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Elliptic R elaxation of a Tensor Representation 
for t he Redistribution Terms in a 

R eynolds Stress Turbulence Model 

J .R. CA RLSON A D T.B.GATSAJ 
Comp1tiational A10deLing fj Simulation Branch 

NASA Langley R esearch Center) Hampton) VA 236 1) USA 

Abstract 

A formulation to include the effects of wall proximity in a second-moment 
closure model that utilizes a tensor representation for the red ist ri bution terms 
in t he Reynolds stres eq uations is presented. The wall-proximity effects are 
modeled through an elliptic relaxation process of the tensor expansion coef­
fi cients that properly acco unts for both correlation lengt h and t ime scales as 
the wall is approached. Direct numerical simulation data and Reynolds stress 
solu t ion u ing a fu ll differential approach are compared to the tensor repre­
sentation approach for the case of fully developed channel flow. 

1. INTRODUCTION 

The theoretical development of higher order clo ure models, such as Reynolds 
stre s models , have primarily been formulated based on high Reynolds number as­
sumptions. The influenc of olid boundaries on the e closure mod Is has usually been 
accounted for through either a wall fun ction approach or a modification to the high 
Reynolds number form of the pressure-r lated correlations and tensor dissipation rate 
and predicated on the near-wall asymptotic behavior of the various velocity second 
moments (So et al. 1991 , Hanjalic 1994). 

A broader ba ed attempt to account for the proximity of a. solid boundary is 
the elliptic relaxation approach introduced over a decad ago (Durbin 1991) and 
further develop d for second-moment closures (Durbin 1993a, Wizman et al. 1996· 

fan ceau and Hanj ali c 2000 , Manceau , Carlson and Gatski 2001 ). In it two-equa­
tion form th v 2 

- f model ha been applied to a variety of flows (e .g. , Durbin 1993b, 
1995; Pettersson Reif et al. 1999). The new approach outlined here introduces a ten­
sor representation for the combined ffects of a near-wall velocity-pressure gradient 
correlat ion and ani otropic dissipation rate that asymptotes to a high Reynold num­
ber form away from olid boundaries through an elliptic equation for th polynomial 
expansion coefficients . The development of a generalized methodology for determin­
ing the polynomial expansion coeffici ents of representations for the turbulent stress 
anisotropies by (Gat ki and Jongen 2000) is extend d to an elliptic relaxation proce­
dure for these expansion coeffi cients. 

Although the material presented her introduces tensor representations and a ten­
sor projection methodology into the ellipt ic relaxation formulation , thi work can al 0 

be viewed as an intermediat step between a fully explicit ellipt ic relaxation algebraic 
Reynolds stress formulation and the full diff rential ellipt ic relaxation Reynolds str s 
formulation. 
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The predictive capabi li ties of the new model ar assessed through comparisons 
with direct num rical simulation channel flow data (Moser et al. 1999). The e com­
parisons include both mean and turbulent flow quantities . 

2 . Theoretical Background and Development 

In thi section, a mathematical framework is developed for the Reynold stress 
transport equations and the corresponding lliptie relaxation equation wh n a tensor 
representation of the redistribution terms is u ed in the formulation. The m thod­
ology introduces a set of llipt ic relaxation equations for the polynomial expansion 
coefficient of the chosen r presentation. The T - f mod 1 uses th r distributive 
terms in the ellip tic equation , while th T - n model use the expan ion coeffici nts 
in the ellipt ic equations. Both models use the Reynolds stres transport equations. 

2.1 Transport Equations 

The transport of th Reynolds stresses Tij (= -tli Uj ) is governed by the equation 

(1) 

where Ui i. the mean v locity, <Pij is the pressure redistribution term, C-ij is the tensor 
dissipation rate, and Dr; and Dij are the turbulent transport and viscous diffusion 
resp ctively. In the d velopment outlined here, it is best to have <Pij given by 

(2) 

so that the trace of the pressure redistribution t I'm is zero . In the appli cation of the 
ellipt ic relaxation method, it is also necessary to account for the ffect of th dissi­
pation rate anisotropy as th wall is approached. Thi accounting for the di ipation 
rate anisotropy is accomplished (e.g., Manceau 2000) by a relaxation of the dissipa­
tion rate anisotropy to its wall valu , which i a umed to be equal to the Reynolds 
stre ani otropy. This assumption allow the Reynolds stress tran port equation in 
(1) to b written as 

