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Abstrac

This paper presents a de.t.,dled study of flmr far-

field boundary conditions use, t in solving the single
airfoil gust. response problem The boundary con-
ditions examined are the parlial Somnmrfldd radia-
tion condition wiih only radi;d derivatives, tile full
Sommerfeld radiation conditio:_ with both radial and

tangential derivatives, the B_,vliss-Turkel condition
of order one, and the Hagstror _-Hariharan condition
of order one. The main objecl ires of the study were
to determine which far-field b_,m_dary condition was

most accurate, which conditio_l was least sensitive to
changes in grid, and wlfich coi_ :litton was best overall
in terms of both accuracy attd efficiency. Through a
systematic study of the flat t)lai e gust response prob-
lem, it was deternfined that ttl,_ Hagstrom-Hariharan
condition was most accurate, t he Bayliss-Turkel con-
dition was least sensitive to ,'hanges in grid, and

Bayliss-Turkel was best. in te ms of both accuracy
and efficiency.

I. Introdm tion

A fundamental problem in unsteady aerody-
namics and aeroacoustics is he single airfoil gust

response problem. This problem has a number
of challenging features which make it an ideal
model problem for CAA codt' validation. Among
these features are mean flow distortion of the con-

veered gust, vortex sheddirg in tile wake, un-
steady pressure on the airfoil surface, and acous-
tic waves which radiate to 7he far field. In the

recent Third Computational Aeroacoustics Work-
shop on Benchmark Problem_ t, a series of bench-
mark solutions was presented for the gus_ problem
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using _he GUST3D code '-'-4. Numerical solutions
were also presented at ill(" Workshop by Hixon 1, el
al and Kopriva 1. el al. Additional solutions have
been presented t)3" Rasetarinerf', et al and Wang, _

et al. Vthile good agreement has been demonstrated
for mauy of i he comparisons, some cases have shown
substantial discrepancies.

In an etforl to improve the accuracy of the
GUST3D solutions: a detailed study of four far-

field boundary conditions was carried out. The
boundary conditions examined were the partial Som-
inerfeld radialion condition wiih only radial deriva-
tives, the full Sommerfeld radiation condition tl wilh
both radial and tangential derivatives: the Bayliss-
Turkel r condition of order one. and lhe Hagstrom-
Hariharan s condition of order one. The main ot/-

jectives of the study were to determine (i) which
far-field boundary condition (FFBC) was most accu-

rate, (it) which FFBC was least sensitive to changes
in grid, and (iii) which FFBC was best overall in
terms ,_f both accuracy and efficiency. Tt) make these
assessments, we cons{rucled a matrix of lest cases
for the flat plate gusi problem, attd then repeatedly
tested each FFBC on a large variety of grids fi-)r each
case in the matrix. Using analytical solutions, we
were then able to evaluate the relative accuracy of
each boundary condition.

In tile following section we review the mathe-
matical formulation of the flat plate gusl problem,
and in Section III we summarize the numerical im-

plementation. In Section IX" we present attd discuss
the four FFBC's. Finally, ill Section V we describe
the details of our numerical study and present the
results.

II. Mathematical Formulation

Governing Equation

Consider an airfoil with chord length c in a flow

with uniform upstream velocity U_ in the .rl di-
rection. Let the fluid be an ideal gas which is in-
viscid and non-heat-conducting. Fat upstream, let
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tT,× = t-[c i_'(2"-:(I':'t) denote a small amplitude gust,

where i" is a unit vector in tile xl direction. Here

i7 = (aj,a2,a3), where tile amplitude ]g I satisfies

Iff] << /"_, ff = (,_h: k2, k3) is the wave number vec-

ior, and ff and ff satisfy (7- ff = 0 lo ensure that the
cuntinuily equation is satisfied.

\_i' assume thai the velocity field can be repre-
sented by

(2.1}

where Uo(:7) is the steady potential velocity and

ff(aF, t) is the small, unsteady velocity, g(Y,t) may
be decomposed 9'm into the sum of a known vortical
component t_ RI, attd an unknown potential compo-

nent X=O, so that

g(2", t) = g/.<m__X=0. (2.2)

The vortical component _) is essentially a flmc-

tion of the mean flow Lagrangian coordinates and

theirspat.ia]gradients.However, in the case ofthin,

uncambered airfoilsat zero degrees incidence,the
unsteady velocitydecoup]es flom the mean flowand
_R) reduces to ff ....

