High-Order Central WENO Schemes for Multi-Dimensional Hamilton-Jacobi Equations

Steve Bryson* Doron Levy†

May 30, 2002

Abstract

We present new third- and fifth-order Godunov-type central schemes for approximating solutions of the Hamilton-Jacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greater than two in two space dimensions we present two versions for the third-order scheme: one scheme that is based on a genuinely two-dimensional Central WENO reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruction. The simpler dimension-by-dimension variant is then extended to a multi-dimensional fifth-order scheme. Our numerical examples in one, two and three space dimensions verify the expected order of accuracy of the schemes.

Key words. Hamilton-Jacobi equations, central schemes, high order, WENO, CWENO

AMS(MOS) subject classification. Primary 65M06, secondary 35L99

Contents

1 Introduction 2

2 One-Dimensional Schemes 4

2.1 One-Dimensional Central Schemes 4

2.2 A Third-Order Scheme 6

2.3 A Fifth-Order Scheme 10

*Program in Scientific Computing/Computational Mathematics, Stanford University and the NASA Advanced Supercomputing Division, NASA Ames Research Center, Moffett Field, CA 94035-1000, bryson@nas.nasa.gov

†Department of Mathematics, Stanford University, Stanford, CA 94305-2125, dlevy@math.stanford.edu
1 Introduction

We are interested in high-order numerical approximations for the solution of multi-dimensional Hamilton-Jacobi (HJ) equations of the form

$$\phi_t + H(\nabla \phi) = 0, \quad \vec{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d,$$

where H is the Hamiltonian, which we assume depends on $\nabla \phi$ and possibly on x and t. In recent years, the HJ equations attracted a lot of attention from analysts and numerical analysts due to the important role that they play in applications such as optimal control theory, image processing, geometric optics, differential games, calculus of variations, etc. The main difficulty in treating these equations is due to the discontinuous derivatives that develop in finite time even when the initial data is smooth. Vanishing viscosity solutions provide a good tool for defining weak solutions when the Hamiltonian is convex \cite{15}. The celebrated \textit{viscosity solution} provides a suitable extension of weak solutions for more general Hamiltonians \cite{3, 7, 8, 9, 10, 28, 29}.

Given the importance of the HJ equations, there has been relatively little activity developing numerical tools for approximating their solutions. This is surprising given that most of the numerical ideas are based in the similarity between hyperbolic conservation laws and the HJ equations, and the field of numerical methods for conservation laws has been flourishing in recent years.

Converging first-order approximations were introduced by Souganidis in \cite{38}. High-order upwind methods were introduced by Osher, Sethian and Shu in \cite{34, 35}. These methods are based on Harten’s Essentially Non-Oscillatory (ENO) reconstruction \cite{13}, that is evolved in time with a first-order monotone flux. The Weighted ENO (WENO) interpolant of \cite{18, 32} was used for constructing high-order upwind methods for the HJ equations in \cite{17}, and extensions of these methods for triangular meshes were introduced in \cite{1, 40}. We note in passing that there are other approaches for approximating solutions.
of HJ equation such as discontinuous Galerkin methods [14, 24] and relaxation schemes [20].

A different class of Godunov-type schemes for hyperbolic conservation laws, the so-called "central schemes", have recently been applied to the HJ equations. The prototype for these schemes is the Lax-Friedrichs scheme [11]. A second-order staggered central scheme was developed for conservation laws by Nessyahu and Tadmor in [33]. The main advantage of central schemes is their simplicity. Since they do not require any (approximate) Riemann solvers, they are particularly suitable for approximating multi-dimensional systems of conservation laws. Lin and Tadmor applied these ideas to the HJ equations in [31]. There, first- and second-order staggered schemes versions of [2, 19, 33] were written in one and two space dimensions. An L^1 convergence of order one for this scheme was proved in [30]. After the introduction of a semi-discrete central scheme for hyperbolic conservation laws in [23], a second-order semi-discrete scheme for HJ equations was introduced by the same authors in [22]. While less dissipative, this scheme requires the estimation of the local speed of propagation at every grid point, a task that is computationally intensive in particular with problems of high dimensionality. By considering more precise information about the local speed of propagation, an even less dissipative scheme was generated in [21].

Recently we introduced in [5] new and efficient central schemes for multi-dimensional HJ equations. These non-oscillatory, non-staggered schemes were first- and second-order accurate and were designed to scale well with an increasing dimension. Efficiency was obtained by carefully choosing the location of the evolution points and by using a one-dimensional projection step. Avoiding staggering by adding an additional projection step is an idea which we already utilized in the framework of conservation laws [16].

In this work we introduce third- and fifth-order accurate schemes for approximating solutions of multi-dimensional HJ equations. These are the first central schemes for such equations of order greater than two. This work is the HJ analog to the corresponding works in conservation laws: an ENO based central scheme [4], and the Central WENO (CWENO) central schemes [25, 26, 27]. We announced a preliminary version of the one-dimensional results in a recent proceedings publication [6].

The structure of this paper is as follows. We start in §2 with the derivation of our one-dimensional schemes. A third-order WENO reconstruction scheme is presented in §2.2. This scheme required a fourth-order reconstruction of the point-values and a third-order reconstruction of the derivatives at the evolution points. Even though the optimal location of the evolution points in one dimension is in the center of the interval, in order to prepare the grounds for the multi-dimensional schemes we write a reconstruction for an arbitrary location of the evolution points. A fifth-order method is then presented in §2.3.

We turn to the multi-dimensional framework in §3. Here there is flexibility in the reconstruction step. For simplicity we carry most of the discussion in two space dimensions. Extensions to more than two space dimensions are presented in §3.4. First, we provide a brief outline of the general structure of two-dimensional central schemes in §3.1. The main remaining ingredient, the reconstruction step, is then described in the following two sections. For a two-dimensional third-order scheme we present in §3.2 two ways to obtain a high-order reconstruction of the approximate solution at the
evolution points. The first option in §3.2.1 is based on a genuinely two-dimensional reconstruction. An alternative dimension-by-dimension approach is based on a sequence of one-dimensional reconstructions and is presented in §3.2.2. Our numerical results show that both approaches are essentially equivalent. Hence, the rest of the paper deals with the dimension-by-dimension reconstruction. A fifth-order dimension-by-dimension extension of the one-dimensional scheme in §2.3 to two dimensions is then presented in §3.3. Since the solution at the next time step is computed at grid points that are different from those on which the data is given, we reproject the evolved solution back onto the original grid points. Different ways to approach this reprojection step are discussed in §3.2.3.

We conclude in §4 with several numerical examples in one, two and three space dimensions that confirm the expected order of accuracy and the high-resolution nature of our scheme. We compare our results with the scheme of Jiang and Peng in [17]. We also study the convergence rate after the emergence of the discontinuities in the solution.

Acknowledgment: We would like to thank Volker Elling for helpful discussions throughout the early stages of this work. The work of D. Levy was supported in part by the National Science Foundation under Career Grant No. DMS-0133511

2 One-Dimensional Schemes

2.1 One-Dimensional Central Schemes

Consider the one-dimensional Hamilton-Jacobi equation of the form

$$\frac{\partial \phi}{\partial t}(x,t) + H(\phi_x) = 0, \quad x \in \mathbb{R}$$

(21)

We are interested in approximating solutions of (21) subject to the initial data \(\phi(x,t=0) = \phi_0(x)\). For simplicity, we assume a uniform grid in space and time with mesh spacings, \(\Delta x\) and \(\Delta t\), respectively. Denote the grid points by \(x_i = i\Delta x\), \(t^n = n\Delta t\), and the fixed mesh ratio by \(\lambda = \Delta t/\Delta x\). Let \(\varphi^n_i\) denote the approximate value of \(\phi(x_i,t^n)\), and \((\varphi_x)_i^n\) denote the approximate value of the derivative \(\phi_x(x_i,t^n)\). We define the forward and backward differencing as \(\Delta^+ \varphi_i^n = \varphi_{i+1}^n - \varphi_i^n\) and \(\Delta^- \varphi_i^n = \varphi_i^n - \varphi_{i-1}^n\).

Assume that the approximate solution at time \(t^n\), \(\varphi_i^n\) is given. A Godunov-type scheme for approximating the solution of (21) starts with a continuous piecewise-polynomial \(\tilde{\phi}(x,t^n)\) that is reconstructed from the data, \(\varphi_i^n\),

$$\tilde{\phi}(x,t^n) = \sum_i P_{i+\frac{1}{2}}(x,t^n) \chi_{i+\frac{1}{2}}(x)$$

(22)

Here, \(\chi_{i+1/2}(x)\) is the characteristic function of the interval \([x_i, x_{i+1}]\), and \(P_{i+1/2}(x,t^n)\) is a polynomial of a suitable degree that satisfies the interpolation requirements

$$P_{i+\frac{1}{2}}(x_{i+\beta},t^n) = \varphi_i^{n+\beta}, \quad \beta = 0, 1$$
The reconstruction (2.2) is then evolved from time \(t^n \) to time \(t^{n+1} \) according to (2.1), and sampled at the half-integer grid-points, \(\{x_{i+1/2}\} \), where the reconstruction is smooth (as long as the CFL condition \(\lambda |H'(\varphi_x)| \leq 1/2 \) is satisfied)

\[
\varphi^{n+1}_{i+1/2} = \varphi^n_{i+1/2} - \int_{t^n}^{t^{n+1}} H \left(\varphi_x \left(x_{i+1/2}, \tau \right) \right) d\tau
\]

(2.3)

The point-value \(\varphi^n_{i+1/2} \) is obtained by sampling (2.2), at \(x_{i+1/2} \), i.e., \(\varphi^n_{i+1/2} = \varphi(x_{i+1/2}, t^n) \).

Since the evolution step (2.3) is done at points where the solution is smooth, we can approximate the time integral at the RHS of (2.3) using a sufficiently accurate quadrature rule. For example, for a third- and fourth-order method, this integral can be replaced by a Simpson's quadrature,

\[
\int_{t^n}^{t^{n+1}} H \left(\varphi_x \left(x_{i+1/2}, \tau \right) \right) d\tau \approx \frac{\Delta t}{6} \left[H \left(\varphi^n_{i+1/2} \right) + 4H \left(\varphi^{n+1/2}_{i+1/2} \right) + H \left(\varphi^{n+1}_i \right) \right]
\]

(2.4)

The derivative at time \(t^n \), \(\varphi^n_{i+1/2} \) is obtained by sampling the derivative of the reconstruction (2.2), i.e., \(\varphi^{n+1}_{i+1/2} = \varphi'(x_{i+1/2}, t^n) \). The intermediate values of the derivative in time, \(\varphi^{n+1}_{i+1/2} \) and \(\varphi^{n+1}_{i+1/2} \), which are required in the quadrature (2.4), can be predicted using a Taylor expansion or with a Runge-Kutta (RK) method. Alternatively, (2.1) can be treated as a semi-discrete equation by replacing the spatial derivatives with their numerical approximations and integrating in time via an RK method.

The only remaining ingredient to specify is the reconstruction (2.2). Below we present two reconstructions. The first is a fourth-order reconstruction of the point-values and the derivatives which leads to a third-order scheme, and the second is a sixth-order reconstruction that results in a fifth-order scheme.

Remarks

1. In order to return to the original grid, we project \(\varphi^{n+1}_{i+1/2} \) back onto the integer grid points \(\{x_i\} \) to end up with \(\varphi^n_{i+1/2} \). This projection is accomplished with the same reconstruction used to approximate \(\varphi^n_{i+1/2} \) from \(\varphi^n_i \).

