
 ICU 5

Leap Before You Look:
Information Gathering in the PUCCINI planner

Keith Golden

NASA Ames Research Center

M/S 269-2

Moffett Field, CA 94035-1000

kgolden _ ptolemy, arc. nasa. gov

(650) 604-358.5

Abstract

Most of the work in planning with incomplete informa-
tion takes a "look before you leap" perspective: Ac-

tions must be guaranteed to have their intended effects

before they can be executed. We argue that this ap-

proach is impossible to follow in many real-world do-

mains. The agent may not haw_ enough information to
ensure that an action will have a given effect in advance

of executing it. This paper describes PUCCINI, a partial-

order planner used to control the Internet Softbot (Et-
zioni & Weld 1994). PUCCINI takes a ditferent approach

to coping with incomplete information: "Leap before
you look!" PUCCINI doesn't require actions to be known
to have the desired effects before execution. However,

it still maintains soundness, by requiring the effects to

be verified eventually. We discuss how this is achieved

using a simple generalization of causal links.

Introduction

A boy's appetite grows very fast, and in a few moments
the queer, empty feeling had become]ranger, and the

hunger grew bigger and bigger, until soon he was as
ravenous as a bear.

Poor Pinocchio ran to the fireplace where the pot was

boiling and stretched out his hand to take the cover off,
but to his amazement the pot was only painted! Think

how he felt! His long nose became at least two inches

longer.

He ran about the room, dug in all the boxes and draw-

ers, and even looked under the bed in search of a piece
of bread, hard though it might be, or a cookie, or per-

haps a bit of fish. A bone left by a dog would have

tasted good to him! But he found nothing

Suddenly, he saw, among the sweepings in a corner,
something round and white that looked very much like

a hen's egg. In a jiffy he pounced upon it. It was an

egg.

-- Carlo Collodi, 1 The Adventures of Pinocchio

Pinocchio's search for food is evocative, in part, be-

cause it is so familiar. Whether looking for food, a pass-

port, or information on the Web, we have all had the

experience of searching exhaustively for something until

we find it. Even though any single action, such as open-

ing a drawer or looking under the bed, is likely to result

1Translated from the Italian by Carol Delia Chiesa

in failure, we know that if we search long enough, we

are likely to find what we're looking for. Pinocchio's at-

tempt to lift the cover from the pot is also familiar, since

attempts to open locked doors or copy read-protected

files result in similar frustration of our expectations.

What these activities have in common is some precon-

dition that we assumed to be true, but later found to

be false.

We are interested in the problem of building agent.s

that can solve user goals in software environments, such

as the Unix operating system or World Wide Web, in

which the agent has massively incomplete (but correct)

information about the world. One such agent is the

Internet Softbot (Etzioni & Weld 1994). Internet re-

sources and Unix commands are represented as planner

actions, and a planner, called PUCCINI, 2 is used to find

some combination of these actions that together will

achieve the user's goal.

It should not be surprising to anyone who has looked

for something on the Web that agents in such environ-

ments could spend much of their time searching for files

or Web pages in much the way that Pinocchio searched

for something to eat. However, most planners that

deal with incomplete information don't behave nmch

like Pinocchio.

Most planners, by adopting some form of knowledge

preconditions (Moore 1985), require the agent to know,

a priori, that an action will have some desired result. As

we argued in (Golden & Weld 1996), and will briefly dis-

cuss here, these knowledge preconditions are represen-

tational handcuffs, which make action representations

more awkward and limit the utility of our planners; our

action language, SADL, eliminates them. In this paper,

we show how a simple generalization of causal links al-

lows a planner to exploit the elimination of knowledge

preconditions, without giving up soundness. We show

empirically that this added expressiveness does not de-

grade planner performance.

The remainder of the paper is organized as follows.

2puccINI stands for Planning with Universal quantifi-

cation, Conditional effects, Causal links, and INcomplete
Intormation. PUCCINI is a partial-order planner based on

ucPop (Penberthy & Weld 1992). An earlier version of
PUCCINI Was called XlI.

First, we introduce the flmdamentals of the SADL lan-
guage and the PUCCINI planner. Then, in the next
section, we briefly discuss the problem with knowledge
preconditions. Although knowledge preconditions, as
inflexible requirenlents of the planner, are harmful, it
is still necessary for the planner to gather information
in support of planning. In the following section, we
show how that is done in PUCCINI. Then we consider

the option of assuming that certain preconditions hold,
performing the action, and verifying the preconditions
afterward. Finally, we evaluate the cost of this added
flexibility.

Back in the SADL

PUCCINI goals and actions are described using the lan-
guage SADL, 3 which builds on UWL (Etzioni ct al. 1992)
and AOL (Penberthy 1993). Like UWL, SADL is designed
to represent sensing actions and information goals. To
distinguish sensory effects from causal effects and goals
of information from traditional goals of satisfaction,
SADC provides annotations for goals and effects.

