Thiokol Propulsion

NARC Rayon Replacement Program

Domsjö Fabriker AB Introduction

Presented by:

Kenneth P. Wilson

ATK/Thiokol Propulsion R&D Laboratories

03 April 2002
Introduction To Thiokol

1926 - Dr. Joseph C. Patrick attempts to make antifreeze, but instead makes the first manmade rubber. He calls it “Thiokol” combining the Greek work *theion* (sulfur) and *kolla* (glue)

1929 - Thiokol Corporation is formed

1957 - Thiokol buys an isolated tract of land near Promontory, Utah for a plant to manufacture and test large solid rocket motors

1959 - First Air Force Minuteman heavy weigh case is static test fire

1965 - Joint venture with Hercules to develop propulsion for Poseidon (C3) for the Navy. This eventually led to contracts for Trident I (C4 and D5)

1974 - NASA’s Space Shuttle solid rocket motor development contract is awarded to Thiokol

1981- The first Space Shuttle (STS-1), *Columbia*, is launched using Thiokol solid rocket motors

1987- The Redesigned Solid Rocket Motor (RSRM) is successfully static fired

1988- *Discovery* is launched using Thiokol’s RSRM (STS-26) - return to flight

1997- Bob Crippen comes aboard as a president of the newly formed Aerospace Group – Cordant Technologies

2000 - Cordant Technologies purchased by Alcoa Aluminum

2001 - Thiokol sold to ATK – Sell finalized on 13 April
ATK’s Lanes of Excellence

Aerospace

- Composites
- Propulsion

- Growth opportunity
- Expanded capability
- Long-term business
- 100% mission success
Facility Locations

Other Sites
- Thiokol Composites & Resins (TCR), Ogden
- Marshall Space Flight Center (MSFC), Huntsville
- Kennedy Space Center (KSC)
- Cape Canaveral Air Station (CCAS)
- Vandenberg Air Force Base (VAFB)
- International sites — Russia, Ukraine
Northern Utah Facilities

Space Operations

Defense and Launch Vehicles

Test
ATK Aerospace Program Summary

- Minuteman: 7%
- Titan: 3%
- Delta II/III/IV GEMs: 10%
- Trident: 7%
- Tactical Propulsion: 11%
- Structures: 12%
- Shuttle: 33%
- Other: 16%
RSRM Facts
(Reusable Solid Rocket Motor)

- During the first two minutes of flight, the twin RSRMs:
 - produce 36,000,000 horsepower (26,856,000 kilowatts) (as much as 102,600 corvettes)(134,328 Volvo S80’s)
 - burn 2,215,000 pounds (1,000,000 kg) of propellant – approximately 10 tons (8400 kg) per second
 - boosts the shuttle to an altitude of 30 miles (48 km)
 - Shuttle reaches a top speed of 3094 miles/hr (5000 km/hr)
- The exhaust gas reaches a temperature of 6000°F (3300°C) (approx. 2/3 the temperature of the sun’s surface).
- Each RSRM develops the equivalent power to service 630 homes for one month.
- Thiokol makes 110,000 quality control inspections on each flight set.
- 41 Metric Tons of dissolving pulp are used for each flight.
Background

• North American Rayon Corporation (NARC) discontinued production of Aerospace Grade Rayon in September 1997 for financial reasons
 • This rayon is a precursor to carbon cloth phenolic (CCP)

• NASA purchased a stockpile of NARC rayon prior to the shutdown to support RSRM production through at least 2005

• Second rayon vendor to go out of business during Space Shuttle Program
NARC Rayon Replacement Program Objectives

- Find the best replacement fiber for NARC rayon used in the RSRM nozzle CCP considering
 - Performance
 - Process ability
 - Variability
 - Long term availability
 - Cost
- Incorporate knowledge gained in ASRM, Improved Ablatives Program, Solid Propulsion Integrity Program (SPIP), STS-79 Pocketing Investigation, and Engineering Enhancement Program to reduce CCP material variability and ensure predictable performance
- Goal to stay within existing design envelope
- Preference given to “Off the shelf” materials rather than custom made
RSRM Rayon Replacement Program Plan

Phase I - Candidate Screening
Objective: Evaluate fiber candidates using RSRM baseline processes
Status: Completed in February 2000. 21 fiber candidates tested and 12 selected for further evaluation and optimization

Phase IA - Process Optimization Pathfinder
Objective: Better understand the process parameters for the most promising candidates by performing optimization studies
Status: Completed in June 2000. Over 700 process studies were performed. Four types of fibers were selected for further evaluation in Phase II

Phase II - Process Optimization
Objective: Verify the results of Phase IA by evaluating the four most promising fibers under several processing parameters.
Status: Completed in April 2001. 36 candidates tested. Best Enka Candidates progress to Phase III, Lyocell candidates further optimized in Phase IIA

Phase II A - Lyocell Optimization
Objective: Improve the performance of the lyocell candidates before proceeding with Phase III
Status: Completed in November 2001. 32 Trials tested.

Phase III - Variability Study
Objective: Determine the lot-to-lot and within lot variability of the best candidates. Characterize these four candidates and select the replacement
Status: 4 of 6 Enka lots have completed testing. First NSP Lyocell lot has completed testing, First SGL Lyocell lot in process. Estimated Completion Date: September 2002

Phase IV - Qualification
Objective: Complete characterization of the selected material and demonstrate acceptable performance in three full scale static test motors
Status: Scheduled to start in September 2002
Phase I Summary

- The objective of Phase I was to screen prospective fiber candidates using baseline RSRM processes
- Twenty-one fibers were tested from the following fiber families
 - Staple rayon
 - Tire cord rayon
 - Continuous filament textile rayon
 - Aerospace grade rayon
 - Staple lyocell
 - Continuous filament lyocell
- The most promising candidates from each fiber family were selected for further evaluation in Phase IA
Phase II Summary

- The objective of Phase II was to demonstrate the acceptable performance of the most promising fibers in conjunction with selected optimized processes.

