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Abstract

We present an interpreted language and system supporting the visualization of unstructured meshes

and the manipulation of shapes defined in terms of mesh subsets. The language features primitives
inspired by geometric modeling, mathematical morphology and algebraic topology. The adaptation of

the topology ideas to an interpreted environment, along with support for programming constructs such

as user function definition, provide a flexible system for analyzing a mesh and for calculating with shapes
defined in terms of the mesh.

We present results demonstrating some of the capabilities of the language, based on an implementation

called the Shape Calculator, for tetrahedral meshes in R 3.
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1 Introduction

Computing a high quality numerical solution within a domain is intimately tied to constructing a high
quality meshing of the domain. A mesh in R3 decomposes the domain into polyhedral cells. Most meshes

are classified as either structured, unstructured, or a hybrid combination of the two. In a structured mesh,

the vertices can be indexed in a regular manner, and the cells are a uniform type. For example, in R 3 the
polyhedral cells may be all hexahedra, and the vertices of the mesh may be indexed as if they were in a

3-dimensional array. In an unstructured mesh, there is usually no implicit neighbor information in the vertex
indices, and there may be a mix of cell types in the mesh. In one of the most common types of unstructured
meshes in R 3, all the polyhedral cells are tetrahedra.

In order to verify the quality of a mesh, scientists typically employ both quantitative and visual techniques.

In some visualization and analysis techniques, one can take advantage of the regularity present in a structured

mesh. For example, given a structured mesh wrapped around an aircraft wing, it is usually easy to identify
the mesh vertices on the wing surface, or to obtain vertices close to but not exactly on the surface. One can

also obtain an overall visualization of a structured mesh in R 3 by displaying surfaces in the mesh defined by
holding one of the three mesh vertex indices constant. In the case of unstructured meshes, the more general
organization of the mesh leaves fewer options for the scientist attempting to grasp the overall mesh structure.

Typically the application that generates the unstructured mesh will identify some subset of polygonal faces

of the mesh as special, such as the triangles on an aircraft body, and a visualization application can easily

display those faces. There are a few other standard visualization techniques, such as constructing cutting
planes through the mesh [SK90], but in general the choices are very limited.

In this article we introduce a language and visualization system intended to provide flexible support for •
unstructured mesh analysis and visualization. A key concept in the system is that of shapes. Shapes are
defined by subsets of the mesh cells, including lower-dimensional cells such as triangles, edges and vertices.

We have implemented an interpreter and a visualization application based on the interpreter, which we call
the Shape Calculator. Our current implementation supports working with shapes in 3-dimensional simplicial

meshes. Using the calculator, one can interactively specify and manipulate shapes, display the shapes, and get

quantitative information about the shapes, including plots. The calculator language includes programming
constructs such as function definition and conditional statements, so one can also develop algorithms for
visualization and analysis.

The following section contains a short overview of some previous work related to the Shape Calculator.

In Section 3, we review definitions that will be needed in later sections. In Section 4 we describe the shape
calculator language, followed in Section 5 by a description of the programming constructs in the language

used in the later examples. Section 6 presents a short overview of the calculator implementation. In Section 7
we present several examples illustrating how the system can be used, and in Section 8 we conclude with some
thoughts on how the language would generalize to other types of meshes, such as those with non-simplicial
cells.

2 Previous Work

The Shape Calculator has properties that qualify it as both a modeling system and as a mesh visualization

system. As a modeling system, the Shape Calculator has many predecessors, including some which include

a modeling language. Paoluzzi et al. [PBCF93] describe a dimension-independent system for modeling
with simplicial complexes, including a manipulation language. Their system is very general, and it includes

numerous modeling capabilities. Pascucci et al. [PFP95] also describe a dimension-independent modeling
system where their primitives are convex cells. In contrast to the systems above, the Shape Calculator
requires that all shapes be defined in terms of simplices from a single decomposition of the whole space,

the mesh M. This requirement makes the Shape Calculator less applicable as a general purpose modeling
tool. On the other hand, for mesh analysis, where we are given the mesh initially, the requirement that all

simplices be from a common simplicial complex M is not a significant drawback. Furthermore, restricting
the "building blocks" that the user has available for defining shapes allows many optimizations, improving
the interactive performance of the system.
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As an unstructured mesh visualization tool, the Shape Calculator has fewer predecessors. FAST [B+90]

is a large, modular system for the visualization of computational fluid dynamics data. The module surferu
in FAST supports the display of a whole unstructured mesh, or surfaces that have been predefined by the

application generating the mesh. The module shotet in FAST allows the user to select various subsets of
the tetrahedra in a mesh, based on geometric criteria such as volume or circumscribing sphere radius. The