Following UWL, SADL divides effects into those that
change the world, annotated by cause, and those that
merely report on the state of the world, annotated by
observe. Executing actions with observe effects as-
signs values to runtime variables that appear in those
effects. By using a runtime variable (syntactically iden-
tified with a leading exclamation point, e.g. !tv) as a
parameter to a later action (or to control contingent ex-
ecution), information gathered by one action can affect
the agent's subsequent behavior. For example, ping
twain ha.s the effect of observe (machine.alive(twain),

!tv), i.e. determining whether it is true or false that the
machine named twain is alive, and wc my:file has the
effect observe (word.count(myfile, !word)), i.e. deter-
mining the number of words in myfile. The variable
!tv, above, is the truth value of the proposition ma-
chine.alive(twain). All literals have truth values ex-
pressed in a three-valued logic: T, F, U (unknown), or
represented by a variable. If a truth value is not speci-
fied, it defaults to T.

Goals are similarly annotated. The goal satisfy(P)
indicates a traditional goal (as in ADL): achieve P by
whatever means possible. In the presence of incom-
plete information, we make tile fllrther reqnirement
that the agent knows that P is true, so satisfy(P)
means that KNOW(P) nmst be true in the final state
of the plan. Free variables are impli,:itly existentially

quantified, and the quantifier takes the widest possible
scope. For example, satisfy(in.dir (jr, tex), T) means
"Ensure that there's at least one fil_, in directory tex,"

and satisfy(in.dir (myfile, rex), tv) means "Find out
whether or not myfile is in tex."

The initially annotation, introduced in (Golden &
Weld 1996), is similar to satisfy, but it reh'rs to the
time when the goal is given to the agent, not to the time
when the goal is achieved, initially(P, tv) means that
by the time the agent has finished executing the plan,

3SADL stands for Sensory Action Description Language.

it. should know whether P was true when it started.

initlally(P) is not achievable by an action that changes
the fluent P, since such all action only obscures the ini-
tial value of P. However, changing P after determining
its initial value is fine. By combining initially with
satisfy we can express "tidiness" goals: modify P at
will, but restore its initial vahte by plan's end (Golden
& Weld 1996; Weld & Etzioni 1994). Furthermore, we

can express goals such as "Find the the file currently
named paper, tex, and rename it to kr. tex," which is
beyond the expressive power of most planners (Golden
& Weld 1996).

'the hands-off annotation indicates a maintenance

goal that prohibits the agent from changing the fluent
in question.

Like ADL, SAI)L also supports universal quantification
and conditional effects. Combining these features with
observe effects yields expressive sensor models, such
as those shown in the next section.

PUCCINI overview

PUCCINI is a partial-order planner in the same family as
SNLP (McAllester &: Rosenblitt 1991) and ucPop (Pen-
berthy & Weld 1992). It builds plans incrementally by
starting with an empty plan and a goal agenda of goals
that need to be achieved. When goals are achieved,
they are removed from the goal agenda. When actions
are added to tile plan in support of goals, their pre-
conditions are added to the goal agenda. This process
continues until the goal agenda is empty or some goal
prowls impossible to achieve. When a goal has been
"achieved" by adding an action to the plan, we nmst

guard against the possibility that some other action
added later will "clobber" the goal, forcing the planner
to re-achieve it.. To prevent this from happening, the

planner adds a causal link (Tare 1977), which records its
commitment to achieve a given goal by using the effect.
of a given action. If effect e of A1 is used to support
precondition q of A2, we represent the corresponding

causal link as AI_A.2. A1 is required to precede A2 so
that q will be achieved by the time it's needed. Any
change to the plan that would violate the causal link
is called a threat to the link, and must be resolved by

the planner. For example, an action At with the effect.
-_q possibly occurring between actions A1 and A2 would

threaten the link AI_-_A2. This threat might be resolved
by adding an ordering constraint to ensure that At is
executed before A1 or after A2. In addition to achieving

goals on the goal agenda and resolving threats, PUCCINI
must execute actions. These three procedures comprise
the top-level PUCCINI algorithm (Figure 1). This paper
only focuses on a narrow aspect of the goal achieve-
ment procedure (Figure 6). For a discussion of the
other aspects of the algorithm, consult (Golden 1997;
Etzioni, Golden, & Weld 1997).

Knowledge Preconditions

Knowledge preconditions are meant to capture the in-
formation needed by an agent to execute an action for

a given purpose. For example, an agent opening a safe

PUCCINI((.A,O,L_,C,g),_, 7_,s)
1. If_ = 0AE = @AV_ 6 C _ not threatened, return

Success.