The potential 0 satisfies the convective wave
equation

Do 1 Doo I - =' 1_=-(p0_I¢/) (2.3)
Dt (77o2 --_ )-P-oo v'(p°\O) = Po

where _ is the convective de.rivative associated with
Dt

the mean flow, and co and Po are, respectively, the
mean flow speed of sound and density. The unsteady
pressure is given t)3"

DoO
p =-p0(:F) Dt (2.4)

For nonuniform mean flows, the coefficients of

equation (2.3) and its source term depend strongly
on the mean flow quantities. However, for a thin air-
foil in a uniform parallel flow, the coefficients decou-
pie from the mean flow and the source term vanishes.
In this case the equation reduces to the constant co-
efficient convective wave equation

1 Do20 _'20 = O. (2.5 7

Co2 Dt 2

Boundary Conditions

At the airfoil surface the normal velocity com-

ponent must vanish_ so that (_n) + _0). ff = 0,

or ,_, = _._R} . K. For a fiat plate at zero degrees
incidence, this reduces lo

0o
- o.2e i['12 r_t) (2.6)

&r ._,

or

00
-- a.e eik'{* -u,,-l!+n,a,:, (2.7)

for-._ <xl < c andx.>=0.
Across the wake the pressure is continuous, but

0 has a discontinuity AO due to the unsteady cir-
culation. Applying (2.4) on each side of the vortex
sheet behind the airfoil leads to

-_-(AO) = 0 (2.s)

for Xl > _,r2 : O.

Finally, 0 must satisfy

V0--+0 as xt--+-oc. (2.9)

III. Numerical Scheme

Let lengths be normalized by. 5,_' time by. 2t'_,c

o by _t_t, _ by I<, attd U_ and c0 by /Zx. Then
equation (2.5) and boundary conditions (2.7) - (2.9)
become

M 2D20 V20 = 0 (3.1)
Dt 2

aye = --a2 gikl(xl-tlA-ikax3 ] (3.2)

Ifor 1 <:r_ < l, :r._ =0

D

_7(AO) = 0 for Xl > 1, are = 0 (3.3)

_'_0 -''+ 0 as J'l --+ -oc (3.4)

where D 0 O attd M denotes the Mach num-D, -- at + g27*j
bet. The normalized wave number kt = "_ where

2U.-,

u is the attgular fi'equency of the gust, is called the
reduced fi'equency.

Introducing the change of variables

.r : ;FI_

and

g = fix2, z = ;r3 where /32 = 1 - M _

(3.5a)

• k AI 2

g' = Oe'_ Xe tIe't-is'a: (3.5b)

equation (3.1) is transformed into the frequency do-
main and reduced to a Hehnholtz equation

0% 02_0
+ -- -- K2g ' = 0 (3.6a)

Ox"- Oy 2
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where
(klM_'-' __ k._ 2

Boundary conditions (;1.2) - (3.4) become

(3.6b)

_t/; __ (1"2 cikl x/,(-"

Oy fl
for

ikl i) .
-_ - _)(Av) = 0

_=g' -+ 0 as

- 1 _x_< 1. !/=0,

(3.7)

t ,r x > 1, !/=0-

(3.8)
x -+ -oc. (3.9)

To solve (3.6) - (3.9) mm,vrically, we inlroduce
elliptic coordinates (r], _), whe e

d'= COS (TT_) C()b h (TT_) (3.10a)

y = sin(rvq)sini,(Tr_).

Equation (3.6) then becomes

(3.1(}b)

Oq'-' t)( 2

Jrr2 K 2 [sin2(rr#) - sinh2(z ()]_, = 0

(3.11)

and the airfoil boundary cond _ion (3.7) is

- --=sin(rrr/)e'*" '"_("/S (3.12)
0_ ;3

for 0< q< l. _=0.