Shape Calculator is much more general in terms of the shapes that it can represent, compared to surferu.
The language also contains primitives for evaluating tetrahedra as in shotet. Currently the calculator has

fewer built-in geometric primitives than shotet, though we plan on adding moreto the calculator in the
near future.

Mesh View by Gitlin and Johnson [GJ96] is a more recent tool that offers both visual and quantitative
means of analyzing tetrahedral meshes. Mesh View includes a "growth algorithm" visualization technique

where one can specify a tetrahedron and the system grows the shape outwards by adding tetrahedra, based on
connectivity. Mesh View also supports some editing of a mesh. The Shape Calculator, through its interpreted

language, supports a more general and flexible approach to the manipulation of shapes for mesh visualization
and analysis. For example, the growth algorithm in Mesh View could easily be expressed as a variation of

the Dilate operation described later. The calculator does not currently support mesh editing, as found in
Mesh View, though the addition of such support to the Shape Calculator is a long term goal.

3 Definitions

3.1 Open and Closed Sets

Let D(a, b) be the Euclidean distance between points a, b C _3. An open ball centered at c with radius p

is the set of points Bp(c) = {x ] D(x, c) < p}. A set A' C_ R 3 is an open set if for all x E X there exists
aBp(x) C Xforsomep> 0. The complement ofXisy= R3-X. A closed setX CR 3 is a set whose
complement is open. The interior of a set X, Int X, is the union of the open sets contained in X. The closure

of X, C1 X, is the intersection of all closed sets containing A'. The boundary of X is Bd A' = C1 A' - Int A'.

3.2 Simplices, Complexes and Shapes

A k-simplex is the convex hfill defined by the set of k + 1 points T E R3. The points are assumed to be in

general position, which in this case means that any point in T cannot be computed as an affine combination
of the remaining points in T. In R 3 we have 0, 1, 2 and 3-simplices, corresponding to vertices, edges, triangles

and tetrahedra, respectively. The dimension of a k-simplex, Dim a, is k. A subset of the set of points T
defining a simplex v defines another simplex a, a face of _-. Simplices a and T are incident if one is the face

of the other. A simplex a defined by a proper subset of T is a proper face of T. Tetrahedra, for example,
have triangles, edges and vertices as proper faces. The interior of a simplex a, Int a, is the space occupied

by a minus the proper faces of a.

A simplicial complex )_ is a collection of simplices satisfying two conditions:

1. If a is in K:, then every face of a is in K:.

2. The intersection of al, a2 E K: is either empty or a face of both al and a2.

If £: is a simplicial complex, then )U C/: is a subcomplex if it also satisfies the simplicial complex conditions.
The i-skeleton of a simplicial collection C is C(i) = {a E C I Dim a _<i}.

The shape of a simplicial collection C, written IC], is ]CI = U_ec Int a. The shape of a simplicial complex
is a closed set. Note that in the previous definitions, as well as in the following sections, we use C to signify

an arbitrary subset of simplices, and K: to indicate a simplicial complex.

4 The Shape Calculator Language

The shape calculator language and interpreter are designed to be easy to use and relatively unsurprising

syntactically. The style is procedural, similar to that typically used in algorithm examples in the literature.



Figure1: Shownaboveis a typicalsurfaceandsymmetryplanemesh.In somecasessetsof triangles
specifyingsurfaces,suchasthetopandbottomof thewing,areincludedaspartof adataset.Givena
descriptionof thesurfaces,thecalculatorcancomputeanimagesuchasthatdiplayedbelow,illustrating
theseamsbetweenpatches.

Withinthecalculatorenvironmentit iseasytogivenamestoobjectsandtocomputewiththem.Withabit
moreeffortonecandefinesmallroutinesto customizethecapabilitiesofthesystemandexperimentwith
smallalgorithms.Belowweconsidersomeof theessentialfeaturesofthe language,in preparationforthe
examplesto comein latersections.

