
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers:

I. Microscopic Approach

Jianzhong Li* and C. Z. Ning t
Computational Quantum Optoelectronics

NASA Ames Research Center,
M/S T27A-1, Moffett Field, CA 94035-1000

(Dated: December 31, 200t)

Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltzmann
transport terms in the distribution function equations for electrons and holes, we derived a closed
set of diffusion equations for carrier densities and temperatures with self-consistent coupling to
Maxwell's equation and to an effective optical polarization equation. The coherent many-body effects
are included within the screened Hartree-Fock approximation, while scatterings are treated within
the second Born approximation including both the in- and out-scatterings. Microscopic expressions
for electron-hole (e-h) and carrier-LO (c-LO) phonon scatterings are directly used to derive the
momentum and energy relaxation rates. These rates expressed as functions of temperatures and
densities lead to microscopic expressions for self- and mutual-diffusion coefficients in the coupled
density-temperature diffusion equations. Approximations for reducing the general two-component
description of the electron-hole plasma (EHP) to a single-component one are discussed. In particular,
we show that a special single-component reduction is possible when e-h scattering dominates over
c-LO phonon scattering. The ambipolar diffusion approximation is also discussed and we show
that the ambipolar diffusion coefficients are independent of e-h scattering, even though the diffusion
coefficients of individual components depend sensitively on the e-h scattering rates. Our discussions
lead to new perspectives into the roles played in the single-component reduction by the electron-
hole correlation in momentum space induced by scatterings and the electron-hole correlation in real
space via internal static electrical field. Finally, the theory is completed by coupling the diffusion
equations to the lattice temperature equation and to the effective optical polarization which in turn
couples to the laser field.

PACS numbers: PACS Numbers: 42.55.Px, 42.65.Sf, 78.20.Bh

I. INTRODUCTION

? ,

A typical semiconductor-based optoelectronic device,
such as a diode laser, can be considered as consisting

of three subsystems: an optical field, an electron-hole
plasma (EHP), and a host crystal lattice. Light gen-
eration, propagation, amplification, and diffraction de-

termine the behavior of the optical field, while electri-
cal conduction, plasma diffusion, and carrier generation
and recombination determine that of the plasma. The

host crystal is very often represented by various phonon

modes, with the longitudinal optical (LO) phonon mode
be!ng the most important one for optics and carrier trans-
port of III-V semiconductors at room temperature. Obvi-

ously the whole system involves the interplay of optical,
electrical and thermal processes. From the perspective

of conversion and conservation, energy is stored in the
form of photon energy, kinetic and thermal energy of the

EHP, and thermal energy of the host crystal represented
by the phonons excited and annihilated. Though various

processes occur in different space and time scales, their

couplings should be treated in a self-consistent fashion
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to arrive at correct coupled equations, or to appropri-
ately decouple the equations in _:ariotis lli'2il-t_-g--_i_es.
While modeling and simulation of semiconductor lasers

and other optoelectronic devices typically use the rate

equations [1] or the semiconductor Bloch equations [2]
that treat only the coupled electrical-optical subsystems,
other approaches have focused on the thermal aspect [3].

In Refs. [4, 5], a self-consistent approach was attempted
to combine all three subsystems and the relevant pro-
cesses based on earlier work on plasma heating [6-9] in

semiconductors. The approach is, however, valid only for
a single-mode laser, or a spatially homogeneous laser.

There is plenty of manifestation of spatial inhomo-

geneities in a semiconductor device. Laser beam fila-
mentation, dynamic beam steering, and multiple trans-
verse mode formation and competition are some of the

important examples where inclusion of spatial, or spatio-
temporal variation is necessary. Additionally, with the
inclusion of temperature variables, more spatial phe-

nomena can be described, such as thermal lensing and

formation of hot spots, and catastrophic optical dam-
age (COD) in diode lasers. For advanced semiconduc-

tor lasers such as vertical-cavity surface-emitting lasers

(VCSELs), or Master-Oscillator coupled with Power-
Amplifier (MOPA), spatial inhomogeneity is a more
prominent issue when efficient coupling of multimode

VCSELs to multimode fibers are desired, or when care-
ful transverse mode engineering is required for certain
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applications.In termsof theoreticaldescription,spatial
inhomogeneityof asemiconductorlaseris usuallydealt
with usingMaxwell'sequationwith diffractionterms,
coupledwith carrierdiffusionequation[10].Thissetof
equations,whichis a directgeneralizationof the rate
equationsto thespatiallyinhomogeneouscase,canbe
furtheraugmentedby addingthematerialpolarization
equationto accountfor gainandrefractiveindexdis-
persion[11].Thisapproachhasrecentlybeenusedto
simulateMOPAs[12,13]andVCSELs[14]. An alter-
nativeapproachis to start fromtheBoltzmann-typeof
transportequationfor thecarrierdistributionfunctions
asdescribedinRef.[15].Thisapproachisaverygeneral
one,but it involvesquiteextensivecomputation,since
k-resolved interband polarization equations have to be
solved self-consistently for all space and time grid points.

For nearly all practical purposes, lasers and other opto-
electronic devices operating on time scales longer than

a picosecond can be more efficiently dealt with by the
moment-equation type of approach. To account for both

carrier density and carrier energy (thus carrier temper-

ature) inhomogeneities within the framework of the mo-
ment equations, one needs to derive a set of partial differ-
ential equations for up to the second order moments from

the corresponding Boltzmann transport equations. Such
an approach, which is alternatively called hydrodynamic

approach, will lead to a generalization of the single-mode
laser model in Ref. [4] to spatially inhomogeneous cases

including thermal and heating effects. In the past, car-
rier diffusion equation has been derived from the Boltz-
mann.transport equation in combination with Maxwel]'s

equation and the optical polarization equations by sev-
eral authors [15, 16]. Since only the zeroth-order mo-

ment equation is derived [15], plasma heating cannot be
described. This lack of systematic derivation of the tem-

perature equation creates problem in correctly choosing
the energy or temperature diffusion coefficient [17]. Fur-
thermore, whenever two or more types of diffusion pro-
cesses exist, mutual diffusions, or cross diffusions, occur.

The quantitative significance of these processes needs to
be examined, which is only possible with a systematic
derivation of the coupled diffusion equations and all the

corresponding diffusion coefficients (DCs).

This work sets out to derive such a set of coupled

macroscopic equations for carrier densities and carrier en-

ergies from the coupled Boltzmann-Bloch transport equa-
tions using moment-equation approach. We pay special
attention to the treatment of carrier-carrier (c-c) scat-

tering and carrier-LO phonon (e-LO) scattering. Dif-
ferent from previous approaches in this regard, micro-
scopic electron-hole (e-h) and c-LO scattering terms in
the Boltzmann transport equations are used directly to

obtain the corresponding energy and momentum relax-
ation rates. Various DCs are then expressed in terms of

these momentum relaxation rates. The energy relaxation
rates are used to describe energy exchange between dif-

ferent subsystems, which translate to temperature vari-

ations consequently. Such an approach allows a detailed

study of the DCs for a given quantum well structure. De-
tailed numerical results and analysis of these coefficients

will be presented in a subsequent article.

The article is organized as follows. In Section II, we

introduce the basic physical considerations and starting

equations. This is followed by a general derivation of the
moment equations and the treatment of the cutoff issue,
which is central to any moment-equation based approach.

The general form of the hydrodynamic equations for the
general two-component situation is derived in the fourth
section. The fifth section deals with the specialization to

the cases of single-component approximation where we
will discuss the consequence of the ultrafast e-h scatter-

ing for the drift momenta of electrons and holes. We will
also discuss the well-known ambipolar diffusion approxi-

mation (ADA). In the sixth section, the very important
issue of optical polarization is treated. We use two dif-

ferent approaches to close the hierarchy related to the k-

resolved polarization equations. In Section VII the corre-

sponding Maxwell's equation and the lattice temperature
equation are introduced to form the complete set of equa-
tions for a more complete description of semiconductor

lasers. Though we use laser as an exemplary device in
this work, the treatment and the resulting equations can
be used for other optoelectronic devices, such as photo-

conductors [18] and photodetectors [19], with little or no
modification. In Section VIII we discuss and comment on

some general aspects of our theory and sum up the major
results of our article before we present detailed consid-

erations in the appendices for scattering rates and DCs.

Appendix A deals with momentum and energy relaxation
rates due to e-h scattering, while the corresponding rates

due to c-LO phonon scattering are treated in Appendix
B. In Appendix C, we list DCs for the two-component

case. Finally, expressions for all the DCs under the one-
component approximation are given in the last Appendix.