2. In order to maximize the size of the time-step, the evolution points should be taken as far as possible from the singularities in the reconstructed piecewise-polynomial. In one dimension the appropriate evolution point is located at \(x_{i+1/2} \). In \(d \)-dimensions with a uniform grid with spacing \(\Delta x \), the optimal evolution points are located at \(x_{i+\alpha} = x_i + \alpha \Delta x \) in each direction, where \(\alpha = 1/(d + \sqrt{d}) \) (see [5]). One of the multi-dimensional schemes we present in §3 is based on one-dimensional reconstructions. Hence, in order to prepare the grounds for the multi-dimensional setup, we write the one-dimensional reconstruction in this section assuming that the evolution points are \(x_{i+\alpha} \). The reader should keep in mind that in one dimension, \(\alpha = 1/2 \).

3. We would like to point out that one does not need to fully reconstruct the polynomials \(P_{i+1/2}(x, t^n) \). The only values that the scheme requires are the
approximated point-values $\varphi^n_{i+1/2} = \varphi(x_{i+1/2}, t^n)$ and the approximated derivatives $\varphi'_{i+1/2} = \varphi'(x_{i+1/2})$. Hence, in the rest of the paper whenever we refer to reconstruction steps we directly treat the recovery of these two quantities.

2.2 A Third-Order Scheme

A third-order scheme is generated by combining a third-order accurate ODE solver in time for predicting the intermediate values of the derivatives in (24), with a sufficiently high-order reconstruction in space.

Given φ^n, in order to invoke (2.3), we should compute two quantities in every time step: the point-values at the evolution points, $\varphi_{i+\alpha}$, and the derivative $\varphi'_{i+\alpha}$. In order to obtain a third-order scheme, the approximations of the point-values should be fourth-order accurate, and the approximation of the derivatives should be third-order accurate. In this scheme, the reconstruction of the point-values is done in locations that are staggered with respect to the location of the data. The reconstruction of the derivatives, which is required in every step of the ODE solver, is done at the same points where the data is given. Since we anyhow need two types of reconstructions and due to symmetry considerations, we derive a fourth-order approximation of the derivatives. Obviously, this more accurate reconstruction of the derivatives does not increase the order of accuracy of the scheme but it does reduce the error.

1 The reconstruction of $\varphi_{i+\alpha}$ from φ_i

A fourth-order reconstruction of $\varphi_{i+\alpha}$ can be obtained by considering a convex combination of two quadratic polynomials, each of which requires the evaluation of φ on a three-point stencil. One quadratic polynomial $\varphi_-(x)$ is constructed on a stencil that is left-biased with respect to $x_{i+\alpha}$, $\{x_{i-1}, x_i, x_{i+1}\}$, while the other polynomial $\varphi_+(x)$ is constructed on a right-biased stencil, $\{x_i, x_{i+1}, x_{i+2}\}$, see Figure 2.1. We set

$$
\varphi_{-i+\alpha} = \left(\frac{-\alpha + \alpha^2}{2}\right) \varphi_{i-1} + \left(1 - \alpha^2\right) \varphi_i + \left(\frac{\alpha + \alpha^2}{2}\right) \varphi_{i+1},
$$

$$
\varphi_{+i+\alpha} = \left(\frac{2 - 3\alpha + \alpha^2}{2}\right) \varphi_i + (2\alpha - \alpha^2) \varphi_{i+1} + \left(\frac{-\alpha + \alpha^2}{2}\right) \varphi_{i+2}.
$$

For smooth φ, a straightforward computation shows that $\varphi_{\pm i+\alpha} = \varphi(x_{i+\alpha}) + O(\Delta x^4)$, and

$$
\frac{1}{3} (2 - \alpha) \varphi_{-i+\alpha} + \frac{1}{3} (1 + \alpha) \varphi_{+i+\alpha} = \varphi(x_{i+\alpha}) + O(\Delta x^4).
$$

Similarly, the reconstruction of $\varphi_{i-\alpha}$ is obtained using the quadratic polynomials $\varphi_-(x)$ based on the left-biased stencil enclosing $x_{i-\alpha}$, $\{x_{i-2}, x_{i-1}, x_i\}$, and $\varphi_+(x)$ based on the right-biased stencil $\{x_{i-1}, x_i, x_{i+1}\}$,

$$
\varphi_{-i-\alpha} = \left(\frac{-\alpha + \alpha^2}{2}\right) \varphi_{i-2} + (2\alpha - \alpha^2) \varphi_{i-1} + \left(\frac{2 - 3\alpha + \alpha^2}{2}\right) \varphi_i.
$$
Figure 2.1 The two interpolants used for the third-order reconstruction at the evolution point at $x_{i+\alpha}$.

$$
\varphi_{+,i-\alpha} = \left(\frac{\alpha + \alpha^2}{2} \right) \varphi_{i-1} + (1 - \alpha^2) \varphi_i + \left(\frac{-\alpha + \alpha^2}{2} \right) \varphi_{i+1}.
$$

This time, $\varphi_{x,i-\alpha} = \varphi(x_{i-\alpha}) + O(\Delta x^3)$, and

$$
\frac{1}{3} (1 + \alpha) \varphi_{-,i-\alpha} + \frac{1}{3} (2 - \alpha) \varphi_{+,i-\alpha} = \varphi(x_{i-\alpha}) + O(\Delta x^4)
$$

A fourth-order WENO estimate of $\varphi_{\pm \alpha}$ is therefore given by the convex combination

$$
\varphi_{\pm \alpha} = w_{-\pm \alpha} \varphi_{-,i\pm \alpha} + w_{+\pm \alpha} \varphi_{+,i\pm \alpha},
$$

where the weights satisfy $w_{-\pm \alpha} + w_{+\pm \alpha} = 1$, $w_{-\pm \alpha} \geq 0$, $\forall \alpha$. In smooth regions we would like to satisfy $w_{-\pm \alpha} = w_{+\pm \alpha} \approx (2 - \alpha)/3$ and $w_{+\pm \alpha} = w_{-\pm \alpha} \approx (1 + \alpha)/3$ to attain an $O(\Delta x^4)$ error. When the stencil supporting $\varphi_{i\pm \alpha}$ contains a discontinuity, the weight of the more oscillatory polynomial should vanish. Following [18, 32], these requirements are met by setting

$$
w_{i\pm \alpha}^k = \frac{c_{i\pm \alpha}^k}{\sum_l c_{i\pm \alpha}^l}, \quad \alpha_{i\pm \alpha}^k = \frac{k_{i\pm \alpha}^k}{(\epsilon + S_{i\pm \alpha}^k)^p},
$$

where $k, l \in \{+,-\}$. The constants are independent of the grid index i and are given by $c_{+\alpha}^k = c_{-\alpha}^k = (2 - \alpha)/3$, $c_{+\alpha}^k = c_{-\alpha}^k = (1 + \alpha)/3$. We choose ϵ as 10^{-6} to prevent the denominator in (2.8) from vanishing, and set $p = 2$ (see [18]). The smoothness measures $S_{i\pm \alpha}^k$ should be large when φ is nearly singular. Following [18], we take $S_{i\pm \alpha}$ to be the sum of the L^2-norms of the derivatives on the stencil supporting $\varphi_{i\pm \alpha}$. If we approximate the first derivative at x_i by $\Delta^+ \varphi_i/\Delta x$, the second derivative by $\Delta^+ \Delta^- \varphi_{i\pm \alpha}/(\Delta x)^2$, and define the smoothness measure

$$
S_i[r,s] = \Delta x \sum_{j=r}^s \left(\frac{1}{\Delta x} \Delta^+ \varphi_{i+j} \right)^2 + \Delta x \sum_{j=r+1}^s \left(\frac{1}{\Delta x^2} \Delta^+ \Delta^- \varphi_{i+j} \right)^2,
$$

(2.9)
then we have $S_{i \pm \alpha}^- = S_i[-1,0]$, $S_{i \pm \alpha}^+ = S_i[0,1]$, $S_{i \pm \alpha}^- = S_i[-2,-1]$ and $S_{i \pm \alpha}^+ = S_i[-1,0]$

For future reference we label the reconstruction in this section with the procedural form

$$\varphi_{i \pm \alpha} = \text{reconstruct}_{\varphi _1D _3} (t, \pm \alpha, \varphi), \quad (2.10)$$

where φ is the one-dimensional array $(\varphi_1, \ldots, \varphi_N)$. This notation will be used in the dimension-by-dimension reconstructions in §3

2 The reconstruction of $\varphi'_{i \pm \alpha}$ from $\varphi_{i \pm \alpha}$

The values of φ we recovered in the previous step at the regularly spaced locations $\{x_{i \pm \alpha}\}$ can be used to recover the derivative $\varphi_{i \pm \alpha}$ via a (non-central) WENO reconstruction. To obtain a fourth-order WENO approximation of $\varphi'_{i \pm \alpha}$, we write a convex combination of three quadratic interpolants $\varphi'_{i \pm \alpha}$ on the stencil $\{x_{i-2 \pm \alpha}, x_{i-1 \pm \alpha}, x_{i \pm \alpha}\}$, $\varphi'_{0 \pm \alpha}$ on the stencil $\{x_{i-1 \pm \alpha}, x_{i \pm \alpha}, x_{i+1 \pm \alpha}\}$ and $\varphi'_{i \pm \alpha}$ on the stencil $\{x_{i \pm \alpha}, x_{i+1 \pm \alpha}, x_{i+2 \pm \alpha}\}$ For smooth φ,

$$\begin{align*}
\varphi'_{-i \pm \alpha} &= \frac{1}{2\Delta x} (\varphi_{i-2 \pm \alpha} - 4\varphi_{i-1 \pm \alpha} + 3\varphi_{i \pm \alpha}) = \varphi' (x_{i \pm \alpha}) + O (\Delta x^3), \\
\varphi'_{0 \pm \alpha} &= \frac{1}{2\Delta x} (\varphi_{i+1 \pm \alpha} - \varphi_{i-1 \pm \alpha}) = \varphi' (x_{i \pm \alpha}) + O (\Delta x^3), \\
\varphi'_{i \pm \alpha} &= \frac{1}{2\Delta x} (-3\varphi_{i \pm \alpha} + 4\varphi_{i+1 \pm \alpha} - \varphi_{i+2 \pm \alpha}) = \varphi' (x_{i \pm \alpha}) + O (\Delta x^3)
\end{align*} \quad (2.11)$$

A straightforward computation yields

$$\frac{1}{6}\varphi'_{-i \pm \alpha} + \frac{2}{3}\varphi'_{0 \pm \alpha} + \frac{1}{6}\varphi'_{i \pm \alpha} = \varphi' (x_{i \pm \alpha}) + O (\Delta x^4).$$

The fourth-order WENO estimate of $\varphi'_{i \pm \alpha}$ from $\varphi_{i \pm \alpha}$ is therefore

$$\varphi'_{i \pm \alpha} = w^-_{i \pm \alpha} \varphi'_{-i \pm \alpha} + w^0_{i \pm \alpha} \varphi'_{0 \pm \alpha} + w^+_{i \pm \alpha} \varphi'_{i \pm \alpha}, \quad (2.12)$$

where the weights w are of the form (2.8) with $k, l \in \{+, 0, -\}, c^- = c^+ = 1/6, c^0 = 2/3$, and the oscillatory indicators are $S_{i \pm \alpha}^- = S_{i \pm \alpha} [-2,-1], S_{i \pm \alpha}^0 = S_{i \pm \alpha} [-1,0]$, and $S_{i \pm \alpha}^+ = S_{i \pm \alpha} [0,1]$

For future reference we label the above reconstruction of $\varphi'_{i \pm \alpha}$ with the procedural form

$$\varphi'_{i \pm \alpha} = \text{reconstruct}_{\varphi_1D_3} (t, \pm \alpha, \varphi_{i \pm \alpha}), \quad (2.13)$$

where $\varphi_{i \pm \alpha}$ is the one-dimensional array $(\varphi_{1 \pm \alpha}, \ldots, \varphi_{N \pm \alpha})$.
We would like to summarize the one-dimensional third-order algorithm in the following, where RK \((\varphi_{i\pm\alpha}^n, \varphi'_{i\pm\alpha}^n, \Delta t)\) is the third-order Runge-Kutta method which integrates (2.1) and is used to predict the intermediate values of the derivatives. Each internal step of the RK method will require additional reconstructions of \(\varphi'_{i\pm\alpha}\) from that step's \(\varphi_{i\pm\alpha}\).