4.1 Types and Collections

Theshapecalculatorlanguageincludesbuilt-inbasictypescommonto manyprogramminglanguages:
booleans,integerscalars,floating-pointscalarsandcharacterstrings.Thelanguagealsosupportstherep-
resentationof individualsimplices.Identifiersbeginningwith thecapitallettersT,F, Eor V,followed
immediatelybyoneormoredigits,aretreatedasspecialliteralsspecifyingsimplices.Forexample,theuser
canwriteTIO00to specifythetetrahedronwith theidentitynumberof 1000.Similarly,onecanspecify
triangles(faces),edgesorverticesusingspecialidentifierswithF,EorVprefixes.

Torepresentcollections,thelanguageprovidestwotypes.Thefirst,SimplexSetExpr,representssetsof
simplices.SimplexSetExprinstancesareusedextensivelyinthecalculatorsystem,andmostoftheexamples
in thesectionsbelowworkwithSimplexSetExprarguments.Thesecondtypeofcollectionprimitiveis the
array.Arraysareintegerindexedcollectionsofobjects,andtherangeofvalidindicesarespecifiedwhenthe



Var. Description
$ tl_ecurrentlydisplayedsimplexcollection
$$
$0
$M

thepreviouslydisplayedsimplexcollection
theemptycollectionofsimplices
thewholemesh

Table1"Specialcalculatorenvironmentvariables.

Operator Boolean Scalar Simplex Set

(unary) - not negation complement
+ or addition set union
- subtraction set difference

• and multiply intersection
/ division

== equality equality equality

!= inequality inequality inequality

(<), <= (strictly) less than (proper) subset
(>), >= (strictly) greater than (proper) superset

Table 2: The semantics for unary minus and the infix operators with various types of arguments.

array is constructed. For instance "a - Array (1, 10)" would construct a 10 element array named "a". Any

type of object can be stored in each array element. Array elements can be accessed using square bracket

syntax, for example one can write "a[10]". One can assign to an array elementusing the ":=" assignment
syntax, for example "a [5] := 0".

4.2 The Calculator Environment

The calculator environment is a collection of name-value pairs, where each pair is also known as a binding.

A variable is a name that references a binding; legal variable names for the Shape Calculator are similar to

those in C or Pascal. The user has the choice of defining new variables or assigning to existing variables.
The definition syntax uses the "=" token, for example "my_variable = 3". Assignment statements use the
the ":=" token, for example "v := 4". In the Shape Calculator language a binding is global (i.e. can

be referenced from anywhere after it is created) except if it is defined within the body of a user function.

Bindings defined within a user function are limited to the body of the function.

The interpreter places a few special variables in the environment using the convention of starting the
variable names with a "$" (see Table 1). The user can choose variable names starting with "$" and even

assign to the special variables, but it is not recommended.

4.3 Infix operators

An infix operator such as + can be used in expressions where the operator is written in between two arguments.

The Shape Calculator language supports the infix operators +, -, *, /, ==, !=, <, <=, > and >=. The infix
operators are polymorphic, in other words they take on different (though conceptually similar) meanings

depending on the type of the arguments. Many of the infix operators can accept boolean, scalar or simplex

set arguments, though both arguments have to be of the same type. Table 2 lists the semantics for unary

minus and the infix operators, given boolean,, scalar or simplex set arguments.
Figure 1 illustrates a basic use of the boolean operators with simplex set arguments. The mesh input

typically includes a specification of the triangles on the surface of interesting objects, for instance on the body

of an aircraft. In some cases the surface patches are further classified, for example to distinguish whether a

triangle is on the wing top or bottom. By taking the union of the patches, one can easily see whether there



areanysurfacetrianglesthataremissingfromthesurface,andthushavenotbeenclassified.Furthermore,
usingintersectiononecanseeif thereareanytriangleswhichhavebeenassignedto morethanonepatch.

4.4 Topological operators

Modelingsystemswhichfeaturebooleanoperators,suchasthosepresentedin theprevioussection,arenot
thatunusual.In thissectionwepresentoperatorswhicharemorelikelyto befoundin textsonalgebraic
topologythaninmodelingsystems(seeforexampleMunkres[Mun84]).Thetopologicaloperatorsmakeit
easyto guaranteethat acollectionofsimplicesisacomplex,to groworshrinkshapes,andto selectthe
interiororboundaryofashape.