2. Pick one of

(a) HandleGoal(v a. O, B, C, _, 7;))

(b) HandleThreats(O, B, C, G)

(c) s := HandleExecution(A, C?, 13, C, F, s)

3. PUCCINI({.A, O, B, C, E>, _, 7), ._)

Figure 1: The PUCCINI Algorithm takes as input a plan,
a goal agenda (_), a domain theory (79), and the cur-
rent state of the world, s, which is onl} partially known.
The plan consists of a set of actions (.4), ordering rela-
tions on A ((9), variable binding constraints (B), causal
links (C) and unexecuted actions in A (g). The planner
repeatedly fixes "flaws" in the plan (open goals, threats
and unexecuted actions) until the plan is complete. The
lines of the algorithm relevant to this paper are shown
in bold.

needs to know tile combination. In (Golden & Weld
1996), we argued that the practice of specifying knowl-
edge preconditions for actions was too restrictive and
should be abandoned.

Moore (Moore 1985) identified two kinds of knowl-
edge preconditions an agent must satisfy in order to ex-
ecute an action in support of some proposition P: First,
the agent nmst know a rigid designator (i.e., an unam-
biguous, executable description) of the action. Second,
the agent must know that. executing the action will in
fact achieve P. Subsequent work by Morgenstern (Mor-
genstern 1987) generalized this framework to handle
scenarios where multiple agents reasoned about each
other's knowledge.

The first type of knowledge precondition doesn't
present any problem for us, since, in our language, all
actions are rigid designators, dial(combination(safe))
is not an admissible action, but dial(31-24-15) is.
Lifted action schemas, e.g. dial (x), are not rigid des-

ignators, but it is easy to produce one by substituting
a constant for x.

Moore's second type of knowledge precondition pre-

supposes that an action in a plan must provably succeed
in achieving a desired goal. This is a standard assump-
tion in classical planning, but is overly restrictive given
incomplete information about the world; elfforcing this
assumption by adding knowledge preconditions to ac-
tions is inappropriate. For example, if knowledge of the
safe's combination is a precondition of the dial action,
then it becomes impossible for a planner to solve the

goal "find out whether the combination is 31-24-15" by
dialing that number, since before executing the dial ac-
t.ion, it will need to satisfy that action's precondition of
finding out whether 31-24-15 is the.' right combination!

Eliminating the knowledge precondition from the
dial action also allows the unhurried agent to devise
a plan to enumerate the possible combinations until it.

finds one that works. 4 While this may seem silly, Pinoc-

ohio was following an identical strategy in his hunt for
food. The Internet Softbot does the same when di-

rected to find a particular user, file or web page, whose
location is unknown. If finger and ls (Figures 2 and
3) included knowledge preconditions, then the actions
would be useless for locating users and files. For ex-

an@e, ls /papers only returns information about the
file aips. rex if aips. rex is in /papers. Yet planning
to move aips. rex into/papers misses the point if the

goal is to find aips. rex!
In a broad class of domains, which we call knowledge-

]ree Markov (KFM) domains, the effects of an action
depend only on the state of tile world (and not on the
agent's knowledge about the world) at the time of ex-
ecution. In such domains, actions are best encoded

without knowledge preconditions. Simple mechanical
and software systems are naturally encoded as KFM,
while domains involving abstract actions are typically
not. Such actions represent complex (albeit sketchy)
plans in their own right, and depend on the agent's
knowledge to be executed successfully.

Although knowledge preconditions are problematic,
it is often useful for an agent to plan to obtain informa-
tion, such as the combination of a safe, either to reduce
search or to avoid dangerous mistakes. For example, if
there's an alarm on the safe, then it would be a bad idea
to try all combinations. More importantly, it is neces-
sary that the agent know, by the time it is finished,
that it has achieved the goal. If we don't maintain this
constraint, our planner is not even sound!

Planning to Sense

The solution is to give the planner the information
needed to determine when obtaining information, such
as the combination of a safe, would be useful, and then
leave it to the planner to decide how and when to ac-
quire that information. We do so quite simply by the
use of conditional effects (see Figures 2 and 3). Follow-
ing (Pednault 1986), we call the precondition of a condi-
tional effect a secondary precondition (the precondition
of the action itself is known as a primary precondition).

If the agent wants to know whether a conditional ef-
fect will occur, it needs to know whether the corre-
sponding secondary precondition is true. However, we
don't require the planner to achieve the secondary pre-
conditions before executing an action, even if it wants
the corresponding effects to occur. In this sense, the
secondary preconditions are descriptive, not prescrip-
tive. The planner has the option of ensuring that these
secondary preconditions are true before it executes the
action, but it can also verify them after the fact. We
consider the former case in this section. We will discuss
the latter in the next section.