Algorithm 2.1 Assume that \(\{\varphi_i^n\}\) are given

1. **Reconstruct**

\[
\varphi_{i\pm\alpha}^n = \text{reconstruct}_{\varphi \cdot 1D \cdot 3}(i, \pm\alpha, \varphi^n)
\]

\[
\varphi'_{i\pm\alpha}^n = \text{reconstruct}_{\varphi' \cdot 1D \cdot 3}(i, \pm\alpha, \varphi^n_{i\pm\alpha})
\]

2. **Integrate**

\[
\varphi_{i\pm\alpha}^{n+\frac{1}{2}} = RK\left(\varphi_{i\pm\alpha}^n, \varphi'_{i\pm\alpha}^n, \Delta t/2\right)
\]

\[
\varphi'_{i\pm\alpha}^{n+\frac{1}{2}} = \text{reconstruct}_{\varphi' \cdot 1D \cdot 3}(i, \pm\alpha, \varphi_{i\pm\alpha}^{n+\frac{1}{2}})
\]

\[
\varphi_{i\pm\alpha}^{n+1} = RK\left(\varphi_{i\pm\alpha}^n, \varphi'_{i\pm\alpha}^n, \Delta t\right)
\]

\[
\varphi'_{i\pm\alpha}^{n+1} = \text{reconstruct}_{\varphi' \cdot 1D \cdot 3}(i, \pm\alpha, \varphi_{i\pm\alpha}^{n+1})
\]

\[
\varphi_{i\pm\alpha}^{n+1} = \varphi_{i\pm\alpha}^n + \frac{\Delta t}{6} \left[H\left(\varphi_{i\pm\alpha}^n\right) + 4H\left(\varphi'_{i\pm\alpha}^{n+\frac{1}{2}}\right) + H\left(\varphi'_{i\pm\alpha}^{n+1}\right) \right]
\]

3. **Reproject**

\[
\varphi_i^{n+1} = \text{reconstruct}_{\varphi \cdot 1D \cdot 3}(i, \mp\alpha, \varphi_{i\pm\alpha}^{n+1})
\]

Remark It is possible to replace the Simpson’s quadrature in the integration step with a single RK time-step, \(\varphi_{i\pm\alpha}^{n+1} = RK\left(\varphi_{i\pm\alpha}^n, \varphi'_{i\pm\alpha}^n, \Delta t\right)\). Our simulations show that this choice reduces the complexity of the computation but also reduces its accuracy.
2.3 A Fifth-Order Scheme

In order to obtain a fifth-order scheme, we need a sixth-order approximation of the point-values of \(\varphi \), a fifth-order approximation of the derivative \(\varphi' \), and a higher-order prediction of the intermediate derivatives which appear in the quadrature formula. Due to arguments similar to those given in §2.2, we again derive a more accurate reconstruction of the derivatives, which in this case is sixth-order.

We start with the reconstruction of \(\varphi_{i+\alpha} \) from \(\varphi \). We write sixth-order interpolants as a convex combination of three cubic interpolants, each of which requires the evaluation of \(\varphi \) on a four-point stencil. We use the polynomials \(\varphi_-(x) \) defined on the left-biased stencil \(\{x_{i-2}, x_{i-1}, x_i, x_{i+1}\} \), \(\varphi_0(x) \) defined on the centered stencil \(\{x_{i-1}, x_i, x_{i+1}, x_{i+2}\} \) and \(\varphi_+(x) \) defined on the right-biased stencil \(\{x_i, x_{i+1}, x_{i+2}, x_{i+3}\} \), see Figure 2.2. For smooth \(\varphi \)

\[
\begin{align*}
\varphi_{-i+\alpha} &= a_1 \varphi_{i-2} + a_2 \varphi_{i-1} + a_3 \varphi_i + a_4 \varphi_{i+1} = \varphi(x_{i+\alpha}) + O(\Delta x^4), \\
\varphi_{0i+\alpha} &= a_5 \varphi_{i-1} + a_6 \varphi_i + a_7 \varphi_{i+1} + a_8 \varphi_{i+2} = \varphi(x_{i+\alpha}) + O(\Delta x^4), \\
\varphi_{+i+\alpha} &= a_9 \varphi_i + a_{10} \varphi_{i+1} + a_{11} \varphi_{i+2} + a_{12} \varphi_{i+3} = \varphi(x_{i+\alpha}) + O(\Delta x^4),
\end{align*}
\]

where the constants are given by

\[
\begin{align*}
a_1 &= \frac{1}{6} \alpha - \frac{1}{6} \alpha^3, & a_2 &= -\alpha + \frac{1}{2} \alpha^2 + \frac{1}{2} \alpha^3, \\
a_3 &= 1 + \frac{1}{2} \alpha - \alpha^2 - \frac{1}{2} \alpha^3, & a_4 &= \frac{1}{3} \alpha + \frac{1}{2} \alpha^2 + \frac{1}{6} \alpha^3, \\
a_5 &= -\frac{1}{3} \alpha + \frac{1}{2} \alpha^2 - \frac{1}{6} \alpha^3, & a_6 &= 1 - \frac{1}{2} \alpha - \alpha^2 + \frac{1}{2} \alpha^3, \\
a_7 &= \alpha + \frac{1}{2} \alpha^2 - \frac{1}{2} \alpha^3, & a_8 &= -\frac{1}{6} \alpha + \frac{1}{6} \alpha^3 = -a_1, \\
a_9 &= 1 - \frac{11}{6} \alpha + \alpha^2 - \frac{1}{6} \alpha^3, & a_{10} &= 3 \alpha - \frac{5}{2} \alpha^2 + \frac{1}{2} \alpha^3, \\
a_{11} &= -\frac{3}{2} \alpha + 2 \alpha^2 - \frac{1}{2} \alpha^3, & a_{12} &= \frac{1}{3} \alpha - \frac{1}{2} \alpha^2 + \frac{1}{6} \alpha^3.
\end{align*}
\]

At \(x_{i-\alpha} \) we have

\[
\begin{align*}
\varphi_{-i-\alpha} &= a_{12} \varphi_{i-3} + a_{11} \varphi_{i-2} + a_{10} \varphi_{i-1} + a_9 \varphi_i = \varphi(x_{i-\alpha}) + O(\Delta x^4),
\end{align*}
\]
A straightforward computation yields
\[c_{i\pm a}^+ \varphi_{i\pm a} + c_{i\pm a}^0 \varphi_{i\pm a} + c_{i\pm a}^+ \varphi_{i\pm a} = \varphi(x_{i\pm a}) + O(\Delta x^6), \]
where
\begin{align*}
 c_{i\pm a}^- &= c_{i\pm a}^+ = \frac{1}{20} \alpha^2 - \frac{1}{4} \alpha + \frac{3}{10}, \\
 c_{i\pm a}^0 &= -\frac{1}{10} \alpha^2 + \frac{1}{10} \alpha + \frac{3}{5}, \\
 c_{i\pm a}^+ &= c_{i\pm a}^- = \frac{1}{20} \alpha^2 + \frac{3}{20} \alpha + \frac{1}{10}.
\end{align*}

A sixth-order reconstruction of \(\varphi_{i\pm a} \) is therefore given by
\[\varphi_{i\pm a} = w_{i\pm a}^\varphi \varphi_{i\pm a} + w_{i\pm a}^0 \varphi_{i\pm a} + w_{i\pm a}^+ \varphi_{i\pm a}, \]
where the weights \(w^k \) are given by (2.8) with \(k, l \in \{+,,0,-\} \), and the constants \(c^k \) are given by (2.16). The oscillatory indicators are given via (2.9) by \(S_{i\pm a}^- = S_i[-2,0] \), \(S_{i\pm a}^0 = S_i[-1,1] \) and \(S_{i\pm a}^+ = S_i[0,2] \).

A sixth-order approximation of \(\varphi'_{i\pm a} \) from \(\varphi_{i\pm a} \) is written as a convex combination of four cubic interpolants. This reconstruction is similar to the third-order case, and is based on a non-central WENO reconstruction. We skip the details and summarize the result.
\[\varphi'_{i\pm a} = w_{i\pm a}^1 \varphi_{1\pm a} + w_{i\pm a}^2 \varphi_{2\pm a} + w_{i\pm a}^3 \varphi_{3\pm a} + w_{i\pm a}^4 \varphi_{4\pm a}, \]
where
\begin{align*}
 \varphi'_{1\pm a} &= \frac{1}{6\Delta x} (-2\varphi_{-3\pm a} + 9\varphi_{-2\pm a} - 18\varphi_{-1\pm a} + 11\varphi_{1\pm a}), \\
 \varphi'_{2\pm a} &= \frac{1}{6\Delta x} (\varphi_{-2\pm a} - 6\varphi_{-1\pm a} + 3\varphi_{1\pm a} + 2\varphi_{2\pm a}), \\
 \varphi'_{3\pm a} &= \frac{1}{6\Delta x} (-2\varphi_{-1\pm a} - 3\varphi_{1\pm a} + 6\varphi_{2\pm a} - \varphi_{2\pm a}), \\
 \varphi'_{4\pm a} &= \frac{1}{6\Delta x} (-11\varphi_{-1\pm a} + 18\varphi_{1\pm a} - 9\varphi_{2\pm a} + 2\varphi_{3\pm a}).
\end{align*}

Here the weights \(w^k \) are given by (2.8) with \(c_1 = c_4 = 1/20, c_2 = c_3 = 9/20, S_{i\pm a}^1 = S_{i\pm a}[-3,-1], S_{i\pm a}^2 = S_{i\pm a}[-2,0], S_{i\pm a}^3 = S_{i\pm a}[-1,1] \) and \(S_{i\pm a}^4 = S_{i\pm a}[0,2] \).

Notations

1. We label the reconstruction of the point-values (2.17) as
\[\varphi_{i\pm a} = \text{reconstruct} \cdot \varphi_{1D.5}(i, \pm a, \varphi), \]
where \(\varphi \) is the one-dimensional array \((\varphi_1, \ldots, \varphi_N) \).
2. We label the reconstruction of \(\varphi_{i\pm \alpha} \) (2.18) as
\[
\varphi_{i\pm \alpha} = \text{reconstruct}_\alpha (\varphi, i, \pm \alpha, \varphi_{\pm \alpha}),
\]
where \(\varphi_{\pm \alpha} \) is the one-dimensional array \((\varphi_{1\pm \alpha}, \ldots, \varphi_{N\pm \alpha})\).

Remarks

1. To conclude, the fifth-order method is given by Algorithm 2.1, where the fourth-order reconstructions are replaced by the sixth-order reconstructions (2.19)-(2.20). As is, this scheme is only fourth-order in time. A higher order method in time can be easily obtained by replacing Simpson's quadrature with a more accurate quadrature and computing the sixth-order approximations for the point-values and the derivatives at the new quadrature points.