•Thetopologicaloperatorsaredefinedin termsofthesimplicesin J_4 and their relationship as faces to

one another. One way of visualizing this relationship is in terms of an incidence graph. An incidence graph
represents each simplex as a node and includes an edge between the node for k-simplex a and the node for
(k + 1)-simplex _- if a is a face of r. We draw the graph so that the k-simplices are all in one row, with

the rows ordered by dimension, and the 0-simplices at the bottom. The left side of Figure 2 shows a small

example complex with labeled" vertices, and to the right is the corresponding incidence graph. For ease of
illustration we use a two-dimensional example, though it should be clear that the same concepts can be
applied in three or more dimensions.

f

abc ace bcf cde cdf def efg

a b c d e f g

Figure 2: A small example mesh $M and the incidence graph for $M.

In the descriptions below, note that all of the topological operators can accept as an argument a collection
of simplices that is not necessarily a complex. In cases where one prefers to work only with complexes it is
easy to get a simplicial complex from any collection using the closure operator.

4.4.1 Closure

The closure of a simplex collection C is defined as

Cl(C) = {o 6 M I o" _<-,- e C},

f

simplices Cl(simplices)

Figure 3: An example application of the C1 operator, given the argument simplices containing the vertex f,

the edge ab and the triangle cde. Note that edges and vertices are only drawn if they are part of a collection.

For example edge cd is not part of the original collection of simplices, but cd is in the Cl result.



wherea < T means that a is a face of r. The closure operation adds any simplices necessary to make C a

complex: IC1(C) I is the smallest closed superset of ICI. Figure 3 illustrates the use of C1 with an argument
consisting of an edge ab, a triangle cde and a vertex f. Note how the faces a E Avl added by closure (drawn

from the wholemesh $M illustrated in Figure 2) can be found by following all possible paths downwards from
the vertices ab, cde and f in the incidence graph of Figure 2.

4.4.2 Star

The star of a simplex collection C is defined as

st(c) = {_ E M I _ > o e c}.

The star operation adds any simplices necessary to get a shape that is the smallest open •superset of ICI.
See Figure 4. In the example incidence graph of Figure 2, all the simplices in the star of 0-simplex c can

be found by following the paths upward from node c. As with C1, any added simplices are drawn from the
whole mesh $M (illustrated in Figure 2).

vertex St (vertex)

Figure 4: An example application of the St operator.

4.4.3 Interior

The interior of a simplex collection C is defined as

Znt(C)= {o E c I_ < _ _ _ E c}.

The shape of the interior of C is the largest open subset of IC]. One can see whether a E C is part of the
interior using the incidence graph by starting at the node corresponding to a and testing whether every node
_- reachable by traveling upwards from the a node is als0 in C. Figure 5 illustrates an example use of Int.

dipper Int (dipper)

Figure 5: An example application of the Int operator.

4.4.4 Boundary

The boundary of a collection C is defined as

Bd(e) = cl(e) - Int(C).

Figure 6 illustrates an example using Bd. In R3, the boundary of a solid object would include the triangles,

edges and vertices defining the surfaces of the object. Using Bd one can convert from a solid representation

of an object to a boundary representation.



dipper Bd(dipper)

Figure 6: An example application of the Bd operator.

4.5 Miscellaneous Operators

4.5.1 Skeleton

The/-skeleton of a collection C can be accessed using the Sk operator. Sk takes two arguments, the first

should evaluate to a simplex set expression, the second to an integer specifying the value for i. For example,
Sk($, 0) returns the vertices of the currently displayed simplicial collection.

4.5.2 Cardinality

The cardinaIity of a set S is a count of the number of elements in S. In the Shape Calculator, the cardinality
of a simplex set expression can be accessed using the Card operator. For instance, Card($M) returns the
number of simplices in the whole mesh. Given an optional second integer argument i, Card returns the
cardinality of i-simplices in the first argument.

4.5.3 Show and Plot

The Show operator takes a single argument, and if that argument is a simplex set, Show displays it graphically.

