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Abstract 

In this research we addressed the problem of obstacle detection for low altitude 

rotorcraft flight. In particular, the problem of detecting thin wires in the presence of 

image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. 

Since they are very thin, their detection early enough so that the pilot has enough 

time to take evasive action is difficult, as their images can be less than one or two 

pixels wide. 

Two approaches were explored for this purpose. The first approach involved a 

technique for sub-pixel edge detection and subsequent post processing, in order to 

reduce the false alarms. After reviewing the line detection literature, an algorithm 

for sub-pixel edge detection proposed by Steger was identified as having good 

potential to solve the considered task. The algorithm was tested using a set of 

images synthetically generated by combining real outdoor images with computer 

generated wire images. The performance of the algorithm was evaluated both, at 

the pixel and the wire levels. It was observed that the algorithm performs well, 

provided that the wires are not too thin (or distant) and that some post processing 

is performed to remove false alarms due to clutter. 

The second approach involved the use of an example-based learning scheme namely, 

Support Vector Machines. The purpose of this approach was to explore the feasi- 



bility of an example-based learning based approach for the task of detecting wires 

from their images. Support Vector Machines (SVMs) have emerged as a promising 

pattern classification tool and have been used in various applications. It was found 

that this approach is not suitable for very thin wires and of course, not suitable 

at all for sub-pixel thick wires. High dimensionality of the data as such does not 

present a major problem for SVMs. However it is desirable to have a large number 

of training examples especially for high dimensional data. The main difficulty in 

using SVMs (or any other example-based learning method) is the need for a very 

good set of positive and negative examples since the performance depends on the 

quality of the training set. 
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11 Introduction 

Continued advances in the fields of image processing and computer vision have 

raised interest in their suitability in aiding pilots to early detection of possible ob- 

stacles in their flight trajectories. For example, as part of the High Speed Research 

(HSR) Vision program at the NASA Ames Research Center, we have recently stud- 

ied, designed, and tested a computer vision system capable of real-time obstacle 

detection during mid-flight of an aircraft [6, 151. Before that, obstacle detection on 

runways during take-offs and landings was also studied [14]. 

Figure 1 : Thin wire with clouds in the background, and noise due to camera jitter. 

Some of our previous results can be naturally extended to obstacle detection for 
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low-altitude flight of helicopters. However, the fact that the rotorcraft is close to 

the ground for most of the time, places more severe requirements to the algorithms 

to be used. For example in the image shown in figure 1, the system must deal with 

multiple ground-based obstacles such as wires, trees, etc. in the presence of severe 

camera jitter and ever present cluttered background due to the ground. Of these 

obstacles, the most difficult to detect are wires since they are very thin and their 

image from the rotorcraft can be less than a pixel wide. 

In this report we describe a preliminary study on the use of a line detection algo- 

rithm to detect wire obstacles in the path of rotorcrafts flying at low altitudes. Two 

approaches were explored. The first approach involved the use of an algorithm 

capable of detecting thin lines (sub-pixel) and subsequent post processing. An al- 

gorithm proposed by Steger [22] and a Hough transform to eliminate false alarms 

were identified as good candidates for this task since they are capable of line de- 

tection with sub-pixel accuracy. The algorithms are described in section 3. Due to 

the fact that real data was not available to test the algorithms, a set of testing data 

was generated by combining natural background images with computer generated 

wires, corrupted with synthetic noise. The procedure used to generate the data is 

described in section 4. In order to evaluate the performance of the algorithm a 

set of experiments were conducted for different sizes of wires at various distances. 

The experimental protocol used in these experiments is described in section 5 and 
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the obtained results are summarized in section 6. 

The second approach explored the feasibility of an example based learning method 

for the particular task. Support Vector Machines (SVMs) were used in this ap- 

proach. SVMs have emerged as an important pattern classification tool in the 

recent past and have been used in various applications. They have a number of 

advantages as compared to other example based learning techniques such as neu- 

ral networks. SVMs are briefly described in section 7 and an overview of SVM 

theory is presented in Appendix A. The mathematical details are presented in Ap- 

pendix B. The interested reader is referred to [26] for a comprehensive treatment 

of learning theory. [I] is a good tutorial on SVMs. [19] contains a lucid and a 

somewhat detailed treatment of the theory of SVMs. The implementation details 

are discussed in section 8 and the training of the SVM is described in section 8.1. 

Preliminary results are presented in section 9. 

Finally, the conclusions and directions for future research are discussed in sec- 

tion 10. 

2 Needs and Requirements 

NASA's need for enhanced capabilities in obstacle detection using image process- 

ing requires robust, reliable and fast techniques. Low-altitude rotorcraft navigation 
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must often avoid ground-based obstacles such as electric wires, antennas, poles, 

trees and buildings. Electric wires are very thin objects and hence their images can 

have sub-pixel thickness. On the other hand, trees and buildings typically occupy 

several pixels. Furthermore, low-altitude flight implies, in general, severe back- 

ground clutter due to the ground. Thus, the obstacle detection techniques should 

provide a high probability of timely detection while maintaining a low probability 

of false alarm in noisy, cluttered images of obstacles exhibiting a wide range of 

sizes and complexities. Moreover, these techniques should work well under the 

controlled conditions found in a laboratory and with data closely matching the hy- 

pothesis used in the design process, but it must be insensitive - i.e. must be robust 

-to data uncertainty due to various sources, including sensor noise, camera jitter, 

weather conditions, and cluttered backgrounds. 

3 Wire Detection using Computer Vision 

Electric wires between poles hang forming catenary curves and wires holding 

hanging bridges hang forming parabola curves. However, for detection purposes 

these curves, can be approximated as piece-wise linear. Thus, for this study we 

have confined ourselves to the problem of line detection in cluttered images. Fur- 

thermore, since wires are thin and their images from a far enough distance are 
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typically less than a pixel wide, we paid special attention to algorithms that could 

provide sub-pixel accuracy. 

