
file ///D|/abstracts/JSC98 html

Automatic evolution of molecular
nanotechnology designs

Al Globus, MRJ Technology Solutions, Inc. at NASA Ames Research Center

John Lawton, University of California at Santa Cruz

Todd Wipke, University of California at Santa Cruz

Design problem
Macroscopic systems built from molecular nanotechnology components are expected to be extremely
complex since the components are only a few nanometers across. For example, a product with a volume
of one cubic meter would contain 1024 lOnm components. To design systems of this complexity, highly
automated design tools may be of great utility.

There are several classes of molecular nanotechnology designs that can be described as graphs; i.e., a set
of vertices and a set of edges each of which connects two vertices. Molecules can be described as a set of
atoms (vertices) connected by a set of bonds (edges). Analog circuits can be described as a set of vertices
(nodes) connected by a set of wires or components (edges). Digital circuits and, presumably, future
nanoelectronic circuits can be similarly described. An automated system for designing graphs with
desirable properties should therefore be able, at least in principle, to design a variety of molecular
nanotechnology systems.

Genetic programming
One approach to automated design that has achieved substantial success is genetic programming [Koza
92]. To solve a problem using genetic programming the engineer creates a test that can rate designs (the
fitness function), invents or finds a set of hierarchical functions and terminals that can describe designs
(the tree nodes), chooses various system parameters such as population size, and lets the genetic
programming software run. The software generates a number of individual programs (the population) in
the chosen language at random. These individuals are rated by the fitness function. Pairs of programs
(the parents) are then selected at random with a bias for high scoring individuals. A subtree is selected
from each parent at random and these subtrees are exchanged (crossover) to create two new individuals
in the next generation. The software generally runs for a fixed number of generations or until a "good
enough" design is found. Note that the procedure is almost embarrassingly parallel making genetic
programming an excellent application for parallel computers and networks of workstations or PCs.

Genetic programming design of analog circuits
Genetic programming has been used to design a variety of analog circuits [Koza 97]. A tree language to
generate analog circuits compatible with the SPICE (Simulation Program with Integrated Circuit
Emphasis) [Quarles 94] simulator was constructed and a 64 node (80MHz per node) parallel
supercomputer was used to design the circuits. The system designed a lowpass filter, a crossover filter, a
four-way source identification circuit, a cube root circuit, a time-optimal controller circuit, a 100 dB
amplifier, a temperature-sensing circuit, and a voltage reference source circuit. Some of the resulting
circuits were comparable in quality to hand designed circuits. NASA Ames has also experimented with
evolving linear programs to generate analog circuits with some success [Lohn 98].

Genetic graphs
Our present work investigates evolving graphs directly (genetic graphs) and comparing the results with
genetic programming on the same problem. For genetic graphs, a population of graphs is generated at

I o f 2 8/14/9811 34AM



file-///D|/abstracts/JSC98.html

random and evolved by choosing two graphs to be parents, splitting both by eliminating an appropriate
set of edges (the cut set), swapping subgraphs, then connecting the new graphs at random among the
previously split edges. We then compare the results of genetic graph runs (experiment) with genetic
programming runs (control) on the same problem. To minimize differences between experiment and
control, the initial random population is generated from trees created at random in both cases. Our initial
problem is drug design where the fitness function is similarity to a known to drug such as morphine. An
atom pair similarity test [Carhart 85] is used in the fitness function. Future planned work includes
nanoelectronic circuit design, especially carbon nanotube circuits as simulators and construction
algorithms become available.

References
[Carhart 85] Raymond Carhart, Dennis H. Smith, and R. Venkataraghavan, "Atom pairs as molecular
features in structure-activity studies: definition and application, "Journal of Chemical Information and
Computer Science, 23, pages 64-73, 1985.

[Lohn 98] Jason D. Lohn and Silvano P. Colombano, "Automated analog circuit synthesis using a linear
representation," submitted ICES-98, 1998.

[Quarles 94] T. Quarles, A. R. Newton, D. O. Pederson, and A. Sangiovanni-Vincentelli, SPICE 3
Version 3F5 User's Manual, Department of Electrical Engineering and Computer Science, University of
California at Berkeley, CA, March 1994.

[Koza 92] John R. Koza, Genetic Programming: on the programming of computers by means of natural
selection, MIT Press, Massachusetts, 1992.

[Koza 97] John R. Koza, Forrest H. Bennett III, David Andre, Martin A. Keane and Frank Dunlap,
"Automated synthesis of analog electrical circuits by means of genetic programming," IEEE
Transactions on Evolutionary Computation, volume 1, number 2, pages 109-128, July 1997.

2 of 2 8/14/98 11-34 AM