Given an argument which is not a simplex set, Show writes a textual representation of the object out to
the interpreter window. Show is useful for displaying intermediate results of incremental algorithms and for
producing simple animations.

Plots of arrays of values can be generated using the Plot command. The plotting functionality of

the calculator is implemented using the application _nuplot [WK95], which is run as a subprocess of the
calculator. Plot takes one or more array arguments, all of which must have the same range of indices. Plot

generates a temporary file where each line contains an array index value and the value at that index for

each of the array arguments. Plot also accepts an optional final argument: a character string specifying
additional commands to send to Gnuplot, such as commands specifying axis labels or which columns of
numbers to use from the input file. An example where the Plot command is used to display a histogram
can be found in Section 7.2.

4.5.4 Volume, SurfaceArea and CircumsphereRadius

The Volume, SurfaceArea and CircumsphereRadius operators take a single simplex argument and return
the corresponding measure. The Volume operator can also take a SimplexSetExpr argument and return the

volume of the object, computed by summing the volumes of the individual tetrahedra. Surfacehrea is also
defined for a simplex set argument C as the area sum of one side of the regular triangles plus the area sum of

both sides of the singular triangles, where regular triangles are the face of one tetrahedron in C and singular

triangles are not the face of any tetrahedron in C. Triangles which are the face of two triangles in C (i.e.
interior triangles) do not contribute towards the area total.

5 Programming the Shape Calculator

Programming constructs enhance the power of the calculator primitives by allowing the user to define new

operators in terms of existing operators. The calculator supports a large set of constructs based on standard



programminglanguagefeatures,suchas"for"and"while"loops.Belowwereviewa smallsubsetofthe
constructs,forusein thefollowingsection.

In theShape Calculator, every statement is required to return a value when evaluated. In this respect

the language is similar to languages such as Scheme [AS85]. At first glance it may seem unnatural to define
return values for some types of statements, but doing so ultimately makes the evaluation rules simpler and
easier to remember.

5.1 Blocks

A block is a sequence of 0, 1, or more than 1 statements; multiple statements are separated using semicolons.
Blocks are delimited by reserved words such as then and endif, as in the examples below. When a block is

evaluated, the interpreter returns the value of the last statement in the block. If the block is empty, then a

special EmptyExpr value is returned.

5.2 Conditional Expressions

Conditional expressions in the Shape Calculator language take one of two forms:

if.bool_expr then bIock_ endif

if bool_expr then block_ else blockf endif

Every if statement must end with an endif. An if statement is evaluated by first evaluating the bool_expr

and then evaluating the true block or false block, depending on the boolean result. The value returned by
an if statement is the value of the evaluated block. If the booLexpr evaluates to false and there is no else

clause, then the special EmptyExpr value is returned.

5.3 "For" Loops

The calculator language supports two variations of "for" loop construction. The first form is similar to

that used in the language C, with an initialization statement, a completion test statement and an increment

statement, followed by the loop body. For example: "for ± = 1; i <= 10; i := i + 1 do sum := sum
+ a[i]; endfor". The second form is applicable to collections represented by either an array or by a

simplex set. The form requires a variable name, a collection and a_block of statements forming the body

of the loop. For each value in the collection, the given variable is assigned that value, and then the loop

body is evaluated. For instance, to compute the volume "v" of a simplex collection "c", one could write: "v
= 0.0; for t in (c - Sk(c, 2)) do v := v + Volume(t); endfor". Instances of both forms of "for"

statement may be found in the histogram example in Section 7.2 below.

5.4 User-Defined Functions

User functions are defined with the following form:

define funname ( args) block enddefine

The args list is a comma separated set of formal argument names. From the perspective of the user, arguments

are passed by value, except for arrays. Within a user function, one can define new local variables using
"=" statements, or assign to existing variables using ":=" statements. User functions can call themselves

recursively. The value returned by a user function is obtained by evaluating the block representing the
function body. Since the evaluation of every statement returns a value, an explicit return statement is not

necessary.
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Figure 7: The Shape Calculator user interface.

6 Implementation

The Shape Calculator features an object-oriented design, implemented in C++. The interpreter portion of

the system was written using the compiler development tools :rex [Les75] and yacc [Joh75]. The interpreter
parses user input into trees composed of gxpr subclass instances. Interior nodes of the parse tree are made

from Funca:tlExlar instances, for example to represent a function such as P:tus and its two subtree children.
There are several types of leaf nodes in a typical parse tree, such as integer scalar nodes and identifier nodes.