3.1 Line Detection Algorithms 

Detection of curvilinear and piece-wise linear structures in gray scale images has a 

wide range of applications including medical imaging, remote sensing, photogram- 

metry and line drawing understanding and has been the focus of much attention in 

computer vision research. Next, we present a brief overview of line detection tech- 

niques. For more details see for example [ 1 I]. 

0 Edge detection based approaches 

Lines can be detected by locating “edges” - i.e. pixels where the image 

gray levels undergo large variations. Thus, most edge-based line detection 

techniques rely on operators approximating the image gradient. Examples of 

this approach are the Roberts, Prewitt, and Sobel operators where the image 

gradient components are approximated as weighted averages of gray level 

differences in the pixel neighborhood, computed using a pair of small masks. 

Edges are then found by thresholding the magnitude of the image gradient. 

This procedure typically results in “thick edges’’ that must be thinned and 

gaps that must be closed using a cleaning procedure. 
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Figure 2: Normal representation of the line 

Alternatively, edges can be located by finding the zero-crossings of the image 

Laplacian. Since the second derivative operator is very sensitive to noise, the 

image Laplacian is usually applied in conjunction with a noise filtering such 

as a Gaussian filter. 

Probably, the edge detector most commonly used today is the Canny edge 

operator which uses first derivative of Gaussian filters to closely approximate 

the operator with optimal signal-to-noise ratio and edge localization. 

0 Hough transform based approaches 

Lines and curves can be found by linking adjacent edges into contours. The 

Hough transform was introduced to detect complex patterns and quickly 

adapted to detect lines and curves. The main idea of the Hough transform is 

to map the pattern detection problem into the easier problem of detecting a 
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peak in the space defined by a set of parameters describing the pattern being 

sought. Consider for example, a line expressed using its normal representa- 

tion (see figure 2): 

p = zcos8 + ysine 

where p represents the distance between the image origin and the line and 6 

is the line orientation. Each edge pixel (zp,  up) constrains the set of possi- 

ble pairs of parameters (p ,  e) of lines containing the edge by the sinusoidal 

expression: 

p=zpcosB+ypsinO 

Collinear edges share an unique pair (p,  0) which must satisfy all the con- 

straints and thus corresponds to the point in parameter space where all the 

associated constraints intersect. The longer the line, the more edges shar- 

ing the same pair of parameters and the larger the number of constraints 

intersecting at one point in parameter space. Thus, lines can be found by 

discretizing the parameter space, associating to each cell a counter of the 

number of constraints passing through the cell, and finding peaks among the 

counter values. 

e Curve fitting based approaches 

Splines are widely used to represent curves. Although splines can be made 
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by joining any kind of function end to end, the most commonly used splines 

use piecewise cubic polynomials. Cubic polynomials provide enough de- 

grees of freedom to determine edge location and orientation. Algorithms for 

edge detection using B-splines are described in [3] and [8]. 

0 Detection of thin lines 

Thin lines can be detected by modeling them as objects with parallel edges 

[5,7] and using a pair of edge detector filters to find the left and right edges 

of the line or by using differential geometry properties to find ridges and 

ravines on the image surface x(z, y) [17, 16,4,2,9]. Recently, Steger [22] 

proposed a detection algorithm based on differential geometry capable of 

detecting lines with sub pixel accuracy. He applied the algorithm to detect 

of roads from satellite images and to detect very thin lines in MR and an- 

giogram medical images. Steger’s algorithm was capable of detecting lines 

at different scales, even in the presence of severe clutter. Furthermore, the 

algorithm retrieved the precise line locations (defined as their median axis) 

and the line widths with sub pixel accuracy. Due to the quality of these re- 

sults, and the similarity between the complexity of the images used in [22] 

and the ones we are interested for this study, it was decided to evaluate the 

feasibility of using this algorithm for wire detection. 
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3.2 Steger’s Unbiased Detector of Curvilinear Structures 

Next, the main ideas of the detection algorithm proposed by Steger are summarized 

for the ID case. A more complete description, including its generalization to 2D, 

can be found in [22,21,23,24]. 

The algorithm is based on the concept that a line can be thought of as a one- 

dimensional manifold in R2 with a well defined width w. Similarly, curvilinear 

structures in 2D can be modeled as curves s ( t )  that exhibit a 1D line profile in the 

direction perpendicular to the line - i.e. perpendicular to s’(t).  

Then, an ideal one-dimensional line profile can be modeled as a symmetrical bar- 

shaped profile given by 

where w is the width of the line and h is the contrast, or as a more general asym- 

metrical bar-shaped profiled given by 

I o ,  x < - w  
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Figure 3: (a) Smoothed parabolic line profile. (b) Convolution with the first deriva- 
tive of a Gaussian. (c) Convolution with the second derivative of a Gaussian. 

where a E [0, I]. A more gradual drop between the line and the background can be 

modeled by a parabolic profile: 

A line with a profile given by (3) can be found in an ideal noiseless image z(x) by 

determining the points where zl(x) = 0. Salient lines can be identified by imposing 

that the magnitude of the second derivative z"(x) at the point where zl(x) = 0 

should be sufficiently large. In the presence of noise, as discussed in the previous 

section, the derivatives of the image should be estimated by convolving the image 

with the derivatives of a Gaussian smoothing kernel with standard deviation 0. The 

space-scale behavior of the smoothed parabolic profile and its convolution with the 

first and second derivative of Gaussian filters is shown in figure 3. It can be seen 



that it is possible to detect the precise location of the line for  all a. However, if 

the line follows a profile like (1) or (2), it can be shown that the magnitude of the 

convolution with the second derivative of the Gaussian has a clear maximum at the 

true image location only if 

W 
a > - -  

& 

The width of the line can be estimated by looking at the places where the mag- 

nitude of the output of the first derivative of the Gaussian is maximum. It can be 

shown that if the line profile is symmetrical and the width is small the width will be 

estimated too large. Furthermore, in the case of parabolic profiles, the width will be 

estimated too large for a range of widths. In either case, the mapping between the 

estimated and the true width can be inverted and the true width can be determined 

with high accuracy. However, if the profile is not symmetrical, the estimated line 

location is biased towards the weak side of the line: 

a2 
1 = -- ln(1- a)  