- Acordis Enka textile rayons, carbonized by both SGL Carbon and NSP, were selected for further evaluation in Phase III - Standard NARC processes were selected.
N Candidates (Enka Textile Rayon)

- Manufactured in two Acordis plants (Ede, Netherlands and Obernburg, Germany)
 - Most Common Use: Textiles (Jacket linings largest single use)
- Woven by Highland Industries in a 5 Harness Satin pattern
- Both SGL Carbon and NSP are using the baseline NARC carbonization process, with minor adjustments
- RSRM – evaluating Ede and Obernburg
Enka Textile Rayon Vendor Summary
(Candidate N)

ATK Thiokol Propulsion
Role: Fabricate RSRM nozzle

Borden Chemical
Louisville, Ky
Role: Supplier of phenolic resin

Cytec Fiberite - Winona, Mn
Role: Impregnate carbon cloth with resin

SGL Carbon - Valencia, Cal
Formerly: Polycarbon
Role: Carbonize Rayon fabric using baseline process

National Specialty Products
Fostoria, Oh
Formerly: Amoco
Role: Carbonize Rayon fabric using basic process

Highland Industries - Cheraw, SC
Role: Weaving yarn into white cloth

Middleberg Yarn Processing Co. - Selinsgrove, Pa
Role: 6-Ply yarn into larger denier

ICF - NYC/NJ
Role: US Distributor of Enka

Acordis - Gorzow, Poland
Role: Yarn Packaging

Acordis - Obernberg, Germany
Formerly: Akzo Nobel and ENKA GmbH
Role: Potential Rayon Yarn Vendor

Acordis - Ede, Netherlands
Formerly: Akzo Nobel and ENKA GmbH
Role: Potential Rayon Yarn Vendor

Domsjö Fabriker AB
Dissolving Pulp Vendor
N Candidates (Enka Textile Rayon)

- **Pros**
 - Closest to NARC in process ability, carbon properties and structural performance

- **Cons**
 - Rayon long term availability is questionable

- **Vendor status**
 - The European Commission has refused to give consent for the formation of Newco (merger of Acordis and Lenzing cellulose lines)
 - Effect on the Ede and Obernburg plants unknown at this time
RSRM Summary

- **Two fibers still under consideration**
 - Acordis Enka Textile Rayon
 - Acordis Staple Lyocell

- **Enka Textile Rayon Status**
 - Four of the six lots in Phase III have completed testing
 - The remaining two lots are currently being woven with testing to be completed by mid summer

- **Final candidate selection is scheduled for September 2002**
Rayon Criticality to Space Shuttle Program

• Manned space flight is inherently very high risk (Astronaut Safety is #1)
 • Shuttle assets and program costs are very expensive

• Shuttle Benefits
 • Hubble/Chandra telescopes - space science breakthroughs
 • International Space Station- space science, earth science, life science
 • Recent earth 3-d mapping - safer navigation systems

• Shuttle Propulsion Elements require high reliability
 • Orbiter main engines - Reliability benefits from prelaunch firing
 • RSRM - Reliability is dependent upon consistent materials and processes, and change control
Rayon Criticality (cont.)

- Rayon is used as basic precursor for RSRM nozzle insulators
 - Single points of failure (e.g. no redundancy)
 - Less than full understanding of physics behind insulative performance

- Relatively small thermal safety factors in various regions of the nozzle
 - Small tolerance for performance variance

- Safety is dependent upon conformance to material acceptance specifications and process controls

Reliability in simple terms is based on using the “same” material, the “same” process every time and sharing the process of change
Fly Safely

- Improve Technical Understanding and Assessment Skills
- Launch Site Processing Insight/Oversight
- Process Control: Thiokol and Supplier
- Aggressive Anomaly/Incident Investigation Process

Requirements Control

Engineering Design Control

Safety & Mission Assurance Participation

Ongoing Static Test Motor Program

Hardware Recovery and Post flight Assessment
Fly Safely Through Supplier Process Control

“A VARIETY OF TOOLS ARE REQUIRED”

ESTABLISH PROCESSES AND CONTROL CHANGES

Baseline Control

Change Management Systems

MONITOR PROCESSES

Inspection Plans

On-site Product Inspections

REINFORCE PROCESS CONTROL CULTURE

Audits

Ad Hoc Visits and Teleconferences

Symposiums

Awards
Supplier Process Change Control

- Suppliers sign statement as part of RFQ process that they have or have not made changes since last procurement
- Supplier contract Terms and Conditions require notification of change(s)

#6 PRODUCT CHANGES
The CONTRACTOR shall provide in writing advanced notification to the
Contract ThioKol Procurement Representative of any changes in
tooling, facilities, materials, or processes at the contracting
supplier or their sub-tier supplier(s) that could affect the ThioKol
contracted product. This includes, but is not limited to, fabrication,
assembly, handling, inspection, acceptance, or testing.

- Notification required for
 - ThioKol suppliers
 - ThioKol supplier’s sub-tier supplier(s)
RSRM Program Requirements

- World class vendor
- Fiber meets established technical requirements
 - Can survive weaving, carbonization and resin impregnation processes
 - Processing ease; slitting, wrapping etc...
 - Composite properties; meeting thermal and structural margins of safety in RSRM environment
- Fiber meets quality requirements
- Repeatability
- Periodic technical support (e.g. Anomaly investigations)
- Long term availability