II. MODEL AND BASIC EQUATIONS

We begin this section with some general remarks about
the spirit of our approach. As is often assumed, laser-
matter interaction in a semiconductor laser is described

with an EHP model. The standard argument to sup-

port such a plasma model is that the typical room-
temperature lasing density is around 1012 cm -2, well
above the Mott density. While we use this model in this

article, its adequacy in a spatially inhomogeneous sys-
tem needs special scrutiny. We comment on this in the
final section of this article. Within the plasma model,

Coulomb interaction, is usually characterized by an ex-
citonic enhancement of the optical transition and car-

rier density-dependent bandgap renormalization [2, 16] in

the coherent part of the semiconductor Bloch equations

(SBEs). In addition, this relatively high density leads to
ultrafast carrier-carrier scattering within 100 femtosec-

onds> which dominates carrier dynamics on the short
time scale and affect the interaction of the EHP with
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a laserfieldin severalimportantways:First, theseul-
trafastcollisionsthermalizecarriersin properlypopu-
latedsubbands[20],whichjustifiesthestandardassump-
tion of quasiequilibriumfor carrierdistributionswhen
longertimescaledynamicsis ofinterest.Second,aswill
alsobeshownlaterin thisarticle,ultrafaste-hscatter-
ing correlatespopulatedsubbandssuchthat thewhole
EHPcanbecharacterizedwithasingletemperatureand
drift velocity,but differentchemicalpotentialsfor dif-
ferentsubbandsundernormalconditions.Thisunder-
standingwill beelaboratedin the subsequentsections
and in appendixA by examiningin detailthe effects
of thescatteringonmomentumandenergyrelaxations.
Dueto theseultrafastcollisionevents,localquasiequi-
librium is establishedin lessthana picosecond.This
allowscarrierdistributionfunctionsto bedescribedlo-
callyby Fermi-Diracdistributionswith finitedrift mo-
menta,whilespatialinhomogeneityis takenintoaccount
bythespace-dependentmacroscopic"parameters"(den-
sitiesandtemperatures)of suchdistributionfunctions.
Sucha treatmentfurtherallowsotherslowerprocesses
be incorporatedin ahydrodynamicfashion.Reasoning
andunderstandingof this type underpinthemoment-
equationapproachadoptedin thiswork.

Specifically,we consideran intrinsicsemiconductor
quantumwellof widthw in the z direction and of area

S in the x-y plane. The inhomogeneity occurs in the

plane of the quantum well layer, while fixed profiles for
carrier distribution and optical modes are assumed in
the vertical direction to the quantum well due to tight

quantum confinement and optical wave-guiding. The ex-
tension to include the vertical inhomogeneity can be nat-

urally made when we include a vertical transport model,
such as the one used in Ref. [21]. This is beyond the

scope of the present article. In a typical edge emitting

laser (EEL) , the inhomogeneity appears in the plane of
the light propagation. For VCSELs, this plane is trans-
verse to the light propagation. Our starting point for
the semiconductor medium is the semiconductor Bloch

equations [16, 22], generalized for the spatially inhomo-

geneous case in Ref. [15, 23], which may now be called
Boltzmann-Bloch equations. The possible local charge

unbalance requires that the Poisson equation be included.

The complete set of equations required for such a system
is therefore the Maxwell-Boltzmann-Bloch-Poisson equa-

tions (MBBP) [2, 15, 16, 22-24] for the non-equilibrium
distribution functions n_ (k, r) (c_ = e, h for electrons and

holes, respectively), interband polarization p(k, r), elec-
tric potential _(r), and the laser field g(r, t), with k and

r being the 2D vectors in k space and real space, respec-
tively. The MBBP equations are collected as follows:

_0_E(r,t) V2E(r,t) = 1 02 (7_o+ _b)

O,,_"(k,r) + _O_c_(k,r) . Orn"(k,,.) - l-Oh_ [&°(k, _) + q°_(_)]' O_n_(k, _)
= R_(k,r) + Otna(k,r)]cot ,

Otp(k, r) = - gi [e_(k, r) + _h(--k, r)] p(k, r) - if)(k, r) [n_(k, r) + nh(-k, r) - 1] + Otp(k, r)Icot

0_(_)- _ 2eoeb V _a,k q_na (k, r) ,

(1)

(2)
(3)

(4)

with various terms given below:

ea(k,r) = ca(k) + q_(r) + 6¢a(k,r) ,

&"(k, _) = - _k' _(k', _)_4,k-k' + _,_ _k' (V_,k-k,-- Vk-k,),
ha(k, _) = ,(k)E(_, t) + Z_' p(k', _)V,,___,,

79_ = -_ Y'_k [#*(k)p(k,r) + c.c.] ,

Otn_'(k, r)l_oz = Otn"(k,r)l_ + Otn_(k,r)l_h + Otn_(k,r)lLO ,

&p(k, r)l_o_= -ro(k)p(k, r) + _k' r,(k, k')p(k', r) ,

(5)

(6)

(7)

(s)

(9)

(_0)

(11)

where 0t -- OlOt, Or -- O/Or, Ok =- O/Ok, O_ = 02/Ot z,

V 2 = 0_ +O2/Oz 2, O_ - OZ/Ox 2 +OZ/Oy 2. Also, e_(k, r)

is the renormalized carrier energy, &_(k,r) is the cor-

rection to the single-particle carrier energy ¢_(k) due to



exchangeinteractionanddueto theCoulomb-holeself-
energy,f_(k,r) is the renormalized Rabi frequency. Vs._
is the screened Coulomb potential, for which we use the

single plasmon pole model in this work, and Vk is the bare

one. In addition,/_(k) is the interband optical dipole ma-
trix element between electron state Ick) and hole state

Iv -k). Pb is the optical polarization of the unexcited
semiconductor, while Pa accounts for the electronic con-

tribution from photoexcitation, so the total material po-
larization P = Pa + Pb- Their treatment together with

Maxwell's equation is detailed in Section VI and Sec-
tion VII. Furthermore, h is the Planck constant, q_ = =t=e

is the carrier charge for electrons and holes, e0 is the elec-
tric constant, Co is the relative permittivity of the unex-

cited semiconductor, V = wS is the volume of the ac-

tive region, 5_,_ is the Kronecker delta, and 2 _k means
summation over all allowable momentum (k) states, in-

cluding spin (account for the 2), for a single subband.

Additionally, the lumped generation-recombination (g-r)
contributions R _ (k, r) consists of current injection term

A_(k,r), non-radiative recombination term with coeffi-
cient %r, spontaneous emissions term with coefficient

Bsp, and stimulated interaction term involving the renor-
malized Rabi frequency f_(k, r). Detailed treatment of g-
r term is available in Section VI. Finally, collisional con-

tributions denoted by subscript col lead to decay in the
interband polarization Otp(k, r)Icol and relaxation in the

carrier distributions OtnC'(k,r)[cot. We include explic-
itly both the so-called out-scattering term Fo(k) and the

(non-diagonal) in-scattering term Fi(k,k'). The domi-
nant scatterings considered in this work are c-LO, a-a,

and e-h scatterings, as separately denoted in Eq. (10).
Before we start the formal derivation of the moment

equations, a few remarks are in order: First, parabolic
band is assumed for electrons and holes with effective

mass m_, respectively. This approximation is valid when

the well width (w) is small enough and plasma density

is not too high, such that higher subbands are not pop-
ulated and thus ignored. This means that carrier ki-

netic energy, given as e_(k) = li2k2/2rnc_, is proportional
to the second order moment. As we will see later, this

simplification allows direct association of the second or-
der moment with the total carrier kinetic energy and
the first order current with this energy partially. As

such, the extension of the following derivations to the
case of non-parabolic bands is not straightforward. Sec-
ond, all the scattering terms will be treated explicitly in

the moment equations, without resorting to relaxation

rate approximations or leaving them at the formal level.
This is where our approach differs from those earlier ap-

proaches [15, 16] in deriving the moment equations; this
will become more evident as we proceed with the deriva-

tion. Finally, short-hand notation will be adopted for
stands for n_(k, r),convenience and brevity, such that n k

&_ for 6e_(k, r), • for <I,(r), and so on, in the remaining

part of this article unless indicated otherwise.
III. MOMENT EQUATIONS AND CUTOFF

We begin with introduction of the moment and current
of the n-th order associated with the non-equilibrium dis-
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tribution function n k as follows:

2
_,_(r) = -_ _ Fgn_ , (12a)

k

J,_(r) - vkF_ nk , (12b)
k

where Fg, denoting the n-th order weight function, are
1, hk, and h2k2/2rn_ for n = 0, 1,2, respectively, and

v_ -- Oke_/h = hk/m_ for parabolic bands. We con-
sider up to the second order for moments. Note that
only the trace of the second order moment tensor needs
consideration here, and it relates to energy. For clar-

ity, we represent the first three considered moments and
currents with conventional symbols: density N _ - Cg,

momentum P_ = ¢_, energy E _ -= g.'_; density cur-

rent J_ = J_, momentum current J_ = J_, energy
current J_ -- J_. J_, is a tensor despite its mislead-

ing vectorial notation. As is customary (see, e.g. Ref.
[25]), we derive the moment equations by summing over
all degrees of freedom, i.e., applying (2/S)_k on the
Boltzmann transport equation [Eq. (2)] with the corre-

sponding weight function F_. It is straightforward to
show that the first three moment equations for electrons
and holes can be written as below:

OtN _ + O. . J_v = R_v ,

OtP a + cg_ . J_ + N%% (&_ + qa_) = R_p + OtPaleh + OtPO[LO ,

69rE a + Or " J_ + oqr (6e a +q a(I>) " J_" : R_ q- oqtEC_[eh + 09_EatLO ,

I

where we have neglected the weak k-dispersion in the

many-body correction 5e _. Terms on the right-hand side
above are the result of summing the corresponding terms

in Eq. (2) over all degrees of freedom after multiplied by

the corresponding weight functions. For example,

(13)

(14)
(15)
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l Tv,p,E= F v,e,ER (k, r). (16)

k

Intuitively, ct-a scattering does not change the total car-
rier number, momentum, and energy for each band, so

they vanish from the above equations. Furthermore, e-h
and c-LO scatterings do not alter the total carrier num-

ber within each band, but they do survive the summation
and remain in Eqs. (14-15).