2w 

but if a is known, the bias can be corrected. 
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3.3 Post Processing 

After lines are detected using the above algorithm, noise and false alarms due to 

image clutter are reduced by rejecting short lines. This is accomplished by thresh- 

olding a Hough transform of the image obtained using the line pixels. The thresh- 

old used was fixed to 

Th  = mean + 0.5(max - min) (4) 

where mean, m a ,  and min are the mean, maximum and minimum counter values 

in the parameter space, respectively. 

4 Data Modeling and Simulation 

In order to characterize the performance of the detection algorithm using statistical 

tests with a given accuracy, we must have large populations of sample represen- 

tative images. Unfortunately, at the time of this study real testing data was un- 

available. Therefore, realistic testing data was generated by combining real (back- 

ground) images with synthetically generated wires that were corrupted using noise 

models. The procedure used to generate these images is described next. 
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4.1 Illumination Model 

The scene illumination was assumed to have two distinct light sources: ambient 

light (i.e. diffused light from the landscape, sky and clouds) and a distant point light 

source (i.e. the Sun/Moon) as shown in figure 4. Furthermore, it was assumed that 

the ambient light impinged equally on all surfaces of the wire, from all directions. 

Thus, the reflected light from the wire to the image plane is given by 

where l a  is the intensity of the ambient light and Ka is the ambient reflection 

coefficient. For the point light source, the Phong illumination model was used. 

Thus, the reflected light from the wire to the image plane due to a point light source 

can be modeled as 

I = fattIp[Kpcos(0) + W ( O ) ~ ~ ~ ~ ( C X ) ]  

where Ip is the light intensity of the point light source, fatt is the light attenua- 

tion factor', Kp is the diffusion-reflection coefficient of the wire surface w.r.t. the 

specific light spectrum of the light source, w(O) is the material specular-reflection 

1 For example fatt =: min( C 1 + C 2 ~ + C 3 r ~ ,  1) or fatt = f ,  where r is the distance of the object 
from the light source. 
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L(Ljght s~~~~~~ N(Sucface Normal) R(Specu1ar Reflection) 

Figure 4: Illumination on a surface. 
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coefficient. 

The typical thickness of power lines ranges between 5mm and 45mm. The typical 

cruising speed of a helicopter is between l00MPH and 400MPH. Thus, the distance 

from the camera on board the helicopter to the lines to be detected is such that 

the image width of the wire is typically less than 1 or 2 pixels. Therefore, the 

contribution from the specular-reflection component is insignificant and can be set 

to 0. In addition, the distance from the power lines to the point light source (the 

Sun) is very large and fatt  can be set to 1.0. Thus, combining the ambient light 

model and the point light model, we have 

4.2 Coordinate Systems and Mapping Matrices 

We will employ three coordinate systems: World System, Airborne System, and 

Camera System. The world coordinate system is a coordinate system fixed with 

the ground. Wire structures are stationary relative to this coordinate system. The 

airborne coordinate system moves with the helicopter and it has 6 degrees of free- 

dom relative to the world coordinate system: 3 degrees of freedom for its origin 

( X a ,  Y,, Za) and 3 degrees of freedom for its orientation (a, /3, r), where a is 

15 



Figure 5: World and airborne coordinate systems. 
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called the angle of attack, p the yaw angle, and y the roll angle (see figure 5). The 

transformation (mapping) matrix between the world and the airborne coordinate 

systems can be derived as: 

where, 

1 0  0 

0  COS^ s ina  

0 - s ina   COS^ 

XW 

YW 

ZW 

I cosp s inp 0 

-s inp cosp o M3 = 

cosy 0 -sin? 

0 1  0 

siny 0 cosy 

(6)  

The camera coordinate system is a 2D system fixed in the camera image plane. 

The pixel coordinates of the images captured by the camera are expressed in this 

coordinate system. The origin of the camera coordinate system is chosen to be the 

same as that of the airborne coordinate system (see figure 6). The mapping from 

the airborne system to the camera system is called the perspective transformation or 

imaging transformation. This transformation projects 3D points onto a 2D plane. 
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Figure 6: Camera and Airborne Coordinate Systems. 
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Unlike the regular coordinate transformation, the perspective transformation is a 

non-linear transformation. Let f be the focal length of the camera. Then, the 

mapping between the camera and the airborne coordinate systems is given by 

4.3 Geometric Model 

There are two kinds of curve structures which may be of importance to the present 

application: hanging bridges and power lines (see figure 7). Let p be the linear 

weight density of the bridge deck, and T be the cable tension force. Then, with 

an appropriate choice of the coordinate system, the equation of the cables for the 

hanging bridge is that of a parabola, 

1 1 2  
2T 

y = - x  

Similarly, let p be the linear weight density of a power line, and T be the power line 

tension force. With an appropriate choice of the coordinate system, the equation of 
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,Figure 7: (a) Cables of hanging bridges have a parabolic profile. (b) Cables from 
power lines have a catenary profile. 
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Figure 8: Mapping between wire structure element and an image pixel. 

the power lines is the catenary curve: 

4.4 Image Generation of Wire Structures 

Knowing the illumination and geometric models, we can use the mapping between 

the world and the camera coordinate systems to obtain synthetic images of wire 

structures. First, the surface of a wire structure is divided into finite elements. The 



size of each element is chosen so that its mapped area on the image plane is less 

than 1 pixel. Then, the reflected light from this element is mapped to the pixel 

within which the center of the element is mapped into (see figure 8). Finally, the 

pixel gray level value is computed as 

where Iold and In,, are the image value of this pixel before and after this surface 

element is mapped, respectively, IR is the light intensity of the reflected light from 

this surface element, A,  is the mapped area of this pixel into the image plane2, and 

Apizel is the area of a pixel, which is a fixed size for a given digital camera. The 

image of a power line structure is generated when all surface elements have been 

mapped to the image plane. 

