Diode Laser Pumped Far-Infrared Local Oscillator Based on Semiconductor Quantum Wells

K. Kolokolov, J. Li, C. Z. Ning
NASA Ames Research Center, T27A-1 Moffett Field, CA 94035
Email: kolokolov@nasa.gov
D. C. Larabee, J. Tang, G. Khodaparast, J. Kono
ECE Department, Rice University, Houston, TX 77251
S. Sasa and M. Inoue
EE Department, Osaka Institute of Technology, Japan

Terahertz Field: A Technology Gap

- Need for compact THz sources
 - Frequency too high for electronics and too low for photonics
 - No mature solid state technology for generation and detection

Existing THz Sources and Shortcomings

- Molecular lasers pumped by another laser (e.g., methanol laser pumped by CO$_2$ laser used in the EOS satellite)
- Free-Electron lasers
- P-Ga lasers under B field
- Parametric generators, photomixers in non-semiconductors
- Ultrastable laser generation of oscillating charge carriers

Shortcomings:
Low output power, low efficiency, low temperature pulse operation, bulky size (need big pump lasers), broadband (not lasers)

Applications of A THz Laser

- Terahertz modulation and switching
- Chemical, biochemical, and astrobiological detection and sensing
- Materials and security inspection
- High bandwidth, secure data link
- ... many more applications

Previous Optical Pumped LW Generations

- CO$_2$ laser pumped GaAs/AlGaAs QWs emitting 15.5mm (Paris-Sud)

Optically Pumped Sb-based Intersubband Generation—— Whys

- Why Intersubband?
 - Long wavelength generation
 - Reduced Auger processes
 - Large transition matrix elements
- Why Sb-QWs? (unique bandedge lineups)
 - Flexibility in wavelength design
 - Deep conduction band wells allowing NIR (diode) laser pumping
Optically Pumped Sb-based Intersubband Generation—— Why

- Why optical pumping?
 - Less reliant on population inversion
 - Utilization of resonant nonlinearities
 - Lower carrier concentration and lower free carrier absorption
 - Absence of heavily doped layers for contacts and injectors
 - Potential integration if diode lasers used as pumps

InGaAs/InP/AlAsSb QWs (Lattice-Matched to InP, 5.9A)

Raman Enhanced Optical Gain

Pump Intensity Dependence of THz Gain

Pump-Probe Interaction Induced Raman Shift

THz Laser Gain in InGaAs/InP/AlAsSb QWs
Diode-Laser Pumped Difference Frequency Generation (InGaAs/InP/AlAsSb QWs)

InAs/GaSb/AlSb Nanostructures

4-Level Laser Scheme 3-Level DFG Scheme

InAs/AISb Double QWs: DFG Scheme

Sb-Based Triple QWs: Laser Scheme

Exciton State Pumped THz Generation

Liu and Ning, In Nonlinear Quantum Materials, Fundamentals, and Applications, OSA Digest, 2000

Liu and Ning, 1999, unpublished