The result of evaluating a parse tree is another Expr subclass instance. One of the most commonly occurring
result types is S±mplexSetgxpr, which represents sets of simplices. Since every simplex a that could be in a

S±mlalexSetExpr is from a static, common universe mesh ,g4, it is not necessary to store detailed information
about each a in a 8±mplexSetExpr instance. Only a single bit for each a E ]_4, indicating whether a is in a

given instance, is necessary. The S±mplexSetExpr class is implemented using bit vectors, one each for each

dimension of simplex. Bit vectors support the efficient addition and removal of simplices from a collection,
and boolean operations taking bit vectors as arguments can be computed quickly.

The user interface for the Shape Calculator is illustrated in Figure 7. The upper window displays the
current collection of simplices, and the user can interactively rotate and zoom the collection using the

mouse. In the lower window the user can type in and evaluate expressions. If the result of an evaluation
is a S±ml_lexSetgxpr instance, then the graphics window is updated. The text line between the graphics

window and the expression evaluation window is also updated with information about the current collection
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of simplices. The values fO through f3 list the number of 0:simplices through 3-simplices in the current
collection. If the current collection is a simplicial complex, then b0 through b2 list the Betti numbers t30

through 132. The Betti numbers describe basic topological properties of the complex, for example ;30 specifies
the number of connected components. The Betti numbers are computed interactively using an incremental

algorithm developed by Delfinado and Edelsbrunner [DE95].

6.1 Performance

Tables 3 and 4 list example data sets and the typical performance of some basic operations applied to those
data sets. The timings were made on an SGI Onyx2 (195 MHz R10000 microprocessor) with 512 MBytes

of main memory. Workstations configured with less main memory could also run the Shape Calculator
comfortably. The "Tori" data set appears later in Figure 11. The "Aircraft.2" data set appears in Figures 1
and 9.

The first two example operations involve the built-in primitives + (union)and St. Boolean operations such

as union are computed by evaluating the operators with the corresponding bit vectors of the SimplexSetExpr

arguments. Thus the boolean performance is primarily a function of the total number of simplices in _4 (i.e.
the size of the bit vectors). The performance of the topological operators such as St is also dominated by

the total number of simplices in _4, though the execution time is slightly slower given an argument with a
large number of simplices. Dilate, described in Section 7.1, is an example of a simple user-defined operator

combining St and C1. Like St and C1, the performance of Dilate is primarily influenced by the the number
of simplices in .M.

The Comp operator, described in Section 7.3, supports the selection of connected components. Comp is

defined recursively and its execution time varies a great deal, depending on how many recursive iterations
are necessary. The two examples listed in Table 4 show best case and worst case conditions. The call

Comp (components, components) represents the case where no recursion is necessary. On the other hand,
Comp(vertex, components) represents the case where typically many iterations are necessary to grow the

initial vertex to fill the selected regions. For instance, the second Comp example for the Aircraft_2 data set
required 67 iterations in order to select the component.

The user function volume_histogram_plot, described in Section 7.2, is an example where a user routine
processes individual simplices. In this case the routine obtains the volume of each tetrahedron as a pre-

requisite to computing a histogram. An example of the resulting plot, generated for the "Aircraft_2" data
set, can be seen in Figure 10. Currently operators such as Volume and CircumsphereRadius compute their
results on demand. The performance of routines using these operators could be increased if quantities such

as volume were precomputed during the calculator initialization.

Data set Vertices Edges Triangles Tetrahedra Total SimpHces
Tori 800 6993 12197 6003 25993

Affcra__l 13832 87587 143881 70125 315425

Aircraft_2 19048 122867 204034 100215 446164

Table 3: The data sets used for the performance tests.

7 Example User-Defined Functions

In this section we present examples demonstrating how new functions can be written using the calculator

language. One of the greatest strengths of an interpreted environment is the ease with which one can
interactively experiment within the system. The following examples are intended to give a small sample of

how the system can be used.
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Operation Tori Aircraft_l Aircraft_2

+ (union) 1. le-4 1.2e-3 1.6e-3
St 4.9e-2 4.7e-1 5.9e-1

Dilate 1.1e-1 8.6e-1 9.7e-1

Comp (components, components) 5.0e-2 4.6e-1 6.0e-1
Comp (vertex, components) 8.8e-1 3.4el 4.9el

volume_histogram_plot 1.4e0 1.6el 2.2el

Table 4: Timings for some typical operations in the Shape Calculator (in seconds).