4.5 Noise Model 

Noise may be added to the generated image. The noise appears as breaks in the 

image of the wire structure. The location of the breaks is assumed to have a uniform 

distribution. The number of breaks follows a Poisson distribution, which has the 

'Note that the mapped area may not be rectangular any more, even if the original element is. 
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following probability density function (pdf): 

Cln 
fpoisson = - n! exp-CL 

where p is the mean of the distribution. The size of the breaks (i.e. number of 

pixels for a break) is assumed to follow a Rayleigh distribution, whose pdf is 

2 with mean :a 

4.6 Background Image 

For images captured from a low-flying helicopter, the background mainly consists 

of two things: clouds and landscape. Thus, to simulate realistic images, the back- 

ground of the images were obtained by capturing real images using a digital cam- 

era. Then, computer generated images of power line structures were superimposed 

onto these real images. 
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5 Performance Evaluation of the Detection Algorithms 

A performance evaluation protocol for the detection algorithms was designed based 

on the one described in [27]. The protocol measures to what extent the algorithm 

detects wires present in the image and whether the algorithm falsely detects wires 

in the background. These measurements are performed at both the pixel and the 

wire level. 

5.1 Definitions and Notation 

Before describing the protocol, the following terms must be defined: 

Ground truth image (Ig). Original data, which is the basis of comparison with 

the detection result. Ground truth images are synthetically generated and 

consist of one or more dark wires on a white background. Each wire has a 

different pixel value which is used as an id of the wire. 

Number of true wire pixels (P,) . The number of ground truth image pixels that 

belong to a wire. 

Detected image (Id) Binary image, resulting after the scene (noisy) image has 

undergone the defined strategy for detecting edges (Steger’s algorithm, fol- 

lowed by a Hough transform). 
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Number of detected Wire pixels (Pd) . The number of detected image pixels that 

were labeled as belonging to a wire. 

Overlap. If there is an edge pixel at position (z, y) in Ig and there exist an edge 

pixel at the same position (z, y) or any of its eight neighbors in I d ,  then an 

overlap is said to occur between the two edge pixels. Let Pg d be the number 

of overlap pixels between Ig and Id. 

5.2 Pixel Level Performance Indices 

Next we define a set of indices to measure the performance of the algorithm at 

the pixel level. These indices provide information about the number of wire pixels 

correctly and incorrectly labeled. 

True Positives or Pixel Detection Rate (PDR). The pixel detection rate (PDR) is 

the rate of positive responses in the presence of instances of the sought fea- 

ture: 

Pgxd PDR=-  
pg 

Pixel False Positives or False Alarms (PFA). The pixel false alarm (PFA) is the 

rate of positive responses in the absence of the sought feature: 

Pgxd P F A = l - -  
p d  
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Pixel Recovery Index (PRI). The pixel recovery index (PRI) combines the PDR 

and the PFA in a single index: 

PRI =QPDR+ (1 - Q)PFA, 0 5 Q 5 1 (15) 

where Q weights the relative importance of true positives and false alarms. 

(In our study, Q = 0.5.) 

5.3 Wire Level Performance Indices 

The pixel level performance criteria defined above do not provide a measure of 

how many individual wires or which fragments of each wire were detected. For 

this purpose, the following wire level indices are defined: 

Wire Detection Rate (WDR). A wire is said to be detected if a number greater 

than a threshold (in our case 50%) of its pixels are detected. The wire detec- 

tion rate (WDR) is the ratio of the total number of wires detected to the total 

number of wires in the ground truth image. 

Number of wires in I d  
Number of wires in Ig WDR = 

Detection Fragmentation Rate @FR) A measure of the fragment of each wire 
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detected. The detection frugmentution rate (DFR) is defined as 

Number of pixels detected in a wire 
Number of pixels in the wire 

D F R  = 

6 Experimental Results 

Synthetic images were generated following the procedure described in section 4. 

Each image had three wires of different diameters (1 8 mm., 21.5 mm. and 45 mm.) 

viewed from different distances ranging between 560 m. to 2,800 m. Figure 9(a) 

and (b) show images where the time to collision is 25 seconds for helicopter speeds 

of 100 km/h (694.4 m), and 400 km/h (2777.78m), respectively. Edges were de- 

tected in the synthetic images by using an implementation of Steger’s algorithm 

provided by the author. Examples of the results are shown in figure 9(c) and (d). 

The results of post processing using the Hough transform are shown in figure 9(e) 

and (f). 

The three pixel level indices for the different cable distances are shown in figure 10. 

As expected, the performance degrades as the distance increases. Due to time 

constraints, the results illustrated here were obtained by applying only Steger’s 

algorithm, without post processing. While the false alarms are relatively high, as 

it is seen in figure 9 (e) and (f) post processing does eliminate most of the false 
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alUIllS. 

The wire detection rate and the detection fragment rate are shown in figures 11 and 

12, respectively. These plots show that most of the misdetection errors are due to 

the thinnest of the wires, indicating a limitation on the diameter of the wires that 

can be safely detected. 
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Figure 9: Three cables (4 = 18 mm, 21.5 mm, 45 mm) at 25 seconds to collision for 
a helicopter moving at (a) 100 kmlh and (b) 400 kmlh; (c) and (d) edges detected 
in (a) and (b) using Steger's algorithm; (e )  and (f) edges after Hough transform of 
(c) and (d). 
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7 Support Vector Machines 

In this section we briefly describe Support Vector Machines and outline some of 

the advantages. Support Vector Machines(SVMs) have been proposed as an effec- 

tive pattern recognition tool in the recent past. SVMs have been used in various 

applications such as text categorization 128, 131, face detection [19] and so on. 