2. We choose to predict the intermediate values of the derivatives in time using the fourth-order strong stability preserving (SSP) Runge-Kutta scheme of [12]. For \(s \in \{\frac{1}{2}, 1\} \), the SSP-RK scheme is given by

\[
\begin{align*}
\varphi^{(1)} &= \varphi^n - \frac{1}{2} s \Delta t H (\varphi^n), \\
\varphi^{(2)} &= \frac{649}{1600} \varphi^n + \frac{10890423}{25193600} s \Delta t H (\varphi^n) + \frac{951}{1600} \varphi^{(1)} - \frac{5000}{7873} s \Delta t H (\varphi^{(1)}), \\
\varphi^{(3)} &= \frac{53989}{2500000} \varphi^n + \frac{102261}{5000000} s \Delta t H (\varphi^n) + \frac{4806213}{20000000} \varphi^{(2)} + \frac{7873}{2000000} s \Delta t H (\varphi^{(2)}), \\
\varphi^{n+s} &= \frac{1}{5} \varphi^n - \frac{1}{10} s \Delta t H (\varphi^n) + \frac{6127}{30000} \varphi^{(1)} + \frac{1}{6} s \Delta t H (\varphi^{(1)}) + \frac{7873}{30000} \varphi^{(2)}, \\
&\quad + \frac{1}{3} \varphi^{(3)} - \frac{1}{6} s \Delta t H (\varphi^{(3)}).
\end{align*}
\]

Alternatively, the Natural Continuous Extension of the RK method [39] can be used to produce the intermediate values \(\varphi^{n+s} \) and \(\varphi^{n+1} \) with a single RK step, though we observe that errors are somewhat larger in this case.

3. Multi-Dimensional Schemes

3.1 Two-Dimensional Central Schemes

Consider the two-dimensional HJ equation of the form
\[
\phi_t + H(\nabla \phi) = 0, \quad \vec{x} = (x_1, x_2) \in \mathbb{R}^2,
\]
subject to the initial data \(\phi(\vec{x}, t = 0) = \phi_0(\vec{x}) \). Denote \(x_{i,j} = (x_1 + i \Delta x_1, x_2 + j \Delta x_2) \). Similarly to the one-dimensional setup, \(\varphi_{i,j} \) will denote the approximation of \(\phi \) at \(x_{i,j} \).
We define the two sets of grid points, \(I_+ = \{x_{i,j}, x_{i+1,j}, x_{i,j+1}\} \), and \(I_- = \{x_{i,j}, x_{i-1,j}, x_{i,j-1}\} \), and denote by \(T_+ \), \(T_- \) the triangles with vertices \(I_+ \) and \(I_- \) respectively. For simplicity we assume a uniform grid \(\Delta x_1 = \Delta x_2 = \Delta x \).

Assume that the approximate solution at time \(t^n \), \(\varphi_{i,j}^{n} \) is given. Similarly to the one-dimensional setup in §2.1, a Godunov-type scheme for approximating the solution of (3.1) starts with a continuous piecewise-polynomial \(\tilde{\varphi}(\tilde{x}, t^n) \) that is reconstructed from the data, \(\varphi_{i,j}^{n} \):

\[
\tilde{\varphi}(\tilde{x}, t^n) = \sum_{i,j} P_{i,j}^{T_\pm}(\tilde{x}, t^n)\chi_{T_\pm}(\tilde{x})
\]

(3.2)

As usual, \(\chi_{T_\pm}(\tilde{x}) \) is the characteristic function of the triangle \(T_\pm \), and \(P_{i,j}^{T_\pm}(\tilde{x}, t^n) \) is a polynomial of a suitable degree that satisfies the interpolation requirements

\[
P_{i,j}^{T_\pm}(\tilde{x}_t, t^n) = \varphi(\tilde{x}_t, t^n), \quad \tilde{x}_t \in I_\pm
\]

(see Figure 3.1) The reconstruction (3.2) is then evolved from time \(t^n \) to time \(t^{n+1} \) by (3.1), and sampled at the evolution points \(\{x_{i\pm\alpha,j\pm\alpha}\} \). In two dimensions the choice \(\alpha = 1/(2 + \sqrt{2}) \) guarantees that the solution remains smooth at the evolution point as long as the CFL condition \(\frac{\Delta t}{\Delta x} |H'(\nabla \varphi)| < \alpha \) is satisfied. The evolved solution now reads

\[
\varphi_{i\pm\alpha,j\pm\alpha}^{n+1} = \varphi_{i\pm\alpha,j\pm\alpha}^{n} - \int_{t^n}^{t^{n+1}} H(\nabla \tilde{\varphi}(x_{i\pm\alpha,j\pm\alpha}, \tau)) \, d\tau.
\]

(3.3)

The point-values \(\varphi_{i\pm\alpha,j\pm\alpha}^{n} \) are obtained by sampling (3.2) at \(x_{i\pm\alpha,j\pm\alpha} \), i.e., \(\varphi_{i\pm\alpha,j\pm\alpha}^{n} = \tilde{\varphi}(x_{i\pm\alpha,j\pm\alpha}, t^n) \). Similarly to the one-dimensional case, the evolution points are in smooth regions and therefore the integral on the RHS of (3.3) can be replaced with a sufficiently accurate quadrature such as the Simpson rule (2.4), which leads to a scheme that is fourth-order accurate in time. The derivatives at time \(t^n \), \(\varphi'_{i\pm\alpha,j\pm\alpha}^{n} \) are obtained by sampling the derivative of the reconstruction (3.2), i.e., \(\varphi'_{i\pm\alpha,j\pm\alpha}^{n} = \tilde{\varphi}'(x_{i\pm\alpha,j\pm\alpha}, t^n) \). The other intermediate values of the derivative in time that are required in the quadrature can be predicted using a Taylor expansion or with a Runge-Kutta method in an analogous way to the one-dimensional case.

Remarks

1. We present two different algorithms for constructing \(\varphi_{i\pm\alpha,j\pm\alpha} \): two-dimensional interpolants defined on two-dimensional stencils and a dimension-by-dimension approach. We present both algorithms for the third-order scheme and extend the simpler dimension-by-dimension approach to fifth-order. Our numerical simulations in §4 indicate that both reconstructions of \(\varphi_{i\pm\alpha,j\pm\alpha} \) are of a comparable quality. In both approaches, the reconstruction of the derivatives \(\nabla \varphi_{i\pm\alpha,j\pm\alpha} \) is done dimension-by-dimension.

2. We reproject \(\varphi_{i\pm\alpha,j\pm\alpha}^{n+1} \) and \(\varphi_{i\pm\alpha,j\pm\alpha}^{n+1} \) back onto the integer grid-points, obtaining \(\varphi_{i,j}^{n+1} \). We present several ways to carry out this reprojecion: a genuinely two-dimensional approach, a dimension-by-dimension strategy and a reprojecion along the diagonal line through \(x_{i\pm\alpha,j\pm\alpha} \) and \(x_{i\pm\alpha,j\pm\alpha} \).
3.2 Two-Dimensional Third-Order Schemes

In order to obtain a third-order scheme, we need a fourth-order reconstruction of the point-values at the evolution points $x_{i\pm\alpha,j\pm\alpha}$.

3.2.1 A two-dimensional reconstruction of $\varphi_{i\pm\alpha,j\pm\alpha}$

In this section we present a two-dimensional fourth-order reconstruction of the point-values $\varphi_{i\pm\alpha,j\pm\alpha}$. In principle, a two-dimensional cubic interpolant would provide a reconstruction with the desired accuracy. Such an interpolant is based on a ten-point stencil. As usual, solving such a direct interpolation problem is unsatisfactory as spurious oscillations might develop as a result of the lack of smoothness in the solution. Instead, we generate a two-dimensional fourth-order reconstruction as a convex combination of four quadratic interpolants, each which is based on a six-point stencil. We choose compact quadratic interpolants such that the union of all the six-point stencils is a compact ten-point stencil. Similarly to any WENO-type reconstruction, when singularities are present the six-point stencils containing the singularities are suppressed. In any case, we implicitly assume that the solution is sufficiently resolved such that the singularities in the solution are isolated in the sense that they do not occur along neighboring parallel cell edges. Singularities will in general occur along adjacent cell edges. There is a lot of flexibility in choosing the ten-point stencil as well as the different six-point stencils. Here, for the evolution point $x_{i\pm\alpha,j\pm\alpha}$ we choose the ten-point stencil shown in Figure 3.2. We choose to use the four six-point stencils that are shown in Figure 3.3. Obviously, the union of these stencils is the ten-point stencil in Figure 3.2. Furthermore,
Figure 3.2: The ten-point stencil for the two-dimensional reconstruction of \(\varphi_{i+\alpha,j+\alpha} \). The open circle shows the location of the evolution point at \(x_{i+\alpha,j+\alpha} \).

they all enclose the cell containing the evolution point and they all cross different edges of the enclosing cell. A singularity along an edge will suppress two of these stencils, while a singularity in a corner will suppress three of these stencils.

Remarks.

1. The stencils for the evolution point at \(x_{i-\alpha,j-\alpha} \) are obtained by a rotation of 180 degrees of the stencils in Figures 3.2–3.3.

2. We could use less than four stencils and still generate a scheme that will have the desired order of accuracy.

Given the four six-point stencils in Figure 3.3, a straightforward computation shows that third-order approximations for smooth \(\varphi \) at the evolution points \(x_{i\pm\alpha,j\pm\alpha} \), \(\varphi_{i\pm\alpha,j\pm\alpha}^k = \varphi(x_{i\pm\alpha},y_{j\pm\alpha}) + O(\Delta x^3, \Delta y^3) \), \(\forall k \in \{1, 2, 3, 4\} \), is obtained with

\[
\begin{align*}
\varphi_{i\pm\alpha,j\pm\alpha}^1 &= a_1 \varphi_{i,j} + a_2 \varphi_{i\pm1,j} + a_3 \varphi_{i\pm1,j\pm1} + a_4 \varphi_{i\pm2,j} + a_4 \varphi_{i,j\pm2}, \\
\varphi_{i\pm\alpha,j\pm\alpha}^2 &= a_5 \varphi_{i,j} + a_6 \varphi_{i\pm1,j} + a_3 \varphi_{i\pm1,j\pm1} + a_4 \varphi_{i,j\pm2} + a_4 \varphi_{i\mp1,j}, \\
\varphi_{i\pm\alpha,j\pm\alpha}^3 &= a_7 \varphi_{i,j} + a_2 \varphi_{i\pm1,j} + a_8 \varphi_{i,j\pm1} + a_4 \varphi_{i\pm1,j\mp1} + a_4 \varphi_{i\mp1,j\pm1}, \\
\varphi_{i\pm\alpha,j\pm\alpha}^4 &= a_5 \varphi_{i,j} + a_2 \varphi_{i\pm1,j} + a_3 \varphi_{i\pm1,j\pm1} + a_4 \varphi_{i\pm2,j} + a_4 \varphi_{i,j\mp1},
\end{align*}
\]

where

\[
\begin{align*}
a_1 &= 1 - 3\alpha + 2\alpha^2, & a_2 &= 2\alpha - 2\alpha^2, & a_3 &= \alpha^2, \\
a_4 &= -\frac{1}{2}\alpha + \frac{3}{2}\alpha^2, & a_5 &= 1 - \frac{3}{2}\alpha + \frac{1}{2}\alpha^2, & a_5 &= \frac{1}{2}\alpha - \frac{1}{2}\alpha^2, \\
a_7 &= 1 - 2\alpha + \alpha^2, & a_8 &= -\alpha + 2\alpha^2.
\end{align*}
\]
Figure 3.3: The four six-point stencils that cover the ten-point stencil for the two-dimensional reconstruction.