The planner can ensure that a precondition is true
by either observing it to be true or making it true. For
example, suppose a softbot wants to compress the file

4Richard Feynman estimated that he could open a safe
using this method in four hours (Feynman 1985).

actionfinger(s)
precond:satisfy (current.shell(c*3h))
effect: V !p 3 fl, !f, I._t

when lastname(ip, .'0 V
firstname(!p, s) V
userid(!p, s)

observe (firstname(!p, !J)) A
observe (lastname(ip, !l)) A
observe (userid(!p, !u))

Figure 2: Unix action schema. A simplified version of
the PUCCINI finger action to find informant!on about a user.
This action returns information about all users whose first
name, last name or userid is equal to the input string s.
Variables like !p, beginning with an exclamation point, are
called run-time variables. The values of these variables are
determined at run time as a result of sensing. Effects labeled
with observe designate propositions that are sensed by the
agent, as opposed to being affected.

action ls(d)
precond:
effect:

satisfy (current.shell(csh))
V if when in.dir (if, d)

3!p, .In
observe (in.dir(/f, d)) A
observe (pathname(if, !p)) A
observe (name(if, !n))

Figure 3: Unix action schema. A simplified version of
the PUCCINI ls action (Unix ls -a) to list all files in a direc-
tory. The relation in.dir(ff, d) means file if is in directory !d,
so this action returns information about all files in a given
directory.

aips. rex, and decides to do so by executing the action
compress /papers/*, which compresses every file in
the directory /papers. The action will only succeed if
sips. tex is actually in directory/papers. The softbot
could subgoal on ensuring that aips. rex is in/papers,
either by observing that sips. tex is in/papers, using
the action ls (see Figure 3), or by moving aips.tex
into/papers. VCe use the term observational link to de-

note links, Ale-_A2, in which tile effect e is an observe
effect.

Suppose a softbot wants to find the userid of Oren
Etzioni, a University of Washington professor. It can
do so using the finger command (Figure 2). finger
takes a single argument, a string, and will only provide
information about Oren if that string is Oren's first
name, last name or userid. Since the softbot doesn't
know Oren's user!d, that will be useless to subgoal on,
but the softbot does know Oren's first and last names.

Suppose it adopts the subgoal of knowing Oren's last
name. This can be satisfied using the softbot's prior
knowledge about the world. The softt)ot's prior knowl-
edge is represented in the planner as the effects of a
dummy "initial step," A0. So the planner adds a link
from A0 to finger, representing its commitment to use
its knowledge of the initial state to ,_atis_" its goal of
knowing Oren's last name.

Now suppose the softbot is given the goal of find-

ing a user with the userid map, i.e., initially(userid(p,
map)), but it has no knowledge about any users, includ-
ing whatever user, if any, has the userid of map. The
softbot could plan to execute finger map, but it's less
obvious what to do with the secondary preconditions of

finger. Since the softbot doesn't know anything about
the user in question, it can't know that user's first name
or last name. It also doesn't know what user p satisfies
the relation userid(p, map). While we could try simply
asserting that there's a user whose userid is map, this
fact is not necessarily true, and asserting it into the
softbot's knowledge base would introduce a number of
complications, not the least of which is that the soft-
bot would erroneously believe that it already knew the
answer to the query.

Leap before you look

Impasses like the one above are all too common. For-
tunately, they have a simple solution. In the case of
finger map, above, the softbot can just execute the
finger; it will know afterward what user has that
userid, since the action has the effect

when userid(!p, s) ... observe (userid(!p, !u)). 5

In short, the softbot will know after executing finger
map whether the secondary precondition was true before
executing it. Since the softbot can verify after the fact
that the precondition was true, there's no reason not to
go ahead and execute the action.

What we want is the ability to temporarily assume
the secondary precondition is true, and to later verify
that the assumption was valid by performing an obser-
vation. Formally, a comnfitment to verify an assnmp-

tic,n is a quadruple (Ap,p, e, A_), where p is a precondi-
tion of some effect of Ap. p is assumed to be true, and is
to be verified by effect e of action Ae. Note that, unlike
our discussion in the previous section, it is essential that
the verification be done by an observation, since that

is the only way to obtain information about the past.
Executing an action that caused the precondition to be
true would be useless, since the precondition needs to
have been true before the action was executed. Because
the observation will only be valid if tile condition p re-
m_fins unperturbed, we must protect p over the interval
between Ap and A_.

There is a striking similarity between these commit-
ments to verify preconditions and observational links.
In fact, they are identical to observational links, with
the exception that the order of the producer and con-
sumer is reversed! We call these commitments verifi-

cation links, and write them as Ap_Ae. Because we
want to consider supporting these preconditions by ei-
ther prior observation or later verification, we can ac-
complish this feat quite simply by omitting the order-
ing constraint that would normally be placed between
the producer and consumer. Since the only difference
between an observation link and a verification link is

5This reasoifing depends on the fact that every user has
at most one user!d, but the planner has access to this fact.

in tile ordering constraint, omitting the ordering con-

straint means the planner hasn't c()mmitted to which

kind of link it is. Eventually, the actions will be ordered,

either in the course of planning or prior to execution.

Once that happens, the link will be either an observa-

tion link or a verification link, depending on the action

order. Relaxing the ordering constraint allows for self-

links as well, as in the case of f ±nger map, above. For

example, consider the following effect of ls:

V !fwhen in.dir(!f, d) observe (in.dir(!f, d)),

where in.dir(!f, d) means that file !f is in directory !d.