7.1 Dilation and Erosion

Dilation and erosion operators allow the user to grow and shrink shapes--the Dilate and Erode operators

below are inspired by similar operators in mathematical morphology [Ser82]. In mathematical morphology,
one can think of shapes as represented by subsets of vertices from a graph. In R 2, the vertices are typically

placed in a regular rectangular or hexagonal pattern, for example corresponding to pixels in an image.
Vincent [Vin89] considers the more general case where the vertices are not necessarily regularly positioned.

The Shape Calculator generalizes on the representation of shape used in mathematical morphology by offering
not only vertices but also higher-dimensional simplices to build shapes. Dilation and erosion in the calculator
are defined as:

define Dilate (k) Cl (St(k)) enddefine;

define Erode(k) Cl(k- St(Bd(k))) enddefine;

As a firstexample ofthe use of Dilate, we considera mesh visualizationtechnique based on successive

dilations.For ease of illustration,we begin with a mesh in R2, using an earlierimplementation of the

calculator.The upper portionof Figure8 illustratesthe whole mesh, jr4.We definea new functionthat

generatesthe boundariesofsuccessivedilationsas:

define dilate_boundaries(dilation, i, n)

if i == n then

Bd (dilation)

else

Bd(dilation) + dilate_boundaries(Dilate(dilation), i + I, n)
endif

enddef ine ;

Assuming that the simp_ces on the boundary ofthe airfoilshave previouslybeen assignedto the variable

airfoils, we can visualizethe mesh using:

dilate_boundaries(airfoils, 0, 5) ;

The lowerhalfofFigure8 illustratesthe result.Note that we couldalsoplacea Show statementwithinthe

dilate_boundaries routineto view intermediateresultsas a simpleanimation. In RS the same definition

for dilate_boundaries would be applicable,and the dilationboundaries would in generalbe a surfaces.

Each successivesurfacewould tend to occludethe previousone,though the occlusionmay not be a problem

ifthe surfaceswere viewed asan animation.One couldalsouse,Erode ina similarmanner, exceptthatone

would startwith the whole mesh and then stripaway successivelayers.

Dilate could have otheruses as well.For example, considerthe case where the the user may wish to

obtain the verticesof the mesh that are closeto,but not on the body of an mrcraft. Using Dilate, the

nearby verticescan be specifiedby

Sk(Dilate(airplane), 0) - airplane;
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Figure 8: A mesh in R2 and successive dilation boundaries computed using dilate_boundaries.

where the simplices on the surface of the aircraft have been previously assigned to the variable airplane.
Sk(Dilate(airplane), 0) returns the vertices both on and nearby the airplane body; after subtracting

airplane only the off-body vertices remain. Figure 9 illustrates an airplane and the nearby vertices obtained
with Dilate.

As in mathematical morphology, we can also combine dilation and erosion to get opening and closing

operators:

define Open (k) Dilate (Erode (k)) enddefine;
define Close (k) Erode (Dilate (k)) enddefine ;

The Open operation can be used to open gaps between objects which are tenuously connected, Close can be
used to close small holes in objects. Close also has potential for use in grouping neighboring objects, such

as individual vertices, into larger connected components.

7.2 Histogram Plotting

The built-in operators of the calculator provide basic primitives, such as Volume and CircumsphereRadius,

which can be used to analyze individual simplices. Using the function definition of the language, one can

build more interesting analysis routines, including plotting routines. As an example, the following two
functions demonstrate how Volume and Plot could be used to compute and display a histogram showing a
distribution Of tetrahedral volumes:
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surface_triangles + Sk(Dilate(airplane), 0) - airplane

Figure 9: An illustration of the Dilate operator (surface_triangles = airplane - Sk(airplane, l)).