(3) 

wh r 
(4) 

with the Reynolds str ss anisotropy bij and di. ipation rate anisotropy elij defined as 

el . . = E:ij _ 6ij 
~J 2 E: 3 . (5) 

The original scaling of the relaxation function I ij was solely through the turbulent 
kinetic energy X ; how ver , Manceau, Carlson and Gatski (2001 ) have recently shown 
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that an added dissipation rate factor, c, to the scaling (c f{ lij) eliminates an unwanted 
amplification effect inherent in the original scaling. 

Equation (3) is closed when the model for the turbulent transport 'Dl is used. In 
previous elliptic relaxation studies that used the Reynolds stre s transport equations, 
the viscous diffu ion and turbulent transport terms were modeled as 

with <7J\ = 1.0 and CJ.! = 0.15. Th composite time scale 

[ ( //)1/2] 
7 c = ll1ax 7, GTX ~ , 

J{ 
7=-, 

c 

(6) 

(7) 

where CT ! { = 6 determines the switch to th Kolmogorov time scale (// / c )1/2 0 that 
the turbulent t ime scale will not vanish as the solid boundary is approached. Away 
from the boundary, the composite time scal asymptotes to the inertial scale Il.'-;c. 

In the two-dimensional flow considered here, solutions were obtained for th 7 11 

and 722 normal Reynolds stresses and the 712 shear stress . A transport equation for 
the turbulent kin t ic energy was obtained from one-half the trace of Eq. (3) and was 
solved for in lieu of the third normal stress 7 33) 

DI..,." P a (c tlk Of() >7 2} ' - .-= - c +- J.! - 7 c - - +//v l.. , 
Dt OXI <7[( OXk 

(8) 

where P = 7ikOUi/OXk. The modeled transport equation for the turbulent dissipation 
rate c needed for closure is given by 

(9) 

where <7e = 1.3, Cd = 1.44, Ce2 = 1. 3, with 

(1 0) 

Note that thi form of the dissipation rate equation (Durbin 1991) has introduced the 
composit time scale into both th production and destruction of dissipation terms. 

2.2 Elliptic Relaxation M ethodology : 1 - f Model 

The rescaled elliptic relaxation equation is driven by the high Reynolds number 
form of the pressure-strain rate correlation II and a contribut ion from the Reynolds 
stress ani otropy 2ccbij (away from the wall th di ssipation rate is assumed to be 
isotropic dij = 0) . This combination re ults in an elliptic relaxation equation for i ij 
given by (d. Manceau and Hanjali ' 2000) 

(1 - L2\7
2
) i ij = c ~\.- (IIf.i + 2Ecbij ) == ji~ (11 ) 
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where 

( 12) 

and the relaxation cales are defin d as 

(13) 

with CL = 0.16 and CLf{ = O. Previou implem ntation of th ellipti c relaxation 
procedur . (Man eau and Hanjalic 2000) using the Speziale, Sarkar and Gatski (S G) 
pressur strain rate mod 1 (Spezial et al. 1991 ) used th full nonlinear form. Th 
linear form of the G model impl m nted here i given by 

(14) 

with Cf = 1. , ct = 3.4, C2 = 0.37, C3 = 1.25, and C4 = 0.4. Note that inc th 
linear form of th pre sur -strain rate mod I is used here, th valu for CL differ. 
from that u d previously (CL = 0.2, see Man au and Hanj alic 2000) for the form 
of the ellipt ic relaxation quation given in (11) . 

Boundary conditions are need d for t he I ij and are determin d in t he vicinity 
of the wall , by the balance of the redi tributive t rm by the viscou diffusion of th 
Reynold tres es resulting in Table 1. Only the 22- and 12-compon nt of f have 
determinate solutions to the near-wall balance of th stress t ranspor t equations. For 
th remaining compon nts III = h3 = - 122/2 ar used as boundary conditions to en­
sure that I ij i traceless (Manceau, arlson and Gatski 2001 ). Symmetry condition 
were appli d at the cent rline. 