They can cope with high dimensional data quite easily and have good generaliza- 

tion capability. Generalization capability refers to the ability to perform well on 

unseen test data. 

The first property that distinguishes the SVM from other nonparametric techniques 



Figure 1 1 : Wire level performance evaluation. 

such as neural networks is that SVMs minimize the structural risk i.e., the probabil- 

ity of misclassifying a previously unseen data point drawn randomly from a fixed 

but unknown probability distribution instead of minimizing the empirical risk i.e., 

the misclassification on training data. Thus SVMs have good generalization. For 

a given learning task, with a given finite amount of training data, the best gener- 

alization performance will be achieved if the right balance is struck between the 

accuracy on that training set and the capacity of the machine to learn any training 

set without error [I]. Thus capacity control is important for good generalization. 

SVMs allow for good generalization capability since the number of parameters re- 
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quired for "capacity control" is very small. Hence they provide a trade-off between 

accuracy and generalization capability. The concept of capacity is not discussed 

here. The interested reader is referred to Vapnik 1261 and Burges [I] for a detailed 

discussion on capacity. 

Secondly, an SVM condenses all the information contained in the training set rele- 

vant to classification in the support vectors. The support vectors are a subset of the 

training set. These are the only vectors required for defining the decision surface 

and hence the only ones relevant for classification. This effectively reduces the 

size of the training set, identifying the most important points, and makes it possi- 



ble to efficiently perform classification. Finally SVMs are quite naturally designed 

to perform classification in high dimensional spaces, especially where the data is 

generally lineraly non-separable. SVMs can be used to construct models which 

are simple enough to analyze mathematically yet complex enough for real world 

applications. 

The training of an SVM is actually the solution of a Quadratic Programming Prob- 

lem. (see Appendix A and B). The Quadratic Problem is usually dense and 

quite large. However a number of techniques have been developed to deal with 

large quadratic programming(QP) problems and have hence made SVMs more 

accessible. Some of the strategies include “chunking” [25], decomposition into 

sub-problems [ 191 and a number of Active Set methods. Sequential Minimal Op- 

timization(SM0) [20] is an algorithm that can be used for fast training of SVMs. 

Joachims [ 121 describes an algorithm for large SVMs. The software which runs on 

this algorithm is called SVMLight. Both SMO and SVMLight can be classified 

as active set methods. In this report SVMLight was used for implementation. 

8 Experiments with Support Vector Machines 

In this section we describe in detail, the experiments performed using Support 

Vector Machines. The procedure employed to select training data and other imple- 
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mentation details are discussed in the subsequent subsections. Preliminary results 

are shown in section 9. 

8.1 Training the SVM 

Real images were used for these experiments. Masks extracted from an image 

were used as training data for the SVM. The procedure for the extraction of masks 

is described in section 8.1.1. The image used is shown in Figure 13. It is of 

size 240 x 180. The training set consisted of positive and negative examples. The 

training set consisted of 400 dimensional vectors(20 x 20 masks) and consisted of 

positive and negative examples. The selection of training data is explained in Sec- 

tion 8.1.2. SVMLight [ 121 software was used both for training and classification. 

This software is free for scientific use and the source code may be downloaded 

from 

ftp://ftp-ai.cs.uni-dortmund.de/pub/use~/~orste~svmligh~cu~en~svmlight.~.gz 

Linear, polynomial and Gaussian Radial Basis Function(RBF) kernels were tried.Only 

the Gaussian Radial Basis Function(RBF) kernel was found to be useful for these 

experiments. (see Appendix B for an overview of kernels and refer table 3 for a 

listing of commonly used kernels.) The equation used may be stated as: 
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The parameters used for the experiments were: 

0 C(Pena1ty term) = 0. 1,l , 10 

0 y = le-4 

The results corresponding to C = 1 and y = le-4 are shown. 

Two sets of training data were used in training the SVM. These will be referred to as 

Training Set 1 and Training Set 2 respectively. The results corresponding to both 

these data sets is shown. These training sets are described in detail subsequently. 

8.1.1 Procedure for extracting masks from the image 

A mask of size 20 x 20 was run over the entire given image. The displacement be- 

tween 2 successive masks is 2 pixels (either in the X or in the Y direction i.e.along 

columns or along rows). Each of these masks is used as a test case for classifi- 

cation, in order to determine whether or not there is a wire at that location. Thus 

the test vectors are 400 dimensional vectors. The total number of masks extracted 

from this image by the above procedure was 8800, which means that there are 

potentially 8800 possible locations in the image where there could be a wire. 
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8.1.2 Training Data Selection 

Consider a mask of size 20 x 20. The mask was divided into three bands which 

we shall refer to as Top, Middle and Bottom bands respectively. They were as 

below. For the following discussion, indexing is taken to begin from 1.  Thus the 

mask consists of rows 1-20 of pixels and columns 1-20 of pixels. 

1. Top : First 7 rows of pixels. (Rows 1-7) 

2. Middle : Middle 6 rows of pixels. (Rows 8-13) 

3. Bottom : Last 7 rows of pixels. (Rows 14-20) 

Of the masks extracted, those which contained wires strictly within the middle 

band Le. those in which the wire was contained entirely within rows 8-13, were 

selected as positive examples. Among these, some of them were used as positive 

training examples and some others were used as positive test cases for cross vali- 

dation. The following types of masks comprised the set of negative examples. 

