaussian curves

(using Matlab's routine ulinfit with emphasis on the in-
ner radius) to the r-direction profiles. The fitted e-folding

radius (re) and the fitted maximum value were used to
scale the data. Of the many checks that we have made

[11], we here present just two - we recall that the ex-
perimental jet e-folding width grows linearly as 0.107z
for U and 0.126z for T. (From the laboratory data the
uncertainty for the growth rates is 3% for both U and T

[8]).
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Figure 1: Growth of jet width in terms of the e-
folding width for z-direction velocity (circles) and tracer

(crones).

The fitted slopes in the central region (beyond the ZFE
and short of the apparent influence of the downstream

boundary) are 0.105 for U and 0.126 for T (figure 1).
The matches are remarkably close to the laboratory data
and well within the data uncertainty.

Other checks carried out [11] show that the centerline ve-
locity and tracer decay as z -l, and that turbulent fluc-
tuations and turbulent momentum and scalar transport

match laboratory data. In almost every case the match is

well within data and model uncertainty. We also verified
that most of the variance can be accounted for by the

resolved portion of the model - as we would hope from
an LES model.

Unsteady features

To examine some of the jet features we take sections both

through the centerline (meridionai) and across the jet (ra-

dial). At the computer, it is instructive to roam through

many such sections but even with just two we can see
a great deal. Figure 2a is a meridional section between
6 and 13 diameters from the source while figure 2b is
a radial section at about 9 diameters from the source.

We overlay the instantaneous tracer concentrations and
velocity vectors.

At the bottom centre of the meridional section (figure

2a), between z = 6 and z = 8, we can see what at

first sight appears to be a core region of almost source
concentration with velocities matching the source veloc-

ity. There is actually a peak concentration at z = 6.7,
r = -0.2 that is at the center of a patch about to break
from the core to form a more or less separate puff. Such

puffs are shed repeatedly, and, in fact, the previously
formed puffcan be seen at z = 11. Given that the source

is uniform and steady with the addition of a small level
of noise it is remarkable how unsteady and irregular are

the features.

Within and about these large scale puffs are eddies of

comparable scale. An anti-clockwise eddy with horizon-
tal axis can be seen centered at z = 9, r = -1. At its top

this eddy transports jet fluid away from the core while at

the bottom, ambient fluid is transported towards the jet
center. The horizontal extent of the eddy and its three-
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Figure 2: Instantaneous meridional (a) and radial (b) sections of tracer concentrati6n and velocity vectors. The relative

position of each section is indicated by a black line.

dimensional character is evident from the radial section

(Figure lb) at x = -1.5, y = -0.8. An example of an

eddy with vertical axis can be seen in the radial section

centered at x = 1.2, y = 0. As with the other eddy,

this one is clearly advecting away core fluid in the out-

ward portion and ambient fluid towards the center in the

inward portion. Closer to the core, there appear to be

several smaller scale eddies which further mix the jet fluid

with ambient. Image sequences show that any jet fluid

that strays too far from the center is readily re-entrained

by the sink flow that exists outside the turbulent jet re-

gion.

Although we have been emphasizing the irregularity of

the flow, there is an underlying apparent dominant size
of the puffs and eddies, and a typical frequency at which

the puffs are shed. In the following we look to quantifying
these scales.

Quantifyinl_ scale

In an attempt to quantify the time scale we have ex-

amined a time series of tracer concentration at a single

point - on the centerline at 30 diameters from the source.

This choice is arbitrary as any point should share the

same temporal spectral characteristics. A raw spectrum

is computed from a sequence of duration 460 time units

at interval of 1.8 time units. Band averaging over 4 ad-
jacent estimates reduces the uncertainty (figure 3). Al-

though this still leaves broad confidence intervals, a clear

peak is evident at 0.025 dimensionless frequency units

(Uo/Do). There may also be other peaks at about 0.07
and 0.1 for which we offer three possible explanations -

(1) they are just noise - note that we only use a 4-fold
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Figure 3: Spectrum of tracer at z = 30. The dashed line

is the raw spectrum, while the solid is band-averaged.

band-average, (2) they represent real higher frequency

motions - (3) they are spurious peaks associated with

the non-sinusoidal shape of the puffs. We will have more

to say about this with regard to the spatial spectrum.

From the mean flow field one could invoke the Taylor

frozen-field assumption to deduce a spatial scale, but an

impediment to computing such a scale is the obvious in-

homogeneity. However, we can make use of the scaling
determined from the mean and variance to transform an

axial sample of the tracer to a homogeneous equivalent.



120

100

,°

20

1-0" 10 I10 0 10 t

l/log(z)

Figure 4: Spectrum of centerline scalar concentration in
homogeneous transformed space

Subtracting the mean centerline temperature and then
dividing by the mean removes these two trends but still
leaves a z-dependent wavelength. However, if we trans-

form the z-axis by the antiderivative of the expected in-
verse growth rate, the z-dependence is removed. In this
case, the growth is expected to be linear, and hence the
transformation is simply logarithmic. The spectra of 100
such records were averaged to yield the spectrum shown

in figure 4.

The interpretation of the peak at 5 transformed wave
number units is that the centerline eddy length is pro-
portional to distance from the source and is here equal

to 0.2z. Curiously this measure of the large scale motion
matches the mean jet width defined by the e-folding half
- i.e. the energy containing eddies are the same order of
magnitude as the jet itself.

The secondary peaks at 6.2 and 9 are reminiscent of those

seen in the temporal spectrum (figure 3), except here,
with the narrow uncertainty, we are sure they are not
noise. Of the other two possible explanations (real higher
wavenumber features or spurious peaks) we are convinced
that the latter is the correct one. An examination of a

centerline tracer record shows that the head of a puff is

generally steeper than the tail. A spectrum computed

from an artificially generated monochromatic wave with
such an asymmetry recreates the spurious peaks seen
here.

Conclusion

The LES of a simple jet does a remarkable job of sim-
ulating laboratory experiment data without the need to
invoke empiricism such as an entrainment coefficient. In-

clusion of the large eddies in the model allows one to
examine the detail of the entrainment process. The be-
haviour of the jet is that of a series of puffs rather than a

steady stream. The outward motion at the top of the puff

together with the inward motion at the bottom acts to
interchange jet fluid with ambient and smaller scale mo-
tions. The axes of the eddies are not constrained, how-
ever, to the lateral direction as eddies are also evident

with axes at orthogonai orientation. A transformation of
centerline tracer concentration yields an estimate of the
large scales of the unsteady motions. For the case ex-
amined here, this turns out to scale with distance from

the source, and to be about the same size as the mean

width of the jet. Whether this result is Reynolds number
dependent remains to be seen.
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