While the formal derivation of the above moment equa-

tions [Eqs. (13-15)] is exact and straightforward, these
equations are not in a closed form yet. There are sev-

eral'reasons for this: (1) the first order current J_ is not
completely given by the first and second order moments

(P_ and E _) in the presence of anisotropy, where equa-
tions for the other (trace-less diagonal and off-diagonal)

elements of the second order moment are required; (2)

the second order current J_ is connected to higher order
moments; (3) the terms on the right-hand side depend on
summation over the carrier distribution functions, thus
are not fuIly known in terms of the first three moments
and currents. These are well known reasons that exist

in general for the moment-equation approach, no matter

whether it is applied for transport problems in microelec-

tronics or .in fluid dynamics, which lead to the so-called

hierarchy problem. In addition, there is an extra com-
plication in_optical problems as we are considering here:
The carrier[distribution functions are coupled to the in-
terband pq!arization p(k,r), another space and carrier
momentum:dependent distribution function. As a result,

we are essentially dealing with coupled Boltzmann trans-

port equat{ons for three distribution functions: n _ (k, r),
nh(k, r), arid p(k, r), though all transport terms involv-

ing explicit:spatial variation ofp(k, r) are ignored [23]. In
general, moment equations for all these distribution func-
tions should be sought. To obtain a closed form of equa-

tions for these macroscopic quantities, two approaches
are typically used: One is to derive the lower order of the

moment equations and cut off the hierarchy by setting the
higher order moments to zero. As it is evident, the cou-
pling to the p(k, r)'s makes such moment cutoff impracti-
cal. Another approach is to assume that the distribution

functions are well approximated by known distributions
characterized by some macroscopic parameters. These

macroscopi_ parameters can be linked to those moment

variables. In fluid dynamics or in microelectronics, for ex-
ample, one assumes that the system is locally described

by the drifted Maxwell distribution [26]. Similarly, in
semiconductor laser theory, the quasiequilibrium condi-

tion is well established [22, 24, 27]. Quasi-equilibrium
here means that electrons and holes, driven out of mu-

tual equilibrium by laser field and external pumping, are
separately characterized by the equilibrium distributions
of each subsystem in their inertia frame of reference. The

physical mechanism responsible for the establishment of
this quasiequilibrium is the ultrafast a-a scattering on

the femtosecond time scale [28]. Using this quasiequi-

librium assumption and neglecting the other elements in
the second order moment tensor except its trace (valid for

isotropic physical systems), we can readily truncate the

hierarchy associated with na(k,r). We will come back
to the hierarchy problem associated with p(k, r) later.

First of all, we assume that the quasiequilibrium distri-

butions of the EHP are given by the drifted Fermi-Dirac

(DFD) distribution functions,

{ [ >]}-'_ - (17)nk = fk-k_, = 1 +exp _(e__k_ ' p

where k_ is the drift wavevector and p_ is the chem-
ical potential. Moreover, _ = I/kBT a, where kB is
the Boltzmann constant and T ° is the temperature for
electrons or holes. The drift wavevector is related to

the first order moment and p} is given by _ap_ =
In [exp (rrfl_h2N_/m_)- 1] in 2D case. We note that
three parameters are needed to characterize a DFD func-

tion given by Eq. (17). A total of six parameters for the
electron and hole distribution functions can be uniquely
associated with the six moment variables. With the aid of

the known functional form of the DFDs, the right-hand-

side terms in Eqs. (13-15) are calculated as functions
of carrier densities, drift wavevectors, and temperatures.
Finally, using the definition of moments and currents,

Eqs. (12), with n_ replaced by the DFD function, we can

show that currents of the first three orders depend on the
moments as follows:

J} = N_u _ ,

J_ = u_p _ + I,VaI ,

1 a a paJ_: = 2u_I¥ a + _u u •

where I is the unit tensor,

(18)

(19)
(20)

2 _ h2k 2 -aw °- g jl

is the thermal part of the carrier energy E _, and

(21)

1
E _

= I,V_ + _u _ - P_ . (22)

Above, pa = NOhk_ and a drift velocity is introduced:

u _ = P_/rn_N _ = hk_)/rn_ .

Obviously the carrier energy E _ is related to temperature

via its thermal energT part given by Eq. (21). Therefore,
these relations between currents and moments connect all

dynamical variables in a closed form, leading to a closed
set of equations for {N _, Po, W_}.



IV. GENERAL TWO-COMPONENT MOMENT
EQUATIONS

The moment equations given by Eqs. (13-15) are now

closed for {N _, Pa, W _} after applying the relations
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between the moments and currents given in Eqs. (18-22).

The resultant equations are written more specifically as
follows:

O,N _ + o_ . (u°N c_)= R_ ,

O_P _ + 0,. • (uc_P s) + O,.W c_+ N_O,. (&c, + qC_) = R_ + OtP°qeh + OtPC']LO ,

OtW a + aT • (2u_W _) - u _ ' O,.W c' = R_v + OtW_leh + OtW'_ILO ,

(23)

(24)

(25)

where 2uoW _ = J_v is the thermal energy current den-
sity. In addition,

1 _.,,sRT, u s • R_ (26)n_v = R_ + 5m.u - ,
OtW_[eh = OtE_leh - u s • OtP_leh , (27)

OtWalLO : OtEalLO -- Ua . OtPa[LO . (28)

Equations (23-25) are the general form of the moment

equations which describe the lateral spatial-temporal car-
rier dynamics in a semiconductor laser. These equations
should be solved together with the Poisson equation,

Eq. (4), the still k-resolved polarization equations, and
Maxwell's equation. The scattering terms in the above

equations are specified in their general form or in the lin-
earized form in Appendices A and B. From Eqs. (26-28),

we see that terms {R_,., OtW_leh, OtW_ILo} differ from
R _{ E, OtESleh, OtE_'ILO} correspondingly by nonlinear

terms in ps. As it turns out (see Appendices A and B),

the nonlinear terms drop out in the thermal energy re-
laxation expressions. Finally, it can be shown that these

terms vanish for R_ as well if translational invariance in
k space is assumed for the lumped g-r term RS(k,r) in

Eq. (2), which intuitively makes sense as internal energy
generation and recombination should be independent of
translational momenta.

To simplify the above set of equation further, we in-

tend to eliminate the momentum equation (24). First, we

point out that the g-r term R_, is negligible as compared
to the two scattering terms since momentum relaxation
is dominated by ultrafast scattering events, given that

no appreciable momentum transfer occurs accompany-
ing the generation and recombination processes. Fur-
thermore, as shown in Appendices A and B, the two

scattering terms can be linearized, as a consequence of

the assumption of quasiequilibrium for the electron-hole
plasma. Possible violation of this assumption comes fi'om

the presence of a strong electric field in the quantum well
plane that tends to drive the system out of quasiequi-

librium and into a nonlinear regime. Substituting the
scattering terms by their linearized forms as given in

Eqs. (A8) and (B6), the momentum equation (24) is now
rewritten as follows:

OtP _ + 0,.. (u_P c_) + O_W s + NaO,. (&_ + qS_)

= -mC/_h (u s - u _) - "Y_o P_ , (29)

where a ¢ fl, m_Gh/rn_N c' corresponds to the mo-
mentum relaxation rate due to e-h scattering, m_ =

mernh/(rne + mh) is the reduced mass, and 3'_o is the
momentum relaxation rate due to c-LO scattering. To
obtain an explicit expression for the density current for

each carrier type, we adopt the adiabatic elimination ap-

proximation for the above equation [16]. For a weakly

inhomogeneous system, we can further ignore the nonlin-
ear (second on the left side) term in P% The resulting
solution for the momentum is given as

ps = -m_#_ E [0_W" + N'O,. (&" + q'_)]
v----e,h

-mo_svo [o_w s + N°O_ (&_ + q_)], (30)

where the two factors are defined by

_h ,(31)
#_ = e h + "Y_h u7LO_LO(me + mh) _ _,=e,h mv'YLO

")'LO me + mh
, (32)

tic, = 7_ ma
eh

where a,,_ e {e, h) I a 7_ _ and 7e_h = _/eh/N _. The
two terms in the above equation have distinct physical

meanings: The first term relates to the e-h scattering
that tends to equilibrate the two carrier types, while the

second term describes the equilibration process between

each carrier type and the LO phonon subsystem. We
mention that similar formulation and results for the e-h

scattering have been derived previously in the study of
the negative mobility of minority carriers in semiconduc-

tor quantum wells [29-34].
Finally, equations for temperatures are very often pre-

ferred over those for thermal energies. Fortunately, a



uniquetransformationexistsundertheDFDapproxima-
tion,sinceW _ = ITV_[tt_(N_,T_),T _] = I/V_(N_,T_).