In the current work , one of t he goals i to develop a methodology for incorporating 
at nsor repr ntation for the relaxed r distribution function ! ij . Onc d v loped and 
validated t his arne proc dur can 1 u d in conjunction with ten or r pr ntations 
for the Reynold stres ani otropies as well. Such a combination would then yield an 
llipti c relaxation expli cit algebraic stress mod 1. The detail of the r pr entation 

for the R ynolds stress ani otropy will not b addressed in th current work, but 
deserves furth r work . As will be di scussed in Sec. 2.3 , such a representation would 
b consistent with a linear pressure- train rate model. 

2.3 Representations and Elliptic Relaxation: T - n Model 

lthough the elliptic r laxation formulation has aIr ady been appli d within a full 
diE rential Reynolds str s model, a question aris s about what role tensor r pr en­
tations can play within th framework of the ellipt ic r laxation procedur . 
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Table 1. Boundary Condit ions for the i ij Tensor 

Component Wall Centerline 

ill 
1 

- 2" i 22,w Symm t ry 

i 22 
-201/2T221 1 

Symmetry 62 y4 w· 1 

/33 
1 

- 2"i22,tv Symmetry 

i 12 
-201/2T1 211 

0 62 y4 
tv 1 

The different ial elliptic r laxation equation for i ij can be obtained from the inte­
gral expression (e .g. Manceau and Hanj ali t 2000 ) 

i ij (x ) = 6 (X) ~{ (X ) {<pij (X) - 2c(x ) [dij(x ) - bij (x )]} = k d3
x' [;~~~~~}) l Gn(X, x'), 

(15 ) 
where 

( ' ) ( ) 2 ap ( ') () 2 ap ( ' ) 2 r () ,,2 ap ( ' ) Fij X, X = - Ui X \7 ~ x - Uj x \7 ~ x + -:-OijUk x v ~ X 
UXj UXi 3 UXk 