The linear combination
\[
\sum_{k=1}^{4} c_k \varphi_{i \pm \alpha, j \pm \alpha}^k = \varphi(x_{i \pm \alpha}, y_{j \pm \alpha}) + O(\Delta x^4, \Delta y^4),
\]
is fourth-order accurate provided that the constants \(c_i \) are taken as
\[
c_1 = \frac{1}{3}(5\alpha - 1), \quad c_2 = c_4 = \frac{2}{3}(-2\alpha + 1), \quad c_3 = \alpha. \tag{3.6}
\]

A two-dimensional CWENO reconstruction is a straightforward generalization of the one-dimensional case (compare with (2.7),(2.8)),
\[
\varphi_{i \pm \alpha, j \pm \alpha} = \sum_{k=1}^{4} w_{i \pm \alpha, j \pm \alpha}^k \varphi_{i \pm \alpha, j \pm \alpha}^k.
\]

Here
\[
w_{i \pm \alpha, j \pm \alpha}^k = \frac{\alpha_{i \pm \alpha, j \pm \alpha}^k}{\sum_{l=1}^{4} \alpha_{i \pm \alpha, j \pm \alpha}^l}, \quad \alpha_{i \pm \alpha, j \pm \alpha}^k = \frac{c_k}{(\epsilon + 5\alpha_{i \pm \alpha, j \pm \alpha}^k)^P},
\]
with the constants \(c_k \) given by (3.6). As usual, the smoothness measure for every stencil is taken as a normalized sum of the discrete \(L^2 \)-norms of the derivatives. If we define the forward and backward differences \(\Delta^+_x \varphi_{i,j} = \varphi_{i+1,j} - \varphi_{i,j} \), \(\Delta^-_x \varphi_{i,j} = \varphi_{i,j} - \varphi_{i-1,j} \),
\[\Delta^+_y \varphi_{i,j} = \varphi_{i,j+1} - \varphi_{i,j}, \quad \Delta^-_y \varphi_{i,j} = \varphi_{i,j} - \varphi_{i,j-1}, \]

then the smoothness measures for the evolution point \(x_{i+a,j+a} \) are given by

\[S^1_{i+a,j+a} = (\Delta^+_y \varphi_{i,j})^2 + (\Delta^+_y \varphi_{i+1,j})^2 + (\Delta^+_y \varphi_{i,j+1})^2 + (\Delta^+_y \varphi_{i,j+1})^2 + (\Delta^+_y \varphi_{i+1,j})^2 + \frac{1}{\Delta x^2} [(\Delta^+_x \Delta^-_x \varphi_{i,j})^2 + (\Delta^+_x \Delta^-_x \varphi_{i,j+1})^2], \]

\[S^2_{i+a,j+a} = (\Delta^+_y \varphi_{i,j})^2 + (\Delta^+_y \varphi_{i+1,j})^2 + (\Delta^+_y \varphi_{i,j+1})^2 + (\Delta^+_y \varphi_{i,j+1})^2 + (\Delta^+_y \varphi_{i+1,j})^2 + \frac{1}{\Delta x^2} [(\Delta^+_x \Delta^-_x \varphi_{i,j})^2 + (\Delta^+_x \Delta^-_x \varphi_{i,j+1})^2], \]

\[S^3_{i+a,j+a} = (\Delta^+_y \varphi_{i,j})^2 + (\Delta^+_y \varphi_{i+1,j})^2 + (\Delta^+_y \varphi_{i,j+1})^2 + (\Delta^+_y \varphi_{i,j+1})^2 + (\Delta^+_y \varphi_{i+1,j})^2 + \frac{1}{\Delta x^2} [(\Delta^+_x \Delta^-_x \varphi_{i,j+1})^2 + (\Delta^+_x \Delta^-_x \varphi_{i+1,j})^2], \]

\[S^4_{i+a,j+a} = (\Delta^+_y \varphi_{i,j})^2 + (\Delta^+_y \varphi_{i+1,j})^2 + (\Delta^+_y \varphi_{i,j+1})^2 + (\Delta^+_y \varphi_{i,j+1})^2 + (\Delta^+_y \varphi_{i+1,j})^2 + \frac{1}{\Delta x^2} [(\Delta^+_x \Delta^-_x \varphi_{i,j+1})^2 + (\Delta^+_x \Delta^-_x \varphi_{i+1,j})^2]. \]

The smoothness measures for the evolution point \(x_{i-a,j-a} \) are

\[S^1_{i-a,j-a} = (\Delta^+_y \varphi_{i-1,j})^2 + (\Delta^+_y \varphi_{i-1,j-1})^2 + (\Delta^+_y \varphi_{i,j-2})^2 + (\Delta^+_y \varphi_{i,j-1})^2 + \frac{1}{\Delta x^2} [(\Delta^+_x \Delta^-_x \varphi_{i-1,j})^2 + (\Delta^+_x \Delta^-_x \varphi_{i-1,j-1})^2], \]

\[S^2_{i-a,j-a} = (\Delta^+_y \varphi_{i,j})^2 + (\Delta^+_y \varphi_{i,j-1})^2 + (\Delta^+_y \varphi_{i,j-2})^2 + (\Delta^+_y \varphi_{i,j-1})^2 + \frac{1}{\Delta x^2} [(\Delta^+_x \Delta^-_x \varphi_{i,j})^2 + (\Delta^+_x \Delta^-_x \varphi_{i,j-1})^2], \]

\[S^3_{i-a,j-a} = (\Delta^+_y \varphi_{i-1,j})^2 + (\Delta^+_y \varphi_{i-1,j-1})^2 + (\Delta^+_y \varphi_{i,j-2})^2 + (\Delta^+_y \varphi_{i,j-1})^2 + \frac{1}{\Delta x^2} [(\Delta^+_x \Delta^-_x \varphi_{i-1,j})^2 + (\Delta^+_x \Delta^-_x \varphi_{i-1,j-1})^2], \]

\[S^4_{i-a,j-a} = (\Delta^+_y \varphi_{i-2,j})^2 + (\Delta^+_y \varphi_{i-1,j})^2 + (\Delta^+_y \varphi_{i-1,j-1})^2 + (\Delta^+_y \varphi_{i,j})^2 + (\Delta^+_y \varphi_{i,j-1})^2 + \frac{1}{\Delta x^2} [(\Delta^+_x \Delta^-_x \varphi_{i-1,j})^2 + (\Delta^+_x \Delta^-_x \varphi_{i-1,j-1})^2]. \]

3.2.2 A dimension-by-dimension reconstruction of \(\varphi_{i\pm a,j\pm a} \)

A different way to obtain high-order approximations for the values of \(\varphi_{i\pm a,j\pm a} \) is by carrying out a sequence of one-dimensional reconstructions from §2.2. This dimension-by-dimension approach for the reconstruction step is similar in spirit to that of [17], but here, in order to generate a Godunov-type scheme (unlike [17]), we are forced to use evolution points that are not positioned in the same locations as the data \(x_{i,j} \). An appropriately chosen sequence of one-dimensional reconstructions addresses this problem.

We use the subscript '*' to denote the full range of an array, such that \(\varphi_{*,j} \) and \(\varphi_{i,*} \) denote the one-dimensional arrays \(\varphi_{*,j} = (\varphi_{1,j}, \ldots, \varphi_{N,j}) \) and \(\varphi_{i,*} = (\varphi_{i,1}, \ldots, \varphi_{i,N}) \). With the notation for the one-dimensional third-order reconstruction, (2.10), we can express the dimension-by-dimension reconstruction at \(x_{i+a,j+a} \) as

1. For each \(i, j \): \(\varphi_{i+a,j} = \text{reconstruct}_{-1D.3} (i, \alpha, \varphi_{*,j}) \)
2. For each \(i, j \): \(\varphi_{i+a,j+a} = \text{reconstruct}_{-1D.3} (i, \alpha, \varphi_{i+a,*}) \).
Figure 3.4. The dimension-by-dimension reconstruction process in two dimensions. Left: the first step where the intermediate interpolants $\varphi_{i+\alpha,j}$ at $x_{i\pm\alpha,j}$ (open squares) are computed using the data $\varphi_{i,j}$ (black dots). Right: the second step, where $\varphi_{i+\alpha,j}$ is interpolated in the j direction, giving $\varphi_{i+\alpha,j+a}$ at $x_{i+a,j+a}$ (open circle).

Here, we first interpolate along the first coordinate axis and reconstruct φ at $x_{i+\alpha,j}$. The data at $x_{i+\alpha,j}$ is then interpolated along the second coordinate axis to the location $x_{i+a,j+a}$ to give $\varphi_{i+a,j+a}$ (see Figure 3.4). Obviously, the order in which the steps are performed is not important. In a similar way, a dimension-by-dimension reconstruction at $x_{i-\alpha,j-a}$ is given by

1. For each i,j $\varphi_{i-\alpha,j} = \text{reconstruct}_{\varphi_{1D,3}}(i, -\alpha, \varphi_{i,j})$
2. For each i,j $\varphi_{i-\alpha,j-a} = \text{reconstruct}_{\varphi_{1D,3}}(i, -\alpha, \varphi_{i-\alpha,j})$

3.2.3 The reprojection step

After evolving the solution to the next time step at the evolution points $x_{i\pm\alpha,j\pm\alpha}$, we would like to reproject $\varphi^{n+1}_{i+a,j+a}$ back onto the integer grid points $x_{i,j}$ to end up with $\varphi^{n+1}_{i,j}$. There are several different ways to perform this task out of which we choose to present the following a two-dimensional reprojection using the two-dimensional reconstruction of §3.2.1 or the dimension-by-dimension reconstruction of §3.2.2, and a one-dimensional projection along the diagonal.