It is given below:

= _OW _-ffvO,N _OtTc_ YW _

and the resultant temperature equation goes as:

(33)

O,T + a,. - j ,u &W + &j}. J ,r -
= J_v (R_ + &I¥_ILo + OtW_t¢h) - j_.R_v, (34)

where the temperature current J_. = j_vJ_v -j_.J_. and

J_v = (gTo W_iNo)-I , (35a)

j_ = ONoW_]To (OToW_IN,) -1 . (35b)

To summarize this section, Eqs. (23,34) form the closed
set of diffusion equations in terms of carrier densities
and temperatures for each component after we repIace

momentum P_ or u _ in Eqs. (23,34) with its adiabatic
solution of Eq. (30). The corresponding density and tem-

perature currents, J_ and J_., are given by

= PO/m , (36)
.J_ = [2j_. (W_/N _) - j_.] J_. (37)

The above-currents contain the gradients of four macro-

scopic variables: N _ and T_ for a = e, h. In general,

we can introduce a 4 x 4 diffusion matrix, Dxy, with

X, Y E {Ne, Nh,Te,Th}. While the diagonal elements
of this matrix represent the self-diffusion coefficients, the
off-diagonal elements denote various mutual- or cross-
diffusion coefficients. A complete list of all the coeffi-

cients is given in Appendix C.

V. SINGLE-COMPONENT APPROXIMATION

in this section, we consider two approximations that al-

low reduction of the general two-component description
of the electron-hole plasma to a single-component one: in

the limit of strong electron-hole scattering and the often
used ambipolar diffusion approximation. Detailed analy-

sis is provided for the comparison of the two approaches
and they are found to produce consistent results in the

linear regime of description.

A. The Limiting Case of Strong Electron-Hole
Scattering

While we used the quasiequilibrium assumption in the
above derivation, which is due to ultrafast carrier-carrier

(c_-c0 scattering within each band, e-h scattering, which

is on the same time scale [29, 35], has been retained

in Eqs. (13-15), together with c-LO scattering (in sub-
picosecond range) and carrier diffusion and energy trans-

port (in nanosecond range). Thus self-consistency de-
mands that we further consider the dynamical correlation

between electrons and holes imposed by e-h scattering.
In this subsection, we take on the issue of how e-h scat-

tering reduces the general two-component description to
a single-component one for the EHP near quasiequilib-

rium. As shown in Appendix A, detailed balance (DB)
requirement for quasiequilibrium in the sole presence of

e-h scattering leads to these conditions:

T = T h , (3S)
u _ = u h , (39)

which is intuitively apparent as electron-hole scattering

is meant for equilibration between the two carrier types.
The above conditions are the same as the a posteriori

requirements needed for the ambipolar diffusion approx-
imation [36J, and they now permit us to settle the is-

sue of reducing the original two-component problem to
a single-component one if the EHP is initially neutral in

real space. Further discussions along the line of standard
ADA reduction will be presented in the next subsection.

To examine this issue in greater detail, we consider the
dynamics around the DB state by looking at the equa-

tions for momenta and energies with scattering terms
linearized around the DB state. The linearized scat-

terings terms are derived in Appendix A and the cor-
responding momentum equations are given by Eq. (29).
As we see from the adiabatic solution to these equations

[see Eq. (30)], in general, Eq. (39) is not valid. This
means that the DB is not sustainable and the correspond-

ing single-component reduction does not hold. However,
when ")'_o _ _f_h, the second term in Eq. (30) can be
neglected. The omission of the second term conveniently
leads to the conclusion of u e = u h = u, ifN e = N h = N.
Thus

u=--_ p E [O'W_ + NO,. (5¢" + q_)] (40)

where p = #_ = ph as defined in Eq. (31). Take a note
of the difference between this line of single-component
reduction and the standard ADA line, as presented in

next subsection. Here the drift velocities are equal, ir-

respective of the internal electric field (-0_). In other
words, internal field is not required to maintain equal ve-
locities. The ultrafast e-h scattering alone maintains the

charge neutrality if the system is neutral initially. It is

clear from the above discussion that the validity of equal
drift velocities for the two components of unequal masses

requires that e-h scattering dominate carrier-LO phonon
scattering. This is intuitively easy to understand from
the physical point of view. The role of e-h scattering is

to correlate electrons and holes dynamically and equili-

brate their drift velocities. By contrast, c-LO phonon



scatteringis to generatedifferentindividualdrift mo-
mentabecauseof unequalmassesandthereforeunequal
scatteringrateswithLO phonons.Whenthee-hscat-
teringstrengthiscomparableto that ofc-LOscattering,
the unequalc-LOphononscatteringratesfor electrons
andholeswill beenoughtocounteractthehomogenizing
roleplayedby e-hscattering,thusresultingin different
drift velocities.At thispoint,onemayargueif theDBis
still avalidconceptin thissituation.Wepointout that
theDBconditionasexpressedfore-hscatteringalonein
AppendixA isnolongertrue. Rather,theDBbetween
in-andout-scatteringsforagivenk-state must include c-

LO phonon scattering as well, as the latter becomes non-

negligible. Since c-LO phonon scattering is sensitively
dependent on temperature with e-h scattering being on
density, it is clear that conditions (38-39) will no longer

be valid for high temperature and relatively low carrier

density.
For now, let us continue discussion of the limiting case

when c-LO phonon scattering is much weaker than e-h

scattering. The hydrodynamic equality of drift velocities
of electrons and holes means that N e = /yh __. N will

be maintained if the EHP is neutral initially, according

to Eq. (23), the continuity equation. Major g-r contribu-

tions in R_v are the same for electrons and holes, which
will be labeled as Rlv under the single-component ap-

proximation and examined further in the next section.
As charge neutrality under strong e-h scattering can be
maintained dynamically, therefore, the Poisson equation

is automatically satisfied. The density equations for elec-
trons and holes are reduced to a single one for the plasma

density N:

O_N + Or . JN = RN . (41)

To obtain the corresponding energy equation in the

single-component case, we notice that the temperature
equality indicated in Eq. (38) signifies interdependence
of the energy equations for electrons and holes. Because

e-h scattering conserves the total energy of the EHP sub-
system, it is natural to take the total carrier energy as
the second dynamic variable. Applying Eq. (39) for the

drift velocities when summing up Eq. (25) for electrons
and holes, it is found that the total thermal energy obeys

the following equation of dynamics:

OtW + 0,. • Jw = Rw + cgtFVILO , (42)

where W = W e + I_ rh, Jw = 2uW, Rw = R_, + R_v,

OtWILo = cgtWelLO "I- c_tWhILO . In deriving the above

equation, we have assumed weak inhomogeneity in the
system so that nonlinear terms have been dropped. Up to
this point, the set of moment equations for the EHP has

been reduced to only two: one for plasma density N and
one for its total thermal energy W. Similar to Section Iv',

an equation for plasma temperature T = T _ = T h is
derived as follows:

OtT+ Or • JT + OrjN "JN -- Orjw " Yw

= jw (Rw + OtWILo) - jNRN, (43)

where Jr = jwJw - jNJ_'.

Bearing great resemblance to ordinary diffusion equa-
tions, the equations derived here, Eqs. (41) and (43),

include many-body corrections and apply to a neutral
EHP. To define the related diffusion coefficients, the cur-

rents in the equations need to be expressed in terms of

the gradients of plasma density and temperature:

JN = --DNN OrN - DNT OfT , (44)

JT = --DTlv O_N - DTT O,.T . (45)

Explicit expressions for the DCs in terms of material pa-
rameters and thermodynamic variables, N and T, are

given in Appendix D.

B. The Ambipolar Diffusion Approximation

The single-component reduction discussed in the last
subsection is valid only when e-h scattering is much

stronger than any other scatterings. In a typical III-V
semiconductor device, this is true only for the case of

high carrier density and low temperature where e-h scat-

tering is predominant over c-LO scattering. At room
temperature, these two scatterings are about the same
order of magnitude. Thus the reduction procedure above

becomes questionable. Another single-component reduc-
tion procedure is the so-called ambipolar diffusion ap-
proximation. Even though it seems to us quite difficult

to justify purely from scattering analysis the validity of
the ADA, numerical simulation by Held et al. [37, 38] has
indeed shown that the ADA is a quite good approxima-

tion at nanosecond time scale and at high density. The
difference between standard ADA and the reduction pro-

cedure described in the last subsection can be seen in the

following way. From Eq. (30), we notice that the total
current consists of diffusive and conductive parts: one

proportional to the gradient of the thermal energy and
the other one to the field (-or_), respectively. When

other scatterings are negligibly small compared to e-h

scattering, the diffusive currents for electrons and holes
are equal when the densities are the same, so that there is
no need for the conductive currents. In the more general

cases, however, non-zero conductive currents are needed
to maintain the total currents for electrons and holes to

be the same. By requiring the electron and hole currents
to be the same, an expression for the non-zero internal
field is obtained. Substitution of the internal field ex-

pression into either one of the density current expressions

leads to the ambipotar density current:

_'_ _'_ (46)j_rn = _DNNOr N _ DNTOrT ,



where the ambipolar diffusion coefficients are given be-
low:

e (47)
Trt e "YL 0 "Jr ?Tt h "YL 0

and

S} = OxW _ + NOxSe _ , (X = N,T). (48)

As seen from the above expressions for the ambipolar
DCs, they are independent of the e-h scattering rates.

This is somewhat surprising at first, since it seems to us

no previous work has explicitly noticed this point [39]. A
plausible explanation is as follows: While e-h scattering

is important for electrons and holes to effectively move
together and thus maintain the validity of the ambipolar

diffusion approximation, e-h scattering itself should not
affect the diffusivity of the e-h ensemble since such scat-

tering drives only internal dynamics. Rather, scatterings
of the e-h ensemble with the ambient determines its dif-

fusive capability in the ambient, which is the LO phonon
subsystem in our model.