v 

velocity -pre s ure gradient cor rela tion 

+~ { 21/ ( aUi (X)\72aUj (X' ) + aUj (x )\72 aUi (Xl )) 
2 aXI aXI aXI aXI 

, v J 

tensor d issipa t ion ra te 

- ~~~) JUi(X)\72Uj(X/ ) ~ Uj( X)\72Ui(X/ ) ]> } ( 16) 

R eynolds st ress tensor 

and Gn(X, X' ) is approximated by the free-space Gre ns funct ion Gn(x , x /) = (47rr t 1 
with r = Ilx' - xii . The 6ij contributions to both the di ipation rate and Reynolds 
stress anisotropies cancel so that the only remaining contributions are the tensor 
dissipation rate and Reynold stress tensor. The tensor funct ion i ij and Fij can be 
r presented by polynomial expan ions of basis tensors just as the associated Reynolds 
stress anisotropy tensor bij has b en. For such a basis given by Ti~m\X) (m = 1, .. . , ), 
t he following repre ent a.tions ar assumed: 

i ij(x ) = L l( x )Tij )(x ) (17) 
1= 1 
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' ) Fij (X X' ) _ L ( ') (n)( ) F~· ( X X = - "V X X T· · X 
tJ ' ( ) ]. - ( ) In, tJ . c X 'l X n=l 

(1 ) 

A tensor scalar product (denoted by [ : ]) b tween each basis t n or TSm)(x ) and 
the I' pres ntations given in Eqs. (17) and (1 ) can b formed, and this lead (using 
matrix notation for conv ni nce) to 

N 
L I(X) [T (I)(x ):T(m)(x )] = in d3x' [F*(x , x'):T(m)(x )] Gn(x , x') 
1= 1 

Sinc the funct ional dependency of the indicat d calar product depends solly on x , 
Eq. (19) can be reWl'itt n a 

(20) 

The modeling of the scalar funct ion In (X x') follows that establi hed previously for 
the lliptic relaxation approach, that is 

In(X, X' ) = I n(X' x' ) xp ( - {n) . (21) 

wh re, in gen ral, the In coefficient can have an associated length cale uniquely 
defined by the form giv n in Eq. (13) . 

With thi mod 1, Eq . (20) can be rewritten as 

( )=1 d3 I (' ,)exp(-r/Ln ) 
n X X n X , x . 

n 4nr 
(22) 

This equation lead directly to the differential counterpart 

(23) 

wher ~ (x) are the xpansion coeffici nts from the t n or repr ntation of a qua i­
homog neous form of f . ince the di i1 ation rate is assumed to b i otropic, f i 
compo d of the qua i-homogeneous form of th pressure-strain rate orr lation and 
a contribution due to the Reynolds stre s ani otropy. The r ultant expr ion for 
~ (x) is given by 

N 1 L h(x ) [T (n)(x ):T(m)(x )] = _ [(rrh(x ) + 2ccb(x )) :T(m)(x )] 
n E(x )I'l (x ) 

n = l 

[rr~ (x ) :T (m)(x ) ] 

c(x )I'l-(x ) 

6 

--- ---------

1TI = 1, .. . " (24) 



wher the quasi-homogeneous form of the pressure- train rate model II~ i given by 

II~ = - £c ( Cf - 2 + ct ;) b + k C2 S + k 3 ( bS + Sb - ~[b:S] I) 

-I{C4 (bW - Wb). (25) 

ote that a comparison of Eqs. (14) and (25) shows that the return-to-isotropy term 
proportional to b has been modified. The factor Cc now influences the ntir term and 
the contribution from the Reynold stress anisotropy 2ccb to th r laxation function 
f i now included in this (slow) term contribu tion to II~ . 

One of the improvement in the current lliptic relaxation formulation is that 
the ca.led relaxation function f d fined in Eq. (4) is 0 (1) in the log-layer region. 
This scaling negate the adv rse influence of th llipti c operator in the log-layer that 
occurred in the original (Durbin 1993a) formulation. In ord r to retain this benign 
ffect in the tensor repre entation formulation us d h re, it is necessary to ensure that 

the expansion coeffici nt n also have this n utral effect. 
Previous representations for the Reynold str ani otropy t nsor hav used ba is 

ten ors of the form S , SW - WS and S2 - [S:S]I /3. In th log-lay r, wher the 
velocity gradient has a y-l behavior, this choice of basis tensor would r quire that 
th corresponding expan ion coefficients 1, 2 , and 3 have a y, y2, and y2 b havior, 
resp ctively, in that region to ensure that f b haves as 0 (1). Unfortunately, given 
that behavior of the n , th amplification effect would now ffect th n and the 
sought-after O( 1) behavior for the f is 10 t. For th fully dev loped channel flow of 
interest, this problem can be asily circumv nt d by using a normaliz d ba is set of 
the form 

T (l) = S* T (2) = S*W " - W *S" , , (26) 

wh re S '" = S/{S2}1/2 and W * = W /{S2P/2 . Thi normalization now makes the 
b havior of both th expan ion coefficients and basis t nsors 0 (1) in th log-layer, 
which then preclude any adv r effect of the lliptic operator in the relaxation 
quation (23) . 

Boundary conditions for the n expansion coefficients are r quired. Con istent 