We can satisfy the in.dir precondition by linking to the

effect of the same action (see Figure 4). If the desired

file is not in the directory, the observe effect ensures

that the agent will know that fact after executing the

action, 6 and the assumption will be proven false.

One potential concern about verification links is that

they increase the size of the search space by giving

the planner more ordering options. In fact, this is in-

evitable, since more plans are admissible when verifica-

tion links are allowed. However, the number of plans

that are solutions also increases, and, due to the least-

commitment approach, the alternative ordering options

may never be explicitly explored. Thus, it is possi-

ble that using verification links would actually decrease

the number of plans explored, at lea,st in some cases.

Whether more or fewer plans are explored is an empir-

ical question, which we investigate in the next section.

.._bserve(in.dir(aips,/papers))

salisfy(in.dir(aips, d))

Figure 4: PUCCIN[adds ls /papers in support of the goal

of finding the file nips.rex. Since this relics on the con-
ditional effect of ls, the desired outcome will only occur

if in.dir(aips.tex, /papers) is true when is is executed.

Rather than trying to achieve this pre(ondition, PUCCINI
adds a verification link from the effect of is, observe

(in.dir(!f, /papers)), to this precondition. The agent will

know after executing the Is whether the precondition was
true.

Bookkeeping

While we can handle assumptions elegantly by lifting

the ordering constraints imposed along with observa-

tional links, that doesn't free us from bookkeeping. The

effects supported by assumptions are, still contingent,

and we must exercise care in what we do with them. We

should not store them in the agent's knowledge base or

execute actions with primary precomtitions supported

by them until they have been verified.

6Actually, it is the fact that the agent observes all files
that enables the agent to conclude that other files are not

in the directory. See (Etzioni, Golden, &: \Veld 1997) for a
discussion of how this inference works.

(a) (b)

Figure 5: Bookkeeping for verification links: (a) Ap may
follow A_, but is used to verify a precondition of an effect

of .4_. This effect, in turn, satisfies a primary precondition

of A_ (solid lines indicate links). The effects of A, are un-
defined unless the precondition is satisfied, and it won't be

known whether A_ had the desired effect until Ap has been

executed, so an ordering constraint is added to ensure that

A_ is not executed before Ap (dotted lines indicate ordering

constraints). (b) The secondary precondition of Ap itself

is supported by an action, Ap,, that may be executed later.

Since Ap, is indirectly providing support for A_, it must also
be executed before A_.

This bookkeeping is really quite simple. If a link

Apq_A_ may represent a verification link, as opposed
to an observational link (i.e., Ac is not constrained to

come after Ap) all actions A_ whose primary precondi-

tions are supported by A_ are required to follow Av (see

Figure 5(a)). If Apq_A_ turns out to be observation link,

no harm was done in adding the constraint Ap -.< As.

The constraint is redundant, since A_ nmst follow Ap,

by transitivity of the ordering relation (Ap -< Ac _ A_).

Furthermore, if the effect e of Ap itself has a pre-

condition supported by a (possibly later) action Ap,,

the constraint A_, -_ A, will also be added (see Fig-

ure 5(b)). In general, we require an action A8 to follow

all other actions that provide support to one of its pri-

mary preconditions, where an action provides support

to a given precondition if it directly supports the pre-

condition or if it provides support to the precondition of

an effect that directly supports the given precondition.

These ordering constraints are added in the AddLink

procedure (Figure 7).
When it comes time to execute an action, all causal

effects whose preconditions are unknown, including as-

sumptions, must be asserted ms unknown in the agent's

knowledge base. Additionally, all effects whose assumed

preconditions have been verified should be asserted as

true (this is valid, since the link guarantees that the

agent didn't change the condition in the interim}.

Evaluation

While the examt)les we have given in this paper show

the benefits of a "leap before you look" approach, the

real test is how well this approach actually works in

a real planning domain. In fact, the evolution of the

PUCCINI planner was driven by representational prob-

lems we encountered in trying to encode Unix and

Internet action schemas for the Softbot, and trying

to get a planner to produce reasonable plans using

HandleGoal(A, (._9,L_, C, c3, T))
if _ _ 0 then pop (g, Sc) from from C_and select case:

1. If g = (Context =_ cond}, and Context_cond then g is
trivially satisfied.

2. If g is a hands-off goal, then call AddLink(Ao, g, nil,
s ,o,s)

3. Else nondeterministically choose

(a) Reduce(g, G)
(b) Instantiate a new action A from :D, such

that Satisfies(e, g) and add it to JL Call
Addlink(Anew, g, e, So, O, B). Add precon-
ditions of Ane. to _.

(c) Choose an existing action Aota from Jr, such
that Satisfies(e, g) and Call Addlink(Sp, g, e,
Aold, O, 13).

4. Propagate context labels

Figure 6: Procedure HandleGoal. Tile lines of the algo-
rithm relevant to this paper are shown in bold.

