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ULTIMATE TENSILE STRENGTH AS A FUNCTION OF TEST RATE FOR 
VARIOUS CERAMIC MATRIX COMPOSITES AT ELEVATED TEMPERATURES 
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Narottam P. Bansal and John P. Gyekenyesi 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

 
 
Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including 
SiC/BSAS (2D, 2 types), SiC/MAS-5 (2D), SiC/SiC (2D, enhanced) and C/SiC (2D), was determined as a 
function of test rate at 1100 to 1200 °C in air. All five composite materials exhibited a significant 
dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test 
rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. 
The application of the preloading technique as well as the prediction of life from one loading 
configuration (constant stress-rate) to another (constant stress loading) for SiC/BSAS suggested that the 
overall macroscopic failure mechanism of the composites would be the one governed by a power-law 
type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced 
monolithic ceramics.  
 
 
1. INTRODUCTION 
 

The successful development and design of continuous fiber-reinforced ceramic composites (CFCCs) 
are dependent on thorough understanding of basic properties such as fracture and delayed failure (slow 
crack growth, fatigue, or damage accumulation) behavior. Particularly, complete evaluation of delayed 
failure behavior under specified loading/environment conditions is a prerequisite to ensue accurate life 
prediction of structural components.  

This paper, as a continuation of the previous studies,1,2 describes the effect of test rate on elevated-
temperature ultimate tensile strength of five different fiber-reinforced ceramic matrix composites 
including 2D SiCf/BSAS (2 types), 2D SiCf/MAS-5, 2D SiCf/SiC (enhanced) and Cf/SiC composites. For 
each composite, ultimate tensile strength was determined in air as a function of test rate at elevated 
temperature of 1100 °C (for SiC/BSAS and SiC/MAS-5) or 1200 °C (for SiC/SiC and C/SiC). This type 
of testing, when used for monolithic ceramics, is called “constant stress-rate” or “dynamic fatigue” 
testing.3-5 The test rate dependency of ultimate strength was analyzed with the power-law (damage) 
propagation, conventionally utilized for monolithic ceramics and glass. Preloading tests were conducted 
to better understand the governing failure mechanism(s) of the composites. Finally, the result of elevated-
temperature constant stress (“static fatigue” or “stress rupture”) testing was obtained for SiC/BSAS and 
compared with that of constant stress rate testing. This was done to verify the overall failure 
mechanism(s) of the composites and to establish constant stress-rate testing as a means of life prediction 
test methodology for CFCCs. 
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2. EXPERIMENTAL PROCEDURE 
 

The five ceramic matrix composites tested in this study were Nicalon (SiC) fiber- reinforced 
barium strontium aluminosilicate (designated Nicalon/BSAS, 2D crossply), Hi-Nicalon fiber-reinforced 
BSAS (designated Hi-Nicalon/BSAS, 2D crossply), Nicalon fiber-reinforced magnesium aluminosilicate 
(designated SiC/MAS-5, 1D), Nicalon fiber-reinforced silicon carbide (designated SiC/SiC, 2D woven, 
enhanced), and carbon fiber-reinforced silicon carbide matrix (designated C/SiC, 2D woven) composites. 
The matrices of the composites were reinforced by (Nicalon, Hi-Nicalon, or carbon) fibers with a fiber 
volume fraction of around 0.39 to 0.42. The crossply or plain-woven laminates of the composites were 
typically 12 to 18 plies thick with a nominal thickness of around 3 to 3.5 mm, depending on material. 
Both Nicalon/BSAS and Hi-Nicalon/BSAS were fabricated at NASA/GRC,6 SiC/MAS-5 by Corning, 
SiC/SiC by DuPont Company, and C/SiC by Honeywell Advanced Composites.7 Information regarding 
the composite materials and processing can be found elsewhere.6–8 The dogboned tensile test specimens 
measuring 152.4 mm (length) x 12.7 mm (width) were machined from the composite laminates, with the 
gage section of about 30 mm long, 10 mm wide and 3.0 to 3.5 mm thick (as-furnished). The C/SiC 
composites were supplied with a notch machined (in depth=2.5 mm and root radius=1.2 mm) at the 
longitudinal center of each test specimen. 