The wake condition (3.8) can be integrated to
obtain

[, ikl(x-l)/fl 2Ag,= A_._.e.e , x> 1, !1 =0,
(3.13)

where the subscrip_ t.e. dent es the airfoil trailing
edge. For a flat plate, _,0 is an odd function of y, so
that for points above and belo,v the wake, '_, = ._sA_
and (3.13) becomes

• . F, __ _,2

(3.14)
Since g, is odd, it is neo_ssary to solve (3.11)

only in the upper half plane, t)ne therefore imposes
the symmetry condition _b = 0 on the streamline
ahead of the airfoil. This cor,,_sponds to '.he line q

= 1,{_>0.
At the trailing edge, one lmst impose *he Kutta

condition. This requires that !_ = 0 at r/ = 0, _ =

0.
Finally, we note that con,tition (3.9) cannot be

imposed at. any finite distance from the airfoil with-
out causing acoustic waves t,, reflect off the outer
grid boundary thereby contaminating the numeri-
cal solution. Instead, one mu,t impose a radiation

boundary condition which allows outgoing acoustic
waves 1o exit t he coml)ut ational domain. We discuss
this in lhe next section.

171urn selection of an appropriate FFBC. the

boundary value problem can be discrelized in a
straight fo,ward mamw.r using finite differences. The
resulting matrix equation can then l)e solved using
a spar>e malrix solver. See [4] for details.

IV. Radiation Boundary Conditions

The simplesl radiation boundary condition is
the Sommerfeld condilion 11,

where . satisfies the Hehnholt7 equation

(4.1)

0 2u ( "u

&r e ay e
k e u = 0 (4.2)

and tim variable r denotes polar distance. Although
this conditi(m is exact at infinity, it leads to spurious
reflections when imposed at a finite distance v2.

Many authors have developed improved radi-
ation c,m(tilions lo reduce the spurious reflections.

Our purpose [w.re is ilOt {o review tim various eon(ti-
tiOllS l}la{ have been deve.loped, blli to examine the

performance of two advanced radiation conditions
versus ihe Sommerfeld condition.

VVe consider the Bayliss-Turkel 7 (BT) and

Hagstrom-Hariharan s (HH) conditions of order one..
These ,'an be expressed convenient ly in operator no-
tation, as fl,llows. Firs¢. let

1

B = ik 2r" (4.3)

The.n the BT condition is

,),,: o. (4.4)

Secon(I, let
1

H=ik
1"

1

(4.5a)

(4.5b)

Then lhe HH condition is

,1 -- H-_r + 2r 2 00.e ] u = 0 (4.6)

where 0 denotes the polar angle.
C,mditions (4.1), (4.4), and (4.6) are accu-

rate t_, O(r-3/_), O(r-'5/z), attd O(r-7/z). respect-

NASA/TM--2002-211567 3



ively7's'14.It mustbenoted,however,that these
eondilions were derived for circular boundaries. The

elliptic coordinate t ransformation (3.10) provides an
outer boundary which is nearly circular for most
problems. However, ihere will be a loss of accuracy
as the outer boundary deviates from a circle.

Each of lhe above conditions can be applied to
the transformed poteniia] _;.', since _,: salisfies ihe
Helmholtz equation. However, it has been previ-
ously observed thai t.his does not lead to accurate
far-fieht pressure calculations Lla. A far superior ap-
proach is to apply _he radiation condition to the
pressure p, whicli also satisfies equation (3.6). This
leads to an additional operator acting on ¢ in the
far-field boundary condition. From equation (2.4),
this operator is

-_vhere

ikl

= I4.7b)

We may therefore idenlify the variable u in (4.1) -
(4.6) with t tie pressure p and write (leaving out the
mira> sign)

The Sommerfeld, BT, and HH pressure radiatkm
conditions are then

(_ - /=5')( 00J' -.4)t) _ 0., (4.10)

( 0 )J+ Her " 2r 2002 _ -.4 g, = 0, (4.11)

respectively, where tile frequency k in (4.1) - (4.6) is
now identified with K as defined in (3.6b).

V. Numerical Study

The main objectives of our stud3' were to deter-
mine which radiation condition was most accurate,
which was least sensitive to changes in grid, and
which was best overall in terms of both accuracy and
etticiency. We also wanted to compare the partial

Sommerfeld (PS) condition, which uses only radial
derivatives, with the fldl Sommerfeld (FS) condition,
which retains all derivatives.