Addlink(Sp, goal, eft, Sc, O, _)
(goal = (Context => g); eff = when (p) e)

e,goal_

• If g is an initially goal, add Ao :-+ b. to C. Otherwise,
e,goal_

add bp _ bc to C.
• Unless g is an unannotated secondary precondition

and e is an observe effect

1. Add Sp -_ Sc to O

2. If e is supported (directly or indirectly) by a po-
tential verification link, whose producer is Ap,

add Ap --_ S_ to O

• Add MGU(e, g) to B.
• Add ((Context _ p}, Sp) to

Figure 7: Procedure Addlink. The lines of the algorithm
relevant to this paper are shown in bold.

these schemas. Many of these struggles are discussed
in (Golden & Weld 1996; Etzioni, Golden, & Weld
1997). One of the greatest representational gains came
from the elimination of knowledge preconditions and
the introduction of verification links. For example,
when knowledge preconditions were used to encode ac-
tions, we needed no fewer than six encodings of the

finger action (Figure 2), and even these six were not
enough to fully capture the functionality of the one
f inger action we have now. Needless to say, this prolif-
eration of actions presented greater search control prob-
lems, and the addition of more search control made the

entire system more brittle.
Despite these gains, there are some potential pitfalls,

which we should be on guard for. As we mentioned ear-
lier, verification links can increase the size of the search
space by giving the planner more ordering options. To
determine whether this is a prol)lem in practice, we ran
three versions of PUCCINI on 10 representative Softbot

goals. These goals are described in detail in Section

7.1.1 of (Golden 1997), but, briefly, they involve find-
ing web pages, phone numbers and files (locally and
via FTP) and compiling (I-STEX), displaying, printing,
compressing and changing permissions on files. For ex-
an@e, goal #5 is "Display all web pages referenced by
hyperlinks from both Dan Weld's homepage and Oren
Etzioni's homepage," which requires finding the appro-
priate home pages, scamiing both pages to find links in
common, and then running Netscape on each common
link.

Table 1 shows the statistics for solving these goals,

using each version of PUCCINI. The three versions are
as follows:

• VL is the version of PUCCINI presented here, which
supports verification links and allows the producer of
a verification link to follow the consumer.

• NO does not allow the producer to follow the con-

sumer, but still allows self-links (i.e., the producer is
the consumer).

• -,VL disallows all verification links.

The statistics shown include both planning CPU time
and real time for planning and execution. The real
time reflects the time required to actually execute the
commands and wait for completion, and thus represents
the time that the user is most likely to care about.. In
the experiments we report, the Softbot easily solved the
goals, using very little domain-dependent search control
and executing the minimal number of actions needed to
achieve the goals.

More importantly, we find that, for the goals that
are solvable without verification links, the use of verifi-
caqon links has virtually no impact on the size of the
search space. With the exception of goal 5 (for ver-
sion -,VL) the number of plans searched does not vary
with the planner configuration. However, the nmnber of
solvable goals decreases significantly when verification
links are disabled.

If verification links are entirely disabled (_VL), only
two of the goals are solvable. The reason for this is that
the SADL encodings of actions like ls and finger are
ahnost impossible to plan with if the planner doesn't
support self-links. Due to this limitation, the compari-
son between VL and _VL is not entirely fair. In order to
more fairly judge the impact of verification links, we ran
the same problems on Xll, the predecessor of PUCCINI.
Since xII doesn't support verification links, the action

encodings for that planner don't rely on them. Three
of the goals, which rely on actions that were not part
of the original xll domain theory, could not be solved
by xII and were omitted from the test suite.

Table 2 shows the results for the seven remaining

goals. Since the domain theories used by PUCCINI and
xlt are different, these performance results should be
taken with a grain of salt, but they are suggestive. Of

these goals, 1 and 2 are impossible to solve because the
goals require the temporal expressiveness provided by
the initially annotation, which Xll does not support.
Goal 9 is impossible to achieve without the use of veri-
fication links, despite the fact that the XH domain was

[plansI execI CPU(s)
1 I .I *1

3 30[1 I 0.57
4 [187] 8 I 11.99
7[3619[11 I 539.59
9 - i * , *

i0 I 792 6 65.92

real (s)

1.12
43.92

602.83
*

87.06
I

Table 2: Planner statistics for seven out of ten sam-

ple goals, given to the xn planner running on a Sun
SPARCstation 20 "*" indicates that the goal is impos-
sible for xn to achieve. Row and column labels are from
Table 1

engineered to get around their absence. This goat is
quite simple: Produce a color printout of a document
and report the status of the print job. However, it cuts
to the heart of a problem that stumped tile Softbot
team since the very beginning: Print jobs are produced

by the lpr command, but lpr tells us nothing about
them. To find out whether the print, job actually ex-
ists and what identifier it has, we must execute lpq.
Thus, the effect of lpr, the creation of a print job, is
contingent on the job being sent to the print queue, a
fact that can only be verified (by lpq) after the lpr
has been executed. This does not present a problem if

the planner supports verification links, but it creates a
representational headache without them.