1. **A 2D reprojection.** The evolution points at $x_{i\pm\alpha,j\pm\alpha}$ have the same geometrical relationship to $x_{i,j}$ as $x_{i,j}$ has to $x_{i-\alpha,j-a}$. Hence, in order to reconstruct $\varphi^{n+1}_{i,j}$ from $\varphi_{i\pm\alpha,j\pm\alpha}$, we can directly utilize the projections from §3.2.1 or §3.2.2, taking $\varphi_{i\pm\alpha,j\pm\alpha}$ as the input data, and reversing the sign of the parameter from $\pm\alpha$ to $\mp\alpha$. The final value $\varphi^{n+1}_{i,j}$ is then taken as the average of the projections of $\varphi_{i+a,j+a}$ and $\varphi_{i-\alpha,j-a}$. Hence, if we denote either the two-dimensional or the dimension-by-dimension reconstruction described in §3.2.1 or §3.2.2 as

$$\varphi_{i\pm\alpha,j\pm\alpha} = \text{reconstruct}_{\varphi_{2D,3}}(i, j, \pm\alpha, \varphi), \quad (3.7)$$

where φ is now the two-dimensional array $\{\varphi_{i,j}\}$, then the reprojection step is
HIGH ORDER SCHEMES FOR HJ EQUATIONS

Figure 3.5. The evolution points used for the diagonal reconstruction of \(\varphi_{i,j} \)

(a) For each \(i, j \), \(\varphi_{i,j}^+ = \text{reconstruct}_{2D,3}(t, -\alpha, \varphi_{i+\alpha,j+\alpha}) \)

(b) For each \(i, j \), \(\varphi_{i,j}^- = \text{reconstruct}_{2D,3}(t, \alpha, \varphi_{i-\alpha,j-\alpha}) \)

(c) For each \(i, j \), \(\varphi_{i,j}^{n+1} = \frac{1}{2} (\varphi_{i,j}^+ + \varphi_{i,j}^-) \)

2 A diagonal reprojection. In this case we use one-dimensional data along the diagonal, \(\{\varphi_{i-1+\alpha,j+\alpha}, \varphi_{i+\alpha,j-\alpha}, \varphi_{i+\alpha,j+\alpha}, \varphi_{i+1-\alpha,j+1-\alpha}\} \), to construct a third-order WENO approximation of \(\varphi_{i,j}^{n+1} \) (see Figure 3.5)

Define

\[
\varphi_{i,j}^- = \frac{\alpha^2}{2(2\alpha - 1)} \varphi_{i-1+\alpha,j+\alpha} + \frac{\alpha - 1}{2(2\alpha - 1)} \varphi_{i+\alpha,j-\alpha} + \frac{1 - \alpha}{2} \varphi_{i+\alpha,j+\alpha} = \varphi(x_{i,j}) + O(\Delta x^3, \Delta y^3),
\]

\[
\varphi_{i,j}^+ = \frac{1 - \alpha}{2} \varphi_{i-\alpha,j-a} + \frac{\alpha - 1}{2(2\alpha - 1)} \varphi_{i+\alpha,j+\alpha} + \frac{\alpha^2}{2\alpha - 1} \varphi_{i+1-\alpha,j+1-\alpha} = \varphi(x_{i,j}) + O(\Delta x^3, \Delta y^3).
\]

Since \((\varphi_{i,j}^- + \varphi_{i,j}^+)/2 = \varphi(x_{i,j}) + O(\Delta x^4, \Delta y^4) \), we can obtain \(\varphi_{i,j}^{n+1} \) as

\[
\varphi_{i,j}^{n+1} = w_{i,j}^- \varphi_{i,j}^- + w_{i,j}^+ \varphi_{i,j}^+,
\]

where as usual \(w_{i,j}^\pm = \alpha_{i,j}^\pm/(\alpha_{i,j}^+ + \alpha_{i,j}^-) \), and \(\alpha_{i,j}^\pm = (2(\epsilon + S_{i,j}^\pm)^p)^{-1} \) The smoothness measures are again taken as the sum of the discrete \(L^2 \) norm of the derivatives,
which in this case is more complicated due to the uneven spacing of the data

\[
\mathcal{S}_{t,j}^- = \frac{1}{\Delta x} \left[\left(\frac{\phi_{t-a,j-a} - \phi_{t-1+a,j-1+a}}{1 - 2\alpha} \right)^2 + \left(\frac{\phi_{t+a,j+a} - \phi_{t-a,j-a}}{2\alpha} \right)^2 \right] \\
+ \frac{4}{\Delta x^3} \left(\frac{\phi_{t-a,j-a} - \phi_{t-1+a,j-1+a}}{1 - 2\alpha} \frac{\phi_{t+a,j+a} - \phi_{t-a,j-a}}{2\alpha} \right)^2,
\]

\[
\mathcal{S}_{t,j}^+ = \frac{1}{\Delta x} \left[\left(\frac{\phi_{t+a,j+a} - \phi_{t-a,j-a}}{2\alpha} \right)^2 + \left(\frac{\phi_{t+1-a,j+1-a} - \phi_{t+a,j+a}}{1 - 2\alpha} \right)^2 \right] \\
+ \frac{4}{\Delta x^3} \left(\frac{\phi_{t+a,j+a} - \phi_{t-a,j-a}}{2\alpha} \frac{\phi_{t+1-a,j+1-a} - \phi_{t+a,j+a}}{1 - 2\alpha} \right)^2.
\]

Remark Our numerical simulations in §4.3 indicate that there is little difference between the quality of the two-dimensional reconstruction and the dimension-by-dimension reconstruction of §3.2.1 and §3.2.2. We will use this fact when extending our methods to fifth-order and higher dimensions. We note that the diagonal reprojection significantly reduces the CFL number (see §4.4).

3.3 A Two-Dimensional Fifth-Order Scheme

Using the dimension-by-dimension approach, it is easy to extend the above scheme to fifth-order simply replace the one-dimensional third-order interpolations by the fifth-order interpolation in §3.2.2. Using the one-dimensional notation, (2.19), we obtain a fifth-order reconstruction at \(x_{t+\alpha,j+\alpha}\) as

1. For each \(t, j\) \(\phi_{t+\alpha,j} = \text{reconstruct}_{\phi_1D_5}(t, \alpha, \phi_{*,j})\)
2. For each \(t, j\) \(\phi_{t+\alpha,j+\alpha} = \text{reconstruct}_{\phi_1D_5}(j, \alpha, \phi_{t+\alpha,*})\)

Similarly, at \(x_{t-\alpha,j-\alpha}\) we have

1. For each \(t, j\) \(\phi_{t-\alpha,j} = \text{reconstruct}_{\phi_1D_5}(t, -\alpha, \phi_{*,j})\)
2. For each \(t, j\) \(\phi_{t-\alpha,j-\alpha} = \text{reconstruct}_{\phi_1D_5}(j, -\alpha, \phi_{t-\alpha,*})\)

We denote this reconstruction as

\[
\phi_{t\pm\alpha,j\pm\alpha} = \text{reconstruct}_{\phi_2D_5}(t, j, \pm\alpha, \phi) \quad (3.10)
\]

For the derivatives we have

1. For each \(t, j\) \(\phi'_{t\pm\alpha,j} = \text{reconstruct}_{\phi'_1D_5}(t, \pm\alpha, \phi_{*,j})\)
2. For each \(t, j\) \(\phi'_{t\pm\alpha,j\pm\alpha} = \text{reconstruct}_{\phi'_1D_5}(t, \pm\alpha, \phi_{t\pm\alpha,*})\)

which we denote as

\[
\phi'_{t\pm\alpha,j\pm\alpha} = \text{reconstruct}_{\phi'_2D_5}(t, j, \pm\alpha, \phi) \quad (3.11)
\]

Reprojection onto the original grid points \(x_{t,j}\) is performed using the two-dimensional dimension-by-dimension reprojection option described in §3.2.3.
Remarks

1. Due to the reduced stability resulting from the use of diagonal reprojection, which is demonstrated in §4.4, we do not develop a fifth-order analog to the third-order diagonal reprojection.

2. It is straightforward to develop a fifth-order two-dimensional method involving two-dimensional stencils, extending §3.2.1. Such a method would involve four interpolants defined on ten-point stencils that cover a twenty-one point stencil.

We summarize the two-dimensional fifth-order algorithm in the following, where RK($\varphi^{n+\alpha}_{i\pm\alpha}, \varphi^{n+\alpha}_{i\pm\alpha}, \Delta t$) is now the fourth-order RK method which integrates (2.1). As in Algorithm 2.1, each internal step of the RK method will require additional reconstructions of $\varphi'_{i\pm\alpha}$ from that step’s $\varphi_{i\pm\alpha}$.

Algorithm 3.1 Let $\alpha = 1/ (2 + \sqrt{2})$. Assume that $\{\varphi^n_{ij}\}$ are given.

1. Reconstruct

 $\varphi_{i\pm\alpha, j\pm\alpha} = \text{reconstruct}_{\varphi \cdot 2D \cdot 5}(i, j, \pm\alpha, \varphi)$

 $\varphi'_{i\pm\alpha, j\pm\alpha} = \text{reconstruct}_{\varphi' \cdot 2D \cdot 5}(i, j, \pm\alpha, \varphi)$

2. Integrate

 $\varphi^{n+\alpha/2}_{i\pm\alpha, j\pm\alpha} = \text{RK} \left(\varphi^n_{i\pm\alpha, j\pm\alpha}, \varphi'_{i\pm\alpha, j\pm\alpha}, \Delta t/2 \right)$

 $\varphi'_{i\pm\alpha, j\pm\alpha} = \text{reconstruct}_{\varphi' \cdot 2D \cdot 5}(i, \pm\alpha, \varphi^{n+\alpha/2}_{i\pm\alpha, j\pm\alpha})$

 $\varphi^{n+1}_{i\pm\alpha, j\pm\alpha} = \text{RK} \left(\varphi^n_{i\pm\alpha, j\pm\alpha}, \varphi'_{i\pm\alpha, j\pm\alpha}, \Delta t \right)$

 $\varphi'_{i\pm\alpha, j\pm\alpha} = \text{reconstruct}_{\varphi' \cdot 2D \cdot 5}(i, \pm\alpha, \varphi^{n+1}_{i\pm\alpha, j\pm\alpha})$

 $\varphi^{n+1}_{i\pm\alpha, j\pm\alpha} = \varphi^n_{i\pm\alpha, j\pm\alpha} + \frac{\Delta t}{6} \left[H \left(\varphi^n_{i\pm\alpha, j\pm\alpha} \right) + 4H \left(\varphi^{n+\alpha/2}_{i\pm\alpha, j\pm\alpha} \right) + H \left(\varphi'_{i\pm\alpha, j\pm\alpha} \right) \right]$

3. Reproject

 $\varphi^{n+1}_{i, j} = \text{reconstruct}_{\varphi \cdot 2D \cdot 5}(i, j, \mp\alpha, \varphi^{n+1}_{i\pm\alpha, j\pm\alpha})$
3.4 Multi-Dimensional Extensions

The extension of the direction-by-direction approach to more than two space dimensions is straightforward. For example, using the notation of §3 3, a three-dimensional fifth-order reconstruction is

1. For each i, j, k, $\varphi_{i+a_j, j+k} = \text{reconstruct}_\varphi \cdot 1D \cdot 5 (t, \alpha, \varphi_{*, j, k})$

2. For each i, j, k, $\varphi_{i+a_j+a_k} = \text{reconstruct}_\varphi \cdot 1D \cdot 5 (t, \alpha, \varphi_{*, *, k})$

3. For each i, j, k, $\varphi_{i+a_j+a_k+a} = \text{reconstruct}_\varphi \cdot 1D \cdot 5 (t, \alpha, \varphi_{*, *, *, k})$

The reconstruction at $x_{-o_j-a_k} \cdot a$ is handled similarly, and the same for the reconstruction of $\varphi_{i+a_j+a_k}$ In three dimensions $\alpha = 1/ (3 + \sqrt{3})$

A d-dimensional reconstruction based on d-dimensional stencils quickly becomes very large It is readily apparent that the dimension-by-dimension approach will scale to high dimensions better than d-dimensional interpolants

4 Numerical Simulations

In this section we present simulations that test the schemes we developed in this paper In §4 1 we demonstrate the third- and fifth-order method in one dimension §4 2 focuses on the fifth-order method in two and three space dimensions In §4 3 we compare the two-dimensional third-order method based on two-dimensional stencils with the direction-by-direction approach In §4 4 we examine, in detail, stability issues in two dimensions, including comparisons with [17] Some of these examples are standard test cases that can be found, e.g., in [22, 31, 35]

We do not follow the practice in [17] of masking singular regions from our error measurements.

