Automation of NDE on RSRM Metal Components

Presented by:
John Hartman, ATK Thiokol Propulsion
Mark Kirby, Westinghouse AMDATA

Thiokol Propulsion
Automation of NDE on RSRM components

Acknowledgements
The authors would like to acknowledge the following people and organizations for their contributions to this effort

Mike Suits Marshall Space Flight Center, NASA
Craig Bryson Marshall Space Flight Center, NASA
Scott Teunis Progressive Technologies, Inc.
Dave Kay ATK Thiokol Propulsion
Automation of NDE on RSRM components

- Past NDE on RSRM metal components
- Why change?
- Advantages/Improvements
- Elements of Automated Inductive Inspection System
- Current Status
Past NDE on RSRM metal components

- Historically, nearly all NDE has been visually based
 - Magnetic particle inspection of steel components
 - Liquid penetrant of aluminum components
 - Semi-automated and manual eddy current inspections of select holes and joints

- Goal of inspections: detect surface cracks or discontinuities in both new and refurbished metal components
Past NDE on RSRM metal components

Case Magnetic Particle Inspection Bay
Past NDE on RSRM metal components
Past NDE on RSRM metal components

TSE Magnetic Particle Inspection Bay
Past NDE on RSRM metal components

WHY CHANGE?
Why Change?

- Biggest Reason: *Increase Reliability*
- **Reliability**: Assurance that critical sized flaws will not go undetected
- Remove the strong dependency on operator skill and attentiveness
Why Change?

- Safe flight is certified by Proof Test, NDE, or both
- Based on in-house POD study, current magnetic particle inspections do not reliably screen for Critical Flaws in ALL regions
 - Minimum Detectable Flaw Size (90/95) > Critical Flaw Size
- These areas must be certified by proof and/or eddy current
Why Change?

- Solution:
- Implement an Automated Inductive Inspection System (AIIS) with the capability of reliably detecting critical sized surface flaws
Advantages of the AllS

- Control & Repeatability
 - Inspections, data acquisition & analysis are programmed
 - Same inspection & analysis each time
 - Detection sensitivity is calibrated
 - Pressure is no longer on the operator & his attentiveness
Advantages of the AllS

- Better detection capability
 - Overall, AllS will find smaller flaws more reliably (at a 90% POD/95% CL).
 - Current sensitivity levels are set at 0.1" and 0.25" long cracks (2:1 length-to-depth ratio).
Advantages of the AILS

- **Data Storage**
 - All data and images are stored
 - This can be useful in developing history for a part and for determining the nature of flaws (manufacturing vs. service)
Advantages of the AllS

• Reduction of waste streams
 • No solvents or chemicals to dispose of
 • Reduction or elimination of acid etch
 • Also extends lifetime of aluminum parts
Advantages of the AllS

- Potential reduction of process time for Case Hardware and Aluminum Nozzle Hardware
 - Possible elimination of acid etch process
 - Possible elimination of glass bead
Elements of AllS

5 independent axes
7 axes when inspecting various holes
Elements of ALLS

Close up of wrist
6th & 7th axes for hole inspection sleds

Elements of AllS
Elements of AllS

- Turntable is on rails, extends into high bay for loading and offloading of components
- Components are mounted on adjustable chocks

Rails
Elements of AlS

- Each component incorporates multiple "probe sleds" used to inspect different part geometries.
- All sleds slide onto wrist using dovetail joint.
Elements of AllS

Various Sleds
Elements of AllS

- Operator interface: Part Inspection Program (PIP)
 - Operator selects part; then probe sled

<table>
<thead>
<tr>
<th>Part Inspection Program Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial-Revision Number: r1</td>
</tr>
<tr>
<td>Part Number: 1U50097-9.19 Shim</td>
</tr>
</tbody>
</table>

Inspection
- Sled: 100420-01_IDH.sld
 - Aft End Up ID Holes (Ye 'Ole Log Shoe pointing circ).025
 - Cal In Block ID Out 0 Deg 47.6"
 - ID Holes
 - Cal Out Block ID Out 0 Deg 47.6"

Analysis
- Cal Out Block ID Out 0 Deg 47.6"
- Aft End Up ID Membrane Section
 - Cal In Block ID Out 0 Deg 47.6"
 - ID Membrane
 - Cal Out Block ID Out 0 Deg 47.6"
- Aft End Up OD Membrane Section
 - Cal In Block OD Out 0 Deg 47.6"

Results
- Aft End Up ID Holes (Ye 'Ole Log Shoe pointing circ).025
- Cal In Block ID Out 0 Deg 47.6"
- ID Holes
- Cal Out Block ID Out 0 Deg 47.6"
- Aft End (Ye 'Ole Log Shoe) 0.75
- Cal In Block ID Out 0 Deg 47.6"
Elements of AllS

- All regions and surfaces inspected with the sled are selected, and the AllS inspects those surfaces
- Each "region" starts & ends with a calibration scan
Elements of AllS

Cal standard with notches

Impedance & strip chart display
Elements of AllS

- Scan surface of interest
Elements of AIS
Elements of AllS

- PIP keeps track of data acquired and analyzed.

Analysis
- Cal Out Block ID Out 0 Deg 47.6"
- Aft End Up ID Membrane Section
- Cal In Block ID Out 0 Deg 47.6"
- ID Membrane
- Cal Out Block ID Out 0 Deg 47.6"
- Aft End Up OD Membrane Section
- Cal In Block OD Out 0 Deg 47.6"

Surface ID Bottom

1 at freq 1 for Area Amplitude > 100.0
for an area of 6 contiguous points
(13.716, 4.600) = 111.0 (10 points counted)
(31.176, 4.700) = 122.0 (6 points counted)

Rule 3 - Big_crack2 - Y data on probe

OK
Elements of ALIS

- After all data is acquired, analysis results can be printed.
- All auto analysis findings are reviewed for final evaluation.
- C-scan images are also independently reviewed by the operator in a pseudo real-time mode.
Elements of AllS

- Part is off-loaded and next part is loaded on
Thiokol Propulsion

Current Status

- AllS is now inspecting flight hardware concurrently with the certified NDE process (MT, PT, ET, UT).
- Once all qualification paperwork and approvals are obtained, the majority of the visual and manual inspections (MT, PT, ET) will be deleted.
- Select areas that tend to more frequently have cracks will continue to be double inspected (AllS & MT).
Concluding Statements

- An automated eddy current system has been designed and built, and is being implemented to inspect RSRM (Space Shuttle) metal components

- The system provides a significant increase in inspection reliability, as well as other benefits such as data storage, chemical waste reduction and reduction in overall process time