To test the boundary conditions, we con-
structed a test matrix of problems in which the Math

number M ranged from 0.1 to 0.5 to 0.8. with re-
duced frequency vahms kl of 0.1, 0.5, 1.0, 2.0. and
3.0 at each Math number. For each case in the ma-

trix we solved tile gust problem on a set of 15 dif-
ferem grids. The grids varied in their spacing in the
tangential direction and also in the location of lhe

outer grid boundary. The spacing in the radial di-
rection was kepl fixed at 24 points per wavelength.
Each grid was designed to provide an accurate calcu-

lation st) that differences in accuracy thai appeared
would be due to the given FFBC. Two parameters in

lhe GUST3D code were used to vary the grids. The
parameler "neta", which specifies the munber of q
grid points, was used to vary the spacing in tile tan-
gential direction. Tile parameter "nwaves". which
specifies the tmrnber of wavelengihs to be used in
the wake boundary condition, was used to vary tile
location of ihe outer grid boundary. Tables I and II
summarize the grid configurations lha/ were used.

Grid No. neta nwaves

1 31 3.0
2 31 3.5
3 31 4.0
4 31 4.5
5 31 5.0
6 36 3.0
7 36 3.5
8 36 4.0
9 36 4.5

10 36 5.0
11 41 3.0
12 41 3.5
13 41 4.0
14 41 4.5
15 41 5.0

Table I Grid Parameters for kl = 0.1, 0.5, 1.0

Grid No. neta nwaves

1 41 5.0
2 41 5.5
3 41 6.0
4 41 6.5
5 41 7.0
6 46 5.0
7 46 5.5
8 46 6.0
9 46 6.5

10 46 7.0
11 51 5.0
12 51 5.5
13 51 6.0
14 51 6.5
15 51 7.0

Table II Grid Parameters for ki = 2.0, 3.0

NASA/TM--2002-211567 4



Toassessacctlrac.v, we col npared Illllnt_l ical and

exact pressure values on a se_nicirele of radius two
chord lengths centered at the fdrfoil center, as showr,
ill Figure 1. Figures 2 and 3 ,;}low comparisons be-
tween numerical and exact re-_llts from typical cal-
culations.

To quantify tile error, we used two error norms
- absolute L:. and relative Iv. The absolme L_
norm was calculated by

p(l! pe?tmax,, o,,p- x, _=0,1,....360

where tile semicircle was discretized by 361 uni-
• 1l Nformly spaced point s and Pc,,,,,L, and P_ are lhe com-

puted and exact pressure at point n. respectively.
The relative L.2 error was cak_dated by

Pd,,,,,,- Po' /v

Using the above error n(,lms, we were able to
compare the accuracy of one FFBC versus another.
We illustrate this ill Figures 1-9. In Figure 4. for
example, we show the absolute, L_. error for all four
boundary conditions for the e_se M = 0.1. kl = 1.0.
on all 15 grids. From the pill one can readily see
which FFBC was most accurate and which one was

least sensitive to the change i,J grid. At the top of
the figure we show the maxi_ mm L_ error, mean
L_ error, and standard deviation for each of the
four boundary conditions. It is seen that. for this

particular case, the Hagstron-Hariharan condition
was superior to the other three conditions in all three

categories. On the other hand, the Bayliss-Turkel
condition had the smallest max and mean error in

Figures 5 and 8, and the small,'st standard deviation
in Figure 9.

Plots analogous to those in Figures 4 - 9 were
made for every case in the test matrix, however for

brevity they are omitted here. This made it. possi-
ble to do a complete evaluati, m of the four bound-

ary conditions. Tables III and IV summarize, which
FFBC was best in the categories of smallest max er-
ror, smallest mean error, and smallest standard de-
viation for all the cases in the .est mat fix. It is clear

that. the Bayliss-Turkel and Hagstrom-Hariharan
conditions performed the best. How much better
they performed is shown in Figures 10 - 15. In Fig-
ure 10, for example, we consider the L_ max error.
The figure shows the ratio of max error to the partial
Sommerfeld max error for the other three boundary
conditions. The ratio is shown for each case in the
test matrix. An error ratio h ss than one indicates

an improvement over the part al Sommerfl_ld condi-
tion, which is the simplest o' the four conditions.
An inspection of Figures 10 - 15 indicates that tile

."3_/ kJ_ Max Error Mean Error Sland Dev
0.1 0.1 HH HH HH
0.1 0.5 BT HH BT
0.1 1.0 HH HH HH
t). 1 2.0 HH HH HH
i). 1 3.0 HH HH HH