with th boundary conditions for the tensor fun bon i ij, the COlT sponding n bound­
ary conditions are Ii ted in Table 2 a functions of Tij (se Appendix A for details). 

The equival nce of the elliptic relaxation of the xpansion coefficients n given 
by Eq. (23) with the ellipti c relaxation of th function i ij given by Eq. (11) can be 
readily shown with the curr nt normalized ba. is . Th solution to Eq. (24) i easily 
obtained as 

(27) 
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Table 2. Boundary Conditions for /3n 

/3n Wall Centerline 

/31 
- 20.)21/2 Td(1) [llc:T (1)] h 

E. 2 y4 E. f{ w (1) 

/32 
-151/2 

T22I(1) [llc:T (2)] h 

2 4 E. f{ E.wY(l) 

/33 
-301/2 

T22 1(1) [llc:T (3)] h 

2 4 E. f{ E.wY(l) 

If the tensor r presentation Eq. (17) is applied to f i} then the /3n solution from Eq. 
(27) would yield for the components of .m 

(fh f h fh fh) ( /3f h + /3; /3h + /3; _ /3; ) 
12 , 11' . 22 , 33 = .)2' - 2 6' 2 6' 3 

(2 ) 

A comparison of the right-hand side of Eq. (28) with t he right-hand side of Eq. (11) 
shows that the two are equivalent. (The reader hould recall from the discussion 
following the definition of ll~ in Eq. (25) that the form of the slow term was slightly 
modified from the definition given in Eq. (14). vVith this change taken into account , 
the exact equival nce Eqs. (11) and (2 ) holds.) 

3. R esults and Discussion 

All flow calculations were carried out on fully developed turbulent channel flows. 
The equations that were solved were scaled in wall units with friction Reynolds 
number Re-r based on channel half-height and friction velocity at the wall. A one­
dimensional finite-difference algorithm de cribed in Appendix B was us d for all com­
putation . 

As shown in Sec. 2.3 , the representation methodology that has been developed 
rields an ellipt ic l' laxation formulation qui valent to the ellipt ic relaxation of the ten­

sor fun tion f ij . Whil such ten or projection methods have been used in conjunction 
with nonlinear algebraic equations, the application here also validates its u e with 
differential operators. 

Figures 1 - 3 show the predi ctive accuracy and equivalence of both the Tij -

f ij and Tij - /3n approaches . The flow fi ld is the fully develop d channel flow at 
R e-r = 590 (Mos l' et al. 1999). The figure include both a linear and log cale in 
th wall normal direction. As can be seen from Fig. 1 for th mean velocity both 
the distribution acros, the channel and the near-wall a ymptotic b havior agre with 
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the direct numerical simulation (DNS) data. Excellent agreement with the D S data 
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20 
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10-' 10° 10' j(j J(Y 
y 

Figure 1. Mean velocity di tribution acro s channel at R eT = 590: (a) log-linear scale· 
(b) log-log scale. 

across the channel is also shown for the shear tress profile (Fig. 2); however , the 
asymptotic approach to the wall is greater t han the th oretical estimate of O(y3). 
The di screpancy becomes apparent for values of y < 1. This result is in contrast 
to the predictions for the turbulent kinetic energy shown in Fig. 3. In this case 

1 1if 

't ij-!;j 10·' 
0.8 ------ 'ti,.-P" 

DNS 10.2 

0.6 .. ~!:: 10-3 
~-

0.4 ( a) 10-1 (b) 

0.2 10-5 

10.6 

0 100 200 300 400 500 600 10" l if 10' 1d l d 
Y Y 

Figure 2. Turbulent shear stress distribution across chann 1 at R eT = 590: (a) linear 
scale; (b) log-log scale. 

the near-wall asymptotic behavior is consistent with the D S results but the overall 
values ar slightly lower across the channel than the D S data. Overall , the predictive 
results for the mean velocity, Reynolds shear stress and turbulent kinetic en rgy are 
quite exceptional and show that the method can be cali brated to provide excellent 
predictions of thi, fiow field . In actuality, since the models are formally equivalent, 
no changes are required in any of the calibration constants. 

Since a full diff r ntial R ynolds str model i used for the turbulent velocity 
field , it i possibl as well as insightful to furt h r examine the component stress 
predictions. F igures 4 and 5 show the T11 and T 22 component stresses . Since the 
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y 

Figur 3. Turbul nt kineti n rgy di tribution across channel at R eT 
linear cal ; (b) log-log cale. 

590: (a) 

near-wall a ymptotic b havior O(y2) is dominated by the Tn (and T33) omponents, 