4.1 One-Dimensional Examples

A convex Hamiltonian

We start by testing the performance of our schemes on a convex Hamiltonian. We approximate solutions of the one-dimensional equation

$$\phi_t + \frac{1}{2} (\phi_x + 1)^2 = 0,$$

(4 1)

subject to the initial data $\phi(x, 0) = -\cos(\pi x)$ with periodic boundary conditions on $[0, 2]$ The change of variables, $u(x, t) = \phi_x(x, t) + 1$, transforms the equation into the Burgers' equation, $u_t + \frac{1}{2} (u^2)_x = 0$, which can be easily solved via the method of characteristics [35] As is well known, Burgers' equation generally develops discontinuous solutions even with smooth initial data, and hence we expect the solutions of (4.1) to have discontinuous derivatives In our case, the solution develops a singularity at time $t = \pi^{-2}$
The results of our simulations are shown in Figure 4.1. The order of accuracy of these methods is determined from the relative L^1 error (see [30]), defined as the L^1-norm of the error divided by the L^1-norm of the exact solution. These results along with the relative L^∞-norm before the singularity, at $T = 0.8/\pi^2$, are given in Table 4.1, and after the singularity at $T = 1.5/\pi^2$ in Table 4.2.

<table>
<thead>
<tr>
<th>N</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Third-order method</td>
</tr>
<tr>
<td></td>
<td>relative L^1-error</td>
</tr>
<tr>
<td>100</td>
<td>9.41×10^{-5}</td>
</tr>
<tr>
<td>200</td>
<td>1.13×10^{-5}</td>
</tr>
<tr>
<td>400</td>
<td>1.39×10^{-6}</td>
</tr>
<tr>
<td>800</td>
<td>1.74×10^{-7}</td>
</tr>
</tbody>
</table>

Table 4.1: Relative L^1-errors for the one-dimensional convex HJ problem (4.1) before the singularity formation $T = 0.8/\pi^2$.

<table>
<thead>
<tr>
<th>N</th>
<th>Third-order method</th>
<th></th>
<th>Fifth-order method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>relative L^1-error</td>
<td>L^1-order</td>
<td>relative L^∞-error</td>
</tr>
<tr>
<td>100</td>
<td>9.10×10^{-4}</td>
<td>--</td>
<td>2.77×10^{-4}</td>
</tr>
<tr>
<td>200</td>
<td>2.16×10^{-4}</td>
<td>2.07</td>
<td>7.63×10^{-5}</td>
</tr>
<tr>
<td>400</td>
<td>6.84×10^{-5}</td>
<td>1.66</td>
<td>2.68×10^{-5}</td>
</tr>
<tr>
<td>800</td>
<td>2.75×10^{-5}</td>
<td>1.31</td>
<td>2.08×10^{-5}</td>
</tr>
</tbody>
</table>

Table 4.2: Relative L^1-errors for the one-dimensional convex HJ problem (4.1) after the singularity formation $T = 1.5/\pi^2$.

HIGH ORDER SCHEMES FOR HJ EQUATIONS
Figure 4.1 One-dimensional convex Hamiltonian (4.1)
Left: the solution before the singularity formation, $T = 0.8/\pi^2$
Right: the solution after the singularity formation, $T = 1.5/\pi^2$
$N = 40$
Shown are the third- and fifth-order approximations, and the exact solution.

A non-convex Hamiltonian

In this example we deal with non-convex Hamilton-Jacobi equations. In one dimension we solve

$$
\phi_t - \cos (\phi_x + 1) = 0,
$$

subject to the initial data $\phi(x, 0) = -\cos (\pi x)$ with periodic boundary conditions on $[0,2]$. In this case (4.2) has a smooth solution for $t \lesssim 1.049/\pi^2$, after which a singularity forms. A second singularity forms at $t \approx 1.29/\pi^2$. The results are shown in Figures 4.2. The convergence results before and after the singularity formation are given in Tables 4.3–4.4.

A linear advection equation

In this example ([17] with a misprint, corrected in [40]) we solve the one-dimensional linear advection equation, i.e., $H(\phi_x) = \phi_x$. We assume periodic boundary conditions on $[-1,1]$, and take the initial data as $\phi(x, 0) = g(x - 0.5)$ on $[-1,1]$, where

$$
g(x) = -\left(\frac{\sqrt{3}}{2} + \frac{9}{2} + \frac{2\pi}{3}\right)(x + 1) + h(x),
$$

$$
h(x) = \begin{cases}
2\cos \left(\frac{3\pi}{2}x^2\right) - \sqrt{3}, & -1 < x < -\frac{1}{3}, \\
\frac{3}{2} + 3\cos (2\pi x), & -\frac{1}{3} < x < 0, \\
15/2 - 3\cos (2\pi x), & 0 < x < \frac{1}{3}, \\
(28 + 4\pi + \cos (3\pi x))/3 + 6\pi x(x - 1), & \frac{1}{3} < x < 1.
\end{cases}
$$

The results of the fifth-order method are shown in Figure 4.3, where it is compared with the fifth-order method of [17]. The reduced dissipation effects of our method are visible in the reduced round-off of the corners.
<table>
<thead>
<tr>
<th>N</th>
<th>Third-order method</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>relative L^1-error</td>
<td>L^1-order</td>
<td>relative L^∞-error</td>
<td>L^∞-order</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>6.47×10^{-5}</td>
<td>-</td>
<td>9.05×10^{-6}</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>7.78×10^{-6}</td>
<td>3.06</td>
<td>1.11×10^{-6}</td>
<td>3.03</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>8.77×10^{-7}</td>
<td>3.15</td>
<td>9.27×10^{-8}</td>
<td>3.58</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>9.87×10^{-8}</td>
<td>3.15</td>
<td>6.12×10^{-9}</td>
<td>3.92</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Fifth-order method</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>relative L^1-error</td>
<td>L^1-order</td>
<td>relative L^∞-error</td>
<td>L^∞-order</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.29×10^{-5}</td>
<td>-</td>
<td>4.97×10^{-6}</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>6.52×10^{-7}</td>
<td>4.31</td>
<td>2.38×10^{-7}</td>
<td>4.38</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>2.10×10^{-8}</td>
<td>4.95</td>
<td>6.13×10^{-9}</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>5.96×10^{-10}</td>
<td>5.14</td>
<td>1.03×10^{-10}</td>
<td>5.90</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.3: Relative L^1-errors for the one-dimensional non-convex HJ problem (4.2) before the singularity formation $T = 0.8/\pi^2$

<table>
<thead>
<tr>
<th>N</th>
<th>Third-order method</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>relative L^1-error</td>
<td>L^1-order</td>
<td>relative L^∞-error</td>
<td>L^∞-order</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2.81×10^{-4}</td>
<td>-</td>
<td>9.64×10^{-5}</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>1.32×10^{-4}</td>
<td>1.08</td>
<td>5.05×10^{-5}</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>2.31×10^{-5}</td>
<td>2.52</td>
<td>6.00×10^{-6}</td>
<td>3.07</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>8.43×10^{-6}</td>
<td>1.46</td>
<td>3.30×10^{-6}</td>
<td>0.86</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Fifth-order method</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>relative L^1-error</td>
<td>L^1-order</td>
<td>relative L^∞-error</td>
<td>L^∞-order</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.57×10^{-4}</td>
<td>-</td>
<td>1.12×10^{-4}</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>8.34×10^{-5}</td>
<td>0.91</td>
<td>6.60×10^{-5}</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1.22×10^{-5}</td>
<td>2.78</td>
<td>8.64×10^{-6}</td>
<td>2.93</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>6.67×10^{-6}</td>
<td>0.87</td>
<td>5.23×10^{-6}</td>
<td>0.72</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.4: Relative L^1-errors for the one-dimensional non-convex HJ problem (4.2) after the singularity formation $T = 1.5/\pi^2$
Figure 4.2 One-dimensional non-convex Hamiltonian (4.2) *Left* The solution before the singularity formation, $T = 0.8/\pi^2$. *Right* The solution after the singularity formation, $T = 1.5/\pi^2$. $N = 40$. Shown are the third- and fifth-order approximations, and the exact solution.

Figure 4.3 One-dimensional linear advection, (4.3) $T = 2, 8, 16, 32$. $N = 100$. *Crosses* our fifth-order method, *Circles* the fifth-order method of [17] with a local Lax-Friedrichs flux, *Solid line* the exact solution.
4.2 Two-Dimensional Examples

A convex Hamiltonian

In two dimensions we solve a problem similar to (41)

\[\phi_t + \frac{1}{2} (\phi_x + \phi_y + 1)^2 = 0, \quad (44) \]

which can be reduced to a one-dimensional problem via the coordinate transformation \(\left(\begin{array}{c} \xi \\ \eta \end{array} \right) = \frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) \). The results of the second-order calculations for the initial data \(\phi(x, y, 0) = -\cos(\pi(x + y)/2) = -\cos(\pi \xi) \) are shown in Figure 44. The convergence rates for the two-dimensional fifth-order scheme before and after the singularity are shown in Table 4.5.

<table>
<thead>
<tr>
<th>N</th>
<th>relative L^1-error</th>
<th>L^1-order</th>
<th>relative L^\infty-error</th>
<th>L^\infty-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.19x10^{-4}</td>
<td>-</td>
<td>7.78x10^{-7}</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>6.80x10^{-6}</td>
<td>4.13</td>
<td>1.64x10^{-5}</td>
<td>5.56</td>
</tr>
<tr>
<td>200</td>
<td>1.73x10^{-7}</td>
<td>5.30</td>
<td>1.12x10^{-10}</td>
<td>7.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>relative L^1-error</th>
<th>L^1-order</th>
<th>relative L^\infty-error</th>
<th>L^\infty-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.32x10^{-3}</td>
<td>-</td>
<td>2.07x10^{-5}</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>3.89x10^{-4}</td>
<td>1.76</td>
<td>3.60x10^{-6}</td>
<td>2.52</td>
</tr>
<tr>
<td>200</td>
<td>4.86x10^{-5}</td>
<td>3.00</td>
<td>1.69x10^{-7}</td>
<td>4.41</td>
</tr>
</tbody>
</table>

Table 4.5 Relative L^1- and L^\infty-errors for the two-dimensional convex HJ problem (44) before and after singularity formation, computed via the fifth-order method.

A non-convex Hamiltonian

The two-dimensional non-convex problem, which is analogous to the one-dimensional problem, (42), is

\[\phi_t - \cos(\phi_x + \phi_y + 1) = 0. \quad (45) \]

Here we assume initial data that is given by \(\phi(x, y, 0) = -\cos(\pi(x + y)/2) \), and periodic boundary conditions. The results are shown in Figure 45. The convergence results for the two-dimensional fifth-order scheme before and after the singularity formation are given in Table 4.6.