Conclusions

Past work in planning required agents to know, be-
fore executing an action, that the action would have
its intended effect. We have shown that this restric-
tion can be harmful, and we have shown that a simple

change to a causal link planner, relaxing an ordering
constraint, gives an agent the flexibility to subgoal on
obtaining this knowledge when doing so wouhl be fruit-
ful, but also allows it to a_ssume preconditions are true
and later verify them to be true. We have shown that
this mechanism can be implemented without impairing

tractability.

Related Work

PUCCINI is all extension of xIt (Golden, Etzioni, & Weld
1994), which is based on the ucpoP algorithm (Pen-
berthy & Weld 1992). PUCCINi builds on xu by sup-
porting a more expressive language, SADL (Golden &
Weld 1996), and handling verification links, xlI builds
on ucPop by dealing with information goals and ef-
fects, interleaving planning with execution and reason-

ing with Local Closed World knowledge (LCW) (Etzioni,
Golden, & Weld 1997). The algorithm currently used
for interleaving planning with execution builds on the
approach used in IPEM (Ambros-Ingerson & Steel 1988).
Unlike IPEM, PUCCINI Call represent information goals
as distinct from satisfaction goals. IPEM makes no
such distinction, and thus cannot plan for information
goals. PUCCINI also has its roots in the SOCRATES plan-

net (Lesh 1992). Like PUCCINI, SOCRATES utilized the
Softbot domain as its testbed and interleaved planning
with execution. However, SOCRATES utilized knowledge

preconditions and supported a less expressive action
language (Etzioni et al. 1992).

We believe that our use of w_rifieation links is unique.

However, it should be possible for a Partially Observ-
able Markov Decision Process (POMDP) (Koenig 1992;

Dean et al. 1995), or the planner C-_UmDAN (Draper,
Hanks, 8c Weld 1994), to produce plans similar to those
produced by PUCCINI using verification links. However,
they accomplish this by following a generate-and-test
approach: considering the addition of each possible sen-
sot and testing the plan by checking it against a proba-
bility distribution on all possible worlds. They can also
decide not to support the precondition of a conditional
effect, provided the probability of that effect occurring
anyway is sufficiently high. Using this approach, they
can consider all plans that achieve the goal with a given

probability, but the computational cost is daunting.
Some planners represent uncertain outcomes using

conditional effects, and can execute actions for their
uncertain effects (Kushmeriek, Hanks, & Weld 1995;
Draper, Hanks, & Weld 1994; Pryor & Collins 1996;
Goldman & Boddy 1994). For example, Cassan-

dra (Pryor & Collins 1996) represents uncertain out-
comes as conditional effects with ":unknown" precondi-

tions, and is capable of using these actions for their un-
certain effects. Cassandra plans to achieve the goal for

all possible outcomes of each action, and adds sensing
actions to determine which outcome actually occurred.
However, since Cassandra doesn't know what the ac-
tual preconditions of these effects are, it cannot subgoal
on finding out whether the preconditions were true, af-
ter the fact. Furt.hermore, conditional effects without
:unknown preconditions are treated in the usual way;
the planner is forced to achieve the precondition if it.
wants the effect to occur.

PUCCINI can represent effects that are explicitly un-
certain, by using the U truth value (Golden & Weld
1996), but, unlike Cassandra or C-BURIDAN, it. can't
execute these actions for their (uncertain) effects. This
limitation stems from the fact that PUCCINI was not de-

signed for contingency planning. In future extensions
of PUCCINI, we would like to address this linfitation.

Future Work

Whenever the planner makes a decision to verify a pre-
condition after the fact, that introduces an uncertain
outcome upon which the success of the plan depends.
We refer to this as a source of contingency in the plan.

There is always the possibility that the precondition is
false, in which ease the action won't have the desired
effect. For example, if the agent is looking for the file
aips.tex, and the planner adds is /papers into the
plan, there's a chance aips. rex will turn out not to be
in /papers, in which case the plan will fail. In SADL,
al / sources of contingency stem from possibly unsatis-
fied preconditions (a precondition may be as simple as
an equality constraint). The approach currently taken

prob plans considered actions executed planning CPU (s) real time (s)

tram VL NO -A;L VL NO -_VL VL NO _VL VL NO -_VL

1 53 53 * 3 3 * 1.31 1.19 * 2.08 2.65 *

2 40 40 * 3 3 * 0.53 0.51 * 1.14 1.08 *

3 19 19 * 1 1 * 0.44 0.46 * 1.15 1.21 *

4 721 * * 6 * * 19.72 * * 61.85 * *

5 198 198 181 8 8 8 8.93 8.40 9.60 57.29 57.28 82.03

6 190 190 * 12 12 * 5.38 5.88 * 14.24 11.97 *

7 565 565 * 10 10 * 18.43 19.91 * 24.20 29.24 *

8 70 70 70 6 6 6 1.17 1.16 1.19 5.07 5.29 5.55

9 321 * * 4 * * 5.14 * * 8.57 * *

10 797 797 * 6 6 * 14.04 15.92 * 29.24 35.06 *

Table 1: Planner statistics for ten sample goals, running on a Sun SPARCstation 20. Tile results are shown for the