define histogram_plot (data, n_bins, min_range, max_range)

bin = Array(0, n_bins - I) ;

mid_bin = Array(0, n_bins - 1);

range = max_range - min_range;

for i = 0; i < n_bins; i := i + 1 do

bin[i] := 0;

mid_bin[i] := min_range + (i + 0.5) / n_bins * range;

endf or;

k = n_bins / range;

for i = MinIndex(data); i <= MaxIndex(data); i := i + 1 do

index = Int ((data[i] - min_range) * k) ;

if 0 <= index and index < n_bins then

bin [index] := bin [index] + 1 ;

endif ;

endfor;

Plot(mid_bin, bin, "set title 'Histogram'; plot 'Y,s' using 2:3 with boxes");

enddef ine ;

define volume_histogram_plot (n_bins, min_volume, max_volume)

tetrahedra = $M - Sk($M, 2);

volumes = Array(l, Card(tetrahedra)) ;

i=l;

for t in tetrahedra do

volumes[i] := Volume(t) ;

i := i + I;

endf or;

histogram_plot (volumes, n_bins, min_volume, max_volume) ;

enddef ine;

Figure 10 illustrates an example plot computed with volume_histogram_plot. The histogram shows
the distribution of tetrahedral volumes for the airplane data set used earlier in Figures 1 and 9. Note that
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Figure 10: A histogram plot generated using volume_histogram_plot (volume in mesh coordinate units3).

volume_histo_eun_plot takes arguments specifying the range of volumes to use for the plot, so tetrahedra
with volumes outside the range are not counted in the histogram bins. For the plot shown in Figure 10, only
tetrahedra with volumes between 0.0 and 0.01 are included in order to highlight the volume distribution for

small tetrahedra.

7.3 Connected Components

A typical need when working with a shape consisting of several connected components is to choose some

component subset. For example, one may want to measure the volume or surface area of individual compo-
nents. In the Shape Calculator, connected components can be selected using the operators Comp and 0Comp.

Comp expects both of its arguments to be closed sets, 0Comp expects both arguments to be open sets. Both

operators start with a set of selected seed simplices and a set of regions to choose from. Both repeatedly
dilate the selected shapes, restricting the dilation growth to the given regions. Termination occurs when

there is no more growth in the restricted dilation. The two operators are implemented as:

define Comp(selected, regions)
selectedl = St(selected) * regions;
if selectedl > selected then Comp(Cl(selectedl), regions) else selected endif;

enddef ine ;

define 0Comp(selected, regions)

selectedl = Cl(selected) * regions;
if selected1 > selected then 0Comp(St(selectedl), regions) else selected endif;

enddef ine ;

The definitions for Comp and 0Comp differ only in the exchanged roles of C1 and St. Note that more than

one connected component can be selected at a time by either operator.
For example, consider a domain containing two interlinked tori. The whole mesh, $M, contains the two

tori surfaces as well as simplices exterior to the tori. $M is pictured in the upper left of Figure 11. The
tori surfaces, assigned to the variable surfaces, are pictured in the upper right. Assume we are given a

complex consisting of a single vertex on the closer torus surface, assigned to the variable seed. The result of
Comp (seed, surfaces) is shown in the lower right of Figure 11, along with the 0-skeleton of the tori surfaces
for reference. Given one torus surface, surfacel, we could obtain the second torus surface by surfaces -

surf ace I.
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Figure ii: An illustration of the Comp operator.

8 Conclusion

We have presented a language supporting the visualization and analysis of unstructured meshes. The lan-
guage contains a relatively small set of primitives, yet is powerful enough to perform operations which help

reveal the structure of a mesh and assist the user in analyzing a mesh. The primitives presented in this article
apply to simplicial complexes in spaces other than R3. Furthermore, the primitives of the language could

easily be generalized to work with complexes which are not composed exclusively of simplicial cells• The in-

cidence graph, which represents the face relationships between cells, readily generalizes to the non-simplicial
case, and primitives such as St and Cl could easily work with other types of cell complexes• Thus the shape

calculator language could provide a common means for manipulating shapes based on either structured or
unstructured meshes•

In the short term future, we anticipate adding more geometric capabilities for analyzing cells, such as

primitives for measuring edge lengths and various angles. In the longer term, we anticipate adding the

capability to access the numerical solution data associated with the mesh, when available. Such data could

be used as an argument to cell selection criteria, or perhaps as data for shading the shapes.
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