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¥4 Major Drivers of Current Work

® To provide computational tools as an economical option for developing
future space transportation systems (i.e. RLV subsystems development)

Impact on component design = Rapid turn-around of high-fidelity analysis
Increase durability/safety = Accurate quantification of flow
(i.e. prediction of low-induced vibration)

Impact on system performance = More complete systems analysis
using high-fidelity tools

® Target ,
Turbo-pump component analysis = Entire sub-systems simulation

Computing requirement is large:
=>The goal is to achieve 1000 times speed up over what was possible in 1992
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¥/ Objectives

® To enhance incompressible flow simulation capability for developing
aerospace vehicle components, especially, unsteady flow phenomena
associated with high speed turbo pump.
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ﬁ INS3D - Incompressible N-S Solver
7 s o

** Parallel version : Based on INS3D-UP

*MPI and MLP parallel versions

» Structurel, overset grid orientation

» Moving grid capability

» Based on method of artificial compressibility

» Both steady-state and time-accurate formulations

¢ 3~ and 5™-order flux difference splitting for convective terms

e Central differencing for viscous terms

e One- and two-equations turbulence models

o Several linear solvers : GMRES, GS line-relaxation, LU-SGS,
GS point relaxation, ILU(0)..,..

sHISTORY
** 1982-1987 Original version of INS3D - Kwak, Chang
** 1988-1999 Three different versions were devoped :
INS3D-UP / Rogers, Kiris, Kwak
INS3D-LV / Yoon, Kwak
INS3D-FS / Rosenfeld, Kiris, Kwak
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/" Time Accurate Formulation
/ / s Resaared Cester

e Time-integration scheme
Artificial Compressibility Formulation
- Introduce a pseudo-time level and artificial compressibility
- Iterate the equations in pseudo-time for each time step until
incompressibility condition is satisfied.
Pressure Projection Method
- Solve auxiliary velocity field first, then enforce

incompressibility condition by solving a Poisson equation
for pressure.
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%‘(_/ Artificial Compressibility Method
/ /s Bessarc Costor

Time-Accurate Formulation
Discretize the time term in momentum equations using second-order
three-point backward-difference formula
n+1

oU +aV +aW -0 3qn+l_4qn+qn-l
0 dn 9§ 2At

Introduce a pseudo-time level and artificial compressibility,
Iterate the equations in pseudo-time for each time step until
incompressibility condition is satisfied.
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/“—f Impulsively Started Flat Plate at 90°
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® Time History of Stagnation Point
Artificial compressibility incorporated with Poisson solver
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Flow is at rest and

U=1 imposed at inflow at T=0.0
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7 Current Challenges
S e o —

® Challenges where improvements are needed
- Time-integration scheme, convergence
- Moving grid system, zonal connectivity
- Parallel coding and scalability

® As the computing resources changed to parallel and distributed
platforms, computer science aspects become important such as
- Scalability (algorithmic & implementation)
- Portability, transparent coding etc.

® Computing resources
- *6rid" computing will provide new computing resources for
problem solving environment
- High-fidelity flow analysis is likely to be performed using “super
node” which is largely based on parallel architecture
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y‘i{ INS3D Parallelization
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INS3D Parallelization

MPI coarse grain + OpenMP fine grain

TEST CASE : SSME Impeller
60 zones / 19.2 Million points
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INS3D Parallelization

TEST CASE : SSME Impeller
60 zones / 19.2 Million points
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INS3D Parallelization

TEST CASE : SSME Impeller

INS3D-MLP/OpenMP vs. -MPL/OpenMP

60 zones / 19.2 Million points
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Inlet Guide Vanes
15 Blades

23 Zones

6.5 M Points

Diffuser

23 Blades
31 Zones
8.6 M Points
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Unshrouded Impeller Grid : clearance

6 long blades / 6 medium blades /12 short blades

60 Zones / 19.2 Million 6rid Points hub

Overset connectivity : DCF (B. Meakin) grid
Less #han 156 orphan points.
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Background
Grid

SSME-rigl/ Overset Grid System

Initial Start : flow at rest
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Velocity vectors at first physical time step..
22 Impeller started at 10% actual rotational speed.
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SSME-rigl / Initial start @

TIME STEP 5/ Inipeller rotated 2.25-degrees at 10% of design speed
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SSME-rigl / Initial start
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TIME STEP 7/ Impeller rotated 3-degrees at 30% of design speed
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Impeller rotated 8-degrees at 100% of design speed
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W SSME-rig! / Initial start

- 34.3 Million Points

- 80O physical time steps in one
rotation.

*One physical time-step requires
less then 20 minutes wall time
with 80 CPU's on Origin 2000.
One complete rotation requires
one-week wall time with 80 CPUs.
*Currently I/0 is through one
processor. Timing will be improved
with parallel I/0 since time-
accurate computations are I/0
intensive, With futher
improvements several impeller
rotations can be completed in one
week.

/Al Summary

o®Unsteady SSME-rigl start-up procedure from the pump at rest has been
initiated by using 34.3 Million grid points.

® Computational model for the SSME-rig! is completed. Moving boundary
capability is obtained by using DCF module in OVERFLOW-D.

® MPI /Open MP hybrid parallel code has been benchmarked.

® MLP shared memory parallelism has been implemented in INS3D, and
benchmarked.

® MLP/OpenMP version requires 19-25% less computer time than
MPI/OpenMP version. Pin-to-node for MLP version is implemented. 40% less
computer time is required in the new version.

® Time-accurate features of methods designed for 3-D applications are
evaluated. An efficient solution procedure is obtained.

®Work currently underway
e®Unsteady SSME-rigl simulations by using 34.3 Million grid points.
® Experimental measurements at NASA-MSFC.
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