1. Containing only background and no traces of wire 

2. Containing background and only “vestiges” of a wire 

3. Containing a wire entirely within top band 
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Example type(+ve or -ve) 
Positive examples 

Negative examples 

Description Training Cross validation 
Wire strictly within 

the middle band 400 72 
Background only 360 140 

Wire in top band 180 60 
Wire in bottom band 40 20 

Background + “vestiges” of wire 20 20 

Table 2: Summary of training and cross validation sets(Training Set 1) 

Training 
Cross validation 

4. Containing a wire entirely within bottom band 

Positive Negative Total 
400 600 lo00 
72 200 272 

Among the numerous negative examples, a total of 800 was selected for training 

and cross validation. Again some of the 800 were selected as negative training 

examples and others as negative test cases. Masks which were hard to categorize 

as belonging to any of the three bands(e.g. those which overlap top and middle 

bands or top and bottom bands) were regarded as “Transition Band Masks” and 

were not considered either for training as well as cross validation. The breakdown 

of the training and cross validation sets is given in Table 1. The overall numbers 

for the training and test sets are summarized in Table 2. 
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9 Preliminary results of experiments with Support Vector 

Machines 

In this section we present preliminary results of experiments performed using 

Support Vector Machines. 

9.1 Results for training set 1 

The original image used for training as well as cross validation and the results of 

classification are shown in Figure 13. The results on the cross validation set are as 

below: 

Number of support vectors = 435 

Number of missed detections = 0 

Number of false alrams = 0 

PrecisionRecall on cross validation set = 100%/100% 

Figure 14 shows the detected locations superimposed on the original image. 

* The black pixels correspond to the locations where a wire has been detected. A 

mask is run over the image and each mask is classified as to whether it contains a 

wire or not. The locations of the black pixels in the result image are actually the 

centre of those masks in which a wire has been detected. 
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Figure 13: (a) Original image used for testing. (b) Results of classification* 

9.2 Results for training set 2 

The experiment was repeated for the same image and a different training and cross 

validation set. The new set was almost the same as the previous set (refer Table 1) 

except for the following differences. 

1. Number of positive training examples = 200 

2. Number of positive test examples(cross validation) = 473 

Thus the total number of training examples was 

200(positive) + 600(negative) = 800 

and the total number of test examples(for cross validation) was 

473(positive)+200(negative) = 673. 
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Figure 14: Detected locations superimposed on the original image(Training Set 1) 

The parameters used for the SVM were the same as previous case(Equation A.3). 

i.e. Gaussian Radial Basis Function Kernel, C = 0.1,1,10,100 y = l e  - 4. The 

results for C = 1 are outlined below. The detected locations of the wire and the 

original image are shown in Figure 15 

Number of support vectors = 332 

Number of missed detections = 37 

Number of false alarms = 0 

Precision/recall on test set: 100.00%/92.18% 

Results for three other images are shown in the figures 16, 17 and 18. A parame- 

t e r ( ~ )  was varied to control the amount of false alarms. This parameter has a value 

between 0 and 1 , 0  corresponding to no control of false alarms. Results are shown 



Figure 15: Detected locations superimposed on the original image(Training Set 2) 

for images for p = 0.3. 



(a) (b) 

Figure 16: (a) Image 2.(Original image) (b) Detections for p=0.3 

10 Summary and Conclusions 

In this report we addressed the problem of obstacle detection for low-altitude ro- 

torcraft navigation with emphasis on wire detection. A line detector with sub pixel 

accuracy proposed by Steger was identified from the published literature. Steger's 

algorithm was tested using a set of synthetically generated images combining real 

backgrounds with computer generated wire images. A set of performance indices 

at the pixel and the wire level were defined to evaluate the merits of the algorithm 

for the task at hand. The results of the experiments show that the algorithm can 

potentially detect wires, provided that they are not too thin or very far. It was also 



Figure 17: (a) Image 3.(Original image) (b) Detections for p=0.3 

observed that the algorithm produces false alarms due to the severe image clut- 

ter. However, most of these false alarms can be successfully eliminated by using a 

simple - albeit time consuming - post processing such as a Hough transform that 

discards short lines. 

Future research should explore 1) integration over time of the obtained results to 

detect very thin (or distant) wires and 2) use image context - i.e. search for wires 

near power poles. 

The use of an example-based learning technique, namely Support Vector Machines 

(SVMs) was also explored. Support Vector Machines have emerged as a promising 

classification tool and have been used in various applications. It was found that 

this approach is not very suitable for very thin wires and of course, not suitable 



Figure 18: (a) Image 4.(Original image) (b) Detections for p=0.3 

at all for sub-pixel thick wires. High dimensionality of the data as such does not 

present a major problem for Support Vector Machines since they cope with high 

dimensional data fairly easily. However it is desirable to have a large number of 

training examples especially for high dimensional data. The main difficulty in 

using SVMs (or any other example-based learning method) is the need for a very 

good set of positive and negative examples since the performance depends on the 

quality of the training set. A large number of carefully chosen "good" negative 

examples is required in order for the classifier to learn the class corresponding to 

the negative examples (in our case non-wire). By "good" negative examples we 

mean those which could be easily confused with positive examples. 
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A. Appendix: Overview of SVM theory 

Problem Statement 

The statistical pattern recognition problem is stated formally as below. 

Toestimate afunction f : RN + {fl} using training data Le. (z1, yl), . . . , ( $ 1 ,  y1) E 

RN x {rtl} where xi s are N dimensional vectors and yi s are class labels such 

that f will correctly classify new examples (z, y) which were generated from the 

same underlying probability distribution P(z ,  y) as the training data. [lo] 

It is important to understand that minimizing training error does not imply a small 

expected test error. Moreover it is crucial to limit the class of learning functions the 

classifier can implement to one with a cupucity suitable for the amount of training 

data available [lo]. The interested reader is referred to Vapnik [26] and Burges 

[ 11 for a detailed discussion on capacity. 