<table>
<thead>
<tr>
<th>N</th>
<th>relative L^1-error</th>
<th>L^1-order</th>
<th>relative L^\infty-error</th>
<th>L^\infty-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.19x10^{-4}</td>
<td>-</td>
<td>7.78x10^{-7}</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>6.80x10^{-6}</td>
<td>4.13</td>
<td>1.64x10^{-5}</td>
<td>5.56</td>
</tr>
<tr>
<td>200</td>
<td>1.73x10^{-7}</td>
<td>5.30</td>
<td>1.12x10^{-10}</td>
<td>7.20</td>
</tr>
</tbody>
</table>

A fully two-dimensional example

The above two-dimensional examples are actually one-dimensional along the diagonal. To check the performance of our methods on fully two-dimensional problems we solve

\[\phi_t + \phi_x \phi_y = 0, \quad (46) \]
Figure 4.4 Two-dimensional convex Hamiltonian, (4.4) Left the solution before the singularity formation, $T = 0.8/\pi^2$. Right: the solution after the singularity formation, $T = 1.5/\pi^2$. $N = 40 \times 40$. The solution is computed with the fifth-order method

<table>
<thead>
<tr>
<th>N</th>
<th>relative L^1-error</th>
<th>L^1-order</th>
<th>relative L^∞-error</th>
<th>L^∞-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.11×10^{-4}</td>
<td>-</td>
<td>1.26×10^{-6}</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>6.91×10^{-6}</td>
<td>4.00</td>
<td>2.42×10^{-8}</td>
<td>5.70</td>
</tr>
<tr>
<td>200</td>
<td>3.85×10^{-7}</td>
<td>4.17</td>
<td>6.27×10^{-10}</td>
<td>5.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>relative L^1-error</th>
<th>L^1-order</th>
<th>relative L^∞-error</th>
<th>L^∞-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.47×10^{-3}</td>
<td>-</td>
<td>8.58×10^{-6}</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>1.93×10^{-4}</td>
<td>2.93</td>
<td>9.27×10^{-7}</td>
<td>3.21</td>
</tr>
<tr>
<td>200</td>
<td>8.87×10^{-5}</td>
<td>1.12</td>
<td>3.09×10^{-7}</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Table 4.6 Relative L^1- and L^∞-errors for the two-dimensional non-convex HJ problem (4.5) before and after the singularity formation, computed with the fifth-order method.
Figure 4.5 Two-dimensional non-convex Hamiltonian, (4.4) *Left.* the solution before the singularity formation, \(T = 0.8/\pi^2 \) *Right.* the solution after the singularity formation, \(T = 1.5/\pi^2 \) \(N = 40 \times 40 \) The solution is computed with the fifth-order method

on \([-\pi, \pi] \times [-\pi, \pi]\), subject to the initial data \(\phi(x, y, 0) = \sin(x) + \cos(y) \) with periodic boundary conditions The exact solution for this problem is given implicitly by \(\phi(x, y, t) = -\cos(q)\sin(r) + \sin(q) + \cos(r) \) where \(x = q - t\sin(r) \) and \(y = r + t\cos(q) \). This solution is smooth for \(t < 1 \), continuous for all \(t \) and has discontinuous derivatives for \(t \geq 1 \) The results of our simulations at times \(T = 0.8, 1.5 \), are shown in Figure 4.6 The convergence results for the first- and second-order two-dimensional schemes before the singularity formation are given in Table 4.7 and confirm the expected order of accuracy of our methods

<table>
<thead>
<tr>
<th>(N)</th>
<th>relative (L^1)-error</th>
<th>(L^1)-order</th>
<th>relative (L^\infty)-error</th>
<th>(L^\infty)-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>(6.10 \times 10^{-6})</td>
<td></td>
<td>(8.15 \times 10^{-8})</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>(2.10 \times 10^{-7})</td>
<td>4.86</td>
<td>(7.35 \times 10^{-10})</td>
<td>6.79</td>
</tr>
<tr>
<td>200</td>
<td>(7.53 \times 10^{-9})</td>
<td>4.86</td>
<td>(5.59 \times 10^{-12})</td>
<td>7.04</td>
</tr>
</tbody>
</table>

Table 4.7 Relative \(L^1 \)-errors for the two-dimensional HJ problem (4.6) before singularity formation \(T = 0.8 \) The solution is computed with the fifth-order method

An eikonal equation in geometric optics

We consider a two-dimensional non-convex problem that arises in geometric optics [20]

\[
\begin{align*}
\phi_t + \sqrt{\phi_x^2 + \phi_y^2 + 1} &= 0, \\
\phi(x, y, 0) &= \frac{1}{4} (\cos(2\pi x) - 1)(\cos(2\pi y) - 1) - 1
\end{align*}
\]

(4.7)
An optimal control problem

We solve an optimal control problem related to cost determination [35]. Here the Hamiltonian is of the form $H(x, y, \nabla \phi)$

$$\begin{align*}
\phi_t - \sin(y) \phi_x + \sin(x) \phi_y + |\phi_y| - \frac{1}{2} \sin^2(y) - 1 + \cos(x) &= 0, \\
\phi(x, y, 0) &= 0.
\end{align*}$$

The result of our fifth-order scheme is presented in Figure 4.8 and is in qualitative agreement with [31].

4.3 A Comparison of Two-Dimensional Third-Order Interpolants

In this section we use the examples (4.4), (4.5) and (4.6) to compare the third-order method of §3 2 1, based on interpolation via two-dimensional stencils, with that of §3 2 2, where we used a direction-by-direction approach. The results are shown in Table 4.8. The dimension-by-dimension method produces errors that are approximately twice as large compared with the genuinely two-dimensional reconstruction. However, the convergence rate is qualitatively the same in both methods. These results motivated us to base our fifth-order scheme on the much simpler dimension-by-dimension reconstruction.
Figure 4.7 Two-dimensional eikonal equation, (4.7) $N = 40 \times 40$. Left: the initial data. Right: the fifth-order approximation at $T = 0.6$.

Figure 4.8 Two-dimensional optimal control problem, (4.8) An approximation with the fifth-order method is shown at $T = 1$ $N = 40 \times 40$.
Table 4.8

Comparison of the third-order method of §3.2.1, with an interpolation via two-dimensional stencils, and that of §3.2.2, with the direction-by-direction approach.

<table>
<thead>
<tr>
<th>N</th>
<th>2D Stencils</th>
<th>Direction-by-Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>relative L^1-error</td>
<td>L^1-order</td>
</tr>
<tr>
<td>Convex Hamiltonian at $T = 0.8/\pi^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>4.70×10⁻⁴</td>
<td>–</td>
</tr>
<tr>
<td>100</td>
<td>7.54×10⁻⁵</td>
<td>2.64</td>
</tr>
<tr>
<td>200</td>
<td>8.07×10⁻⁶</td>
<td>3.23</td>
</tr>
<tr>
<td>Convex Hamiltonian at $T = 1.5/\pi^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1.23×10⁻³</td>
<td>–</td>
</tr>
<tr>
<td>100</td>
<td>4.56×10⁻⁴</td>
<td>1.44</td>
</tr>
<tr>
<td>200</td>
<td>3.70×10⁻⁵</td>
<td>3.62</td>
</tr>
<tr>
<td>Non-Convex Hamiltonian at $T = 0.8/\pi^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2.27×10⁻⁴</td>
<td>–</td>
</tr>
<tr>
<td>100</td>
<td>3.75×10⁻⁵</td>
<td>2.60</td>
</tr>
<tr>
<td>200</td>
<td>3.99×10⁻⁶</td>
<td>3.23</td>
</tr>
<tr>
<td>Non-Convex Hamiltonian at $T = 1.5/\pi^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1.23×10⁻³</td>
<td>–</td>
</tr>
<tr>
<td>100</td>
<td>2.50×10⁻⁴</td>
<td>2.30</td>
</tr>
<tr>
<td>200</td>
<td>7.63×10⁻⁵</td>
<td>1.71</td>
</tr>
<tr>
<td>Fully 2D Example at $T = 0.8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2.01×10⁻⁴</td>
<td>–</td>
</tr>
<tr>
<td>100</td>
<td>2.42×10⁻⁵</td>
<td>3.05</td>
</tr>
<tr>
<td>200</td>
<td>2.95×10⁻⁶</td>
<td>3.04</td>
</tr>
</tbody>
</table>
4.4 A Stability Study

In this section we present a couple of stability studies we obtained in our simulations. We start by checking the stability properties of the third-order scheme with different reprojection steps. The reconstruction step is done in all cases using the direction-by-direction interpolant. We compare the dimension-by-dimension reprojection and the diagonal reprojection (of §3.2.3). In Figure 4.9 we plot the L^1 error as a function of the CFL number. The test problem is (4.6) with the fully two-dimensional Hamiltonian. The solution is computed at $T = 0.8$. We see that the use of a diagonal reprojection significantly reduces the maximum allowed CFL number.

![Figure 4.9: Stability of the two-dimensional third-order method with a dimension-by-dimension (crosses) vs a diagonal reprojection (diamonds). Fully two-dimensional Hamiltonian (4.6): $T = 0.8$ (before singularity). $N = 100 \times 100$.](image)

We now turn to checking the stability properties of the two-dimensional fifth-order method of §3.3 by computing the L^1 errors for various examples while varying the CFL number. In Figure 4.10 we compare the results obtained with our fifth-order scheme with the fifth-order method of [17], for which we used a local Lax-Friedrichs flux. The numerical tests indicate that larger CFL numbers can be used with our method.

4.5 Three-Dimensional Examples

We proceed with a three-dimensional generalization of the convex Hamiltonian (4.4),

$$
\phi_z + \frac{1}{2} (\phi_x + \phi_y + \phi_z + 1)^2 = 0,
$$

(4.9)
Figure 4.10: Stability of the two-dimensional fifth-order method $N = 100 \times 100$. Crosses our fifth-order method Circles the fifth-order method of [17] with a local Lax-Friedrichs flux. Upper left linear advection ($H(\nabla \phi) = \nabla \phi$) with initial condition $\phi(x, y, 0) = -\cos(\pi(x + y)/2)$.
Upper right fully 2D Hamiltonian (4.6).
Middle row convex Hamiltonian (4.4), before the singularity (right) and after the singularity (left).
Bottom row non-convex Hamiltonian (4.5), before the singularity (right) and after the singularity (left).
subject to the initial data \(\phi(x, y, z, 0) = -\cos(\pi(x + y + z)/3) \) The convergence results for the three-dimensional fifth-order scheme before and after the singularity formation are given in Table 4.9. We also approximate the solution of the non-covex problem

\[
\phi_t - \cos(\phi_x + \phi_y + \phi_z + 1) = 0,
\]

with the same initial data. The convergence rates for the three-dimensional fifth-order schemes are given in Table 4.10

<table>
<thead>
<tr>
<th>(N)</th>
<th>(\text{relative } L^1\text{-error})</th>
<th>(L^1\text{-order})</th>
<th>(\text{relative } L^\infty\text{-error})</th>
<th>(L^\infty\text{-order})</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>(7.28 \times 10^{-4})</td>
<td>(\cdot)</td>
<td>(3.70 \times 10^{-7})</td>
<td>(\cdot)</td>
</tr>
<tr>
<td>50</td>
<td>(3.71 \times 10^{-5})</td>
<td>(4.29)</td>
<td>(4.06 \times 10^{-9})</td>
<td>(6.51)</td>
</tr>
<tr>
<td>100</td>
<td>(1.05 \times 10^{-6})</td>
<td>(5.14)</td>
<td>(2.18 \times 10^{-11})</td>
<td>(7.54)</td>
</tr>
</tbody>
</table>

Table 4.9 Relative \(L^1\)- and \(L^\infty\)-errors for the three-dimensional convex HJ problem (4.9) before and after the singularity formation, computed with the fifth-order method

<table>
<thead>
<tr>
<th>(N)</th>
<th>(\text{relative } L^1\text{-error})</th>
<th>(L^1\text{-order})</th>
<th>(\text{relative } L^\infty\text{-error})</th>
<th>(L^\infty\text{-order})</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>(6.74 \times 10^{-3})</td>
<td>(\cdot)</td>
<td>(3.27 \times 10^{-6})</td>
<td>(\cdot)</td>
</tr>
<tr>
<td>50</td>
<td>(1.26 \times 10^{-3})</td>
<td>(2.42)</td>
<td>(6.90 \times 10^{-7})</td>
<td>(2.25)</td>
</tr>
<tr>
<td>100</td>
<td>(4.21 \times 10^{-4})</td>
<td>(1.59)</td>
<td>(6.84 \times 10^{-8})</td>
<td>(3.33)</td>
</tr>
</tbody>
</table>

Table 4.10. Relative \(L^1\)- and \(L^\infty\)-errors for the three-dimensional non-covex HJ problem (4.10) before and after the singularity formation, computed with the fifth-order method

References

HIGH ORDER SCHEMES FOR HJ EQUATIONS

