Stanford University
Doron Levy
NASA Ames/Stanford University
Steve Bryson

Hamilton-Jacobi Equations
Schemes for Multi-Dimensional
Efficient High Order Central
Outline

- Introduction
- First and second order methods
- High-order methods
- Conclusions
Encounter high-dimensional spaces

Applications in control theory, optics, ...

Viscosity Solution (Crandall, Lions, Evans)
Smooth initial data
Evolves discontinuous derivatives even from

Where we assume H is at least continuous

Equations of the form

$0 = (x \phi)' H + \phi$

Hamilton-Jacobi Equations
Our goal: high-order, efficient, central methods that scale well to high dimension.

Flux limiters, WENO, Central methods

Adapt techniques from conservation laws

Known to converge to viscosity solution solutions

Complicated by non-smoothness of

Numerical Methods for HJ Equations
Existing Work

- Propagation
- Reduce dissipation by estimating local speed of
- Minmod limiter on 2nd derivative
- Semi-discrete
- Kurganov and Tadmor - 1st and 2nd order
- Proved 1st order convergence
- Minmod flux limiter on 1st derivative
- Lin and Tadmor - 1st and 2nd order staggered
- Central Schemes
- Jiang and Peng - high-order WENO methods
- Osher and Shu - high-order ENO methods
- Upwind Schemes
Good for systems and high dimensions
Avoid solving Riemann problems
Steps: reconstruct, evolve, replicate

Evolve where data is smooth

The Central Philosophy
Assume $H \in C$.

Order midpoint quadrature

- Use Taylor expansion for mid-values in 2nd.

\[
\left[\left(\frac{xV}{\tilde{t} - I} \phi \nabla \right) H + \left(\frac{xV}{\tilde{t} + I} \phi \nabla \right) H \right] \frac{\tilde{t}}{I} - \left(\frac{\tilde{t} - I}{\tilde{t}} \phi \nabla \right) \frac{\tilde{t}}{I} + \phi = i \phi
\]

1st-order method:

Evolve at evolution points using quadrature

- Same work as Lin-Tadmor in 2D.
- Based on Lin-Tadmor and Kurganov-Tadmor onto original grid points
- Limit the second derivatives and reproject

First and Second Order
\[\frac{u \wedge + u}{1} = p \]

- Equidistant from simplex boundaries
- Optimal Evolution Points
- Singularities along simplex
- Diagonal
- Simplices along + and -
- Partition space into \(\mathbb{R}^n \)
Reproject: $a^0_{1+w}(\phi \beta)_{\mathcal{A}} x \mathcal{U} V - (w \phi + \hat{w} \phi) \frac{\tau}{I} = 1_{1+w} \phi$

Where $\left(\frac{z}{1+w}(\phi \Delta)\right) H V \mathcal{L} + \frac{\tau}{I V} \left(\frac{z}{1+w}(\phi \Delta)\right) = \frac{z}{1+w}(\phi \beta)$

$\left[\frac{p_{\phi} d_{\phi}^{x} \nabla \mathcal{A}}{p_{\phi} d_{\phi}^{x} \nabla \mathcal{A}} + \frac{p_{\phi} d_{\phi}^{x} \nabla \mathcal{A}}{p_{\phi} d_{\phi}^{x} \nabla \mathcal{A}}\right] = \frac{\tau}{1+w} \left(\frac{z}{1+w}(\phi \Delta)\right) H V \mathcal{L} + \frac{\tau}{I V} \left(\frac{z}{1+w}(\phi \Delta)\right) = \frac{\tau}{1+w}(\phi \beta)$

At each point x

At evolution points: at each point x

Where J is the min-mod limited derivative

$\left((x^0 - (\phi \beta))(x^0 - (\phi \beta))\right) \frac{z}{w \phi} \nabla \mathcal{A} \sum_{u=1}^{w} \frac{\tau}{1+w} \left(\frac{z}{1+w}(\phi \Delta)\right) H V \mathcal{L} + \frac{\tau}{I V} \left(\frac{z}{1+w}(\phi \Delta)\right) = \frac{\tau}{1+w}(\phi \beta) + (w \phi - (\phi \beta))(w \phi - (\phi \beta)) \frac{z}{w \phi} \nabla \mathcal{A} \sum_{u=1}^{w} \nabla + (\phi \beta) = (w \phi - (\phi \beta)) \frac{z}{w \phi}$