it is not urprising to e from Fig. 4b that th near-wall asymptotics closely match 
th D IS re ult . The O(y4) behavior that charact ri zes th D IS results for the T2 2 

component (s Fig. 5b) are very closely replicat d by the predictions. Fig. 4a shows 
that acros th channel pr dieted results were lower than th D results for the Tn 

component . For the T22 componen , however, the predicted p ak valu was higher 
than the D S results, but th predicted values wer lower over the remainder of the 
channel a n in Fig. 5a. 

3 

2 

1 

--- Vlij 
t~tPn 
DNS 

(a) 

0
0 100 200 300 400 500 600 

Y 

(b) 

10.3 '-;--'--'-'-..L.U..U'-;;-''-'--'..L.U..U-'-;-,--,-,..u..u.~"'--'-~ 
1~ 1d ld 1d ld 

Y 

Figure 4. Reynold normal stres omponent T1l di tribution a ross chann 1 at R eT 
= 90: (a) linear scale; (1 ) log-log scal . 

An int r sting assessment of how well th llipti c relaxation formulation models 
the redistribution t rms across th channel an b obtained from Eq. (4) . Th 
quantity c:K!ij obtained from th expli cit repr ntation given in Eq. (1 ) and th 
ellipti cally r lax d n from Eq. (23) ar plo t d in Fig. 6 along with th quantity 
<Pij -2c: (dij -bij ) obtain d from the DNS data. As Fig. 6a how , the d\.J12 compon nt 
produce th corr sponding DNS l' ult very well in the near-wall r gion and in the 

10 
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Figur 5. Reynolds normal stress component T22 distribution across channel at ReT 
= 590: (a) linear scale; (b) log-log scale. 

outer layer r gion toward the centerline. Between these two regions, the peak value 
of the computations greatly exceeds that of the DNS. The normal c; f{ ill and c; ]{ h2 
components show an even poorer prediction of the DNS results. In the cases, only 
the outer layer region is correctly predicted; whereas, over the rest of the channel the 
qualitative and quantitative predictions are generally poor. 'While the results of this 
a pTio1'i validation of the ellip tically relaxed function c; f{ f ij are disappointing, it is 
clear that the actual predictions of the fully modeled s t of equations are generally 
v ry good. Thus other modeled terms in the formulation are able to account for any 
discrepancies in the prediction of the redistribution term. 

As Fig. 6 shows, all components of the elliptically relaxed r distribution term 
correctly reproduce the D S data in th outer layer of th channel flow but differ 
extensively from th Dl S data when reproducing the inner layer. Since the ellipt ic 
operator term (- L2\,12) is responsible for the deviation of th {3n from their quasi­
homogeneou {3~ forms, it is worthwhile to quantify the size of th region acros the 
channel that is affected by this term. Figure 7 shows the distribution of -L2\,12{3n 
acro s the channel for the three expansion coefficients (n = 1, 2,3) at three different 
values of ReT ' In the inner layer, the wall uni t scaling basically collap es the results 
for all values of ReT, with the exception of the {31 component where the r suIt in the 
near-wall region show some dependence on R T' this sensitivity to ReT is not found in 
the other components as Figs. 7b and 7c show. The effect of the ellip tic operator falls 
to zero at y (wall unit) values around 102

. The overshoot in the outer layer shown in 
all the figures is attributed to the asymptotic behavior of the nergy dissipation rate 
c; in this r gion . Both \,12 nand c; decrease (L incr as s); howev r , the dis ipation 
rate c; decr a es faster (L increases faster) than the orresponding decrease in \,1 2{3n . 
The variation with ReT in thi , r gion is not surprising sinc the wall uni t scaling is 
not the proper scaling for this region. 
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4. Summary 

_ methodology has be n develop d that introduce a polynomial r pI' sentat.ion 
for the ten or redi tribution function i ii ' An elliptic relaxation equation, analogou to 
th i ii relaxation equation is formulated for th polynomial expan ion coefficient /3n ­
The new prediction m thod is demonstrated on a fully dev loped cha1m 1 flow probl m 
and gives similar r ults to the previous lliptic relaxation method for iij. formal 
equivalence j stabli h d between the elliptic r laxation of the ten or function i ij and 
its tensor repre ntation. lthough the prediction of the m an velocity and turbulent 
stresse are gen rally accurate over th chann 1, an a prio1'i a essm nt shows that 
the current formulation doe. not model th r distribution welL uch results are 