To close this section we point out that the results de-

rived for the limiting case of a predominant e-h scattering
in Subsection V A and with standard ADA procedure in

this subsection agree with each other. First of all, the
derived diffusion equations for plasma density and tem-

perature are identical. At the same time two approaches
produce the same expressions for the DCs. The proof is

easily seen by comparing Eq. (47) with its counterpart
Eqs. (D4-D5) in Appendix D where explicit expressions

for all the DCs are available for the single-component
case. The results for the ambipolar temperature current

can be derived in exactly the same way as in Section IV
and thus will not be shown. Finally, we mention that

we refer to the DCs for the single-component case simply
as the ambipolar diffusion coefficients without distinction
afterwards.

VI. CARRIER GENERATION AND
RECOMBINATION:

CLOSURE OF k-RESOLVED POLARIZATION
HIERARCHY

As mentioned, the moment equations still depend on
k-resolved polarization p(k,r) through the stimulated

interaction contributions R_,lsti,_ to the density equa-
tion (41) and Rw[sti,_ to the energy equation (43). The
complete source contributions are specified as follows:

RN = _ -- "/,_N - BspN 2 + RNlstim (49)
eTJ2

Rw =  -xE9 - - B vNW + nwl ,m ,(50)

where a couple of approximations are made to obtain

the analytical form of expressions for both the injection

term and the spontaneous recombination term. First,
we neglect the detailed carrier capture kinetics that car-

riers undergo when entering the active region from the
electrodes. Instead, an empirical model is adopted by

assuming instantaneous carrier capture process for the
injection current density J with quantum efficiency _N

and r/E. The factor 0 represents the spatial profile of the

pumping current and AEg is the bandgap offset between
the quantum well and the barrier material. Second, the
spontaneous recombination term assumes a bilinear form

as we ignore the correlation between electrons and holes.

The stimulated interaction terms in the density and en-

ergy equations are given by

k

2 h2k 2

l_wlstirn = S _k _stirn(k,r) , (52)

where Rstim(k, r) is _'en by the last term in Eq. (5),
which contains p(k, r) explicitly.

To close this hierarchy, approximation to the p(k,r)
is necessary. This issue has been addressed in the past
for different special cases in two ways. The first is to

eliminate the polarization equation adiabatically as done

in Ref. [16] for the total density equation and in Ref.
[40] for the kinetic energy equation. An alternative ap-
proach is to replace the sum of the k-resolved polarization

with an effective polarization [11]. We will outline both

approaches with slight generalization beyond what has
been published in either case.

We begin with the adiabatic elimination of the polar-

ization. As was done in Ref. [41], the same adiabatic elim-
ination can be performed in the presence of non-diagonal

scattering terms in the p(k, r) equation. To proceed, we
introduce the slowly varying temporal amplitudes for the
laser field and polarization:

g(r,t) = _1[E(r,t) e -iw°t + c.c.] , (53)
1p(k, = [p(k, e + c.e.] . (54)

Then the k-resolved polarization equation is rewritten

under the rotating-wave approximations as

Off(k, r) = - [to(k) + iSd p(k, r)

-i_D(k)E (55)

i /.

where

hSk = G(TL) + h2k2/(2mr) + Oee + 5e h - hWo ,(56)

D(k) = f,_ + fh _ 1. (57)



Afterintroducingthek-resolved susceptibility Xk by def-
inition:

_(k,r) = _o_bV@E, (58)

we can write the polarization equation under the adia-

batic elimination approximation in the form:

x_ = x° + Z _(k, k')x_,, (59)
k'

where the kernel K and the zeroth-order solution are

given by

l_ki2Z_(k) (60)
x° = -i_0_¢'Th[ro(k) + i_] '

hF_(k, k') - iI4,k-k, 77(k) /_____ (61)
_C(k,k') = h [ro(k) + i_k] p_,,

This equation can be solved either by matrix inversion or

by an approximation [41] similar to the P£de method as
in the case of relaxation rate approximation [16]. Then

the final expressions for the stimulated interaction con-
tributions to density and energy changes can be written
as

.COEb_(:_ _ :_k)lEi2 (62)
k

RWlstirn =
...4d h_(k_- k'_)_*_ ___,_';

_OEb _2k2.. ]+i -_-Z _7_( X_-x_) IE?. (63)
k

While adiabatic elimination of the polarization leads to

a simple closure of the total set of equations, the resul-
tant equations have a severe deficiency, especially in the
presence of the spatial inhomogeneity. As was discussed

in detail in Ref. [11], the reason is that the adiabatic
elimination completely neglects gain dispersion. This the
reason that some alternative time-dependent polarization

equation was sought. One remedy is the so-called Effec-
tive Bloch equation (EBE) approach as discussed in de-

tail in Ref. [11]. The issue of how to combine the EBE
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approach with the energy equation was partly addressed
in Ref. [17] for the free-carrier case with a phenomenolog-

ical polarization decay constant. In the following, we will
follow the EBE approach to construct the kinetic energy

equation.

The EBE approach retains an effective (total) polar-

ization equation by microscopically computing the total

susceptibility and reconstructing the total polarization
['(r, t). As a result, an equation for/5(r, t) is obtained
which is similar in form to the standard non-diagonal

Bloch equation for a two-level system. The procedure
has been described in detail in Ref. [11] and will not

be repeated here. As can be easily seen, the total den-

sity equation depends only on the total polarization after
summing over k [11]. Therefore, R_l_ti,,_ will no longer

depend on p(k, r). The remaining difficulty is to deal
with the total kinetic energy equations which still depend

on k-resolved polarization•

Using the definition P_ = (2/V) _k p*_p(k, r), we ob-

tain from Eq. (55):

0t P_ = -i_0P_ - ,_ _p(k, r)
k

2E
- ih-_ _ l,_l:v(k),

k

(64)

where 50 = 6k[k=0 -- _k' l_,k-k,. From Eq. (64), we can
construct the following relationship:

E*O_P_+ EO_P2 = i_o [ERa* - E*P_]

• 2 h2k 2
[#*kE*f(k, r) - ILkEp*(k, r)] .(65)

Y

Using this relation, we have

Rw]_ti,,_ = _Re{E*(iSoP_ + OtP_} + RW, CA • (66)

While the first term now depends only on total polar-
ization and its derivative, the last term, standing for

the Coulomb-assisted (CA) energy change, unfortunately

still depends on p(k, r):

i _,___, h_k __W,CA -- 2_V _ [_(k',_)p*(k,_) - p*(k',_)_(k,_)]
k,k _

i h_(k _ -
= _ _ _,_k':)_(k',_)_,___,p'(k,_).

k,k _
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At this stage, we use the adiabatic elimination results for

p(k, r) to close the set of equations, since gain disper-
sion has now been included with the effective polarization

equations.
Expressing the right hand side of the total energy equa-

tion in terms of OtP was first done in Ref. [17]. Com-
paring the first term of Eq. (66) with the correspond-

ing equation in Ref. [17], we find that the term propor-
tional to the polarization decay rate is absent in our ex-

pression. This is because there the relaxation rate is a
k-independent constant introduced phenomenologicatly.

Here we have taken into account all (both diagonal and
non-diagonal) scattering terms in the polarization equa-

tions. The sum rule for the total scattering terms leads to
the disappearance of the linear decay term that survived

the k-summation in Ref. [17] by contrast.

Finally, plasma heating due to stimulated interactions
results in a corresponding temperature change which is

given by

O_T]sum = jwRwlstirn - jlVRNIs_irn • (67)

To summarize this subsection, we have outlined two

approaches to close the set of equations for the total ki-
netic (thermal) energy and carrier density by approxi-

mating the polarization equations in two different ways.

VII. LASER FIELD EQUATION AND LATTICE
TEI_IPERATURE EQUATION

In this section, we specify Maxwell's equation in a more
concrete form. Our derivation will include frequency de-

pendence of the background refractive index and the so-
called thermal lensing effect, where the background index

depends on lattice temperature. After making the slowly-
varying envelop approximation to Eq. (1), it is written
as

-V2E -c°_ E- 2iw°_o E = co_ (p 2iW0n r_
-j-j , + Pb)+ --C2 _'0C 2 \_ a EoC2 b'trb ,

(6s)
where the envelope functions Pa and Pb are defined
through

1 rD _-iwot c.c.]
Pa,b = -_ [ra,b_ + •

(69)

We assume that the background polarization satisfies
the following "constitutive relation" in frequency space

(with tilde added to the top of a variable):

/_b(_)= e0Xb(', TL)_(_), (70)

where TL stands for lattice temperature and Xb is in gen-
eral complex with real and imaginary parts defined as

usual: Xb = X; + *Xb" • We Taylor-expand Xb around a
given lattice temperature T ° and the reference frequency

a) 0:

. o±( T _ro_ OX'b Ox'b
Xb(w, TL) = xb _t --" LJ _--_L +(W--WO)-_-_ +" " " , (71)

where X ° Xb(wo, T °) = [(n_) 2 _' " 0"= - _J+_Xb and we assume
that there is no temperature and frequency dependences

of the imaginary part of ;gb (absorption). Substituting
the Taylor-expansion into Eq. (70) and Fourier-transform

the resultant expression to time domain, we will obtain

the time-domain relation between Pb(t) and E(t). After
straightforward algebraic manipulation, the equation for

the slowly varying envelope is written as follows:

-i 2 ictb
ff-_(v + K_)E + _o(_ + 9r + -_)O_Z

iwg 2E -_-,3TE ,(72)- 2-_--_po - +

where we have adopted the following shorthand notation:

K = won_____, (73a)
C

aJ0 0nb

Z_ = 1 + -_ 0--J' (73b)

n o OTL ' (73c)

0 H

K Xb (73d)_ = (_)_

The physical meanings of these parameters are obvi-
ous: _T describes the index change with temperature
and accounts for the thermal lensing effects observed in

high power laser operation, fl_ describes the background
index dispersion and thus l?_n ° gives the group velocity
index. Lastly, o_b describes the background absorption.

