Experimental Characterization of Gas/Gas Injector Flowfields

Propulsion Engineering Research Center
Penn State University
University Park, PA 16802

JANNAF Meeting - 2002
April 8-12, 2002
Destin, Florida

Propulsion Engineering Research Center
PennState
OUTLINE

• Objectives
• Approach
• Rocket Setup
 ➢ Fuel & Oxidizer Preburners
 ➢ Shear Coaxial Injector
 ➢ Rocketdyne Injector
• Experimental Setup
 ➢ Flow Conditions
 ➢ Raman Setup
• Measurements
 ➢ Fuel & Oxidizer Preburner Characterization
 ➢ Raman Measurements to Date
• Summary
OBJECTIVES

- Study Flowfield Characteristics of Gas/Gas Injectors
- Provide Experimental Data to Aid CFD Modeling at NASA Marshall Space Flight Center (MSFC)
APPROACH

• Design/Fabricate Optically-Accessible Rocket Chamber for Uni-element Flowfield Characterization Utilizing Laser-based Diagnostic Techniques

• Fuel and Oxidizer Preburners Provide Realistic Hot-gas Operating Conditions Based On Full-scale Conditions For a Full-flow Engine Cycle
FUEL & OXIDIZER PREBURNER DESIGN

• Preburners Designed to Integrate Directly With Study Injector and Main Chamber
• Each Preburner Has Two Injection Stages:
 ➢ Main O$_2$/H$_2$ Impinging Injector For ‘Hot Core”
 ➢ Downstream Dilution Injectors
• Oxidizer and Fuel Preburners Made With Monel and OFHC Copper, Respectively
• O$_2$/H$_2$ Torch Ignitor For Each Preburner
GAS-GAS INJECTORS

SHEAR COAXIAL INJECTOR

ROCKETDYNE INJECTOR
THE BOEING COMPANY
US PATENT NO. 6,253,539

Propulsion Engineering Research Center
ROCKET SETUP

OXIDIZER PREBURNER

MAIN CHAMBER

FUEL PREBURNER
MAIN ROCKET CHAMBER

WINDOW SECTION
MAIN CHAMBER DESIGN

• Heat-sink Design Main Chamber Fabricated with OFHC Copper With 1.5 in. Diameter Internal Cross-section

• Main Chamber Designed for 1000 psia Operation

• Optical Access Provided By Quartz Window

• Modular Design Allows Easy Configuration Changes for Optical Measurements in 0.5 in. Axial Increments

• Water-cooled Nozzle For O_2/H_2 Operation At Near Stoichiometric Conditions (~ 6500 R)
Target Flow Conditions

<table>
<thead>
<tr>
<th></th>
<th>Full Scale Design</th>
<th>Uni-element Experiment*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preburner Propellants</td>
<td>LOX/GH₂</td>
<td>GO₂/GH₂</td>
</tr>
<tr>
<td>Main Chamber Pressure (psia)</td>
<td>3000</td>
<td>750</td>
</tr>
<tr>
<td># of Injection Elements</td>
<td>91</td>
<td>1</td>
</tr>
<tr>
<td>Injector Element Geometry</td>
<td>FULL-SCALE</td>
<td>FULL-SCALE</td>
</tr>
<tr>
<td>Total flowrate per Element (lbm/s)</td>
<td>1.178</td>
<td>0.295</td>
</tr>
<tr>
<td>Ox. Preburner O/F</td>
<td>165</td>
<td>GO₂/GH₂ and H₂O**</td>
</tr>
<tr>
<td>Ox. Preburner Temperature (°F)</td>
<td>~700</td>
<td>~700</td>
</tr>
<tr>
<td>Fuel Preburner O/F</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Fuel Preburner Temperature (°F)</td>
<td>~900</td>
<td>~900</td>
</tr>
<tr>
<td>Injection Velocity</td>
<td>SAME</td>
<td>SAME</td>
</tr>
<tr>
<td>Ox. Preburner/Fuel Preburner Flowrate Ratio</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Total O₂/Total H₂</td>
<td>6.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

* ¼ Pressure Condition
** Propellants Yield Correct Temperature and Species as Full-scale
RAMAN SPECTROSCOPY

- Used to Determine Major Species Concentrations Downstream of the Rocket Injector
- Modular Rocket Design Allows Optical Access to Be Moved to Various Locations
- ICCD Camera With Bandpass Filters Allows O_2, H_2, and H_2O Measurements With One Species Per Rocket Firing
RAMAN SPECTROSCOPY

- Raman Signal Specific to Each Species
- Linearly Proportional to Species Number Density
RAMAN SPECTROSCOPY SETUP
(FILTER APPROACH)

Test Cell

1.5 m focusing lens

Instrument Cell

532 nm Nd:YAG Laser

Joule meter

Pulse Generator

Camera Controller

ICCD Camera

Polarizer

Filters

Beam Stop

Rocket Test Section

Image Storage & Processing Computer

Propulsion Engineering Research Center
RAMAN FILTERS

- O₂ Filter:
 Center Wavelength: 581 nm
 Bandwidth: 10 nm

- H₂O Filter:
 Center Wavelength: 662 nm
 Bandwidth: 10 nm

- H₂ Filter:
 Center Wavelength: 682 nm
 Bandwidth: 10 nm
SPECIES MEASUREMENTS

(ROCKETDYNE INJECTOR; 0.5 in. AXIAL DISTANCE)
TEMPERATURE PROFILE

(ROCKETDYNE INJECTOR; 0.5 in. AXIAL DISTANCE)
SUMMARY OF INITIAL EXPERIMENTS

• Raman Spectroscopy With Filter Approach Prevented Discrimination of H₂ Rotational Line From O₂ Vibrational Line