Monotonic tensile testing was conducted in ambient air at 1100 °C for Nicalon/BSAS,  
Hi-Nicalon/BSAS and SiC/MAS-5 and at 1200 °C for SiC/SiC and C/SiC, using a servohydraulic test 
frame (Model 8501, Instron, Canton, MA). A total of three different test rates (in load control), 
corresponding to stress rates of 5, 0.158, and 0.005 MPa/s, were employed with typically one to three test 
specimens tested at each test rate. Heating of test specimens was conducted using an induction-heating 
SiC susceptor system.8 Two high-temperature extensometers were placed on edges of each test specimen 
to measure tensile strain. Preloading or accelerated testing, primarily applied to monolithic ceramics9 to 
save test time, was also conducted at test temperatures using 0.005 MPa/s in an attempt to better 
understand the governing failure mechanism of the materials. Predetermined preloads, corresponding to 
80 % of the ultimate strength determined at 0.005 MPa/s with no preload, were applied quickly to the test 
specimens prior to testing and their corresponding ultimate strengths were determined. One test specimen 
was used in preload testing. Tensile testing was performed in accordance with ASTM Test Standard, 
ASTM C 1359.10  

Constant stress (“static fatigue” or “stress rupture”) tensile testing was also performed at 1100 °C in 
ambient air for the Nicalon/BSAS composite (for both batches ‘A’ and ‘B’) using test specimens with the 
same geometry and the same test frame that were used for monotonic tensile testing. The limited 
availability of test materials confined the testing to three to four test specimens, depending on batch. Two 
to three different applied static loads were applied to test specimens and their corresponding times to 
failure were determined.  
    
                       
3. RESULTS AND DISCUSSION 

 
3.1. Ultimate Tensile Strength (Constant Stress-Rate Testing) 

 
The results of monotonic tensile strength testing for five different composites with different test rates 

are presented in Figure 1, where ultimate tensile strength was plotted as a function of applied stress rate 
using log-log scales. Each solid line in the figure indicates a best-fit regression line based on the log 
(ultimate strength) versus log (applied stress rate) relation. The decrease in ultimate tensile strength with 
decreasing stress rate, which represents a susceptibility to damage accumulation or delayed failure, was 
significant for all the composite materials, consistent with the results of the previous study.1,2 The strength 
degradation was about 43, 59, 43, 48, and 28 %, respectively, for Nicalon/BSAS, Hi-Nicalon/BSAS, 
SiC/MAS-5, SiC/SiC and C/SiC, when stress rate decreased from the highest (5 MPa/s) to the lowest 
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(0.005 MPa/s). Fracture patterns for the SiC/MAS-5 composite indicated some typical fiber pullout with 
jagged faceted matrix cracking often propagating along the test-specimen length. The mode of fracture for 
both Nicalon/BSAS and Hi-Nicalon/BSAS composites also showed fiber pullout with jagged matrix 
cracking through the specimen-thickness direction. No significant difference in the mode of fracture was 
observed for SiC/SiC and C/SiC, where almost all the specimens tested at either high or low stress rate 
exhibited relatively flat fracture surfaces (see Figure 2), called brittle fracture.  

The strength dependency on test rate exhibited by the five composites (Figure 1) is very similar to 
that observed in advanced monolithic ceramics (or brittle materials including glass and glass ceramics) at 
ambient or elevated temperature. The strength degradation with decreasing stress rate in brittle materials 
is known to occur by slow crack growth (delayed failure or fatigue) of an initial crack, and is expressed as 
follows3–5 

 

 D
nf loglog

1

1
log +σ

+
=σ &  (1) 

 
where n and D are slow crack growth (SCG) parameters, and fσ (MPa) and σ& (MPa/s) are strength and 

stress rate, respectively. This equation is based on the conventional power-law crack velocity formulation 
as expressed  
 

 ( )n
ICI K/KAv=  (2) 

 
where v, KI and KIC are crack velocity, mode I stress intensity factor and fracture toughness, respectively. 
A is also called SCG parameter.  