To complete our hydrodynamic model, we include the
lattice temperature equation, which is modified from Ref.

[4]:

O_T_ - O_(K..C;20_TL) = -%(TL - r.)

J_R'_ (74)+ c22 o,Wl_o + h_0_N + -_-/ ,

This equation takes into account equilibration to the am-
bient temperature T_ with a phenomenological rate %,
heat transfer from the EHP to the lattice due to e-LO

scattering, temperature rise due to energy transfer from

nonradiative recombination of e-h pairs, and certainly
Joule heating by current injection into an active device

with a congregate resistance R. 0nly phonon part of

the specific heat Cph of the material is responsible for
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latticetemperaturechange,andthenegligiblysmalldif-
ferencebetweenconstant-pressureandconstant-volume
specificheatofthesemiconductormaterialis ignored.In
addition,a heatconductiontermdueto phonondiffu-
sionisaddedwithathermalconductivityI(ph. Finally,

Eq. (74), together with Eqs. (41), (43), (72), the effec-
tive Bloch equations (not listed here, but see [11]), and

appropriate boundary conditions forms a complete hy-
drodynamic laser theory. This set of equations describes

couplings between lasing and heating self-consistently for

a spatially inhomogeneous semiconductor laser.

VIII. CONCLUDING REMARKS

In conclusion, we have derived a coupled diffusion

model (CDM) for the hydrodynamic variables--carrier
densities and temperatures--for the electron-hole plasma
in a semiconductor quantum well optical device. The
derivation is self-consistent in the sense that the CDM

is coupled to the optical polarization and the laser field,

such that all relevant processes and variables are treated
on the same footing. The major difference of this article
from the earlier work is that carrier-carrier and carrier-

LO phonon scatterings are treated explicitly in the mo-

ment equations when deriving the energy and momentum
decay rates. As such, all diffusion coefficients are given
as functions of the densities and temperatures via mi-

croscopical contributions. There are a few consequences
with such a derivation. First, the resultant CDM not only
consists of self-diffusion terms as most phenomenological

models do, but also contains mutual-diffusion terms be-
tween electron variables and hole variables and between

temperatures and densities. Second, many-body effects
of Hartree-Fock type appear in all of the diffusion coef-

ficients very naturally, leading to modification of the co-
efficients, which will be discussed in connection with the
numerical results for the coefficients in a subsequent ar-
ticle. Furthermore, our explicit treatment leads to some

new perspectives about the single-component reduction
and the well-known ambipolar diffusion approximation.

Finally, such a detailed treatment leads to the conclusion

that the ambipolar DCs do not dependent on e-h scatter-
ing. This work enables us to obtain and analyze all the
DCs for an optical device in the general two-component

case and under the ambipolar diffusion approximation
from a microscopic point of view. Such detailed numeri-
cal results will be presented in a subsequent article.

Another insight we gain from this study is the role of
electron-hole correlation. The degree of such correlation
determines whether the plasma subsystem can be ade-

quately described as an ensemble of correlated pairs or a
gaseous state of individual species, which in turn requires
either an effective single-component or two-component

description. Within the scope of this work there are two
distinct ways to establish such correlation: one is by e-h

scattering in k space, and the other is by static Coulomb
interaction in real space. These two types of correlation

are responsible for the two types of single-component
reduction, respectively. The first type of reduction de-
scribed in Subsec. V A relies solely on k-space correlation

(i.e., e-h scattering), and therefore the internal field that
leads to real-space e-h correlation is not needed. For the

second type of reduction shown in Subsec. V B, real-space
correlation is sufficient, and no assumption for e-h scat-

tering and c-LO scattering is necessary. In reality, both
real-space and k-space correlations exist and are responsi-
ble for the establishment of an effective single-component
behavior in most cases. We note that the ambipolar diffu-

sion approximation has not been derived self-consistently
in the literature so far. Theoretical treatments thus far

are mere adaptation to experimental observations, rather

than rigorous derivation. The combined usage of these
two types of correlation may eventually lead to a system-
atic derivation of the ambipolar diffusion approximation.

This will help elucidate when the ambipolar diffusion ap-

proximation is out of question.

Finally, a few words about the plasma model (ignoring
the excitons) are in order. As mentioned at the begin-

ning of Section II, a plausible argument that supports the
plasma model is the relatively high density in a typical
laser. While this certainly holds in the phenomenological

rate equation model which lacks of spatial dependence,
this becomes a much weaker argument in a spatially in-

homogeneous laser. It is well known that carrier density
is not uniform in the lateral direction of an edge-emitting
laser and in the transverse direction of a surface-emitting

laser due to pumping and carrier diffusion process and,

to a lesser degree, due to the interaction with laser light
field. While at the center of such a nonuniform distribu-

tion, the density is certainly above the Mott density, but

the density decreases to zero as we move towards the de-
vice edges. Typically at about the half-value position of
the distribution, the density drops below the Mott den-

sity. Such low density regions cause two problems: First,

bandgap renormalization at high density level leads to
the spectral overlap of the gain peak, where laser is reg-
ularly designed to operate, with the exciton peak of the

low density region. Thus the laser field incurs strong ex-
citonic absorption. This is especially true for gain guided
devices where the field tends to spread more into low den-

sity regions. For a very short-cavity device where mode
spacing is quite large, we may be able to design a laser to
avoid such overlap of the laser cavity modes with the ex-
citonic features. This becomes difficult for regular edge-

or surface-emitting lasers where the longitudinal or trans-

verse modes become closely spaced such that some modes
will always fall near the excitonic features. The effect of

such absorption is expected to be weak in a strongly in-

dex guided device, nevertheless. The second problem is
related to the treatment of momentum and energy de-

cay processes which affect carrier diffusion. The plasma
model is no longer valid in the low density regions, as
noted. Since the diffusion processes in such regions play
a role for the overall carrier distribution and in particular

for the density at the center, an appropriate treatment



ofthee-hsubsystemisthusnecessary.Suchatreatment
wouldrequirea theorythat takesintoaccountall the
intermediatesituationsfromanexcitonicsolid,or con-
densate,to a pureplasmaphase.This is obviouslyan
issuebeyondthescopeof thiswork,but oneneedsto be
awareof thisissuewhendealingwithastronglyinhomo-
geneouslasingsystem.
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rates.Similarratesfor theMaxwelldistributionshave
beenobtainedin Ref.[37].

Weassumethateachbandis in quasiequilibriumand
describedbyadriftedFermi-Diracdistributionfunction,
nC_=_ fk_.._k_, as given in Eq. (17), where a = e,h. Using

the second Born approximation [44], the change rate in
the distributions due to e-h scattering can be written as,
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= _ -._.-t/,_,q5(Ae_h) T, (A1)
k',q:_0

where i_,q is the Fourier component of the screened
Coulomb potential, Aeeh in the delta function, which

stands for the difference in tile total kinetic energy be-

tween in- and out-scattering, is given by % -I-ek,+q --

¢_+q where a _/3, and 7" is defined as

APPENDIX A: MOMENTUM AND ENERGY
RELAXATION RATES DUE TO e-h

S CATTERING

It is well known that ultrafast e-e and h-h scatterings
lead to carrier thermalization with a rate around 50 fem-

tosecond at typical lasing density [20, 22, 24, 27, 43].

However, the role and consequences of e-h scattering is
rather unclear. In this appendix, we will study such a
consequence of the e-h scattering within the second Born

approximation. Specifically, we will show that the DB
requirement.of the microscopic e-h scattering processes
lead to eqfial temperatures and drift velocities for elec-

trons and holes. Linearization around the DB state al-
lows us to Obtain the momentum and energy relaxation

,, B(1- riD(1 -7- ------ nk+qn k,

- - - (A2)
If the EHP is in quasiequilibrium, the DB condition

c¢ _, exp[(e__k_ 'requires that T = 0. Using 1 - n_ = n k

pTr)/kBTC_], we can factorize 7- into the following form

i

1 e kBr_ _rZ

where = and _ hk /mo
is the drift velocity. Using energy conservation, the above
expression can be rearranged as

{ [¢_+q-e_-hq'ue" ( 1 1) hq7- = g 1 - exp -kB _a T_ + kBT---'--_

by adding and subtracting the term hq-u_/kBT _. Since

Equation (A2) is valid for arbitrary k and q, and _ con-
tains no algebraic roots, it is then straightforward to con-
clude that detailed balance leads to

DB state. We make a linear Taylor expansion for the
exponential term inside the curly bracket in T, and the

resultant expression is given below:

T e = T h , (A4)

u _ = u h . (A5)

These equalities are the result of the DB requirement un-
der the condition of strong e-h scattering and have been

used for the single-component reduction in that limit-

ing case. They are duplicated in Subsection V A as Eqs.
(38-39).