Reconstruct via polynomial

2nd-Order Generalization to \mathbb{R}^n
\[
\begin{align*}
((\lambda + x)w^2)\cos - &= (0', x)\phi \\
0 &= z \left(I + \phi + \phi^2 \right) \frac{T}{I} + \phi
\end{align*}
\]

Convex H Example
Non-Convex H Example
\[(\lambda \cos \alpha + x \sin \alpha) = (0, \lambda^2 x) \phi \]

\[
0 = \frac{\partial \phi}{\partial x}^\phi + \frac{\partial \phi}{\partial y}^\phi
\]

2D Example
Convergence Rates
Higher Order

▲ Strategy:
▲ Central WENO for reconstructions
▲ Simpson's formula/SSP RK4 for evolution
▲ Involves upwind WENO reconstruction of derivatives for each RK4 step
Suppressing oscillatory interpolants to attain high order in smooth regions while the are defined

\[
\frac{d(S + 3)}{d \phi} = f_0, \quad \frac{d(x + \epsilon)}{d \phi} = f_\infty
\]

where

\[
(x \nabla + \epsilon \phi) \phi \mu + (x \nabla + \epsilon \phi) \nu \phi \mu = (x \nabla + \epsilon \phi) \mu \phi
\]

so set

\[
(v + \epsilon) \xi = \epsilon \phi, (v - \epsilon) \xi = \epsilon \phi
\]

\[
\left(\epsilon \nabla \right) f + (x \nabla + \epsilon \phi) f = (x \nabla + \epsilon \phi) \phi f + (x \nabla + \epsilon \phi) \phi f = (x \nabla + \epsilon \phi) \phi f
\]

\[
\left(\epsilon \nabla \right) f + (y \nabla + \epsilon \phi) f = \epsilon \phi \left(\frac{\zeta}{\xi} + \frac{\zeta}{\xi} + \epsilon \phi \left(\frac{\zeta}{\xi} - \frac{\zeta}{\xi} - \epsilon \phi \left(\frac{\zeta}{\xi} + \frac{\zeta}{\xi} - \epsilon \phi \right)
ight) = (x \nabla + \epsilon \phi) \phi f
\]

\[
\left(\epsilon \nabla \right) f + (y \nabla + \epsilon \phi) f = \epsilon \phi \left(\frac{\zeta}{\xi} + \frac{\zeta}{\xi} + \epsilon \phi \left(\frac{\zeta}{\xi} - \frac{\zeta}{\xi} - \epsilon \phi \left(\frac{\zeta}{\xi} + \frac{\zeta}{\xi} - \epsilon \phi \right)
ight) = (x \nabla + \epsilon \phi) \phi f
\]

3rd-order example

High-order 1D Interpolants
5th-order 1D Results
Via upwinding interpolation

In all cases, reconstruct derivatives

Interpolate along diagonal
direction-by-direction

2D interpolation

Three options for reconstruction

High-order 2D Reconstruction
High-order 2D stencils

with oscillations
suppress stencils
combination
to
Use WENO
for third order
10 points required
Combination covers
Evolution point
Stencils enclose
3rd-order example
Interpolations

 Iterate n steps, each with n

 In n-D:

 Evolution point

 2: average coordinate interpolations to

 1: interpolate values along coordinate axes

 In 2D:

 Direction-by-Direction Strategy
Interpolation have similar quality
Full 2D and direction by direction
3rd-order Results
Direction-by-direction CWENO

5th-order 2D

Upwind estimation of derivatives from

Jiang and Peng

Simpson's method for time evolution,

using SSP RK4 for mid-values
5th-order 2D Results
Significant computational burden at each point gradient of \(H \) at each point estimation of the maximum of the dimensional interpolation requires. What about upwind? Requires to high dimensional than fully direction by direction will scale better.

Scaling to \(N \) Dimensions
Conclusions

Scale well to high dimensions

No need to estimate numerical fluxes

Central methods for HL equations based on

Developed efficient high-order