Constant stress-rate (“dynamic fatigue”) testing based on Equation (1) has been established as ASTM 
Test Methods (C13682 and C14653) to determine SCG parameters of advanced monolithic ceramics at 
ambient and elevated temperatures. Notwithstanding the limited number of test specimens used, the data 
fit to Equation (1) was very reasonable with the coefficients of correlation (rcoef) all greater than 0.930. 
This implies that damage evolution/accumulation or delayed failure of the composites would be 
adequately described by a power-law type relation, Equation (2). With this assumption, the apparent 
parameters n' and D' for the composites were determined using a linear regression analysis based on 
Equation (1) with the experimental data in Figure 1: n' = 13 and D' = 127, n' = 7 and D' = 188, n' = 13 and 
D' = 367, n' = 20 and D' = 160, and n' = 18 and D' = 166, respectively, for Nicalon/BSAS,  
Hi-Nicalon/BSAS, SiC/MAS-5, SiC/SiC, and C/SiC (The prime was used here for composites to 
distinguish them from monolithic ceramic counterparts.). It is noteworthy that the value of n', a measure 
of susceptibility to damage, was very low for Nicalon/BSAS, Hi-Nicalon/BSAS and SiC/MAS-5, and 
intermediate for SiC/SiC and C/SiC. Similar results were also found from the previous study1,2 with 
SiC/CAS (1D), SiC/MAS (2D) and SiC/SiC (2D, ‘standard’) composites. Note that monolithic silicon 
nitrides typically exhibit n ≥ 20 at temperatures ≥ 1200 °C. 
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Figure 1. Results of ultimate tensile strength as a function of applied stress rate determined for (a) Nicalon/BSAS 
and Hi-Nicalon/BSAS, (b) SiC/MAS-5, (c) SiC/SiC and (d) C/SiC ceramic matrix composites at elevated 
temperatures in air. The solid lines represent the best-fit regression lines based on Equation (1). 
 
 

      
                               (a)                                     (b) 
 
Figure 2. Fracture patterns for (a) SiC/SiC and (b) C/SiC showing ‘brittle’ fracture behavior. The upper and lower 
pictures for a given composite material indicate the specimens tested at the lowest and the highest test rates, 
respectively. 
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3.2. Preload Testing 
 
The results of preloading tests conducted at 0.005 MPa/s are depicted in Figure 3, where the ultimate 

strength was plotted against ‘preloading factor’ (=80 %) for each composite. The preloading factor α is 
defined such that a preload stress applied to the test specimen is normalized with respect to the strength 
with no preload. Each solid line in Figure 3 indicates the theoretical prediction of ultimate strength as a 
function of preload with the estimated value of n' and applied α (=0.8) together with the strength data 
with no preload, based on the following equation9  

 

 ( ) 1

1
11 ++α+σ=σ nn

ffp  (3) 

 
where σfp is strength with a preload, σf is strength with no preload (regular testing), and α is within  
0 ≤ α <1. The prediction, despite a limited number of test specimens used, is in good agreement with the 
experimental data except for SiC/MAS-5, as seen in the figure. Note that Equation (3) was derived based 
on the power-law SCG relation of Equation (2). Therefore, the applicability of the preloading analysis to 
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Figure 3. Result of preloading tests (ultimate tensile strength as a function of preloading) for (a) Nicalon/BSAS and 
Hi-Nicalon/BSAS, (b) SiC/MAS-5, (c) SiC/SiC and (d) C/SiC ceramic matrix composites at elevated temperatures 
in air. A theoretical prediction based on Equation (3)9 is included for comparison for each composite material. 
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the composite materials suggests that major damage evolution/accumulation process of the composites 
leading to failure would be the one governed by the power-law relation, which is consistent with the 
observation of the previous preload study for other ceramic matrix composites.2 It is also noted that the 
overall difference in ultimate strength between two preloads (0 and 80 %) was insignificant. This 
indicates that any significant damage that would control ultimate strength of the material did not occur 
before the applied load up to 80 % of fracture load. Conversely, the damage to control final failure would 
have occurred when applied load or test time was greater than 80 % of fracture load or total test time. The 
detailed analysis and application of the preloading technique for brittle (monolithic) materials can be 
found elsewhere.9 