A.l  Terms and concepts 

We restrict our attention to the two class case for the rest of the discussion. A 

few terms which will be referred to frequently in the succeeding discussion are 

explained below. 
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0 Hyperplane : Generalization of a line in higher dimensions. The equation 

of a hyperplane may be specified as 

d .Z+  b = 0 

where 6 and b are constants and 2 E RN 

0 Margin : Minimum separation between any data point and the separating 

hyperplane. 

0 Linearly separable data : If a hyperplane can be found such that all the 

data points that belong to one class are on one side of the hyperplane and all 

the data points of the other class are on the other side of the hyperplane, the 

data is said to be linearly separable. 

The following are specifically related to SVMs. 

1. Optimal Hyperplane 

The optimal hyperplane is defined as the one with the maximal margin of 

separation between the two classes.(This has the lowest capacity for the 

given training set.) 
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2. Support Vectors 

The training vectors which lie on the margin. 

(specifically at a distance equal to the margin from the separating hyper- 

plane.) 

Significance of support vectors 

1. Only they are required to define the separating hyperplane. i.e. The sepa- 

rating hyperplane may be expressed as a combination of these vectors alone. 

(more generally, as a linear combination of functions of these vectors.) 

2. Other examples may be ignored/moved around as long as they do not cross 

over to the other side. 

A.2 Support Vector A4achines:Description 

In this subsection we describe the technique of Support Vector Machines(SVM). 

Given a set of points that belong to one of the two classes (training data), the SVM 

explicitly attempts to maximize the margin, i.e. it finds the hyperplane with the 

maximum margin. This hyperplane minimizes the risk of misclassifying (unseen) 
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examples of the test set, provided the training and test data are drawn from the 

same (fixed but unknown) probability distribution [26]. 

The SVM minimizes the structural risk [25] and this results in better generaliza- 

tion capability. This is in contrast to some of the traditional pattern recognition 

techniques such as neural networks which minimize the empirical risk i.e. they 

minimize the error on the training set. This could result in poor performance on a 

test set (previously unseen examples) even though the performance on training set 

is very good, a phenomenon referred to as overjitting. 

The SVM problem formulation leads to a Quadratic Programming (QP) problem. 

Although the QP is dense, it is convex. (see Appendix B). A convex QP has 

a global minimum and a number of nice properties which can be exploited by 

algorithms in solving it. There are a number of methods in the literature for convex 

QPs. An interesting class of methods is the Active Set methods. Although most 

active set methods can be generalized to solve non-convex QPs, this case presents 

significant complications. Nocedal and Wright [ 181 describe QP in detail. The 

interested reader is referred to [ 18, Chapter 161 for a detailed discussion on Active 

Set methods. 

We consider three cases as in Osuna et. al. [19, Section 2.31. These are illustrated 

in Figure 19. 
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We note that in the case of linearly separable data there is no unique hyperplane that 

separates the data. (Similarly in the case of data separable by a non-linear decision 

surface, there is no unique surface that separates the data.) This is illustrated in 

Figure 19(a). 

The SVM finds the hyperplane that maximizes the margin. Figure 19(a) intuitively 

illustrates the importance of a large margin. The margin may be viewed as a mea- 

sure of tolerance to noise. Note that some of the data points are much closer to the 

alternate hyperplane as compared to the one determined by the SVM. Hence, the 

“magnitude” of the noise required to “drive away” these data points to the other 

side of the alternate hyperplane (and hence leading to these points being misclassi- 

fied) is much lesser as compared to the hyperplane determined by the SVM. Thus, 

intuitively we would expect the SVM to be more robust. 

Each of the three cases is briefly described as follows. 

1. Linear Classifier and Linearly separable problem 

This case (see Figure 19(a) ) corresponds to finding a hyperplane ( 6 , b )  

assuming that the data is linearly separable. We construct and solve the dual 

problem (described in section B.l.l) since the dual problem can be easily 

generalized to include linearly non-separable data. 

2. Linearly Non-Separable Case : Soft Margin Hyperplane 
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The soft margin hyperplane is a generalization of the first case. This applies 

to the scenario in which the data is linearly separable except for a small frac- 

tion of points (see Figure 19(b)). The aim still is to find a hyperplane which 

separates the data. The main difference is that there is a penalty incurred for 

every training example which “violates” the separation by the hyperplane. 

In essence, the aim is to find a separating hyperplane which incurs the least 

penalty overall. 

Making the penalty linearly related to the distance from the separating hy- 

perplane for the “violating” examples somewhat simplifies the mathematics. 

In this case the penalty is expressed in the form of a penalty term C, which is 

the penalty per unit distance from the separating hyperplane (on the wrong 

side of it). This leads to the problem formulation as described in section B.2. 

3. Nonlinear Decision Surfaces 

The SVM problem formulation can be easily generalized to include nonlin- 

ear decision surfaces (see Figure 19(c)) with the aid of kernels. The basic 

idea is to project all the data from the input space to a high dimensional space 

in which the data are linearly separable. With the aid of kernels (and consid- 

ering the dual problem) the SVM problem formulation for this case is almost 

identical to that for the linearly separable case. A significant advantage with 

kernels is that all computations can be performed in the input space itself 
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rather than in the high dimensional space. Since kernels are important in a 

discussion on SVMs and also are widely used in real world applications, an 

overview is presented here. 

A.3 Kernels 

The basic idea behind non linear decision surfaces may be outlined as below. 

1. Map the input space into a (higher dimensional) feature space such that the 

data is linearly separable in the feature space. Specifically, an input vector x 

is mapped into a (possibly infinite) vector of “feature” variables as below: 

where { a i } g 1  are real numbers and {q5i}gl are real functions. 

2. Find the optimal hyperplane in the feature space. The optimal hyperplane is 

defined as the one with the maximal margin of separation between the two 

classes. (This has the lowest capacity for the given training set.) 
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We discuss kernels from the point of view of SVMs. Consider any two training 

vectors 2 and g. It is to be observed that in all problem formulations and the final 

decision function, the support vectors enter into the expressions only in the form 

of dot products.(see equations 29 and 33). Equation ( 33) is repeated here for 

reference. 