PUCCINI planner in three configurations: with verification links and flexible ordering (VL), without flexible ordering

(NO) and without any verification links (-,VL). "*" indicates that the goal is impossible for the planner in question

to achieve.

to deal with contingency is to interleave planning and

execution. However, some of the techniques used in

PUCCINI, such as the use of context labels, are borrowed

from contingency planning. We are in the process of in-

tegrating these techniques more completely, to produce

a hybrid interleaved-contingency planner.

Acknowledgements

This research was funded by Office of Naval Research

Grants N00014-94-1-0060 and N00014-98-1-0t47, by

National Science Foundation Grant IRI-9303461, and

by ARPA / Rome Labs grant F30602-95-1-0024.

Thanks to David Smith, Ellen Spertus, Richard Wash-

ington, Dan Weld and the anonymous reviewers for

helpful comments.

References

Ambros-Ingerson, J., and Steel, S. 1988. Integrating plan-

ning, execution, and monitoring. In Proc. 7th Nat. Conf.

AI, 735-74O.

Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson,
A. 1995. Planning under time constraints in stochastic

domains. J. Artificial Intelligence 76.

Draper, D.; Hanks, S.; and Weht, D. 1994. Probabilistic

planning with information gathering and contingent exe-
cution. In Proc. 2nd Intl. Conf. AI Planning Systems.

Etzioni, O., and Weld, D. 1994. A softbot-based interface
to the Internet. C. ACM 37(7):72 6.

Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.;
and Williamson, M. 1992. An approach to planning with

incomplete information. In Proc. 3rd Int. Conf. on Princi-
ples of Knowledge Representation and Reasoning, 115-125.

Etzioni, 04 Golden, K.; and Weld, D. 1997. Sound and

efficient closed-world reasoning for planning. J. Artificial

Intelligence 89(1-2):113 148.

Feynman, R. P. 1985. Surely You're JoAing, Mr. Feynman.
New York: Bantam Books.

Golden, K., and Weld, D. 1996. Representing sensing

actions: The middle ground revisited. In Proc. 5th Int.

Conf. Principles of Knowledge Representation and Reason-

ing, 174-185.

Golden, K.; Etzioni, O.; and Weld, D. 1994. Omnipotence
without omniscience: Sensor management in planning. In

Proc. 12th Nat. Conf. AI, 1048 1054.

Golden, K. 1997. Planning and Knowledge Representation

fl)r Softbots. Ph.D. Dissertation, University of Washington.
Available as UW CSE Tech Report 97-11-05.

C,oldman, R. P., and Boddy, M. S. 1994. Representing

Uncertainty in Simple Planners. In Proc. 4th Int. Conf.

Principles of Knowledge Representation and Reasoning.

I<oenig, S. 1992. Optimal probabilistic and decision-
theoretic planning using Markovian decision theory.

UCB/CSD 92/685, Berkeley.

Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An algo-

rithm for probabilistic planning. J. Artificial Intelligence
75:239 -286.

kesh, N. 1992. A planner for a UNIX softbot. Internal

report.

McAllester, D., and Rosenblitt, D. 1991. Systematic non-

linear planning. In Proc. 9th Nat. Conf. AI, 634-639.

Moore, R. 1985. A Formal Theory of Knowledge and

Action. In Hobbs, J., and Moore, R., eds., Formal Theories

of the Commonsense World. At)lex.

Morgenstern, L. 1987. Knowledge preconditions for actions

and plans. In Proceedings of IJCAI-SZ 867-874.

Pednanlt, E. 1986. Toward a Mathematical Theory of Plan

Synthesis. Ph.D. Dissertation, Stanford University.

F'ent)erthy, J., and 'Weld, D. 1992. UCPOP: A sound,

complete, partial order planner for ADL. In Proc. 3rd Int.

Conf. Principles of Knowledge Representation and Reason-

i:'_g, 103 114. See also http://uuw.cs.uashington.edu/

reseat ch/pro j ect s/ai/uww/ucpop • htral.

l='enberthy, J. 1993. Planning with Continuous Change.
Ph.D. Dissertation, University of Washington. Available

as UW CSE Tech Report 93-12-01.

Pryor, L., and Collins, G. 1996. Planning for contingen-
cies: A decision-based approach. J. Artificial Intelligence

Research.

Tate, A. 1977. Generating project networks. In Proc. 5th

Int. Joint Conf. AI, 888-893.

Weld, D., and Etzioni, O. 1994. The first law of robotics

(a call to arms). In Proc. 12th Nat. Conf. AL 1042-1047.