 
3.3. Constant Stress (“Stress Rupture”) Testing 
 
A summary of results of constant stress testing for Nicalon/BSAS (with two different batches ‘A’ and 

‘B’) at 1100 °C is presented in Figure 4, where time to failure was plotted against applied stress in  
log-log scales. A decrease in time to failure with increasing applied stress, which represents a 
susceptibility to damage accumulation or delayed failure, was evident for the composite. The mode of 
fracture in constant stress testing was similar to that in constant stress-rate testing showing some fiber 
pullout with jagged matrix cracking through the specimen-thickness direction. The solid lines in Figure 4 
indicate life prediction from the constant stress-rate data (Note that the constant stress-rate data for batch 
‘B’ was not presented in Figure 1 for clarity of data presentation). The prediction, primarily applied for 
brittle (monolithic) materials, was made using the following equation based on the power-law SCG 
formulation of Equation (2):11 

 

 n
n

f n

D
t −

+
σ













+
=

1

1
 (4) 

  
where tf and σ are time to failure and applied stress, respectively. Use of Equation (4) together with n' and 
D' determined in constant stress-rate testing allows one to predict life in constant stress loading. The result 
thus predicted shows a reasonable agreement with experimental data at least for short periods of life (see 
Figure 4). Hence it can be stated that the governing failure mechanism of Nicalon/BSAS is almost 
identical in either constant stress-rate testing or constant stress testing. Since the prediction (Equation (4)) 
was made based on the power-law relation, it is certain that the governing failure mechanism of 
Nicalon/BSAS would be the one controlled by the power-law type of damage evolution/accumulation or 
delayed failure. The results shown in Figure 3 are also consistent with the previous study with other 
ceramic matrix composites.2  

Finally, the results of this work suggest that care must be exercised when characterizing elevated-
temperature ultimate strength of composite materials. This is due to that fact that elevated-temperature 
ultimate strength has a relative meaning if a material exhibits rate dependency: the strength simply 
depends on which test rate one chooses (Figure 1). Therefore, at least two test rates (high and low) are 
recommended to better characterize the high-temperature ultimate strength behavior of a composite 
material.  
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Figure 4. Results of constant stress (“static fatigue’ or “stress rupture”) testing for Nicalon/BSAS composite:  
(a) Batch ‘A’ and (b) Batch ‘B’” tested at 1100 °C in air. The solid lines represent the predictions made based on the 
results of constant stress-rate testing (Figure 1). 

 
 
4. CONCLUSIONS 
 

Elevated-temperature ultimate tensile strength of five different continuous fiber-reinforced ceramic 
composites, including Nicalon/BSAS, Hi-Nicalon/BSAS, SiC/MAS-5, SiC/SiC, and C/SiC, exhibited a 
strong dependency on test rate, consistent with the behavior observed in other ceramic matrix composites 
as well as in many advanced monolithic ceramics at elevated temperatures. The applicability of the 
preloading technique and the predictability of life from one loading configuration (constant stress-rate) to 
another (constant stress loading) suggested that the overall failure mechanism of the composite materials 
would be a process primarily governed by a power-law type of damage evolution/accumulation. It was 
further found that constant stress-rate testing could be utilized as a means of life prediction test 
methodology even for composites when short lifetimes are expected.  
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Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS
(2D, 2 types), SiC/MAS-5 (2D), SiC/SiC (2D, enhanced), and C/SiC (2D) was determined as a function of test rate at
1100 to 1200 °C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate
such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced
monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life
from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the
overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage
evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.