(Equation 33) 

It is thus convenient to introduce a kernel function K such that : 

Using this quantity the decision function of the SVM is : 
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where 

2 = The test vector which must be classified as belonging to class 1 or -1 

1 = Number of support vectors 

xi = ith support vector 

A t  = Lagrange parameter of the i th support vector. 

b = bias 

The advantages of using kernels may be outlined as follows. 

0 The mapping function $( .) need not be known at all since all the required 

manipulations can be performed just by knowing the kernel function. 

0 All the computations are performed in the input space as opposed to the high 

(possibly infinite) dimensional feature space. 

Not all functions are suitable to be used as kernel functions. In general, the function 

must satisfy Mercer’s conditions. The details are left out here. Osuna et. al. [19, 

pages 11-14] provide an overview of kernels. A fairly detailed overview may be 

found in Burges [l]. Table 3 contains a listing of commonly used kernels. 

As an aside we note that Multi Layer Perceptron (MLP) function does not satisfy 

Mercer conditions for all values of its parameter 8 and hence may not be a kernel 

for certain values of 8. 
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Name of kernel 
Linear kernel 
Polynomial kernel 
Gaussian Radial Basis Function 

I Multilayer Perceptron I ~ ( x ,  3) = tanqKz.g- e )  I &, e 
Table 3: List of commonly used kernels 

Formula Parameters 
K(?,g) = 2.g None. 
K(z ,g)  = (1 + .'.y3d 

K(Z, G) = exd-l-) CT 

d (degree of the polynomial) 

Another (more general) form of the Gaussian Radial Basis function is: 

An equivalent form of the Gaussian Radial Basis kernel is used in the software 

S V M ~ ~ ~ ~ ~ ,  namely, 

B Appendix: Support Vector Machines problem formu- 

lation 

In the succeeding discussion we pay attention mainly to the problem formulation. 

The notation followed is that in Osuna et. al. [19]. The details regarding the 

derivation are left out. They can be found in [19] or in any text which covers 
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Support Vector Machines. 

QUADRATIC PROGRAM : GENERAL FORM 

An optimization problem with a quadratic objective function and linear constraints 

is called a quadratic program. The constraints may consist of inequalities. The 

general quadratic program (QP) may be stated as: 

1 
2 

min -xTGx + cTx 

s.t. Ax = b 

Cx 2 d 

where G is a symmetric n x n matrix, x E P' is a vector of unknowns, A and C 

are matrices of dimensions ma x n and m, x n respectively. c, b and d are vectors 

of appropriate dimensions. 

If G is positive semidefinite, the problem is said to be a convex QP. In this case there 

is a single global minimum. Nonconvex QPs, i.e. those in which G is indefinite 

can be significantly more challenging since they can have several stationary points 

and local minima. The SVM problem formulation is a convex QP. 
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B.1 Linear Classifier and Linearly separable problem 

Linear Classifier and Linearly separable problem [19, Section 2.31 

We wish to find the “optimal” separating hyperplane (w, b) such that : 

w.xi + b 2 1 Vxi E class 1 

w.xi + b 2 1 Vxi E class 2 

The decision function is given by 

Problem formulation 

Minimize 
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subject to 

YZ(W.Xi + b) 2 1 i = 1,. . . , z  

(Eqn 10. Osuna et. a1 [19]) 

B.l.l Dual Problem 

We look at the dual problem and use Lagrange multipliers since the dual problem 

can be extended easily to non-linear decision surfaces. 

The Lagrangian is given by: (Eqn. 1 1 Osuna et. al. [ 191) 

I 

where A = (XI, . . . , A,) is the vector of non-negative Lagrange multipliers corre- 

sponding to constraints in 26 

After some mathematical steps(refer Osuna et. a1 [ 191 for details) the dual quadratic 

program may be written as below. (Eqn. 15 in Osuna et. al) 

Maximize 

1 
2 

F ( A )  = A I -  -A.DA 

60 



subject to 

A.y = 0 

A 2 0  

where A = (XI, . . . , Xl) is the vector of Lagrange multipliers, y = (y1,y2, 

and D is a symmetric 1 x 1 matrix with elements Dij = yivjxi.xj 

CLASSIFICATION USING THE TRAINED SVM 

.. 

The vectors for which X i  > 0 are the Support Vectors. The bias b may be computed 

from any support vector as: 

b* =: yi - w*.x~ 

From a numerical point of view, it is better to find the bias from various support 

vectors and take the average. The decision function is: 

61 



where 

x = The test vector to be classified into one of the two predefined classes ( { 1,-1} ). 

1 = Number of support vectors 

xi = i th support vector 

A t  = Lagrange parameter of the i th support vector. 

b* = bias 

B.2 Soft margin Hyperp1ane:Linearly non-separable case 

The dual problem may be formulated as:(Eqn 30 in Osuna et. al [19]) 

Maximize F ( h )  = (A.1) - $ A D A  

subject to 

A.y = 0 

A 5 C1 

A 2 0  

The decision function (equation 25) may be written as: 
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I 

f(x) = sign(C yiXf(z.zi) + b*) 
i=l 

B.3 Nonlinear decision surfaces and kernels 

Problem formulation 

The quadratic programming problem is: 

Maximize 

F ( A )  = A.1 - $ A D A  

subject to 

A.y = 0 

A 5 C1 

A Z O  

where y = (yl, 32,. . . yl)T and D is a symmetric I x I matrix with elements 
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DZj = yiyjK(G, z;) 

Under the mapping (Equation 19) the decision function has the form : 

This can be conveniently written as: 
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Figure 19: (a) Linearly separable data. (b) Linearly non-separable data. (c)Non 
linear decision surface. 