0.5 0.1 BT BT HH
0.5 0.5 BT BT BT
0.5 1.0 BT BT HH
0.5 2.0 HH HH BT
0.5 3.0 HH HH BT

0.8 0.1 BT BT BT
0.8 0.5 BT BT HH
0.8 1.0 HH HH BT
0.8 2.0 HH PS BT
0.8 3.0 PS PS BT

Table III nest Far-Field Boundary Condition

Based on Absolulte L:,- Error

}J_f k_x Max Error Mean Error Stand Dev

0.1 0.1 BT BT BT
0.1 0.5 BT BT BT
0.1 1.0 HH HH HH
0.1 2.0 HH HH HH
0.1 3.0 HH HH HH

0.5 0.1 BT BT BT
0.5 i}.5 BT BT HH
0.5 1.0 BT BT HH
0.5 2.0 HH HH BT
0.5 3.0 HH HH BT

0.8 0.1 BT BT BT
0.8 0.5 HH BT HH
0.8 1.0 HH HH BT
0.8 2.0 PS PS PS
0.8 3.0 PS PS FS

Table IV Best Far-Field Boundary Condition
Based on Relative L2 Error

Bayliss-Turkel and Hagstrom-Hariharan conditions
performed significantly better than the partial Som-
merfehl condition both in terms of accuracy and in

terms of consistency of solution (i.e., insensitivity
to change in grid). On {.he other hand, the results
also show that tile partial Sommerfeld condition per-
formed as well as or better than the full Sommerfeld
condithm.

To determine which FFBC was most accurate

and which was least sensitive to changes in grid, we
use the results shown in Tables III and IV. One. finds

that in the categories of lowest max error and lowest
mean ,!rror. the Hagstrom-Hariharan condition was
the best 29 out of 60 times, while the Bayliss-Turkel
condition was best 24 times. We therefore con-

elude lhat the Hagstrom-Hariharan condition was

NASA/TM--2002-211567 5



themostaccuraieoverall.()n theotherhan(t_in the
categoryof smalleststandarddeviation,onefinds
that the Bayliss-Turkel condition was the besl 15
oui of 30 times, while the Hagstrom-Hariharan con-
dition was best 13 t trees. We therefore conclude lhaI

the Bayliss-Turkel condition was the least sensitive
overall to a change in grid.

In terms of computational efliciency, partial
Sommerfeld was tile most eflieient of the four bound-

ary conditions. This is due to its smaller disereliza-
tion stencil, resulting in a sparser matrix than that
of_t,c other boundary conditions. The full Sommer-
feld and Bayliss-Turkel conditions required an in-
crease in CPU time over partial Sommerfeld of about
3_Z:. However, they required an increase in computer
storage of about 52_7c. Similarly, the Hagstrom-
Hariharan condition required an increase in CPU
time over partial Sommerfeld of about 10_X, while
requiring an increase in computer storage of about
102_. Clearly, the biggest cost associated with the
three rnorc advanced boundary conditions was the

substantial increase in required storage. Since the
Bayliss-Turkel condition was only slightly less accu-
rate than the Hagstrom-Hariharan condition while
providing tim most grid independent solution at a
cost of only a 52_ increase in storage, we conclude
thai tim Bayliss-Turkel condition was the best over-
all boundary condition.

Summary

A detailed study of the a('euracy and eflMencv
of the partial Sommerfeld, full Sommerfeld, order-1
Bayliss-Turkel, and order-1 Hagst.ron>Hariharan ra-
diation boundary conditions was carried out. Each
boundary condition was tested on a matrix of prob-
lems with three different Mach numbers and five

different reduced frequencies. It was determined
that Hagstrom-Hariharan was most accurate over-
all, Bayliss-Turkel was leasl sensitive to changes in
grid, and Bayliss-Turkel was best overall in terms
of both accuracy and etficiency. In addition, it. was
determined thai fl_ll Sommerfeld did not. yield any
improvements over partial Sommerfeld. Finally, it
was determined that for far-field pressure calcula-
tions, both Bayliss-Turkel and Hagstrom-Hariharan
are sufficiently superior to Sommerfeld that they are
*veil worth the additional cost of implementation.
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