• Significant Heat Loss in Preburners Resulted in Lower Temperature Gases Exiting From Both Preburners

• Decision to Run Fuel Preburner at Higher O/F to Obtain Correct Gas Temperature

• Decision to Run Oxidizer Preburner at O/F=165 (GO₂/GH₂) To Hopefully Yield Correct Gas Temperature
PREBURNER TEMPERATURE EXPERIMENTS

• Operated Each Preburner Individually To Assess Hot Gas Temperature
• Thermocouples Mounted at Various Locations Within Preburner Provided Hot Gas Temperatures
• For Fuel Preburner, O/F Was Progressively Increased to Yield Correct Exit Gas Temperature (~ 900 F)
• For Oxidizer Preburner, Only GO₂/GH₂ Propellants Were Used at O/F=165 Since GO₂/GH₂ Runs Hotter Than LOX/GH₂
FUEL PREBURNER ONLY
(TEMPERATURE MEASUREMENTS AT O/F=0.45)

Gas Temperature At Main Injector ~ 350 F
FUEL PREBURNER ONLY

(TEMPERATURE MEASUREMENTS AT O/F=1.12)

Rocket Injector Face
Fuel Preburner
Main Chamber
Rocket Injector
Fuel Preburner (Right Side, Rocket End)
Fuel Preburner (Left Side, Rocket End)

Gas Temperature At Main Injector ~ 900F

Temperature (Deg. F)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (sec)

 PENNSTATE

Propulsion Engineering Research Center
OXIDIZER PREBURNER ONLY
(TEMPERATURE MEASUREMENTS AT O/F=165)

Gas Temperature At Main Injector ~ 700 F
REVISED FLOW CONDITIONS

<table>
<thead>
<tr>
<th></th>
<th>Initial Flow Conditions</th>
<th>Revised Flow Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preburner Propellants</td>
<td>GO_2/GH_2</td>
<td>GO_2/GH_2</td>
</tr>
<tr>
<td>Main Chamber Pressure (psia)</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td># of Injection Elements</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Injector Element Geometry</td>
<td>FULL-SCALE</td>
<td>FULL-SCALE</td>
</tr>
<tr>
<td>Total flowrate per Element (lbm/s)</td>
<td>0.295</td>
<td>0.322</td>
</tr>
<tr>
<td>Ox. Preburner O/F</td>
<td>GO_2/GH_2 and H_2O**</td>
<td>GO_2/GH_2 at O/F=165</td>
</tr>
<tr>
<td>Ox. Preburner Temperature (°F)</td>
<td>~400 (measured)</td>
<td>~700 (measured)</td>
</tr>
<tr>
<td>Fuel Preburner O/F</td>
<td>0.45</td>
<td>1.12</td>
</tr>
<tr>
<td>Fuel Preburner Temperature (°F)</td>
<td>~350 (measured)</td>
<td>~900 (measured)</td>
</tr>
<tr>
<td>Injection Velocity</td>
<td>SAME</td>
<td>SAME</td>
</tr>
<tr>
<td>Ox. Preburner/Fuel Preburner Flowrate Ratio</td>
<td>4.0</td>
<td>2.733</td>
</tr>
<tr>
<td>Total O_2/Total H_2</td>
<td>6.0</td>
<td>6.65</td>
</tr>
</tbody>
</table>
RAMAN SPECTROSCOPY SETUP
(SPECTROMETER APPROACH)

- Allows Single Shot Collection of All Major Species
- Allows Shot-to-shot Comparison of Species Concentrations
- Reduces Ambiguity Regarding Hydrogen Rotational Interference With Oxygen Signal
PRESSURE PROFILE FOR FULL FIRING
(SHEAR COAXIAL INJECTOR, F.P. O/F=1.12, O.P. O/F=1.65)

- Main Chamber (MC) P1
- FP Chamber P1
- OP Chamber P1

Pressure (psia) vs Time (sec)

Propulsion Engineering Research Center
RAMAN MEASUREMENTS
(SHEAR COAXIAL INJECTOR; 0.5 in. AXIAL DISTANCE)

RADIAL LOCATION

O₂, H₂O, H₂

WAVELENGTH

+ r

- r

Propulsion Engineering Research Center
SPECIES MEASUREMENTS
(SHEAR COAXIAL INJECTOR; 0.5 in. AXIAL DISTANCE)
TEMPERATURE MEASUREMENTS
(SHEAR COAXIAL INJECTOR; 0.5 in. AXIAL DISTANCE)
SUMMARY

• Experimental Testbed For Uni-element Gas/Gas Injector Studies At Realistic Conditions Has Been Fabricated and Verified

• Experiments for Characterizing Mixing/Combustion of Gas/Gas Injectors With Raman Spectroscopy Has Been Initiated
ACKNOWLEDGEMENTS

• Funding From NASA Marshall Space Flight Center Under NASA Contract/Grant NAG8-1792 Is Acknowledged

• The Authors Thank Mr. Larry Schaaf For Help In Conducting The Experiments

• The Authors Thank Mr. Kevin Tucker From NASA MSFC and Dr. Shahram Farhangi From Boeing Rocketdyne For Supporting The Experimental Program