nlightening but ar not uncom_monj th r suIts reflect th fact that in model d 

do ur schem , a combination of mod led terms combine to yield predictions of 
quantities such as the mean velocity and Reynolds str sses. 

\iVhile th th or-etical approach d v loped her does not r suIt in a reduction 
in computational cost , it does introduce a new m thodology that is requisite for 
dev loping elliptic I' laxation xplicit alg braic stre s models. The next step in the 
d velopment of such mod Is will be to introduce repre enta ions for the Reynolds 
tress anisotropi s and analyze the efl cts of modeling the turbul nt transport and 

viscous diffu ion term consi tent with the approximation made in the formulation 
of algebraic tress mod Is_ 
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Appendix A n Boundary Conditions 

The expressions for the /3n boundary conditions are derived from th basis t nsors 
TSn

) used in the representation of j ij 

122 = 2TJ;) + 
/33 = 3 Tii ) 
112 = /31T1(~) 

(AI) 

Table 1 gives the corresponding boundary condit ions for these I ij components . The 
boundary condition for /31 is directly proportional to the !I2 boundary condition and 
is given by 

/3 - !I2 ,w - J2I _ -20V211
2

TI2 
l ,w - (1) - ~ 12 ,w - ? 4 

T12 c;Y(l) 
(A2) 

The coeffici nt /33 appears in all three expansions of th diagonal terms of I ij . If 
I ij is traceless, a unique expression for /33 at th wall will be obtained. From he 
representation for /33, /33,w can be immediately wri tt n as 

(A3) 

The representations for ill and 122 can be used to obtain an equivalent expressions 
for the /33 boundary condition 

vVith /33,w known, the representation for either ill or i22 ca.n be used to obtain /32.w' 

From the i22 representa.tion , th wall boundary condition on 2 is giv n by 

f'33 -15112T22 - f + .,w -- 22 ,tu -2 - - ---=-2 -y74 -
<:'10 (1) 

(A5) 
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Appendix B Numerical Solution M ethodology 

one-dim nsional finit -differ n e code was us d for all computations .. 11 equa­
tions were normalized by the bulk vi 0 ity and friction velocity (i. e., wall uni ts) . 
The differen ing templat was node-centered with clustering close to the wall u ing 
an exponential tretching function. In t rms of the scaling used for the hannel flow 
calculations, th 500 node grid had the first point at a height of 0.1 wall uni ts . Th 
channel Reynold numl r R T determined th channel grid h ight . The f{ and [ 
quations were impli citly coupled a were the Tij - I ij equations, and for the second 

model, the Tij - f3n equations. The variables U, J\", e and Tij w re solved in a time­
dependent mod , while th I ij or I equations w r not (i . e., ~t = 0. ) 11 variables 
w re updat d at each tim tep . 

In this app ndix, th terms with the superscript (n + 1) denote variabl that 
were impli citly solved for and the term with th sup r crip t (n) weI' variabl s used 
xpli citly at each iteration. The R ynolds stress equations coupled implicitly with 
ither the I ij or n equations were solv d first with the mom ntum, turbulent kineti c 

energy and di sipation rate quation solved cond o An updat d T1 2 wa used in the 
mom.entum quation bu t th eddy viscosity in th turbulent transport terms of all 
th equations was not updated until aft l' the completion of each time tep. Typically 
olutions were re-start d from previou turbulent flow calculations. 

Th sym1 01 Y1 denot th h ight of the first node from the wall and ew d not s 
t he boundary ondition valu for e . The di cr t iz d form of th governing equations 
ar a follows . For the T - f mod 1; 

(B1 ) 

j.~n+1) _ L (n) 2 d
2 

f( n +1) = 1 (rr'I + 2c b .. ) (n ) 
tJ dy 2 ' tJ ern) r{ (n) tJ '-'c tJ . 

(B2) 

Th boundary ondition w l' implicitly writt n for the I ij as 

(B3) 

(B4) 

_ (n+1)1 

I 
' 12 

I (n +l ) 20 Yl 
12 = - (n )2 4 . 

w cw Yl 
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For th r - (31 model· 

Ti~n+l) = Ti~n) + tlt [pi~n) + E(n ) ]{(n ) (t l( n+l)tS)) 

1=1 

imilarly, the boundary conditions were impli citly written for the 1 a 

For U, J.,.- and C; 

with 

(n+l) I 
'1.12 

(n+l)1 - -20J2 y, 
1 - ~ (n)2 4 

w cw Y1 

~(n+1) I 
2
(n+l)lw '22 = -15 (r Yl 

n - 4 
cw Yl 

(n+1) I 
(3 (n+l) I = -30 Tn Yl 

3 (n)2 4 . 
w cw Y1 

dp 1 

d;.r Re.,. 

l'.l
(n ) - C T(n)~(n ) 
t - 11 22 ' c . 

Th boundary conditions were implicitly wrjtt n for c as 
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