Now we consider the deviation of the EHP from the

"7-" ._' --_1 ( Ta' -- Tfi') - _2" ( Ira - tt'°) -

Plugging this linearized expression into Eq. (A 1), we thus
obtain the momentum and energy relaxation rates.

The momentum relaxation rate due to e-h scattering,

as appeared in Eq. (14), is defined as
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Otp_ l_h -- -_
k

k,k',q#O

=- Z -; v,,_
k,k J ,q=_O

x [_, (r" - r') + 92-(u s - _)]

We notice that there are two terms in the momentum

relaxation, but ensuing proof shows that the coefficient
of the temperature difference term (T _ - T _) vanishes
under the DB condition. This leads to the equation for

momentum relaxation due to e-h scattering given in Eq.

(29). To prove this, we notice that the prefactor of the
term with (T _ - T _) is proportional to

Z V_q5 (Aeeh) n_+qn_,(1 - n_)(1 - n_,+q)

k,k _ ,qs_O

x %+q-e_-hq-u s k=
ks

V_qS (Ae_h) fk+qf£,(1 -- f#)(1 -- f£,+q)
k,k',q_O

x _+_ _(k+kg), (AT)
kB

which are obtained by using Eq. (A5) inside the delta

function after making the following translational trans-
formations:

k - k79 = kl ,

k' - k_D = k2 ,

then change the notation back, i.e., kl --+ k and k_ -_ k'.
Due to inversion symmetry in the prefactor of (k + k_)),

only the term proportional to k_ in Eq. (A7) survives.
We rewrite its prefactor (XkB) below:

f_+qfu, (1-fk)(1-fw+q) (e_c+q - e_) .

k,k',q_O

We recognize that the expression denotes the inte-
grated energy difference between in-scattering and out-
scattering with respect to states [ak} and [/3k' + q} un-

der detailed balance, and thus vanishes. Therefore, the
momentum relaxation term is reduced to a simple rate

equation form:

O_P_kh = -m_/_h (u _ - u _) • (A8)

where the momentum relaxation rate is given by

S) 3 27r 2 -5'¢h : - E TVs,u 6 (Aeeh) (A9)
k,k',q#O

_ _B (1 - f_')(1 - Jk +qJ kuT _ rn,.X d le-FqJ k_ \

This can be obtained by making the same replacements

and using the inversion symmetry argument. We also as-
sumed that the direction of u _ - u z is taken as the x

direction. The positive-definiteness of the above relax-
ation rate can be verified easily after accounting for the

isotropy of the EHP. Then we may replace qzk= in the

summation by k.q/2, which is related to (e_+q -e_)-e_.
Since the energy difference term vanishes after integra-

tion, the momentum relaxation rate takes the neat form:

7eh -- 2m_kBT_ E ---_l/s,qS (Aeeh)
k,k' ,q_O

a B _t_ "_eaxf_+qf_, (1 - f:)(1 - ,h,+q, q . (A10)

Next, we consider the energy relaxation term appeared
in Eq. (15) which is specifically given as

OtE_leh
2 h_k _

_k -x----Otn_ I_h (A11)

k,k _,q_O

= - _ _v_.j(_,_) _m_
k,k' ,qTtO

x [_, (T °. - T') + 92" (u _'- u_)] •

Through exactly the same manipulation and arguments
as we did for the momentum relaxation, the energy re-
laxation term cab be written in the following form,

0,zol_ = -re% (T_ - re)
-m,e_h_ ° . (_ - ue) , (A_e)

where the energy relaxation rate due to temperature dif-

ference is given by

F__h = E Tl%,q (Ae_h) (A13)
k,k',q¢O

Before closing this appendix, it is worth making two

observations: (1) the relaxation rate equation for energy,
Eq. (A12), is consistent with our previous results, Eq.
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(27),and(A8).Thus,weprove,withinlinearexpansion
treatment,that

0t [eh = -Feb (Ta - Tm) (A14)

The corresponding temperature change rate due to e:

h scattering can be written, according to Eq. (34), as
follows:

:_ 0 W _I = ehOtT_]eh = JW t leh --_/T_ (T_ -- TO) , (A15)

where the relaxation rate is given by 7_ h = j_Fe_h. Fur-
thermore, we point out that the relaxation rates are dif-
ferent for electrons and holes. The reason is two fold: first

and foremost, the Fe_h factor is inversely proportional to
the carrier mass. As compared to Eq. (A10), we immedi-

ately see a factor rnr/ma is recovered for Eq. (A13), given

that _[eh is carrier mass independent. Second, the J_v fac-
tor depends on the carrier mass in the quantum regime.
Therefore, the temperature relaxation rate is inversely

proportional to the carrier mass at low density. (2) the
second equality, Eq. (A5), is the same as what is required

in the ambipolar diffusion approximation [15, 16]. The
requirement is consistent with the intuitive understand-

ing of incoherent collisions between different species in
the EHP. These interactions mean additional frictional

force between the oppositely charged species, in addition
to the force relative to the ambient, caused by interacting

with mainly LO phonons. Such frictional drag may lead
to a reversal in the drift direction of carriers, as corrob-

orated in the study of the negative mobility of minority
carriers in semiconductor quantum wells [29-34]. By con-
trast, the ambipolar diffusion approximation is deduced

by use of charge neutrality, which is a static condition.
Interestingly, given a neutral initial condition for a sys-

tem, it will evolve and preserve charge neutrality since
there is no charge separation as the oppositely charged
components move at the same velocity, as governed by

the equation of continuity, that is Eq. (41), and Eq. (A5).
Therefore, having ultrafast carrier scattering in the EHP,
the ambipolar diffusion approximation is redundant for

an initially neutral system.

APPENDIX B: MOMENTUM AND ENERGY
RELAXATION RATES DUE TO c-LO

SCATTERING

Interaction of the EHP with the host semiconductor

crystal is dominated by the inelastic carrier-LO phonon

scattering at room temperature, while collisions with
other phonon branches are relatively weak and neglected.
In semiconductor quantum well structures, as the well

width is reduced, phonon modes could become confined
in the growth direction and interface modes are intro-

duced for small enough width [45]. On the other hand,
if the quantum well is not too narrow, calculation of the

scattering rates using bulk modes produces similar re-

sults to that obtained by incorporating both the confined
and the interface modes for a semiconductor quantum

well, if no mode-specific physics is concerned [46, 47]. In
this work, we therefore use bulk LO phonon modes of

the Einstein model for the 8 nm quantum well structure.
Under the assumption of quasiequilibrium for the EHP

and equilibrium for phonons, the momentum and energy

relaxation rates due to LO phonon scattering, atPCqLO
and Otl/V_ILO are worked out in this appendix.

First, let us put forth the necessary microscopic ingre-
dients [45]. The rate of change in carrier distribution due

to c-LO phonon scattering, according to Fermi's golden
rule, is given by

21r 12Otn°_lL° = T E [fire [5(Ae+o) n_+q(1 - n_)
q,q*

- 5(AeLo ) n_(1 - n__q)]

2rr
+ -_ Z IHo? [5(_X_7o ) ha_q(1 - ha)

q,q*

- 5(Ae+o) n_(1 =- n_+q)] , (B1)

where phonon wavevector Q -- (q, q_) is expressed in its

in-plane component q and vertical component q_, WLO is
the phonon circular frequency,/:/e and H_ are the carrier-

LO phonon scattering matrix elements for phonon emis-

sion and absorption, Ae+o = e_ -e_+q + rUOLO, and

AeLO = eg - e__q - taZLO. Using the FrShlich Hamilto-
nian, the matrix elements are given as

l/:i_ [2 e2h_OLO 2NQ + 1
- [a(q_)l _ , (B2a)2goepV

i&l
- la(qz)l , (B2b)2¢o¢pV

where 1/gp = 1/soo - 1/c, with _, (so_) being the
static (high-frequency) relative permittivity of the un-
excited semiconductor. The overlapping integral, G(q_),

is defined as f_oodzxi(z)xj(z)exp(iq_z), where Xi(z)
is the real and normalized carrier envelop wavefunc-
tion in the i-th subband which has been always taken

as the ground state in this work. The phonon den-

sity is governed by Bose-Einstein distribution, NQ -=-
1/[exp(_LOtUOLO) -- 1J, with flLO = 1/kBTLO and TLO
being the LO phonon temperature. Conservation of mo-

mentum has already been explicitly considered in Eq.
(B1).

