Landauer expression for current

\[I_i = \frac{2e}{h} \sum_j \int_{E_j}^{E_{j+1}} T_{ij}(E) \left[f(\mu_j) - f(\mu_i) \right] dE \]

- Tight-binding Hamiltonian for both relaxation and conductivity calculations
- Used 4 orbitals (s, p) for describing C atoms and 9 orbitals (s, p, d) for describing Ni-C interactions

Transport in Y-junction Carbon Nanotubes

Rectification in Y-junction Nanotube has a Strong Dependence on the Structural Symmetry

Ballistic Rectification at Nanoscale

Ballistic Rectification at Nanoscale

(1) \(V_L = V_r = V_V = 0.00 \)

(2) \(V_L = V_r = V_r = V_V = 0.00 \)

(3) \(V_L = V_r = V_r = V_V = 0.00 \)
Ballistic Rectification at Nanoscale

<table>
<thead>
<tr>
<th>V1</th>
<th>V3</th>
<th>OR</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Bio-mimetic Dendritic Neuron: Carbon Nanotube

A 4-level dendritic neural tree: 14 branched carbon nanotube junctions

D. Srivastava et al., Comp. in Science and Engineering, IEEE, APS (2001)

Summary and Future

- Rectification and Switches with Nanotube Y-Junctions: Generalized a variety of logic gates and devices, and a complete understanding of ballistic rectification.

- Complex tree structures with made with carbon nanotubes: Simulate signal transmission and processing phenomenon in branched networks

D. Srivastava, M. Mitra, and K. (The authors' research article, Computing in Engineering and Science, late August 2001)