Before calculating the momentum and energy relax-

ation rates, we point out that we will still work in the
linear regime, as in the preceding appendix, but now in
the drift velocities themselves. (Given the femtosecond

scattering time scale at typical lasing density [43, 48], it
is reasonable to expect the drifted carrier distributions

are small perturbations from the non-drift Fermi-Dirac
distributions.) The linear expansion is well known as



n_ _ f(e_) - (k_- ake_) f'(e_) , (B3)

where f'(e_) is the derivative of the Fermi-Dirac distri-

bution function f(e_) with respect to the carrier energy.
Now we are prepared to compute the rates. The mo-

mentum relaxation term is defined in the same manner

as in the carrier-carrier scattering case, that is
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Inversion symmetry leads to zero contribution from the
non-drift part of the distribution, so we only need to
focus on the linear term in k_ in Eq. (B3). Lengthy but

straightforward integration over the phonon wavevector

Q produces a concise integrated solution. We only give
a few intermediate steps in the deduction and the main

result below:

2
OtP_[LO =_ -_ E hk OthelLO.

k

¢Otpc_IL 0 -- (27r)4_.0c p dk hk dq q

5(AeLo) (NLo + f:)f_¢__q(1 -- f:_q) + kBT_ [f__q - (NLo + 1)] f:(1 - f:)

{ hk'ua "N h(k+q) .u _ _ })- 5(Ae+o) _( LO + f_+q)f_(l - f_) + kBT_ ' [f_ - (NLo + 1)] fk+q(1 - f_+q) .

where NLO = NQ since the LO phonons are dispersion-
less in the Einstein model and

Fll(q) - q dqz ]G(q_)[2/(q2 +q_)
7r

= dzl dz2 X1 zl X1 z2
J--O0

xexp(-q[zl-z2Dxl(z2)xl(zl). (BS)

Then we evaluate the integrals in the momentum relax-
ation term individually by using polar coordinates for

both k and q. During the integration the direction of
the drift wavevector is taken as in the x direction. Af-

ter term-collecting and -canceling, the final momentum
relaxation term is found to be

OtP [LO =--"/LO P ,

with the momentum relaxation rate given by

(B6)

Similar to the carrier scattering, it is found, after care-
ful evaluation of the carrier energy rdaxation due to LO

phonon scattering, that the higher-order drift term can-

cels out according to Eq. (28) as far as the carrier ther-
mal energy is concerned. Thus we will only show the
partial contribution from the non-drift first term in Eq.

(B3) below. To assist computing the energy relaxation
term, summation over the phonon wavevector in Eq. (B1)
can be carried out directly so that the procedure becomes

more transparent. After tedious algebraic manipulations,

the expression becomes

O:_ILo : C1(/1(_) {NLof(g_ -- ]-_JLO)[1-- f(e_)]

--(NLo + 1)f(e_)[1 -- f(e_ -- h_Lo)]}

+ I2(k) {(NLo + 1)f(e_ + NOLO)[1--/(e_)]

--NLof(e_) [1 - f(e_ + NOLO)])) , (B9)

where Cl = (m_e2coLO)/(2rrh2eoep), while the two k-

dependent integrals are given as

jr0 °°
7_o = Co Io(k) {[NLo + f(e+)] f(e+) [1 - f(e+)]

+ [NLo + 1 -- f(e)]f(e+) [1 -- f(e+)]}de, (B7)

where Co = (m_,e2_LO)/(87r2h2eoCpkBT) and e+ = e +

NOLO- W'e define k+ = x/k 2 + 2rn_aaLO/h, which is used
in the integral:

k+k_ Fll(q) dq/1 (k) = . ,(B10)
Jk--k_

_/(2kq) 2 _ (q2 + 2ma_Lo/h) 2

[k+ +k Fll (q) dq
I2(k) = ! ,(Bll)

.,k+-k ¢(2kq) 2 _ (q2 _ 2rn_coLO/h) 2

F+ +_ q__F_(3)_dq
Io(k) = -,k+-k ¢(2kq) 2 _ (q'_ _ 2rnac,,LO/h) 2

(BS)
where k_ = v/k _ - 2m_wLo/h. The integrals are related
by the transformation: I1 (k+) = I2(k). Using the above
equations for I1,2 (k) and integrating over the polar angle



ofwavevectork, the carrier thermal energy relaxation is
determined to be

_0 °(3
OtW_ILO = --c2 deI2(k)

x {(NLo + 1)f(e+)[1 - f(e)]

-- NLof(e)[1 -- f(e+)]} , (B12)

2 2W2 2 3where c2 = (m_e no)/(27r h _Oep). Plugging the
Fermi-Dirac distributions in, it can be shown that a fac-

tor proportional to the temperature difference between
the carriers and the host lattice exists. From equa-

tion (34), we can write the temperature change due to
c-LO scattering in the form

cgtT [LO _ JWOt W ILO

= -F_o(T _ - TLO), (B13)

where F_o is defined as follows: We note that the ex-
pression inside the braces of integrand in (B12) can be
rewritten as follows:

(NLo + 1)f(e+)[1 -- f(e)] -- NLOf(e)[1 -- f(e+)]

= (NLo + 1)f(e+)[1 -- f(e)]

x {1 - exp [(_a - _LO)BWLO)]} . (B14)

Obviously the term is proportional to the temperature
difference between the carriers and the phonons. There-

fore, the constant can be explicitly written as

/7FLO_ = C23w"_ (NLo+I) &h(k)f(e+)[1-f(e)]

x 1 - exp [(_ - ZLO)hO2LO)] (B15)
T_ -rLo

The constant is positively definitive for T _ > TLO. By

taking the limit of T _ _ TLO in the above expression,
we then obtain Newton's cooling rate between electrons

(or holes) and LO phonons:

t_dLO

r_o = c2j_v(NLo + 1)ksT_ °

/o/x de h(k)I(e+) [1 - f(d] • (B16)

Here, the results are independent of the assumption that
the lattice and LO phonons are in thermal equilibrium:

Tc = TLO, despite that it is assumed so in this work.

APPENDIX C: CARRIER DIFFUSION
COEFFICIENTS IN GENERAL

TWO-COMPONENT CASE

In this appendix, we only give the expressions for

density-related diffusion coefficients of a general two-

17

component plasma in semiconductor quantum wells. Us-

ing the solutions for electron (a = e) and hole (a = h)
momenta P_ given in Eq. (30), we can write the density
current for the a-component in the form:

JN. = -- E DN-XO,-X - --O,._2q,_ , (C1)
x

where X E {N e, N h, T _, Th}. We have introduced vari-
ous DCs and conductivities which are listed as follows:

DN_No = Pa [(1 + r/_)S_w + H_No] , (C2)

DN_T'_ = #o, [(1 + rl_)S_o + HTB_] , (C4)

= [N (1 + - N#] , (Ca)

where a ¢ _q and

S_c = OxW _ + N_Ox& _ , (X = NO,T _) ,

HIe = N°Ox& _ , (X = N z, T s) .

The factor #_ is defined in Eq. (31). The various rates

used above have been given in the first two appendices.
The corresponding temperature currents and associated
DCs can be readily written down according to the rela-

tion in Eq. (37) and will not be listed here.

APPENDIX D: SELF- AND
MUTUAL-DIFFUSION COEFFICIENTS UNDER
THE SINGLE-COMPONENT APPROXIMATION

In this appendix, all diffusion coefficients for the single

component case are explicitly given in terms of material
parameters, scattering rates, and distribution functions
of the EHP in a semiconductor quantum well structure.
We consider the limiting case of strong e-h scattering.

This is true when the plasma density is high enough such

that e-h scattering dominates over other scatterings for
momentum relaxation. At the end, we introduce termi-

nology for the diffusion coefficients, which shall be exten-
sively used in the subsequent article.

From the relations obtained in Subsection V A, it is

easy to show that the currents for density and tempera-

ture are given, respectively, by

JN = Nu, (D1)

JT = [2jw (W/N) - jN] JN , (D2)

where we have used JT = jw Jw--jNJN and Jw = 2uW

with W being the total plasma thermal energy.
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Recall that the drift velocity of plasma u is given by

Eq. (40) and now we rewrite it in terms of the gradients

of density and temperature as follows:

# (ONW + NON&g) &N
u - N

12 (OT_ z + NOThe9) OfT (D3)
N

where 5e 9 = 5e e T 5e h is the total Hartree-Fock bandgap

renormalization. As defined in Eqs. (44) and (45), the

DCs are finally written as

DNN = P(ONW + NON&g) , (D4)

D_<r = # (OTW + NOT&g) , (D5)

DTN = [2jw(W/N) - jN]DNN, (96)

DTT = [2jw(W/N) - j_,] D_'T. (D7)

In the two-dimensional case, analytical expressions for

the energy and carrier density are given by

(kBT_) 2

_ mo In (1 + e-s) dx, (BS)

Na _ m,_kBT_ In [1 + exp(flM*_)] (D9)
7rh2

The derivatives of H_ with respect to No` and T °` can

also be written explicitly:

ON_W°_IT . = kBTC_Oa, (D10)

OT_Wa[N,_ : 2kB/30`Wo` -- kBNC_90` , (Dll)

where _a, defined as

8a = [1 + exp{-flo`p})] ln[1 + exp{/3ap})] , (D12)

can be considered as a degeneracy factor, which goes to

one in the nondegenerate limit. Both (D10) and (Dll)

take their classical values in the nondegenerate limit.

We also note from the definition of/z [Eq. (31)] that

h
(D13)

when the c-LO scattering can be ignored compared with

e-h scattering. In this case, all the diffusion coefficients

defined in this appendix are the same as in Subsec-

tion VB. This means that the two approaches lead to

the same definition of ambipolar DCs.

Before closing this appendix and for the benefit of dis-

cussions in the text, we introduce the following terminol-

ogy for the DCs. The coefficient is dubbed self-diffusion

when it relates the gradient of a variable to its current,

and mutual-diffusion otherwise. In addition, variable

name is used to label the coefficient that relates to the

variable gradient. For example, DTN is called mutual-

diffusion density coefficient accordingly.
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